19-1181; Rev 1; 7/97 VHF-to-Microwave, +3V, General-Purpose Amplifiers ________________________Applications Global Positioning Systems Cellular Phones Wireless Local Area Networks ISM Radios Wireless Local Loops TV Tuners Land Mobile Radios Set-Top Boxes __________Typical Operating Circuit ♦ Internally Biased (MAX2630/MAX2631) ♦ Adjustable Bias (MAX2632/MAX2633) ♦ 6.6mA Supply Current (insensitive to supply voltage) ♦ 1µA Shutdown Current (MAX2631/MAX2633) ♦ 3.7dB Noise Figure ♦ 13.4dB Gain ♦ Ultra-Small SOT Packages ______________Ordering Information PART TEMP. RANGE PINPACKAGE MAX2630EUS-T -40°C to +85°C 4 SOT143 DG_ _ 5 SOT23-5 5 SOT23-5 6 SOT23-6 AABK AABL AAAA MAX2631EUK-T -40°C to +85°C MAX2632EUK-T -40°C to +85°C MAX2633EUT-T -40°C to +85°C SOT TOP MARK* *The first two letters in the SOT top mark identify the part, while the remaining two letters are the lot-tracking code. _________________Pin Configurations TOP VIEW OUT 3 MAX2630 4 VCC GND 2 SHDN 1 GND 2 1 IN 5 IN 4 VCC 6 IN 5 BIAS 4 VCC MAX2631 AABK Cordless Phones ♦ Single +2.7V to +5.5V Operation DG__ Personal Communicating Systems ____________________________Features OUT 3 SOT143 SOT23-5 CBLOCK ON SHDN OFF BIAS IN IN BIAS 1 5 IN SHDN 1 MAX2632 CBLOCK GND 2 VCC OUT OUT RBIAS MAX2633 VCC OUT 3 GND 4 VCC 2 AAAA BIAS AABL GND MAX2633 OUT 3 CBYP SOT23-5 SOT23-6 ________________________________________________________________ Maxim Integrated Products 1 For free samples & the latest literature: http://www.maxim-ic.com, or phone 1-800-998-8800. For small orders, phone 408-737-7600 ext. 3468. MAX2630–MAX2633 _______________General Description The MAX2630/MAX2631/MAX2632/MAX2633 are lowvoltage, low-noise amplifiers for use from VHF to microwave frequencies. Operating from a single +2.7V to +5.5V supply, these devices have a flat gain response to 900MHz. Their low noise figure and low supply current make them ideal for receive, buffer, and transmit IF applications. The MAX2630/MAX2631 are biased internally, eliminating the need for external bias resistors or inductors. The MAX2632/MAX2633 have a user-selectable supply current, which can be adjusted by adding a single external resistor. This allows customized output power and gain according to specific applications requirements. The MAX2631/MAX2633 feature a shutdown pin that allows them to be powered down to less than 1µA supply current. Aside from a single bias resistor required for the MAX2632/MAX2633, the only external components needed for this family of amplifiers are input and output blocking capacitors and a VCC bypass capacitor. The MAX2630 comes in a 4-pin SOT143 package, requiring minimal board space. The MAX2631/MAX2632 come in small 5-pin SOT23 packages. The MAX2633 comes in a 6-pin SOT23 package. MAX2630–MAX2633 VHF-to-Microwave, +3V, General-Purpose Amplifiers ABSOLUTE MAXIMUM RATINGS VCC to GND ................................................................-0.3V to 6V Input Power.........................................................................5dBm OUT Current .....................................................................±12mA IN to GND Voltage ...................................................-1.2V to 1.2V Bias to GND Voltage ....................................................0.0V to 3V Voltage at SHDN Input (MAX2631/MAX2633) ............................-0.3V to (VCC + 0.3V) Current into SHDN Input (MAX2631/MAX2633).................100µA Continuous Power Dissipation (TA = +70°C) SOT143 (derate 4mW/°C above +70°C) .....................320mW SOT23-5 (derate 7.1mW/°C above +70°C).................571mW SOT23-6 (derate 7.1mW/°C above +70°C).................571mW Operating Temperature Range ...........................-40°C to +85°C Junction Temperature ......................................................+150°C Storage Temperature Range .............................-65°C to +150°C Lead Temperature (soldering, 10sec) .............................+300°C Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. ELECTRICAL CHARACTERISTICS (VCC = +3V, Z0 = 50Ω, fIN = 900MHz, RBIAS = 10kΩ (MAX2632/MAX2633), V SHDN = VCC (MAX2631/MAX2633), TA = +25°C, unless otherwise noted.) CONDITIONS PARAMETERS Operating Temperature Range (Note 1) Supply Voltage Power Gain MIN MAX UNITS -40 85 degrees 2.7 5.5 V TA = +25°C 11 TA = TMIN to TMAX (Note 1) 9.4 TYP 13.4 16.5 18.4 dB Noise Figure 3.8 dB Output 1dB Compression Point -11 dBm -1 dBm Output IP3 Input Voltage Standing-Wave Ratio fIN = 800MHz to 1000MHz 1.3:1 Output Voltage Standing-Wave Ratio fIN = 800MHz to 1000MHz 1.25:1 RBIAS = 40kΩ Supply Current 1.3 1.5 VCC = 3V, TA = +25°C 5.5 6.5 8.0 RBIAS =10kΩ VCC = 3V, TA = TMIN to TMAX (Note1) VCC = 2.7V to 5.5V, TA = +25°C 4.2 6.5 9.2 5.2 6.5 11.0 RBIAS = 500Ω 15 17 Shutdown Supply Current MAX2631/MAX2633 SHDN Input Low Voltage MAX2631/MAX2633, VCC = 2.7V to 5.5V <0.1 SHDN Input High Voltage MAX2631/MAX2633, VCC = 2.7V to 5.5V SHDN Input Bias Current MAX2631/ MAX2633 2 1 µA 0.45 V 2.0 V VSHDN = VCC 30 VSHDN = GND 1 Note 1: Guaranteed by design and characterization. _______________________________________________________________________________________ mA µA VHF-to-Microwave, +3V, General-Purpose Amplifiers MAX2632/MAX2633 GAIN vs. SUPPLY CURRENT 8 20 MAX2630-2 TA = +85°C GAIN vs. FREQUENCY AND VOLTAGE 25 MAX2630-1 10 20 f = 0.1GHz MAX2632-3 SUPPLY CURRENT vs. SUPPLY VOLTAGE 16 TA = -40°C TA = +25°C 4 15 GAIN (dB) GAIN (dB) ICC (mA) VCC = 5V 6 f = 0.9GHz 10 12 VCC = 3V 8 f = 1.5GHz 2 5 0 0 3 4 5 0 6 0 2.5 7.5 5.0 10.0 12.5 15.0 0.1 0.9 0.7 1.5 GAIN vs. FREQUENCY AND TEMPERATURE OUTPUT 1dB COMPRESSION POWER vs. FREQUENCY AND VOLTAGE OUTPUT 1dB COMPRESSION POWER vs. FREQUENCY AND TEMPERATURE -5.0 TA = +25°C TA = +85°C -7.5 P-1 (dBm) P-1 (dBm) -7.5 MAX2630-6 -5.0 MAX2630-4 TA = -40°C VCC = 5V -10.0 8 -10.0 TA = +85°C VCC = 3V -12.5 -15.0 0 0.5 0.7 0.9 1.1 1.3 -15.0 0.1 1.5 0.3 0.5 0.7 0.9 1.1 1.3 1.5 0.1 0.3 1.1 1.3 1.5 NOISE FIGURE vs. FREQUENCY MAX2630-8 MAX2630-7 5 f = 0.1GHz 4 NOISE FIGURE (dB) -4 0.9 FREQUENCY (GHz) MAX2632/MAX2633 OUTPUT 1dB COMPRESSION POWER vs. SUPPLY CURRENT 0 0.7 0.5 FREQUENCY (GHz) FREQUENCY (GHz) f = 0.9GHz P-1 (dBm) TA = -40°C -12.5 4 0.3 1.3 FREQUENCY (GHz) 16 0.1 1.1 ICC (mA) 20 12 0.5 0.3 VCC (V) MAX2630-5 2 GAIN (dB) 4 -8 f = 1.5GHz -12 -16 3 2 1 -20 0 0 2.5 5.0 7.5 ICC (mA) 10.0 12.5 15.0 0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5 FREQUENCY (GHz) _______________________________________________________________________________________ 3 MAX2630–MAX2633 __________________________________________Typical Operating Characteristics (VCC = +3V, V SHDN = VCC (MAX2631/MAX2633), Z0 = 50Ω, fIN = 900MHz, RBIAS = 10kΩ (MAX2632/MAX2633), TA = +25°C, unless otherwise noted.) ____________________________Typical Operating Characteristics (continued) (VCC = +3V, V SHDN = VCC (MAX2631/MAX2633), Z0 = 50Ω, fIN = 900MHz, RBIAS = 10kΩ (MAX2632/MAX2633), TA = +25°C, unless otherwise noted.) MAX2631/MAX2633 SHUTDOWN SUPPLY CURRENT vs. TEMPERATURE 0.04 VCC = 5V VCC = 3V 6 4:1 0.03 VCC = 5.5V OUT VCC = 3.0V 2:1 VCC = 2.7V VCC = 4V IN 0 0 1 10 3:1 0.02 0.01 3 VSWR 9 SHUTDOWN ICC (µA) 12 5:1 MAX2630 toc11 0.05 MAX2630-9 15 VOLTAGE STANDING-WAVE RATIO vs. FREQUENCY MAX2630-10 MAX2632/MAX2633 SUPPLY CURRENT vs. RBIAS ICC (mA) MAX2630–MAX2633 VHF-to-Microwave, +3V, General-Purpose Amplifiers 1:1 -40 100 -20 0 20 40 60 80 0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5 FREQUENCY (GHz) TEMPERATURE (°C) RBIAS (kΩ) ______________________________________________________________Pin Description PIN NAME 4 FUNCTION MAX2630 MAX2631 MAX2632 MAX2633 1 5 5 6 IN Amplifier Input. Use a series blocking capacitor with less than 3Ω reactance at your lowest operating frequency. 2 2 2 2 GND Ground Connection. For optimum performance, provide a lowinductance connection to the ground plane. 3 3 3 3 OUT Amplifier Output. Use a series blocking capacitor with less than 3Ω reactance at your lowest operating frequency. Supply Connection. Bypass directly at the supply pin. The value of the bypass capacitor is determined by the lowest operating frequency, and is typically the same as the blocking capacitor value. Additional bypassing may be necessary for long VCC lines. 4 4 4 4 VCC — 1 — 1 SHDN Shutdown Input. Driving SHDN with a logic low turns off the amplifier. — — 1 5 BIAS Bias Resistor Connection. Connect a resistor to GND to set the bias current. See the Supply Current vs. RBIAS graph in the Typical Operating Characteristics. _______________________________________________________________________________________ VHF-to-Microwave, +3V, General-Purpose Amplifiers MAX2630–MAX2633 Table 1a. Typical Scattering Parameters (VCC = +3V, V SHDN = VCC, Z0 = 50Ω, RBIAS = 10kΩ, TA = +25°C.) FREQUENCY (GHz) S11 (mag) S11 (ang) S21 (dB) S21 (mag) S21 (ang) S12 (dB) S12 (mag) S12 (ang) S22 (mag) S22 (ang) K 0.05 0.59 -50 12.9 4.39 46 -38.7 0.012 37 0.62 -19 4.30 0.10 0.37 -70 14.2 5.11 1 -36.7 0.015 12 0.57 -29 4.07 0.20 0.22 -86 14.5 5.32 -49 -35.8 0.016 -13 0.54 -49 3.93 0.30 0.17 -100 14.5 5.32 -89 -35.0 0.018 -32 0.53 -71 3.74 0.40 0.16 -109 14.5 5.28 -125 -34.4 0.019 -51 0.51 -94 3.61 0.50 0.15 -99 14.3 5.19 -138 -33.6 0.021 -70 0.50 -118 3.45 0.60 0.14 -86 14.1 5.05 -127 -33.0 0.022 -89 0.48 -109 3.38 0.70 0.14 -68 13.9 4.93 -116 -32.2 0.025 -107 0.46 -96 3.27 0.80 0.14 -49 13.5 4.75 -104 -31.3 0.027 -124 0.44 -82 3.16 0.90 0.13 -31 13.0 4.49 -93 -30.3 0.031 -142 0.42 -68 3.05 1.00 0.13 -10 12.6 4.25 -82 -29.0 0.035 -161 0.40 -53 2.87 1.20 0.06 19 10.8 3.48 -58 -25.8 0.051 153 0.33 -25 2.59 1.40 0.11 -60 7.9 2.48 -110 -23.7 0.065 113 0.26 -12 2.90 1.60 0.24 -31 5.6 1.91 -162 -23.6 0.066 122 0.26 -7 3.51 1.80 0.30 -26 4.8 1.73 144 -23.7 0.065 120 0.26 -34 3.76 2.00 0.31 -66 4.3 1.63 86 -23.3 0.069 117 0.25 -63 3.80 2.20 0.27 -98 3.6 1.51 27 -22.3 0.077 116 0.24 -83 3.80 2.40 0.24 -115 2.6 1.36 5 -21.3 0.086 116 0.25 -97 3.81 2.50 0.22 -120 2.2 1.29 12 -21.0 0.089 114 0.27 -106 3.86 _______________________________________________________________________________________ 5 MAX2630–MAX2633 VHF-to-Microwave, +3V, General-Purpose Amplifiers Table 1b. MAX2633 Typical Scattering Parameters (VCC = +5V, V SHDN = VCC, Z0 = 50Ω, RBIAS = 10k, TA = +25°C.) FREQUENCY (GHz) S11 (mag) S11 (ang) S21 (dB) S21 (mag) S21 (ang) S12 (dB) S12 (mag) S12 (ang) S22 (mag) S22 (ang) K 0.05 0.58 -53 13.6 4.80 45 -39.2 0.011 36 0.62 -22 4.26 0.10 0.35 -76 15.0 5.62 1 -36.9 0.014 13 0.57 -29 3.83 0.20 0.20 -97 15.4 5.87 -48 -36.1 0.016 -14 0.55 -49 3.75 0.30 0.14 -101 15.4 5.91 -87 -35.2 0.017 -31 0.53 -72 3.48 0.40 0.12 -94 15.4 5.91 -123 -34.7 0.018 -50 0.52 -95 3.35 0.50 0.11 -82 15.4 5.87 -141 -33.8 0.020 -68 0.51 -119 3.14 0.60 0.11 -66 15.2 5.78 -130 -33.1 0.022 -86 0.49 -108 3.02 0.70 0.11 -45 15.1 5.68 -119 -32.3 0.024 -104 0.48 -94 2.87 0.80 0.11 -22 14.9 5.54 -108 -31.3 0.027 -121 0.45 -79 2.73 0.90 0.12 -2 14.5 5.30 -96 -30.0 0.032 -139 0.43 -65 2.51 1.00 0.12 21 14.1 5.09 -85 -28.5 0.038 -158 0.42 -49 2.28 1.20 0.08 -54 12.5 4.22 -59 -25.2 0.055 153 0.34 -18 2.01 1.40 0.10 -103 9.3 2.93 -112 -23.1 0.070 114 0.24 -4 2.36 1.60 0.22 -44 6.7 2.16 -163 -23.3 0.068 125 0.24 -7 3.07 1.80 0.29 -20 5.8 1.96 145 -23.7 0.065 124 0.24 -37 3.41 2.00 0.30 -60 5.3 1.85 89 -23.3 0.069 120 0.23 -65 3.41 2.20 0.26 -92 4.9 1.75 29 -22.2 0.078 117 0.21 -83 3.31 2.40 0.24 -110 3.9 1.57 2 -21.7 0.082 116 0.23 -95 3.48 2.50 0.23 -113 3.5 1.50 10 -20.9 0.090 115 0.25 -100 3.35 6 _______________________________________________________________________________________ VHF-to-Microwave, +3V, General-Purpose Amplifiers The MAX2630–MAX2633 are broadband amplifiers with 3dB bandwidth greater than 1GHz. Their small size and internal bias circuitry make them ideal for applications where board space is limited. The MAX2632/MAX2633 have a user-selectable bias current that allows the user to set both gain and output power for a particular application, and the MAX2631/MAX2633 incorporate shutdown capability. VCC OUT OUT MAX2630–MAX2633 _______________Detailed Description VCC CBLOCK CBYP IN GND __________Applications Information IN CBLOCK MAX2630 External Components The MAX2630–MAX2633 are easy to use, as shown in the Typical Operating Circuit and Figures 1, 2 and 3. Input and output series capacitors may be necessary to block DC bias voltages generated by the amplifiers from interacting with adjacent circuitry. These capacitors must be large enough to contribute negligible reactance in a 50Ω system at the minimum operating frequency. Use the following equation to calculate their minimum value: CBLOCK = 53,000 Figure 1. MAX2630 Typical Operating Circuit f CBLOCK ON (pF) SHDN OFF where f (in megahertz) is the minimum operating frequency. The VCC pin must be RF bypassed for correct operation. To accomplish this, connect a capacitor between the VCC pin and ground, as close to the package as is practical. Use the same equation given above (for DCblocking capacitor values) to calculate the minimum capacitor value. If the PC board has long VCC lines, additional bypassing may be necessary. This can be done farther away from the package, if needed. Proper grounding of the GND pin is essential. If the PC board uses a topside RF ground, connect it directly to the GND pin. For a board where the ground plane is not on the component side, the best technique is to connect the GND pin to it with a plated through-hole close to the package. An on-chip buffer at the MAX2631/MAX2633’s SHDN pin makes bypassing this pin unnecessary except in very noisy applications. When RF filtering is needed, use a bypass capacitor similar to the one used on VCC. Since negligible current flows into this pin, additional RF filtering may be done with a series resistor. To set the MAX2632/MAX2633’s supply current, connect a resistor from the BIAS pin to ground. To estimate the value of this resistor, refer to the graph Supply Current vs. R BIAS in the Typical Operating Characteristics. IN BIAS IN GND VCC OUT OUT CBLOCK VCC MAX2631 CBYP Figure 2. MAX2631 Typical Operating Circuit CBLOCK BIAS BIAS IN IN RBIAS GND VCC OUT OUT CBLOCK MAX2632 VCC CBYP Figure 3. MAX2632 Typical Operating Circuit _______________________________________________________________________________________ 7 MAX2630–MAX2633 VHF-to-Microwave, +3V, General-Purpose Amplifiers PC Board Layout Example Example PC board layouts are given in Figures 4 to 7. They use FR-4 with a 31mil layer thickness between the RF lines and the ground plane. The boards satisfy all of the above recommendations. Figure 4. MAX2630 Example PC Board Layout Figure 5. MAX2631 Example PC Board Layout Figure 6. MAX2632 Example PC Board Layout 8 Figure 7. MAX2633 Example PC Board Layout _______________________________________________________________________________________ VHF-to-Microwave, +3V, General-Purpose Amplifiers TRANSISTOR COUNT: 199 __________________________________________________Tape-and-Reel Information E P0 D P2 B0 t D1 F W P K0 A0 W 8.001 +0.305 -0.102 P 3.988 ±0.102 E 1.753 ±0.102 F 3.505 ±0.051 D 1.499 +0.102 +0.000 D1 0.991 +0.254 +0.000 P0 3.988 ±0.102 P010 40.005 ±0.203 P2 2.007 ±0.051 A0 3.200 ±0.102 B0 3.099 ±0.102 K0 1.397 ±0.102 t 0.254 ±0.127 NOTE: DIMENSIONS ARE IN MM. AND FOLLOW EIA481-1 STANDARD. _______________________________________________________________________________________ 9 MAX2630–MAX2633 ___________________Chip Information ________________________________________________________Package Information SOT1434.EPS MAX2630–MAX2633 VHF-to-Microwave, +3V, General-Purpose Amplifiers 10 ______________________________________________________________________________________ VHF-to-Microwave, +3V, General-Purpose Amplifiers SOT5L.EPS ______________________________________________________________________________________ 11 MAX2630–MAX2633 ___________________________________________Package Information (continued) ___________________________________________Package Information (continued) 6LSOT.EPS MAX2630–MAX2633 VHF-to-Microwave, +3V, General-Purpose Amplifiers Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time. 12 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 © 1997 Maxim Integrated Products Printed USA is a registered trademark of Maxim Integrated Products.