FAIRCHILD KA79M12RTF

www.fairchildsemi.com
KA79MXX
3-Terminal 0.5A Negative Voltage Regulator
Features
Description
•
•
•
•
•
•
The KA79MXX series of 3-Terminal medium current
negative voltage regulators are monolithic integrated circuits
designed as fixed voltage regulators. These regulators
employ internal current limiting, thermal shutdown and
safe area compensation making them essentially
indestructible.
No External Components Required
Output Current in Excess of 0.5A
Internal Thermal Overload
Internal Short Circuit Current Limiting
Output Transistor Safe Area Compensation
Output Voltages of -5V, -12V
TO-220 (Dual Gauge)
1
D-PAK
1
1. GND 2. Input 3. Output
Schematic Diagram
GND
Q15
Q13
Q8
D1
D2
D3
R10 R11
R9
R6
R2
Q12
R1
R4
R15
Q14
Q10
Q11
Q9
R14
R12
R3
R5
R8
Q16
R13
R7
D5
Q18
Q2
Q17
Q3
R16
Q24 Q25
OUT
Q5
Q1
R17
Q4
Q6
D4
Q7
C1
Q19
R24
R25
Q20
R19
R18
C2
Q23
Q26
R20
Q21 Q22
R21
R22
Q27
R23
IN
Rev. 1.0.3
©2012 Fairchild Semiconductor Corporation
KA79MXX
Absolute Maximum Ratings
Parameter
Symbol
Value
Unit
Input Voltage(for VO = -5V to -12V)
VI
-35
V
Thermal Resistance Junction-Cases
RJC
5
C/W
Thermal Resistance Junction-Air
RJA
65
C/W
Operating Temperature Range
TOPR
0 ~ +125
C
Storage Temperature Range
TSTG
-65 ~ +150
C
Electrical Characteristics (KA79M05/KA79M05R)
(Refer to test circuit, 0CTJ +125C, lO =350mA, VI =-10V,unless otherwise specified, CI =0.33F,CO=0.1F)
Parameter
Output Voltage
Symbol
VO
Conditions
Min.
Typ.
Max.
TJ = +25C
-4.8
-5
-5.2
IO = 5mA to 350mA
VI = -V7 to -25V
-4.75
-5
-5.25
VI= -7V to -25V
-
7.0
50
VI= -8V to -25V
-
2.0
30
Unit
V
Line Regulation (Note1)
VO
TJ =+25C
Load Regulation (Note1)
VO
IO = 5mA to 500mA
TJ = +25C
-
30
100
mV
TJ= +25C
-
3.0
6.0
mA
IO = 5mA to 350mA
-
-
0.4
IO = 200mA
VI = -8V to -25V
-
-
0.4
IO = 5mA
-
-0.2
-
mV/C
-
40
-
V
54
60
-
dB
Quiescent Current
Quiescent Current Change
Output Voltage Drift
IQ
IQ
Vo/T
mV
mA
Output Noise Voltage
VN
f = 10Hz to 100kHz, TA = +25C
Ripple Rejection
RR
f = 120Hz
VJ = -8Vto -18V
Dropout Voltage
VD
TJ =+25C, IO = 500mA
-
1.1
-
V
Short Circuit Current
ISC
TJ = +25C, VI = -35V
-
140
-
mA
Peak Current
IPK
TJ = +25C
-
650
-
mA
Note:
1. Load and line regulation are specified at constant junction temperature. Change in VO due to heating effects must be taken
into account separately. Pulse testing with low duty is used.
2
KA79MXX
Electrical Characteristics (KA79M12R) (Continued)
(Refer to test circuit, 0CTJ +125C, lO =350mA, VI = -19V,unless otherwise specified)
Parameter
Output Voltage
Symbol
VO
Conditions
Min.
Typ.
Max.
Unit
TJ = +25C
-11.5
-12
-12.5
IO = 5mA to 350mA
VI = -14.5V to -30V
-11.4
-12
-12.6
VI = -14.5V to -30V
-
8.0
80
VI = -15V to -25V
-
3.0
50
IO = 5.0mA to 500mA
-
30
240
mV
mA
V
Line Regulation (Note1)
VO
TJ =+25C
Load Regulation (Note1)
VO
TJ = +25C
IQ
TJ = +25C
-
3
6
IO = 5mA to 350mA
-
-
0.4
VI = -14.5V to -30V
-
-
0.4
mA
IO = 5mA
-
-0.8
-
mV/C
-
75
-
V
54
60
-
dB
Quiescent Current
Quiescent Current Change
Output Voltage Drift
IQ
VO/T
mV
Output Noise Voltage
VN
f = 10Hz to 100kHz, TA = +25C
Ripple Rejection
RR
f = 120Hz,VI = -15V to -25V
Dropout Voltage
VD
IO = 500mA, TJ = +25C
-
1.1
-
V
Short Circuit Current
ISC
VI = -35V, TJ = +25C
-
140
-
mA
Peak Current
IPK
TJ = +25C
-
650
-
mA
Note:
1. Load and line regulation are specified at constant junction temperature. Change in VO due to heating effects must be taken
into account separately. Pulse testing with low duty is used.
3
KA79MXX
Typical Performance Characteristics
0.0
VD - Dropout Voltage [V]
VIN = -10V
VO = -5V
-0.2
IOUT = 0mA
-0.4
IOUT = 200mA
-0.6
IOUT = 300mA
IOUT = 100mA
-0.8
-1.0
IOUT = 400mA
-1.2
0
25
50
75
IOUT = 500mA
100
125
150
o
TA - Temperature [ C]
Figure 1. Dropout Voltage
4
KA79MXX
Typical Applications
2
VI
3
KA79MXX
VO
1
1.0uF
2.0uF
Figure 2. Fixed Output Regulator
VI
VO
KA79MXX
R1
C1
_
2.2uF
SOLID +
TANTALUM
_
1uF
+
_
+
C2
25uF
C3
SOLID
TANTALUM
R2
Figure 3. Variable Output
Note:
1. Required for stability. For value given, capacitor must be solid tantalum. 25F aluminum electrolytic may be substituted.
2. C2 improves transient response and ripple rejection. Do not increase beyond 50F.
5
KA79MXX
Mechanical Dimensions
Package
Dimensions in millimeters
TO-220 [DUAL GAUGE]
4.50 ±0.20
2.80 ±0.10
(3.00)
+0.10
1.30 –0.05
18.95MAX.
(3.70)
ø3.60 ±0.10
15.90 ±0.20
1.30 ±0.10
(8.70)
(1.46)
9.20 ±0.20
(1.70)
9.90 ±0.20
1.52 ±0.10
0.80 ±0.10
2.54TYP
[2.54 ±0.20]
10.08 ±0.30
(1.00)
13.08 ±0.20
)
(45°
1.27 ±0.10
+0.10
0.50 –0.05
2.40 ±0.20
2.54TYP
[2.54 ±0.20]
10.00 ±0.20
6
KA79MXX
Mechanical Dimensions (Continued)
Package
Dimensions in millimeters
D-PAK
7
KA79MXX
Ordering Information
Product Number
Package
KA79M05TU
TO-220 (Dual Gauge)
Operating Temperature
KA79M05RTM
KA79M05RTF
KA79M12RTM
D-PAK
0 ~ +125C
KA79M12RTF
* Refer to below figure for TM / TF suffix of DPAK packing option
TM :
TF :
D-PAK Unit Orientation
DISCLAIMER
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY
PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY
LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER
DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.
LIFE SUPPORT POLICY
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES
OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR
CORPORATION. As used herein:
1. Life support devices or systems are devices or systems
which, (a) are intended for surgical implant into the body,
or (b) support or sustain life, and (c) whose failure to
perform when properly used in accordance with
instructions for use provided in the labeling, can be
reasonably expected to result in a significant injury of the
user.
2. A critical component in any component of a life support
device or system whose failure to perform can be
reasonably expected to cause the failure of the life support
device or system, or to affect its safety or effectiveness.
www.fairchildsemi.com
7/18/12 0.0m 001
Stock#DS400023
 2012 Fairchild Semiconductor Corporation