8-INPUT PECL DIFFERENTIAL MUX WITH TTL SELECTS FEATURES DESCRIPTION ■ Low skew ■ Differential PECL inputs ■ Differential cut-off PECL outputs capable of driving 25Ω load for driving data bus ■ Tri-state TTL output ■ TTL select and enable input ■ Internal 75KΩ PECL input pull-down resistors ■ PECL I/O fully compatible with industry standard ■ Available in 28-pin PLCC package The SY100S863 is a PECL 8:1 multiplexer designed for use in new, high-performance PECL systems. It has differential PECL outputs and a standard TTL output. The TTL select inputs (SEL0 , SEL1, SEL2) determine which one of the eight differential PECL data inputs (D 0–D 7) is propagated to the outputs. The enable pin, EN, is provided for expansion. When EN is at a TTL logic one level, both PECL and TTL outputs are enabled. When the enable pin is set to TTL logic zero level, both PECL outputs of the differential pair are in cut-off and the TTL output is in a three-state condition. D7 VCCO D6 D7 D5 25 24 23 22 21 20 19 26 18 Q D4 27 17 SEL0 VEE 28 16 SEL1 SEL2 2 Q VCC EN VCCT 3 13 D0 4 12 6 SEL2 (3) SEL1 (2) SEL0 (28) D0 D1 5 7 8 9 15 14 QTTL VGT 10 11 D3 (13) QTTL TOP VIEW PLCC J28-1 1 D2 D3 8:1 MUX D4 D1 D2 (17) Q (18) Q EN (15) 8 DIFFERENTIAL PECL INPUTS (4) (5) (6) (7) (8) (9) (10) (11) (27) (26) (25) (24) (23) (22) (21) (20) D5 D6 PIN CONFIGURATION BLOCK DIAGRAM D0 D0 D1 D1 D2 D2 D3 D3 D4 D4 D5 D5 D6 D6 D7 D7 SY100S863 PIN NAMES TTL INPUTS Pin Function D0, /D0 – D7, /D7 Differential PECL Input Pairs Q, /Q Differential PECL Outputs QTTL TTL Output EN Enable Input SEL0,1,2 Select Inputs Rev.: E 1 Amendment: /0 Issue Date: May 2000 SY100S863 Micrel TRUTH TABLE EN SEL2 SEL1 SEL0 Q QTTL H L L L D0 D0 H L L H D1 D1 H L H L D2 D2 H L H H D3 D3 H H L L D4 D4 H H L H D5 D5 H H H L D6 D6 H H H H D7 D7 L X X X Z Z PECL DC ELECTRICAL CHARACTERISTICS VCC = VCCO = VCCT = 5.0V ± 5%; VEE = VGT = GND Symbol VOH Parameter (1) Output HIGH Voltage (1) Min. Typ. Max. Unit Condition 3.975 4.045 4.13 V 3.17 3.295 3.38 V Loading with 25Ω to 3V (VCC-2V) — 3 3.10 V Loading with 25Ω to 3V (VCC-2V) Loading with 25Ω to 3V (VCC-2V) VOL Output LOW Voltage VOZ Cutoff Voltage(1) VIH Input HIGH Voltage 3.835 — 4.13 V VIL Input LOW Voltage 3.17 — 3.525 V IIH Input HIGH Current — — 350 µA VIN = VIH (Max.) IIL Input LOW Current 0.50 — — µA VIN = VIL (Min.) ICC VCC Supply Current — 73 88 mA Min. Typ. Max. Unit NOTE: 1. Levels shown are for VCCO = 5.0V and will vary 1:1 with powers. TTL DC ELECTRICAL CHARACTERISTICS VCC = VCCO = VCCT = 5.0V ± 5%; VEE = VGT = GND Symbol Parameter Condition VOH Output HIGH Voltage 2.4 2.9 — V IOH = –3mA VOL Output LOW Voltage — 0.3 0.5 V IOL = 24mA VIH Input HIGH Voltage 2.0 — VCC V VIL Input LOW Voltage 0 — 0.8 V IIH Input HIGH Current — — 1.0 mA VIN = 2.7V IIL Input LOW Current –0.7 — — mA VIN = 0.5V VIK Input Clamp Voltage –1.2 — — V IOS Output Short Circuit Current –200 — –60 mA VOUT = 0V, VCCT = 5.5V IOZHT Tri-state Current Output HIGH — — 70 µA VOUT = 2.7V IOZLT Tri-state Current Output LOW –700 — — µA VOUT = 0.5V 2 IIN = –18mA SY100S863 Micrel PECL AC ELECTRICAL CHARACTERISTICS VCC = VCCO = +5.0V ± 5%; VEE = VGT = GND TA = 0°C Symbol Parameter TA = +25°C TA = +85°C Min. Typ. Max. Min. Typ. Max. Min. Typ. Max. 500 300 300 300 — — — — 900 2000 1750 1500 500 300 300 300 — — — — 900 2000 1750 1500 500 300 300 300 — — — — 900 2000 1750 1500 1750 ps 600 ps Delay(1),(2) tPLH tPHL Propagation D to Q SEL0 to Q SEL1 to Q SEL2 to Q tPZH EN to Q(3) (Cutoff to HIGH) EN to Q(3)300 (HIGH to Cutoff) 300 — 1750 300 — 1750 300 — — 1300 300 — 1300 300 — 1300 Output Rise/Fall Times(2) 20% to 80% 300 400 600 300 400 600 300 400 tPHZ tr tf Unit Condition ps NOTES: 1. Part-to-part skew is defined as Max. – Min. value at the given temperature. 2. RL = 50Ω 3. Figures 1 and 2 TTL AC ELECTRICAL CHARACTERISTICS VCC = VCCO = 5V ± 5%; VEE = VGT = GND TA = 0°C Symbol TA = +25°C TA = +85°C Parameter Min. Typ. Max. Min. Typ. Max. Min. Typ. Max. Unit tPLH tPHL Propagation Delay(1)(2) D to QTTL SEL0 to QTTL SEL1 to QTTL SEL2 to QTTL 2.5 2.5 2.5 2.5 — — — — 5.0 5.0 5.0 5.0 2.5 2.5 2.5 2.5 — — — — 5.0 5.0 5.0 5.0 2.5 2.5 2.5 2.5 — — — — 5.0 5.0 5.0 5.0 tPZH tPZL EN to TTL Output(2) (Enable Time) 2.5 2.5 — — 5.0 5.0 2.5 2.5 — — 5.0 5.0 2.5 2.5 — — 5.0 5.0 ns tPHZ tPLZ EN to TTL Output(2) (Disable Time) 2.5 2.5 — — 5.0 5.0 2.5 2.5 — — 5.0 5.0 2.5 2.5 — — 5.0 5.0 ns tr tf Output Rise/Fall Time(3) 0.8V to 2.4V 0.8Vto 2.0V 0.3 — 1.6 0.3 — 1.6 0.3 — 1.6 ns ns NOTES: 1. Part-to-part skew is defined as Max. – Min. value at the given temperature. 2. Figures 3 and 4 3. CL = 25pF 3 Condition SY100S863 Micrel PECL-TO-PECL TEST CIRCUITRY VCC, VCCT & VCCO 2V 0.1µ –3V 0.1µ VEE, VGT PULSE GENERATOR D Q DUT Q 50Ω QTTL EN CH C 450Ω STTL FTTL 0V RT 50Ω -3V USE OSCILLOSCOPE INTERNAL 50Ω LOAD FOR TERMINATION. CH A CH B OSCILLOSCOPE Figure 1. PECL-to-PECL AC Test Circuit PECL-TO-PECL SWITCHING WAVEFORMS PECL DATA ENABLE VOH = 4.1V PECL OUTPUT VOL = 3.3V tPD VOZ = 3V tPHZ tPZH Figure 2. PECL-to-PECL Transition — Propagation Delay and Transition Times 4 SY100S863 Micrel PECL-TO-TTL TEST CIRCUITRY VCC, VCCT & VCCO 0.1µ 5V VEE, VGT PULSE GENERATOR D 7V LZ/ZL Three-State Pull-up Q DUT Q 500Ω QTTL 450Ω EN 50pF CH C 450Ω STTL FTTL -3V RT 50Ω 0V USE OSCILLOSCOPE INTERNAL 50Ω LOAD FOR TERMINATION. CH A CH B OSCILLOSCOPE Figure 3. PECL-to-TTL AC Test Circuit 5 SY100S863 Micrel PECL-TO-TTL SWITCHING WAVEFORMS 3V 1.5V 1.5V PECL DATA 0V 1.5V 1.5V TTL OUTPUT tPLH tPHL Figure 4a. PECL-to-TTL Transition, Data to TTL Output Delay 3V EN 1.5V 1.5V 0V tPHZ tPZH VOH 0.3V 1.5V 0V TTL OUTPUT TTL OUTPUT 3.5V 1.5V tPLZ 0.3V tPZL Figure 4b. EN to TTL Output Enable and Disable Times PRODUCT ORDERING CODE Ordering Code Package Type Operating Range SY100S863JC J28-1 Commercial SY100S863JCTR J28-1 Commercial 6 VOL SY100S863 Micrel 28 LEAD PLCC (J28-1) Rev. 03 MICREL-SYNERGY TEL 3250 SCOTT BOULEVARD SANTA CLARA CA 95054 USA + 1 (408) 980-9191 FAX + 1 (408) 914-7878 WEB http://www.micrel.com This information is believed to be accurate and reliable, however no responsibility is assumed by Micrel for its use nor for any infringement of patents or other rights of third parties resulting from its use. No license is granted by implication or otherwise under any patent or patent right of Micrel Inc. © 2000 Micrel Incorporated 7