19-1328; Rev 6; 3/12 Low-Voltage, CMOS Analog Multiplexers/Switches ____________________________Features The MAX4581/MAX4582/MAX4583 are low-voltage, CMOS analog ICs configured as an 8-channel multiplexer (MAX4581), two 4-channel multiplexers (MAX4582), and three single-pole/double-throw (SPDT) switches (MAX4583). These CMOS devices can operate continuously with ±2V to ±6V dual power supplies or a +2V to +12V single supply. Each switch can handle rail-to-rail analog signals. The off-leakage current is only 1nA at +25°C or 5nA at +85°C. o MAX4582 Available in AEC-Q100 Qualified Version o Offered in Automotive Temperature Range (-40°C to +125°C) o Guaranteed On-Resistance 80Ω with ±5V Supplies Ω with Single +5V Supply 150Ω o Guaranteed On-Resistance Match Between Channels o Guaranteed Low Off-Leakage Current 1nA at +25°C o Guaranteed Low On-Leakage Current 1nA at +25°C o +2V to +12V Single-Supply Operation ±2V to ±6V Dual-Supply Operation o TTL/CMOS-Logic Compatible o Low Distortion: < 0.02% (600Ω) o Low Crosstalk: < -96dB (50Ω, MAX4582) o High Off-Isolation: < -74dB (50Ω) All digital inputs have 0.8V to 2.4V logic thresholds, ensuring TTL/CMOS-logic compatibility when using a single +5V or dual ±5V supplies. ________________________Applications Battery-Operated Equipment Audio and Video Signal Routing Ordering Information Low-Voltage Data-Acquisition Systems Communications Circuits PART Automotive TEMP RANGE PINPACKAGE TOP MARK MAX4581CPE+ 0°C to +70°C 16 PDIP — MAX4581CSE+ 0°C to +70°C 16 Narrow SO — MAX4581CUE+ 0°C to +70°C 16 TSSOP — +Denotes a lead(Pb)-free/RoHS-compliant package. Ordering Information continued at end of data sheet. ____________________________________Pin Configurations/Functional Diagrams TOP VIEW MAX4582 MAX4581 + MAX4583 + + X4 1 16 VCC Y0 1 16 VCC Y1 1 X6 2 15 X2 Y2 2 15 X2 Y0 2 15 Y X 3 16 VCC 14 X1 Y 3 14 X1 Z1 3 14 X X7 4 13 X0 Y3 4 13 X Z 4 13 X1 X5 5 12 X3 Y1 5 12 X0 Z0 5 12 X0 11 X3 ENABLE 6 11 A VEE 7 10 B ENABLE 6 VEE 7 GND 8 LOGIC 11 A ENABLE 6 10 B VEE 7 9 C PDIP/SO/QSOP/TSSOP GND 8 LOGIC 10 A 9 B PDIP/SO/QSOP/TSSOP GND 8 9 C PDIP/SO/QSOP/TSSOP Pin Configurations continued at end of data sheet. ________________________________________________________________ Maxim Integrated Products 1 For pricing delivery, and ordering information please contact Maxim Direct! at 1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com. MAX4581/MAX4582/MAX4583 ________________General Description MAX4581/MAX4582/MAX4583 Low-Voltage, CMOS Analog Multiplexers/Switches ABSOLUTE MAXIMUM RATINGS Voltages Referenced to VEE VCC .........................................................................-0.3V to 13V Voltage into Any Terminal (Note 1) ...(VEE - 0.3V) to (VCC + 0.3V) Continuous Current into Any Terminal..............................±20mA Peak Current, X_, Y_, Z_ (pulsed at 1ms, 10% duty cycle) ...................................±40mA ESD per Method 3015.7 ..................................................>2000V Continuous Power Dissipation (TA = +70°C) 16-Pin PDIP (derate 10.53mW/°C above +70°C).............842mW 16-Pin Narrow SO (derate 8.70mW/°C above +70°C) .....696mW 16-Pin QSOP (derate 8.3mW/°C above +70°C)...............667mW 16-Pin TSSOP (derate 9.4mW/°C above +70°C) .............755mW 16-Pin TQFN (derate 14.7mW/°C above +70°C) ...........1177mW Operating Temperature Ranges MAX458_C_ .........................................................0°C to +70°C MAX458_E_ ......................................................-40°C to +85°C MAX458_A_.....................................................-40°C to +125°C Storage Temperature Range .............................-65°C to +150°C Lead Temperature (soldering, 10s) .................................+300°C Soldering Temperature (reflow) .......................................+260°C Note 1: Voltages exceeding VCC or VEE on any signal terminal are clamped by internal diodes. Limit forward-diode current to maximum current rating. Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. ELECTRICAL CHARACTERISTICS—Dual Supplies (VCC = 4.5V to 5.5V, VEE = -4.5V to -5.5V, V_H = 2.4V, V_L = 0.8V, TA = TMIN to TMAX, unless otherwise noted. Typical values are at TA = +25°C.) PARAMETER SYMBOL CONDITIONS TEMP MIN TYP MAX UNITS (Note 2) ANALOG SWITCH Analog-Signal Range VX, VY, VZ C, E, A VEE V 80 Ω Switch On-Resistance RON VCC = 4.5V; VEE = -4.5V; IX, IY, IZ = 1mA; VX, VY, VZ = 3.5V Switch On-Resistance Match Between Channels (Note 3) ∆RON VCC = 4.5V; VEE = -4.5V; IX, IY, IZ = 1mA; VX, VY, VZ = 3.5V +25°C Switch On-Resistance Flatness (Note 4) RFLAT(ON) VCC = 5V; VEE = -5V; IX, IY, IZ = 1mA; VX, VY, VZ = 3V, 0V, -3V +25°C X_, Y_, Z_ Off-Leakage (Note 5) IX_(OFF), IY_(OFF), IZ_(OFF) VCC = 5.5V; VEE = -5.5V; ± VX_, VY_, VZ_ = ±4.5V; VX, VY, VZ = 4.5V +25°C -1 +1 C, E, A -10 +10 X, Y, Z Off-Leakage (Note 5) IX(OFF), IY(OFF), IZ(OFF) VCC = 5.5V; VEE = -5.5V; VX_, VY_, VZ_ = ±4.5V; ± VX, VY, VZ = 4.5V X, Y, Z On-Leakage (Note 5) IX(ON), IY(ON), IZ(ON) C, E, A 100 1 C, E, A MAX4581 MAX4582 MAX4583 MAX4581 VCC = 5.5V; VEE = -5.5V; VX, VY, VZ = ±4.5V 50 VCC +25°C MAX4582 MAX4583 4 Ω 6 4 C, E, A 10 12 Ω nA +25°C -2 +2 C, E, A -100 +100 +25°C -1 +1 C, E, A -50 +50 +25°C -2 +2 C, E, A -100 +100 +25°C -1 +1 C, E, A -50 +50 nA nA DIGITAL I/O Logic Input Logic Threshold High VAH, VBH, VCH C, E, A Logic Input Logic Threshold Low VAL, VBL, VCL C, E, A 2 1.5 0.8 1.5 _______________________________________________________________________________________ 2.4 V V Low-Voltage, CMOS Analog Multiplexers/Switches (VCC = 4.5V to 5.5V, VEE = -4.5V to -5.5V, V_H = 2.4V, V_L = 0.8V, TA = TMIN to TMAX, unless otherwise noted. Typical values are at TA = +25°C.) CONDITIONS TEMP MIN TYP MAX UNITS (Note 2) PARAMETER SYMBOL Input-Current High IAH, IBH, ICH VA, VB, VC = 2.4V C, E, A -1 +1 µA Input-Current Low IAL, IBL, ICL VA, VB, VC = 0.8V C, E, A -1 +1 µA SWITCH DYNAMIC CHARACTERISTICS Inhibit Turn-On Time t(ON) VX_, VY_, VZ_ = 3V; RL = 300Ω; CL = 35pF; Figure 3 TA = +25°C Inhibit Turn-Off Time t(OFF) VX_, VY_, VZ_ = 3V; RL = 300Ω; CL = 35pF; Figure 3 TA = +25°C Address Transition Time tTRANS VX_, VY_, VZ_ = ±3V; RL = 300Ω; CL = 35pF; Figure 2 TA = +25°C Break-Before-Make Time tBBM Charge Injection (Note 6) Q 4 Total Harmonic Distortion CX(ON), CY(ON), CZ(ON) VX_, VY_, VZ_ = 0V; f = 1MHz; Figure 7 VISO RL = 50Ω, f = 1MHz, Figure 6 THD POWER SUPPLY Power-Supply Range Power-Supply Current RL = 50Ω, f = 1MHz, Figure 6 RL = 600Ω, 5Vp-p, f = 20Hz to 20kHz VCC = 5.5V, VEE = -5.5V, VA, VB, VC, VEnable = V+ or 0V 20 ns ns ns 5 pC pF 10 MAX4583 6 MAX4581 25 MAX4582 ns 18 TA = +25°C TA = +25°C pF 17 MAX4583 VCC, VEE ICC, IEE 4 MAX4581 MAX4582 200 200 TA = +25°C VX_, VY_, VZ_ = 0V; f = 1MHz; Figure 7 VCT 90 C, E, A 0.5 CX(OFF), CY(OFF), CZ(OFF) 100 150 TA = +25°C Output Off-Capacitance Channel-to-Channel Crosstalk 40 C, E, A C = 1nF, RS = 0Ω, VS = 0V VX_, VY_, VZ_ = 0V; f = 1MHz; Figure 7 200 200 TA = +25°C CX_(OFF), CY_(OFF), CZ_(OFF) Off-Isolation C, E, A VX_, VY_, VZ_ = 3V; RL = 300Ω; CL = 35pF; Figure 4 Input Off-Capacitance Output On-Capacitance 100 pF 12.5 TA = +25°C -74 MAX4581 TA = +25°C -78 dB MAX4582 TA = +25°C -96 MAX4583 TA = +25°C -73 pF TA = +25°C 0.02 % dB C, E, A ±2 ±6 TA = +25°C -1 +1 C, E, A -10 +10 V µA _______________________________________________________________________________________ 3 MAX4581/MAX4582/MAX4583 ELECTRICAL CHARACTERISTICS—Dual Supplies (continued) MAX4581/MAX4582/MAX4583 Low-Voltage, CMOS Analog Multiplexers/Switches ELECTRICAL CHARACTERISTICS—Single +5V Supply (VCC = 4.5V to 5.5V, VEE = 0V, V_H = 2.4V, V_L = 0.8V, TA = TMIN to TMAX, unless otherwise noted. Typical values are at TA = +25°C.) PARAMETER SYMBOL CONDITIONS TEMP MIN TYP MAX UNITS (Note 2) ANALOG SWITCH Analog-Signal Range VX_, VY_, VZ_, VX, VY, VZ Switch On-Resistance RON VCC = 4.5V; IX, IY, IZ = 1mA; VX, VY, VZ = 3.5V TA = +25°C C, E, A Switch On-Resistance Match Between Channels (Note 3) ∆RON VCC = 4.5V; IX, IY, IZ = 1mA; VX, VY, VZ = 3.5V TA = +25°C X_, Y_, Z Off-Leakage (Note 5) IX_(OFF), IY_(OFF), IZ_(OFF) VCC = 5.5V; VX_, VY_, VZ_ = 1V, 4.5V; VX, VY, VZ = 4.5V, 1V TA = +25°C -1 +1 C, E, A -10 +10 X, Y, Z Off-Leakage (Note 5) IX(OFF), IY(OFF), IZ(OFF) VCC = 5.5V; VX_, VY_, VZ_ = 1V, 4.5V; VX, VY, VZ = 4.5V, 1V X, Y, Z On-Leakage (Note 5) IX(ON), IY(ON), IZ(ON) VCC = 5.5V; VX, VY, VZ = 4.5V, 1V TA = +25°C C, E, A TA = +25°C C, E, A TA = +25°C C, E, A TA = +25°C C, E, A -2 -100 -1 -50 -2 -100 -1 -50 +2 +100 +1 +50 +2 +100 +1 +50 C, E, A VEE VCC V 90 150 200 Ω 2 8 C, E, A MAX4581 MAX4582 MAX4583 MAX4581 MAX4582 MAX4583 10 Ω nA nA nA DIGITAL I/O Logic Input Logic Threshold High VAH, VBH, VCH, VENABLEH C, E, A Logic Input Logic Threshold Low VAL, VBL, VCL, VENABLEL C, E, A 0.8 Input-Current High IAH, IBH, ICH, IENABLEH VAL, VBL, VCL, VEnableL = 2.4V C, E, A -1 +1 µA Input-Current Low IAL, IBL, ICL, IENABLEL VAL, VBL, VCL, VEnableL = 0.8V C, E, A -1 +1 µA 5 200 250 100 150 200 250 pC SWITCH DYNAMIC CHARACTERISTICS Charge Injection (Note 6) Q C = 1nF, RS = 0Ω, VS = 2.5V 1.5 Enable Turn-On Time t(ON) VX_, VY_, VZ_ = 3V, RL = 300Ω, CL = 35pF, Figure 3 Enable Turn-Off Time t(OFF) VX_, VY_, VZ_ = 3V, RL = 300Ω, CL = 35pF, Figure 3 Address Transition Time tTRANS VX_, VY_, VZ_ = 3V/0V, RL = 300Ω, CL = 35pF, Figure 2 TA = +25°C TA = +25°C C, E, A TA = +25°C C, E, A TA = +25°C C, E, A VX_, VY_, VZ_ = 3V, RL = 300Ω, CL = 35pF, Figure 4 TA = +25°C 10 C, E, A TA = +25°C C, E, A 2 -1 -10 Break-Before-Make Time POWER SUPPLY Power-Supply Range Power-Supply Current 4 tBBM VCC, VEE ICC, IEE VCC = 3.6V; VA, VB, VC, VEnable = V+ or 0V 2.4 1.5 0.8 100 40 80 V 30 _______________________________________________________________________________________ V ns ns ns ns 12 +1 +10 V µA Low-Voltage, CMOS Analog Multiplexers/Switches (VCC = 2.7V to 3.6V, VEE = 0V, V_H = 2.0V, V_L = 0.5V, TA = TMIN to TMAX, unless otherwise noted. Typical values are at TA = +25°C.) PARAMETER SYMBOL CONDITIONS TEMP MIN TYP MAX UNITS (Note 2) ANALOG SWITCH Analog-Signal Range VX_, VY_, VZ_, VX, VY, VZ Switch On-Resistance RON X_, Y_, Z_ Off-Leakage (Note 5) C, E, A VEE V 450 550 Ω VCC = 2.7V; IX, IY, IZ = 0.1mA; VX, VY, VZ = 1.5V TA = +25°C C, E, A IX_(OFF), IY_(OFF), IZ_(OFF) VCC = 3.6V; VX_, VY_, VZ_ = 1V, 3V; VX, VY, VZ = 3V, 1V TA = +25°C -1 +1 C, E, A -10 +10 X, Y, Z Off-Leakage (Note 6) IX(OFF), IY(OFF), IZ(OFF) VCC = 3.6V; VX_, VY_, VZ_ = 1V, 3.0V; VX, VY, VZ = 3.0V, 1V X, Y, Z On-Leakage (Note 6) IX(ON), IY(ON), IZ(ON) VCC = 3.6V; VX, VY, VZ = 3.0V, 1V TA = +25°C C, E, A TA = +25°C C, E, A TA = +25°C C, E, A TA = +25°C C, E, A -2 -100 -1 -50 -2 -100 -1 -50 +2 +100 +1 +50 +2 +100 +1 +50 MAX4581 MAX4582 MAX4583 MAX4581 MAX4582 MAX4583 190 VCC nA nA nA DIGITAL I/O Logic Input Logic Threshold High VAH, VBH, VCH, VENABLEH C, E, A Logic Input Logic Threshold Low VAL, VBL, VCL, VENABLEL C, E, A 0.5 Input-Current High IAH, IBH, ICH, IENABLEH VA, VB, VC = VEnable = 2.0V C, E, A -1 +1 µA Input-Current Low IAL, IBL, ICL, IENABLEL VA, VB, VC = VEnable = 0.5V C, E, A -1 +1 µA 1.0 SWITCH DYNAMIC CHARACTERISTICS (Note 6) SWITCH DYNAMIC CHARACTERISTICS VX_, VY_, VZ_ = 1.5V; RL = 300Ω; Enable Turn-On Time t(ON) CL = 35pF; Figure 3 Enable Turn-Off Time t(OFF) Address Transition Time tTRANS Break-Before-Make Time tBBM TA = +25°C C, E, A TA = +25°C VX_, VY_, VZ_ = 1.5V; RL = 300Ω; CL = 35pF; Figure 3 C, E, A TA = +25°C VX_, VY_, VZ_ = 1.5V/0V; RL = 300Ω; CL = 35pF; Figure 2 C, E, A VX_, VY_, VZ_ = 1.5V; RL = 300Ω; CL = 35pF TA = +25°C 15 TA = +25°C C, E, A -1 -10 2.0 1.0 170 50 130 V V 300 400 200 300 300 400 40 ns ns ns ns POWER SUPPLY Power-Supply Current ICC, IEE VCC = 3.6V, VA, VB, VC, VEnable = V+ or 0V +1 +10 µA Note 2: The algebraic convention is used in this data sheet; the most negative value is shown in the minimum column. Note 3: ∆RON = RON(MAX) - RON(MIN). Note 4: Flatness is defined as the difference between the maximum and minimum value of on-resistance as measured over the specified analog signal ranges; i.e., VX_, VY_, VZ_ = 3V to 0 and 0 to -3V. Note 5: Leakage parameters are 100% tested at maximum-rated hot operating temperature, and guaranteed by correlation at TA = +25°C. Note 6: Guaranteed by design, not production tested. _______________________________________________________________________________________ 5 MAX4581/MAX4582/MAX4583 ELECTRICAL CHARACTERISTICS—Single +3V Supply Typical Operating Characteristics (VCC = 5V, VEE = -5V, VGND = 0V, TA = +25°C, unless otherwise noted.) ON-RESISTANCE vs. VX, VY, VZ AND TEMPERATURE (DUAL SUPPLIES) TA = +85°C 55 VCC = 2.7V, VEE = -2.7V VCC = 1.2V TA = +70°C VCC = 2V 1000 VCC = 2.7V RON (Ω) 45 RON (Ω) VCC = 2V, VEE = -2V 10,000 MAX4581toc02 VCC = 1.2V, VEE = -1.2V 100 65 MAX4581/2/3 toc01 1000 ON-RESISTANCE vs. VX, VY, VZ (SINGLE SUPPLY) MAX4581 toc03 ON-RESISTANCE vs. VX, VY, VZ (DUAL SUPPLIES) RON (Ω) 35 VCC = 3.3V VCC = 5V TA = +25°C 100 25 VCC = 3.3V, VEE = -3.3V VCC = 5V, VEE = -5V VCC = 10V 10 5 -4 -3 -2 -1 0 1 2 3 4 -5 5 -4 -3 -2 -1 0 1 2 3 4 0 5 1 2 3 4 ON-RESISTANCE vs. VX, VY, VZ AND TEMPERATURE (SINGLE SUPPLY) TA = +85°C TA = +70°C 110 6 7 OFF-LEAKAGE vs. TEMPERATURE 100 MAX4581toc04 130 5 VX, VY, VZ (V) VX, VY, VZ (V) VX, VY, VZ (V) MAX4581/2/3-05 -5 VCC = 7.5V TA = 0°C TA = -40°C 15 10 VCC = 5.5V VEE = -5.5V 10 RON (Ω) OFF LEAKAGE (nA) TA = +25°C 90 70 50 TA = -40°C TA = 0°C 1 I X, I Y, I Z 0.1 30 IX_, IY_, IZ_ 0.01 10 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 -50 -25 VX, VY, VZ (V) ON-LEAKAGE vs. TEMPERATURE 0 25 50 75 TEMPERATURE (°C) 100 125 CHARGE INJECTION vs. VX, VY, VZ VCC = 5.5V VEE = -5.5V 10,000 MAX4581-07 1.5 MAX4581/2/3-toc-6 100,000 1.0 0.5 0 1000 Q (pC) ON LEAKAGE (pA) MAX4581/MAX4582/MAX4583 Low-Voltage, CMOS Analog Multiplexers/Switches 100 -0.5 VCC = 5V VEE = 0V -1.0 VCC = 5V VEE = -5V -1.5 10 -2.0 1 -2.5 -50 6 -25 0 25 50 75 TEMPERATURE (°C) 100 125 -5 -4 -3 -2 -1 0 1 2 3 VX, VY, VZ (V) _______________________________________________________________________________________ 4 5 8 9 10 Low-Voltage, CMOS Analog Multiplexers/Switches SUPPLY CURRENT vs. TEMPERATURE FREQUENCY RESPONSE VCC = 5V VEE = -5V VA, VB,VC,VENABLE = 0V, 5V LOSS (dB) ICC, IEE (nA) 0.1 0.01 0 25 50 75 TEMPERATURE (°C) 100 -70 -80 -20 -40 ON-PHASE -90 -100 -60 -80 -110 -120 -110 -120 125 0.1 1 10 100 FREQUENCY (MHz) TOTAL HARMONIC DISTORTION vs. FREQUENCY VCC CURRENT vs. LOGIC LEVEL (VA, VB, VC, VENABLE) 600Ω IN AND OUT MAX4581-11 1 MAX4581-10 100 10-1 10-2 10 VCC = 12V 10-3 ICC (A) 10-4 1 10-5 10-6 VCC = 5V 10-7 10-8 0.1 10-9 10-10 10-11 0.01 100 1k 10k 100k 0 FREQUENCY (Hz) 1 2 3 4 5 6 7 8 9 10 11 12 VA, VB, VC, VENABLE LOGIC-LEVEL THRESHOLD vs. VCC 3.0 MAX4581toc12 10 2.5 VA, VB, VC, VENABLE (V) THD (%) 60 40 20 0 OFF-LOSS PHASE (DEGREES) IEE 1 80 -30 -40 -50 -60 ICC -25 120 100 ON-LOSS -20 10 -50 MAX4581-09 0 -10 MAX4581/2/3-08 100 2.0 1.5 1.0 0.5 0 0 1 2 3 4 5 6 7 8 9 10 11 12 VCC (V) _______________________________________________________________________________________ 7 MAX4581/MAX4582/MAX4583 Typical Operating Characteristics (continued) (VCC = 5V, VEE = -5V, VGND = 0V, TA = +25°C, unless otherwise noted.) Low-Voltage, CMOS Analog Multiplexers/Switches MAX4581/MAX4582/MAX4583 Pin Description PIN MAX4581 MAX4582 MAX4583 NAME PDIP, SO, TSSOP TQFN-EP PDIP, SO, TSSOP TQFN-EP PDIP, SO, TSSOP TQFN-EP 13, 14, 15, 12, 1, 5, 2, 4 11, 12, 13, 10, 15, 3, 16, 2 — — — — 3 1 13 11 14 — — 12, 14, 15, 11 10, 12, 13, 9 — — 1, 5, 2, 4 15, 3, 16, 2 — — 3 — — — — — — — — — — — — — — FUNCTION X0–X7 Analog Switch Inputs 0–7 12 X Analog Switch “X” Output — — X0, X1, X2, X3 Analog Switch “X” Inputs 0–3 — — Y0, Y1, Y2, Y3 Analog Switch “Y” Inputs 0–3 1 15 13 Y Analog Switch “Y” Output — 13 11 X1 Analog Switch “X” Normally Open Input — 12 10 X0 Analog Switch “X” Normally Closed Input — 1 15 Y1 Analog Switch “Y” Normally Open Input — — 2 16 Y0 Analog Switch “Y” Normally Open Input — — 3 1 Z1 Analog Switch “Z” Normally Open Input — — — 5 3 Z0 Analog Switch “Z” Normally Open Input — — — — 4 2 Z Analog Switch “Z” Output 16 14 16 14 16 14 VCC 11 9 10 8 11 9 A Digital Address “A” Input 10 8 9 7 10 8 B Digital Address “B” Input 9 7 — — 9 7 C Digital Address “C” Input 8 6 8 6 8 6 GND Ground. Connect to digital ground. (Analog signals have no ground reference; they are limited to VCC and VEE.) 7 5 7 5 7 5 VEE Negative Analog Supply-Voltage Input. Connect to GND for single-supply operation. 6 4 6 4 6 4 ENABLE Digital Enable Input. Normally connected to GND. — — — — — — EP Exposed Pad (TQFN only). Connect EP to VCC. Positive Analog and Digital Supply-Voltage Input Note: Input and output pins are identical and interchangeable. Any may be considered an input or output; signals pass equally well in both directions. __________Applications Information Power-Supply Considerations Overview The MAX4581/MAX4582/MAX4583 construction is typical of most CMOS analog switches. They have three 8 supply pins: VCC, VEE, and GND. VCC and VEE are used to drive the internal CMOS switches and set the limits of the analog voltage on any switch. Reverse ESDprotection diodes are internally connected between each analog-signal pin and both VCC and VEE. If any analog signal exceeds VCC or VEE, one of these diodes _______________________________________________________________________________________ Low-Voltage, CMOS Analog Multiplexers/Switches MAX4581/MAX4582/MAX4583 Table 1. Truth Table/Switch Programming SELECT INPUTS ON SWITCHES ENABLE INPUT C* B A MAX4581 MAX4582 MAX4583 H X X X All switches open All switches open All switches open L L L L X–X0 X–X0, Y–Y0 X–X0, Y–Y0, Z–Z0 L L L H X–X1 X–X1, Y–Y1 X–X1, Y–Y0, Z–Z0 L L H L X–X2 X–X2, Y–Y2 X–X0, Y–Y1, Z–Z0 L L H H X–X3 X–X3, Y–Y3 X–X1, Y–Y1, Z–Z0 L H L L X–X4 X–X0, Y–Y0 X–X0, Y–Y0, Z–Z1 L H L H X–X5 X–X1, Y–Y1 X–X1, Y–Y0, Z–Z1 L H H L X–X6 X–X2, Y–Y2 X–X0, Y–Y1, Z–Z1 L H H H X–X7 X–X3, Y–Y3 X–X1, Y–Y1, Z–Z1 X = Don’t care *C not present on MAX4582. Note: Input and output pins are identical and interchangeable. Either may be considered an input or output; signals pass equally well in either direction. will conduct. During normal operation, these and other reverse-biased ESD diodes leak, forming the only current drawn from VCC or VEE. Virtually all the analog leakage current comes from the ESD diodes. Although the ESD diodes on a given signal pin are identical and therefore fairly well balanced, they are reverse biased differently. Each is biased by either VCC or VEE and the analog signal. This means their leakages will vary as the signal varies. The difference in the two diode leakages to the VCC and VEE pins constitutes the analog-signal-path leakage current. All analog leakage current flows between each pin and one of the supply terminals, not to the other switch terminal. This is why both sides of a given switch can show leakage currents of either the same or opposite polarity. There is no connection between the analog-signal paths and GND. VCC and GND power the internal logic and logic-level translators, and set the input logic limits. The logic-level translators convert the logic levels into switched VCC and VEE signals to drive the gates of the analog signals. This drive signal is the only connection between the logic supplies and signals and the analog supplies. VCC and VEE have ESD-protection diodes to GND. The logic-level thresholds are TTL/CMOS compatible when VCC is +5V. As VCC rises, the threshold increases _______________________________________________________________________________________ 9 MAX4581/MAX4582/MAX4583 Low-Voltage, CMOS Analog Multiplexers/Switches slightly, so when VCC reaches +12V the threshold is about 3.1V (above the TTL-guaranteed high-level minimum of 2.8V, but still compatible with CMOS outputs). VCC D1 EXTERNAL BLOCKING DIODE Bipolar Supplies These devices operate with bipolar supplies between ±2V and ±5V. The VCC and VEE supplies need not be symmetrical, but their sum cannot exceed the +13V absolute maximum rating Single Supply These devices operate from a single supply between +2V and +12V when VEE is connected to GND. All of the bipolar precautions must be observed. At room temperature, they actually “work” with a single supply near or below +1.7V, although as supply voltage decreases, switch on-resistance and switching times become very high. Overvoltage Protection Proper power-supply sequencing is recommended for all CMOS devices. Do not exceed the absolute maximum ratings because stresses beyond the listed ratings can cause permanent damage to the devices. Always sequence VCC on first, then VEE, followed by the logic inputs and analog signals. If power-supply sequencing is not possible, add two small signal diodes (D1, D2) in series with the supply pins for overvoltage protection (Figure 1). Adding diodes reduces the analog-signal range to one diode drop below VCC and one diode drop above VEE, but does not affect the devices’ low switch resistance and low leakage characteristics. Device operation is unchanged, and the difference between VCC and VEE should not exceed 13V. These protection diodes are not recommended when using a single supply if signal levels must extend to ground. High-Frequency Performance In 50Ω systems, signal response is reasonably flat up to 50MHz (see Typical Operating Characteristics ). Above 20MHz, the on response has several minor peaks which are highly layout dependent. The problem is not turning the switch on, but turning it off. The offstate switch acts like a capacitor and passes higher frequencies with less attenuation. At 10MHz, off isolation is about -50dB in 50Ω systems, becoming worse (approximately 20dB per decade) as frequency increases. Higher circuit impedances also degrade off isolation. Adjacent channel attenuation is about 3dB above that of a bare IC socket and is entirely due to capacitive coupling. 10 MAX4581 MAX4582 MAX4583 VCC * * X, Y, Z X_, Y_, Z_ * * VEE D2 EXTERNAL BLOCKING DIODE VEE *INTERNAL PROTECTION DIODES Figure 1. Overvoltage Protection Using External Blocking Diodes Pin Nomenclature The MAX4581/MAX4582/MAX4583 are pin-compatible with the industry-standard 74HC4051/74HC4052/ 74HC4053 and the MAX4051/MAX4052/MAX4053. They function identically and have identical logic diagrams, although these parts differ electrically. The pin designations and logic diagrams in this data sheet conform to the original 1972 specifications published by RCA for the CD4051/CD4052/CD4053. These designations differ from the standard Maxim switch and mux designations as found all other Maxim data sheets (including the MAX4051/MAX4052/MAX4053) and may cause confusion. Designers who feel more comfortable with Maxim’s standard designations are advised that the pin designations and logic diagrams on the MAX4051/MAX4052/MAX4053 data sheet may be freely applied to the MAX4581/MAX4582/MAX4583. ______________________________________________________________________________________ Low-Voltage, CMOS Analog Multiplexers/Switches VCC VA, VB, VC A 50Ω VA, VB, VC VCC X0 B VCC VX0 C X7 ENABLE 90% VEE VOUT X GND 50% 0V X1–X6 MAX4581 VCC VEE 0V VOUT 35pF 90% VX7 300Ω VEE tTRANS tTRANS VCC VA, VB VA, VB VCC A B X0, Y0 VCC VX0, VY0 MAX4582 X3, Y3 ENABLE 90% VEE X, Y GND 50% 0V X1, X2, Y1, Y2 50Ω VCC VOUT VEE 35pF 0V VOUT 90% VX3, VY3 300Ω VEE tTRANS tTRANS VCC VA, VB, VC VCC VA, VB, VC X1, Y1, Z1 A, B, C VEE VX0, VY0, VZ0 MAX4583 ENABLE GND VCC X, Y, Z VEE VEE 90% 0V VOUT 35pF 300Ω 50% 0V 50Ω X2, Y2, Z2 VCC VOUT 90% VX1, VY1, VZ1 tTRANS tTRANS VEE = 0V FOR SINGLE-SUPPLY OPERATION. TEST EACH SECTION INDIVIDUALLY. Figure 2. Address Transition Times ______________________________________________________________________________________ 11 MAX4581/MAX4582/MAX4583 ______________________________________________Test Circuits/Timing Diagrams MAX4581/MAX4582/MAX4583 Low-Voltage, CMOS Analog Multiplexers/Switches _________________________________Test Circuits/Timing Diagrams (continued) VCC A VEnable VCC X0 B VCC VCC 50% 0V X1–X7 VX0 C 90% MAX4581 VENABLE ENABLE VOUT X GND VEE 50Ω VOUT 90% 35pF 0V 300Ω VEE tOFF tON VCC A B VEnable VCC X0, Y0 VCC VCC 50% 0V X1–X3, Y1–Y3 VX0, VY0 90% MAX4582 VENABLE ENABLE X, Y GND VOUT VEE 50Ω 35pF VOUT 90% 0V 300Ω VEE tOFF tON VCC A B C VCC VEnable X1, Y1, Z1 X0, Y0, Z0 ENABLE GND X, Y, Z VEE 50Ω 0V VEE VX0, VY0, VZ0 VOUT 35pF 300Ω VEE 50% VCC MAX4583 VENABLE VCC 90% VOUT 90% VX1, VY1, VZ1 tON VEE = 0V FOR SINGLE-SUPPLY OPERATION. TEST EACH SECTION INDIVIDUALLY. Figure 3. Inhibit Switching Times 12 ______________________________________________________________________________________ tOFF Low-Voltage, CMOS Analog Multiplexers/Switches VCC VCC VA, VB, VC VA, VB VCC A X0–X7 B 50Ω VCC A VCC 50Ω X0–X3, Y0–Y3 B VCC C MAX4582 MAX4581 ENABLE VOUT X GND VEE ENABLE X, Y GND 35pF VOUT VEE 35pF 300Ω 300Ω VEE VEE VCC VA, VB, VC VCC tR < 20ns tF < 20ns V+ X0, X1, Y0, Y1, Z0, Z1 A, B, C VA, VB, VC VCC 50% 0V 50Ω VX, VY, VZ MAX4583 ENABLE 80% X, Y, Z GND VOUT VEE 35pF 300Ω VEE VOUT 0V VEE = 0V FOR SINGLE-SUPPLY OPERATION. TEST EACH SECTION INDIVIDUALLY. tBBM Figure 4. Break-Before-Make Interval VCC VCC VCC X_, Y_, Z_ A CHANNEL SELECT VEnable 0V B C VENABLE MAX4581 MAX4582 MAX4583 ENABLE GND 50Ω X, Y, Z VEE VEE VEE = 0V FOR SINGLE-SUPPLY OPERATION. TEST EACH SECTION INDIVIDUALLY. VOUT ∆ VOUT VOUT CL = 1000pF ∆ VOUT IS THE MEASURED VOLTAGE DUE TO CHARGE TRANSFER ERROR Q WHEN THE CHANNEL TURNS OFF. Q = ∆ VOUT X CL Figure 5. Charge Injection ______________________________________________________________________________________ 13 MAX4581/MAX4582/MAX4583 _________________________________Test Circuits/Timing Diagrams (continued) MAX4581/MAX4582/MAX4583 Low-Voltage, CMOS Analog Multiplexers/Switches _________________________________Test Circuits/Timing Diagrams (continued) VCC 10nF VCC A CHANNEL SELECT VIN NETWORK ANALYZER 50Ω 50Ω X_, Y_, Z_ OFF-ISOLATION = 20log VIN B C MAX4581 MAX4582 MAX4583 ENABLE GND ON-LOSS = 20log VOUT X, Y, Z MEAS. REF. CROSSTALK = 20log VEE 50Ω 50Ω 10nF VEE MEASUREMENTS ARE STANDARDIZED AGAINST SHORT AT SOCKET TERMINALS. OFF-ISOLATION IS MEASURED BETWEEN COM AND "OFF" NO TERMINAL ON EACH SWITCH. ON-LOSS IS MEASURED BETWEEN COM AND "ON" NO TERMINAL ON EACH SWITCH. CROSSTALK (MAX4582/MAX4583) IS MEASURED FROM ONE CHANNEL (A, B, C) TO ALL OTHER CHANNELS. SIGNAL DIRECTION THROUGH SWITCH IS REVERSED; WORST VALUES ARE RECORDED. Figure 6. Off Isolation, On Loss, and Crosstalk VCC A CHANNEL SELECT VCC X_, Y_, Z_ B C ENABLE MAX4581 MAX4582 MAX4583 GND X, Y, Z VEE 1MHz CAPACITANCE ANALYZER VEE Figure 7. Capacitance 14 VOUT ______________________________________________________________________________________ VOUT VIN VOUT VIN Low-Voltage, CMOS Analog Multiplexers/Switches BOTTOM VIEW X2 13 VCC 14 X1 X0 X3 A X1 X X0 X3 X X1 X0 A 12 11 10 9 12 11 10 9 12 11 10 9 8 B X2 13 7 C VCC 14 MAX4581 X4 15 X6 16 6 GND Y0 15 5 VEE Y2 16 + 2 3 X X7 X5 A Y 13 7 B VCC 14 MAX4582 *EP 1 8 EN 1 2 3 Y Y3 Y1 6 GND Y1 15 5 VEE Y0 16 *EP + 4 EN 1 2 3 4 Z1 Z Z0 EN TQFN TQFN B 7 C 6 GND 5 VEE MAX4583 *EP + 4 8 TQFN *CONNECT EXPOSED PAD TO VCC Ordering Information (continued) PART MAX4581CEE+ TEMP RANGE 0°C to +70°C PINPACKAGE 16 QSOP TOP MARK PART TEMP RANGE PINPACKAGE — MAX4582EEE+ -40°C to +85°C 16 QSOP -40°C to +85°C 16 TQFN-EP* TOP MARK — MAX4581EPE+ -40°C to +85°C 16 PDIP — MAX4582ETE+ MAX4581ESE+ -40°C to +85°C 16 Narrow SO — MAX4582ASE+ MAX4581EUE+ -40°C to +85°C 16 TSSOP — MAX4582AUE/V+T -40°C to +125°C 16 TSSOP MAX4581EEE+ -40°C to +85°C 16 QSOP — MAX4583CPE+ 0°C to +70°C 16 PDIP — -40°C to +85°C 16 TQFN-EP* AGH MAX4583CSE+ 0°C to +70°C 16 Narrow SO — — MAX4583CUE+ 0°C to +70°C 16 TSSOP — — MAX4583CEE+ 0°C to +70°C 16 QSOP — MAX4581ETE+ MAX4581ASE+ MAX4581AUE+ -40°C to +125°C 16 Narrow SO -40°C to +125°C 16 TSSOP AGH -40°C to +125°C 16 Narrow SO — — MAX4582CPE+ 0°C to +70°C 16 PDIP — MAX4583EPE+ -40°C to +85°C 16 PDIP — MAX4582CSE+ 0°C to +70°C 16 Narrow SO — MAX4583ESE+ -40°C to +85°C 16 Narrow SO — MAX4582CUE+ 0°C to +70°C 16 TSSOP — MAX4583EUE+ -40°C to +85°C 16 TSSOP — MAX4582CEE+ 0°C to +70°C 16 QSOP — MAX4583EEE+ -40°C to +85°C 16 QSOP MAX4582EPE+ -40°C to +85°C 16 PDIP — MAX4583ETE+ -40°C to +85°C 16 TQFN–EP* — MAX4582ESE+ -40°C to +85°C 16 Narrow SO — MAX4583ASE+ -40°C to +125°C 16 Narrow SO — MAX4582EUE+ -40°C to +85°C 16 TSSOP — MAX4583AUE+ -40°C to +125°C 16 TSSOP — AGH +Denotes a lead(Pb)-free/RoHS-compliant package. /V Denotes an automotive qualified part. T = Tape and reel. *EP = Exposed pad. ______________________________________________________________________________________ 15 MAX4581/MAX4582/MAX4583 Pin Configurations/Functional Diagrams (continued) MAX4581/MAX4582/MAX4583 Low-Voltage, CMOS Analog Multiplexers/Switches Package Information Chip Information PROCESS: BICMOS TRANSISTOR COUNT: 219 16 For the latest package outline information and land patterns (footprints), go to www.maxim-ic.com/packages. Note that a “+”, “#”, or “-” in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status. PACKAGE TYPE PACKAGE CODE OUTLINE NO. LAND PATTERN NO. 16 PDIP P16+1 21-0043 — 16 Narrow SO S16+1 21-0041 90-0097 16 TSSOP U16+2 21-0066 90-0117 16 QSOP E16+4 21-0055 90-0167 16 TQFN T1633+5 21-0136 90-0032 ______________________________________________________________________________________ Low-Voltage, CMOS Analog Multiplexers/Switches REVISION NUMBER REVISION DATE 5 6/07 Various changes 6 3/12 Updated TQFN, PDIP, and lead-free packaging options; updated temperature ranges DESCRIPTION PAGES CHANGED — 1–7, 15, 16 Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance. 17 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 © 2012 Maxim Integrated Products Maxim is a registered trademark of Maxim Integrated Products, Inc. MAX4581/MAX4582/MAX4583 Revision History