AMD Opteron™ Processor Data Sheet • Compatible with Existing 32-Bit Code Base – Including support for SSE, SSE2, MMX™, 3DNow!™ technology and legacy x86 instructions – Runs existing operating systems and drivers – Local APIC on-chip • AMD 64-Bit Technology – AMD’s 64-bit x86 instruction set extensions – 64-bit integer registers, 48-bit virtual addresses, 40bit physical addresses – Eight new 64-bit integer registers (16 total) – Eight new 128-bit SSE/SSE2 registers (16 total) • Integrated Memory Controller – Low-latency, high-bandwidth – 144-bit DDR SDRAM at 100, 133, and 166 MHz 144-Bit DDR SDRAM Memory (128 bits + 16 bits ECC) AMD Opteron™ Processor HyperTransport™ Links Three 16x16-bit 1600 MT/s (6.4 Gigabytes/s) Max Each • • HyperTransport™ Technology to I/O Devices – Three links, 16-bits in each direction, each supports up to 1600 MT/s or 3.2 GB/s in each direction – Each link can connect to an I/O device or another processor • 64-Kbyte 2-Way Associative ECC-Protected L1 Data Cache – Two 64-bit operations per cycle, 3-cycle latency • 64-Kbyte 2-Way Associative Parity-Protected L1 Instruction Cache – With advanced branch prediction • 1024-Kbyte (1-Mbyte) 16-Way Associative ECC-Protected L2 Cache – Exclusive cache architecture—storage in addition to L1 caches • Machine Check Architecture – Includes hardware scrubbing of major ECCprotected arrays • Power Management – Multiple low-power states – System Management Mode (SMM) – ACPI 2.0 compliant Publication # Issue Date: 23932 April 2003 Revision: 3.00 Power Supplies – VDD (core): 1.55-V at 52 Amps (max) – VDDIO: 2.5-V at 2.9 Amps (max) for DDR SDRAM I/O – VLDT: 1.2-V at 1.5 Amps for HyperTransport™ technology interface – VTT: 1.25-V at 0.2 Amps required for 2.5-V I/Os – Target CPU Core Power: 80.6 Watts – Target Maximum Thermal Power: 84.7 Watts • Electrical Interfaces – HyperTransport technology: LVDS-Like differential, unidirectional – DDR SDRAM: SSTL_2 per JEDEC specification – Clock, reset, and test signals also use DDR SDRAM-like electrical specifications • Packaging – 940-pin lidded ceramic micro PGA – 1.27-mm pin pitch – 31x31 row pin array – 40mm x 40mm ceramic substrate – Ceramic C4 die attach AMD Opteron™ Processor Data Sheet 23932 Rev. 3.00 April 2003 Trademarks AMD, the AMD Arrow logo, AMD Athlon, AMD Opteron and combinations thereof, and 3DNow! are trademarks of Advanced Micro Devices, Inc. HyperTransport is a licensed trademark of the HyperTransport Technology Consortium. MMX is a trademark of Intel Corporation. Other product names used in this publication are for identification purposes only and may be trademarks of their respective companies. Disclaimer The contents of this document are provided in connection with Advanced Micro Devices, Inc. (“AMD”) products. AMD makes no representations or warranties with respect to the accuracy or completeness of the contents of this publication and reserves the right to make changes to specifications and product descriptions at any time without notice. No license, whether express, implied, arising by estoppel or otherwise, to any intellectual property rights is granted by this publication. Except as set forth in AMD’s Standard Terms and Conditions of Sale, AMD assumes no liability whatsoever, and disclaims any express or implied warranty, relating to its products including, but not limited to, the implied warranty of merchantability, fitness for a particular purpose, or infringement of any intellectual property right. AMD’s products are not designed, intended, authorized or warranted for use as components in systems intended for surgical implant into the body, or in other applications intended to support or sustain life, or in any other application in which the failure of AMD’s product could create a situation where personal injury, death, or severe property or environmental damage may occur. AMD reserves the right to discontinue or make changes to its products at any time without notice. © 2002, 2003 Advanced Micro Devices, Inc. All rights reserved. AMD Opteron™ Processor Data Sheet 23932 Rev 3.00 April 2003 Contents Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1 AMD Opteron™ Processor Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.1 Instruction Set Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.2 Internal Cache Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.2.1 Level 1 Caches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.2.2 Level 2 Cache . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.3 Error Handling (Machine Check) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.4 Northbridge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.4.1 2.4.1.1 Link Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.4.1.2 HyperTransport™ Technology Transfer Speeds . . . . . . . . . . . . . . . . . . . . . . 14 2.4.2 3 HyperTransport™ Technology Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Memory Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.4.2.1 Memory Pin Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.4.2.2 DRAM Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.4.2.3 DRAM Power Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.4.2.4 Chip Kill . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.4.2.5 Main Memory Hardware Scrubbing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Power Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.1 Halt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.2 STPCLK/Stop Grant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.3 PWROK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.4 RESET_L and MEMRESET_L . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.5 Thermal Diode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.6 THERMTRIP_L . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 4 Connection Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 5 Pin Designations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 6 Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Contents 3 AMD Opteron™ Processor Data Sheet 23932 Rev 3.00 April 2003 6.1 HyperTransport™ Technology Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 6.2 DDR SDRAM Memory Interface Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 6.3 Miscellaneous Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 6.4 Pin States at Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 7 Electrical Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 7.1 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 7.2 HyperTransport™ Technology Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 7.3 7.4 7.5 7.2.1 Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 7.2.2 Reference Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 DDR SDRAM and Miscellaneous Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 7.3.1 Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 7.3.2 AC Operating Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 Clocks and THERMTRIP_L Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 7.4.1 Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 7.4.2 Power-Up Signal Sequencing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 7.4.3 Reference Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 7.4.4 Thermal Diode Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 Power Supplies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 7.5.1 Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 7.5.2 Power Supply Relationships . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 7.5.2.1 Sequencing Relationships . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 7.5.2.2 Sequencing Relationships: Signals to Power Supplies (Stress Conditions) . . 77 7.5.2.3 Power Failures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 7.5.2.4 Unused Links . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 7.5.2.5 Power States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 8 Package Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 9 Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 4 Contents AMD Opteron™ Processor Data Sheet 23932 Rev 3.00 April 2003 List of Figures Figure 1. AMD Opteron™ Processor Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Figure 2. AMD Opteron™ Processor Micro PGA—Top View, Left Side . . . . . . . . . . . . . . . . . 26 Figure 3. AMD Opteron™ Processor Micro PGA—Top View, Right Side . . . . . . . . . . . . . . . . 27 Figure 4. Slew Rate Measurement Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 Figure 5. MEMCLK Output Skew . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 Figure 6. MEMDQS Timing Parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 Figure 7. DSS/tDSH Timing Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 Figure 8. tDQSQV/tDQSQIV Timing Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 Figure 9. MEMADD/CMD to MEMCLK Timing Parameter (Registered DIMMs) . . . . . . . . . . 64 Figure 10. MEMDQS Edge Arrival Relative to DQs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 Figure 11. Power-Up Signal Sequencing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 Figure 12. Sequencing Relationships for Power Supplies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 Figure 13. Ceramic Micro Pin Grid Array Package: Top, Side, and Bottom Views . . . . . . . . . . . 79 Figure 14. Ordering Part Number Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 List of Figures 5 AMD Opteron™ Processor Data Sheet 6 23932 Rev 3.00 April 2003 List of Figures AMD Opteron™ Processor Data Sheet 23932 Rev 3.00 April 2003 List of Tables Table 1. DIMM Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Table 2. DRAM Interface Speed vs. CPU Core Clock Multiplier . . . . . . . . . . . . . . . . . . . . . . . 17 Table 3. Total Memory Sizes Per Chip Select . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Table 4. Processor Capabilities Mapped to ACPI States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Table 5. Pin List by Name. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Table 6. Pin Description Table Definitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Table 7. HyperTransport™ Technology Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 Table 8. DDR SDRAM Memory Interface Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 Table 9. Clock Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 Table 10. Miscellaneous Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 Table 11. VID[4:0] Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 Table 12. JTAG Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 Table 13. Debug Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 Table 14. Reset Pin State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 Table 15. Absolute Maximum Ratings for AMD Opteron™ Processor. . . . . . . . . . . . . . . . . . . . 51 Table 16. DC Operating Conditions for HyperTransport™ Technology Interface . . . . . . . . . . . 52 Table 17. AC Operating Conditions for HyperTransport™ Technology Interface . . . . . . . . . . . 53 Table 18. Internal Termination for HyperTransport™ Technology Interface . . . . . . . . . . . . . . . 54 Table 19. DC Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 Table 20. AC Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 Table 21. Input Capacitance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 Table 22. Slew Rate of DDR SDRAM Signals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 Table 23. Package Routing Skew . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 Table 24. Electrical AC Timing Characteristics for DDR SDRAM Signals . . . . . . . . . . . . . . . . 59 Table 25. DC Operating Conditions for THERMTRIP_L Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 Table 26. DC Operating Conditions for CLKIN_H/L and FBCLKOUT_H/L Pins . . . . . . . . . . . 67 Table 27. AC Operating Conditions for THERMTRIP_L Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 Table 28. AC Operating Conditions for CLKIN_H/L and FBCLKOUT_H/L Pins . . . . . . . . . . . 68 List of Tables 7 AMD Opteron™ Processor Data Sheet 23932 Rev 3.00 April 2003 Table 29. Internal Termination for Miscellaneous Pins Interface. . . . . . . . . . . . . . . . . . . . . . . . . 71 Table 30. External Required Circuits (Pins Not Normally Used in System) . . . . . . . . . . . . . . . . 72 Table 31. Thermal Diode Specifications for AMD Opteron™ Processor . . . . . . . . . . . . . . . . . . 72 Table 32. Combined AC and DC Operating Conditions for Power Supplies . . . . . . . . . . . . . . . . 74 Table 33. Thermal Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 Table 34. Sequencing Relationships for Power Supplies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 Table 35. Nominal Hookups for Power Supplies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 8 List of Tables AMD Opteron™ Processor Data Sheet 23932 Rev 3.00 April 2003 Revision History Date Revision Description April 2003 3.00 Initial release. Revision History 9 AMD Opteron™ Processor Data Sheet 10 23932 Rev 3.00 April 2003 Revision History AMD Opteron™ Processor Data Sheet 23932 Rev 3.00 April 2003 1 AMD Opteron™ Processor Overview The AMD Opteron™ processor is designed for high-performance workstation and server applications. It provides three high-performance HyperTransport™ links to I/O, as well as a 128-bit high-performance DDR SDRAM memory controller. A block diagram of the AMD Opteron processor is shown in Figure 1. VID[4:0] 64-Kbyte 64-Kbyte L1 I-Cache L1 D-Cache THERMDA THERMDC THERMTRIP_L CPU Core COREFB_H/L 1-Mbyte L2 Cache PRESENCE_DET L1_CLKOUT_H/L[1:0] L1_CTLOUT_H/L[0] L1_CADOUT_H/L[15:0] L2_CLKIN_H/L[1:0] L2_CTLIN_H/L[0] L2_CADIN_H/L[15:0] 128-bits DDR SDRAM 100/133/166 MHz 16-bits ECC L1_CLKIN_H/L[1:0] L1_CTLIN_H/L[0] L1_CADIN_H/L[15:0] Northbridge DDR SDRAM Interface L0_REF0 L0_REF1 3 x 16/16 400–1600 MT/s L0_CLKOUT_H/L[1:0] L0_CTLOUT_H/L[0] L0_CADOUT_H/L[15:0] HyperTransport™ Interface L0_CLKIN_H/L[1:0] L0_CTLIN_H/L[0] L0_CADIN_H/L[15:0] L2_CLKOUT_H/L[1:0] L2_CTLOUT_H/L[0] L2_CADOUT_H/L[15:0] LDTSTOP_L RESET_L PWROK CLKIN_H/L FBCLKOUT_H/L VDDA MEMCLK_UP_H/L[3:0] MEMCLK_LO_H/L[3:0] MEMCKE_UP MEMCKE_LO MEMRESET_L MEMCS_L[7:0] MEMADD[13:0] MEMBANK[1:0] MEMRAS_L MEMCAS_L MEMWE_L MEMDQS[35:0] MEMDATA[127:0] MEMCHECK[15:0] MEMZN MEMZP MEMVREF Control PLLs and Clocks JTAG and Debug TDI TDO TCK TMS TRST_L DBREQ_L DBRDY Figure 1. AMD Opteron™ Processor Block Diagram Chapter 1 AMD Opteron™ Processor Overview 11 AMD Opteron™ Processor Data Sheet 12 AMD Opteron™ Processor Overview 23932 Rev 3.00 April 2003 Chapter 1 AMD Opteron™ Processor Data Sheet 23932 Rev 3.00 April 2003 2 Functional Description 2.1 Instruction Set Support The AMD Opteron™ processor supports the standard x86-instruction set defined in the AMD x86-64 Architecture Programmer’s Manual, volumes 4–6, order# 24594. In addition, the processor supports the following extensions to the standard x86 instruction set, which are described in the same volume set: • AMD x86-64 instructions • MMX™ and 3DNow!™ technology instructions • SSE and SSE2 instructions 2.2 Internal Cache Structures The AMD Opteron processor implements internal caching structures as described in the following sections. 2.2.1 Level 1 Caches The L1 data cache (L1 D-Cache) contains 64 Kbytes of storage organized as two-way set associative. The L1 data cache is protected with ECC. Two simultaneous 64-bit operations (load, store, or combination) are supported. The L1 instruction cache (L1 I-Cache) contains 64 Kbytes of storage organized as two-way associative. The L1 instruction cache is protected with parity. 2.2.2 Level 2 Cache The L2 cache contains both instruction and data stream information. It is organized as 16-way setassociative. The L2 cache data and tag store is protected with ECC. When a given cache line in the L2 cache contains instruction stream information, the ECC bits associated with the given line are used to store predecode and branch prediction information. 2.3 Error Handling (Machine Check) The AMD Opteron processor implements the standard x86 machine check architecture as defined in the AMD x86-64 Architecture Programmer’s Manual, Volume 2, order# 24593, and the BIOS and Kernel Developer’s Guide for the AMD Athlon™ 64 and AMD Opteron™ Processors, order# 26094. Chapter 2 Functional Description 13 AMD Opteron™ Processor Data Sheet 23932 Rev 3.00 April 2003 The machine check architecture is defined with ECC single-bit detection/correction and double-bit detection for the following arrays: • L1 Data Cache Storage • L2 Data Cache Storage • L2 Data Cache Tag • Instruction Cache • DRAM. See “Memory Controller” on page 14. 2.4 Northbridge The Northbridge logic in the AMD Opteron processor refers to the HyperTransport™ technology interface and the memory controller and their respective interfaces to the CPU cores. These interfaces are described in more detail in the following sections. 2.4.1 HyperTransport™ Technology Overview The AMD Opteron processor includes three 16-bit HyperTransport technology interfaces capable of operating up to 1600 mega-transfers per second (MT/s) with a resulting bandwidth of up to 6.4 Gbytes/s (3.2 Gbytes/s in each direction). The AMD Opteron processor supports HyperTransport technology synchronous clocking mode. Refer to the HyperTransport™ I/O Link Specification (www.hypertransport.org) for details of link operation. 2.4.1.1 Link Initialization The HyperTransport™ I/O Link Specification details the negotiation that occurs at power-on to determine the widths and rates used with the link. Refer also to the BIOS and Kernel Developer’s Guide for the AMD Athlon™ 64 and AMD Opteron™ Processors, order# 26094, for information about link initialization and setup of routing tables. Refer to the AMD Opteron™ Processor Motherboard Design Guide, order# 25180, for details on the proper HyperTransport technology signal termination resistor values. 2.4.1.2 HyperTransport™ Technology Transfer Speeds The HyperTransport link of the AMD Opteron processor is capable of operating at 400, 800, 1200, and 1600 MT/s. The link transfer rate is determined during the software configuration of the system, as specified in the HyperTransport™ I/O Link Specification. 2.4.2 Memory Controller The processor’s memory controller provides a programmable interface to a variety of standard registered DDR SDRAM DIMM configurations. The following features are supported: 14 Functional Description Chapter 2 AMD Opteron™ Processor Data Sheet 23932 Rev 3.00 April 2003 • The AMD Opteron processor supports the registered DIMM configurations listed in Table 1. Table 1.DIMM Configurations 100 MHz 133 MHz 166 MHz DDR200 DDR266 DDR333 64-bit plus ECC 4 4 2 128-bit plus ECC 8 8 4 Supported DIMM Configurations • Self-Refresh mode supported. • The controller provides programmable control of DRAM timing parameters to support the following memory speeds: — 100 MHz (DDR200) PC-1600 DIMMs — 133 MHz (DDR266) PC-2100 DIMMs — 166 MHz (DDR333) PC-2700 DIMMs • The memory controller supports DRAM devices that are 4, 8 and 16 bits wide. • Supports DIMM sizes from 32 Mbytes (using 64Mb x16 DRAMs) to 4 Gbytes (using a stacked DIMM with 1Gb x4 DRAMs). • Supports interleaving memory within DIMMs. • Stacked registered DIMMs are supported. • Supports ECC checking with double-bit detect with single-bit correction. • Chip Kill ECC allows continuous correction of 4-bit errors in a failed x4 memory device. • The memory controller may be configured for 32-byte or 64-byte burst length. • Programmable page-policy: — Supports up to 16 open pages total across all chip-selects. — Statically idle open-page time — Optional dynamic precharge control based on page-hit/miss history For programming information and specific details of the features listed above, refer to the BIOS and Kernel Developer’s Guide for the AMD Athlon™ 64 and AMD Opteron™ Processors, order# 26094. Chapter 2 Functional Description 15 AMD Opteron™ Processor Data Sheet 2.4.2.1 23932 Rev 3.00 April 2003 Memory Pin Interface The memory controller of the AMD Opteron processor supports registered DDR SDRAM DIMMs. The following list applies to the pin interface: • The MEMRESET_L pin is required for registered DIMMs and is used to reset the register as required to support the Suspend to RAM power management state (ACPI S3). • The memory controller can be configured to support either 64-bit or 128-bit memory interfaces. Refer to Table 1 on page 15 for restrictions based on DDR SDRAM speed. • • • A 64-bit memory system can support up to four DIMMs, each 64-bits wide A 128-bit memory system can support up to eight DIMMs, each 64-bits wide, and must be populated in even numbered pairs as described in the AMD Opteron™ Processor Motherboard Design Guide, order# 25180. Registered DIMMs configured with x4 DRAMs require an additional 16 DQS pins without ECC support or 18 DQS pins with ECC support. The processor’s memory controller provides a total of 36 DQS pins to accommodate this requirement. The additional DQS pins can be connected to the DIMM Data Mask (DM) pins when connected to x8 or x16 DIMMs (refer to “DRAM Operation” on page 16 for further details on partial writes and data masking). DIMMs populated with x4 devices normally connect the DRAM Data Mask (DM) pins to VSS. 2.4.2.2 DRAM Operation At power-on reset, the MEMCKE_LO/UP and MEMRESET_L pins are driven Low while the processor PLLs are ramping. Clocks are driven on the MEMCLK_LO_H/L[3:0] and MEMCLK_UP_H/L[3:0] pins only after BIOS programs the appropriate clock ratio value in the memory controller configuration registers. The actual DRAM frequency may vary for some speeds based on the CPU clock multiplier, as shown in Table 2 on page 17. Refer to “RESET_L and MEMRESET_L” on page 23 for further details on the sequencing of the MEMRESET_L and MEMCKE_LO/UP pins. 16 Functional Description Chapter 2 AMD Opteron™ Processor Data Sheet 23932 Rev 3.00 April 2003 Table 2. DRAM Interface Speed vs. CPU Core Clock Multiplier Multiplier Core Frequency DRAM Frequency 100 MHz 133 MHz 166 MHz 4 800 MHz 100.00 133.33 160.00 5 1000 MHz 100.00 125.00 166.66 6 1200 MHz 100.00 133.33 150.00 7 1400 MHz 100.00 127.27 155.55 8 1600 MHz 100.00 133.33 160.00 9 1800 MHz 100.00 128.57 163.63 10 2000 MHz 100.00 133.33 166.66 11 2200 MHz 100.00 129.41 157.14 12 2400 MHz 100.00 133.33 160.00 13 2600 MHz 100.00 130.00 162.50 The MEMCKE_LO/UP pins remain Low until the BIOS has forced an initialization process by writing to the memory controller’s configuration registers. The DRAM initialization process involves sending NOP cycles and writing to the Mode registers in the DRAM devices to force proper configuration of the devices, as specified by JEDEC and device manufacturer’s specifications. Table 3 on page 18 lists the maximum memory sizes per chip-select for the various supported DRAM device configurations. Note that for DIMMs using two chip-selects, the total memory size per DIMM is doubled. Refer to the AMD Opteron™ Processor Motherboard Design Guide, order# 25180, for details on the connection scheme for registered DIMMs in an AMD Opteron processor system. Chapter 2 Functional Description 17 AMD Opteron™ Processor Data Sheet Table 3. 23932 Rev 3.00 April 2003 Total Memory Sizes Per Chip Select Devices Used on DIMMs Size Per CS 64 M-bit (4M x4-bits x4 banks) 128 Mbyte 64 M-bit (2M x8-bits x4 banks) 64 Mbyte 64 M-bit (1M x16-bits x4 banks) 32 Mbyte 128 M-bit (8M x4-bits x4 banks) 256 Mbyte 128 M-bit (4M x8-bits x4 banks) 128 Mbyte 128 M-bit (2M x16-bits x4 banks) 64 Mbyte 256 M-bit (16M x4-bits x4 banks) 512 Mbyte 256 M-bit (8M x8-bits x4 banks) 256 Mbyte 256 M-bit (4M x16-bits x4 banks) 128 Mbyte 512 M-bit (16M x8-bits x4 banks) 512 Mbyte 512 M-bit (8M x16-bits x4 banks) 256 Mbyte 1 G-bit (64M x4-bits x4 banks) 2 Gbyte 1 G-bit (32M x8-bits x4 banks) 1 Gbyte 1 G-bit (16M x16-bits x4 banks) 512 Mbyte Comments The memory controller does not perform partial writes to DRAM (i.e., less than the programmed DRAM burst length), thus the data mask (DM) function is not required. Instead, all partial writes result in a read-modify-write transaction. The read portion of these read-modify-writes are performance-optimized such that they are ordered behind normal read cycles. The processor’s memory controller always drives the DM pins Low, except when they are functioning as DQS pins, as described in “Memory Pin Interface” on page 16. The controller supports programmable timing and refresh as described in the BIOS and Kernel Developer’s Guide for the AMD Athlon™ 64 and AMD Opteron™ Processors, order# 26094. Autorefresh is supported and is staggered by tRFC across chip-selects to reduce system noise. Unpopulated DIMM slots are not refreshed. 2.4.2.3 DRAM Power Management The memory controller supports self-refresh mode to accommodate various power management states such as ACPI S1 and S3 states. The MEMRESET_L pin is provided for resetting the registers on registered DDR SDRAM DIMMs as required for the S3 (Suspend-to-RAM) power management state. 18 Functional Description Chapter 2 AMD Opteron™ Processor Data Sheet 23932 Rev 3.00 April 2003 2.4.2.4 Chip Kill The memory controller contains the ability to continuously correct 4-bit errors from a failed x4 memory device across the 128-bit wide data path. This feature optionally takes the place of normal ECC error detection and correction. Operating the memory controller with Chip Kill enabled will result in a two clock latency penalty on memory access due to the detection, correction, and data containment overhead of operating in this mode. 2.4.2.5 Main Memory Hardware Scrubbing The memory controller scrubs the main memory arrays to prevent the build up of soft errors. Any correctable or non-correctable errors are logged to the machine check logs and can be programmed to invoke the machine check interrupt. The scrubbing function can be used in three modes as described in the following sections. 2.4.2.5.1 Progressive Scrubbing In this mode, the scrubber progressively proceeds through main memory, performing a read-write cycle or a read-modify-write cycle if a correctable single-bit error is found. The scrubber scrubs one cache line on each scrub interval that is programmable from 40 ns to 84 ms. 2.4.2.5.2 Source Correction Scrubbing In this mode, the scrubber does not progressively proceed through main memory but is directed to scrub any cache line that is the source of any corrected single bit error. During normal operation, single-bit errors are corrected on the fly and the corrected data is passed without updating the source memory location. This mode of scrubbing sets the scrubber to then correct the source memory location, as well. 2.4.2.5.3 Progressive Plus Source Correction Scrubbing In this mode, the scrubber progressively proceeds through main memory as in progressive mode, but the current cache line location is changed to that of the source of any corrected single bit error. The progressive scrubbing then continues from that location. Chapter 2 Functional Description 19 AMD Opteron™ Processor Data Sheet 20 Functional Description 23932 Rev 3.00 April 2003 Chapter 2 AMD Opteron™ Processor Data Sheet 23932 Rev 3.00 April 2003 3 Power Management The AMD Opteron™ processor provides the following power management features designed to be compliant with the Advanced Configuration and Power Interface (ACPI) Specification and HyperTransport™ technology: • Halt state with associated programmable power savings • STPCLK/Stop Grant protocol capable of supporting eight distinct versions of Stop Grant • LDTSTOP_L signal support • Memory controller and host bridge power management • Voltage plane isolation based upon PWROK signal • Low-power state while RESET_L signal is asserted • On-die thermal diode Table 4 maps processor capabilities to ACPI states. Table 4. Processor Capabilities Mapped to ACPI States ACPI State Processor C1 Halt Passive Cooling Passive Cooling is supported by Stop Grant (throttling). S1 Stop Grant. In response to LDTSTOP_L assertion, memory is placed in self-refresh mode and the host bridge and memory controller are placed into a low-power state. S3 Processor core and HyperTransport™ technology voltage planes are not powered. DDR SDRAM interface remains powered and holds memory in self-refresh mode. S4, S5, G3 All power is removed from the processor. 3.1 Halt When the HLT instruction is executed, the processor stops program execution and issues a Halt special cycle. The power savings associated with the Halt state are determined by configuration registers in the processor (refer to the BIOS and Kernel Developer’s Guide for the AMD Athlon™ 64 and AMD Opteron™ Processors, order# 26094, for details of these configuration registers). The CPU clock grid frequency can be divided down in the absence of probe activity that would force the processor caches to be snooped. The CPU clock grid is automatically brought to full frequency when probe activity is present and returned to the low-power state when probe activity ceases. Chapter 3 Power Management 21 AMD Opteron™ Processor Data Sheet 23932 Rev 3.00 April 2003 If a STPCLK assertion message is received while the processor is in the Halt state, the processor enters the Stop Grant state and issues a Stop Grant special cycle. When a STPCLK deassertion message is received, the processor exits the Stop Grant state and returns to the Halt state. The processor exits the Halt state in response to PWROK deassertion, RESET_L assertion, INIT, NMI, SMI, or any unmasked interrupt received over the HyperTransport link. 3.2 STPCLK/Stop Grant When the processor recognizes the STPCLK assertion message, it enters the Stop Grant state on the next instruction boundary and issues a Stop Grant special cycle. The power savings associated with the Stop Grant state are determined by configuration registers in the processor. The power savings mechanisms associated with the Stop Grant state include the following: • CPU clock grid divisor applied in the absence of probe activity. If probe activity that requires a cache snoop occurs while the processor is in the Stop Grant state, the clock grid is ramped back up to service the probe. When probe activity ceases, the CPU clock grid is ramped back down again. • Placing system memory into self-refresh mode in response to LDTSTOP_L signal assertion. • Ramping the processor host bridge/memory controller clock grid down in response to LDTSTOP_L signal assertion. • Changing HyperTransport link width and/or link frequency in response to LDTSTOP_L signal assertion. The processor exits the Stop Grant state when it receives the following: • A STPCLK deassertion message. • RESET_L pin asserted or an INIT assertion message. • PWROK is deasserted. If the LDTSTOP_L signal is asserted after the processor is in the Stop Grant state, then LDTSTOP_L must be deasserted, and the HyperTransport link must be re-initialized before a STPCLK deassertion message can be received by the processor to bring the processor out of the Stop Grant state. The processor’s host bridge ensures that STPCLK messages are passed to the CPU prior to the subsequent I/O response to the cycle that caused STPCLK assertion as long as the subsequent I/O response message has the PassPW bit clear and the Unit ID of the response matches the Unit ID of the STPCLK message. 3.3 PWROK When PWROK is deasserted, the processor performs the following steps: • 22 Isolates its VDDIO- and VTT-powered logic from all other internal logic to prevent leakage Power Management Chapter 3 AMD Opteron™ Processor Data Sheet 23932 Rev 3.00 April 2003 current paths between power planes. • Tristates all DDR SDRAM I/O pins except for the MEMCKE_LO/UP and MEMRESET_L outputs, which are driven Low. • Drives its VID[4:0] outputs to the value that selects the startup core voltage level. 3.4 RESET_L and MEMRESET_L When RESET_L is asserted, the processor performs the following steps: • The processor core is held in a low-power state. • The MEMCKE_LO/UP and MEMRESET_L outputs are forced low. After RESET_L is deasserted, BIOS must program the appropriate clock divisor in the memory controller configuration registers, causing the MEMCLK_LO_H/L[3:0] and MEMCLK_UP_H/L[3:0] clocks to be driven. When the Dram_Init bit is set (DRAM Config Low register), the MEMRESET_L pin is deasserted after a minimum of 394µs at166 MHz (DDR333) or a maximum of 655µs at100 MHz (DDR200). This period is required to allow ample time for PLLs to ramp in registered DDR SDRAM DIMMs. After 12 memory clock periods, the memory controller drives the MEMCKE_LO/ UP outputs High and the DRAM initialization sequence is performed. Refer to the BIOS and Kernel Developer’s Guide for the AMD Athlon™ 64 and AMD Opteron™ Processors, order# 26094, for details on the memory controller configuration registers. 3.5 Thermal Diode The processor provides an on-die thermal diode with anode and cathode brought out to processor pins. This diode can be read by an external temperature sensor to determine the processor’s temperature. Refer to the AMD Opteron™ Processor Motherboard Design Guide, order# 25180, for details on connecting the thermal diode. 3.6 THERMTRIP_L The AMD Opteron processor provides a hardware-enforced thermal protection mechanism. When the processor’s die temperature exceeds a specified temperature, the processor is designed to protect itself from over-temperature conditions by stopping its internal clocks and asserting the THERMTRIP_L output. THERMTRIP_L assertion is only valid when PWROK is asserted and RESET_L is deasserted. If the processor’s die temperature still exceeds the thermal trip point when RESET_L is deasserted, THERMTRIP_L will immediately be reasserted and the processor’s internal clocks will be stopped. Chapter 3 Power Management 23 AMD Opteron™ Processor Data Sheet 23932 Rev 3.00 April 2003 THERMTRIP_L assertion indicates the processor die temperature has exceeded normal operating parameters. PWROK must be deasserted in response to a THERMTRIP_L assertion to help ensure proper processor operation. 24 Power Management Chapter 3 AMD Opteron™ Processor Data Sheet 23932 Rev 3.00 April 2003 4 Connection Diagrams The pinout for the AMD Opteron™ processor is illustrated in this chapter. The ball map is divided into two parts. Figure 2 on page 26 shows the left portion of the top view, and Figure 3 on page 27 shows the right portion of the top view. The pin designations are defined in Chapter 5. Table 5 on page 30 lists the pins alphabetically by pin name. Chapter 4 Connection Diagrams 25 AMD Opteron™ Processor Data Sheet 1 2 A B 23932 Rev 3.00 April 2003 3 4 5 6 7 8 9 10 L1_CADOUT_H[0] L1_CADOUT_L[0] L1_CADOUT_H[2] L1_CADOUT_L[2] L1_CLKOUT_H[0] L1_CLKOUT_L[0] L1_CADOUT_H[5] L1_CADOUT_L[5] VSS L1_CADOUT_H[1] VDD L1_CADOUT_H[3] VSS L1_CADOUT_H[4] VDD L1_CADOUT_H[6] C VDDA1 VDDA3 L1_CADOUT_L[8] L1_CADOUT_L[1] L1_CADOUT_L[10] L1_CADOUT_L[3] L1_CLKOUT_L[1] L1_CADOUT_L[4] L1_CADOUT_L[13] L1_CADOUT_L[6] D L0_REF0 VDDA2 L1_CADOUT_H[8] VDD L1_CADOUT_H[10] VSS L1_CLKOUT_H[1] VDD L1_CADOUT_H[13] VSS E L0_REF1 VSS L1_CADOUT_H[9] L1_CADOUT_L[9] L1_CADOUT_H[11] L1_CADOUT_L[11] L1_CADOUT_H[12] L1_CADOUT_L[12] L1_CADOUT_H[14] L1_CADOUT_L[14] 11 12 L1_CADOUT_H[7] L1_CADOUT_L[7] VSS L1_CTLOUT_H[0] L1_CADOUT_L[15] L1_CTLOUT_L[0] 13 14 15 L1_CTLIN_L[0] L1_CTLIN_H[0] L1_CADIN_L[6] VDD L1_CADIN_L[7] VSS NC_C13 L1_CADIN_H[7] L1_CADIN_H[14] L1_CADOUT_H[15] VDD NC_D13 VSS L1_CADIN_L[14] NC_E11 NC_E12 L1_CADIN_L[15] L1_CADIN_H[15] L1_CADIN_L[13] F VSS VSS VSS VDD NC_F7 VSS VID[3] VSS VDD PWROK VSS VSS VDD G L0_CADIN_H[1] L0_CADIN_L[0] L0_CADIN_H[0] VSS L0_CADIN_H[8] NC_G6 VDD DBRDY VID[4] VID[2] VID[0] RESET_L VSS NC_G14 VSS H L0_CADIN_L[1] VDD L0_CADIN_H[9] L0_CADIN_L[9] L0_CADIN_L[8] VSS NC_H7 VLDT_1 NC_H9 VLDT_1 VID[1] NC_H12 NC_H13 NC_H14 VSS J L0_CADIN_H[3] L0_CADIN_L[2] L0_CADIN_H[2] VDD L0_CADIN_H[10] LDTSTOP_L DBREQ_L VSS VLDT_1 VSS VLDT_1 VSS VDD VSS VLDT_1 K L0_CADIN_L[3] VSS L0_CADIN_H[11] L0_CADIN_L[11] L0_CADIN_L[10] VDD CORESENSE_H NC_K8 VSS VLDT_1 VSS VDD VSS VLDT_1 VSS L L0_CADIN_H[4] L0_CLKIN_L[0] L0_CLKIN_H[0] VSS L0_CLKIN_H[1] COREFB_L COREFB_H NC_L8 VDD VSS VDD VSS VDD VSS VDD M L0_CADIN_L[4] VDD L0_CADIN_H[12] L0_CADIN_L[12] L0_CLKIN_L[1] VSS VSS VLDT_0 VSS VDD VSS VDD VSS VDD VSS N L0_CADIN_H[6] L0_CADIN_L[5] L0_CADIN_H[5] VDD L0_CADIN_H[13] NC_N6 VLDT_0 VSS VDD VSS VDD VSS VDD VSS VDD P L0_CADIN_L[6] VSS L0_CADIN_H[14] L0_CADIN_L[14] L0_CADIN_L[13] VDD VSS VLDT_0 VSS VDD VSS VDD VSS VDD VSS R L0_CTLIN_H[0] L0_CADIN_L[7] L0_CADIN_H[7] VSS L0_CADIN_H[15] NC_R6 VLDT_0 VSS VDD VSS VDD VSS VDD VSS VDD T L0_CTLIN_L[0] VDD NC_T3 NC_T4 L0_CADIN_L[15] VSS NC_T7 VDD VSS VDD VSS VDD VSS VDD VSS U L0_CADOUT_L[7] L0_CTLOUT_H[0] L0_CTLOUT_L[0] VDD NC_U5 NC_U6 VLDT_0 VSS VDD VSS VDD VSS VDD VSS VDD VSS V L0_CADOUT_H[7] W L0_CADOUT_L[5] L0_CADOUT_H[6] L0_CADOUT_L[6] Y L0_CADOUT_H[5] L0_CADOUT_L[13] L0_CADOUT_H[13] L0_CADOUT_H[14] AA L0_CLKOUT_L[0] L0_CADOUT_H[4] VDD AB L0_CLKOUT_H[0] AC L0_CADOUT_L[15] L0_CADOUT_H[15] VSS L0_CLKOUT_L[1] L0_CADOUT_L[2] L0_CADOUT_H[3] AD L0_CADOUT_H[2] L0_CADOUT_L[4] VDD L0_CADOUT_L[3] VSS VDD NC_V5 VDD VSS VLDT_0 VSS VDD VSS VDD VSS VDD VSS L0_CADOUT_L[14] NC_W6 VLDT_0 VSS VDD VSS VDD VSS VDD VSS VDD VSS VSS VLDT_0 VSS VDD VSS VDD VSS VDD VSS NC_AA6 VLDT_0 VSS VDD VSS VDD VSS VDD VSS VDD VDD VSS VDD VSS VLDT_2 VSS VDD VSS VLDT_2 VSS VLDT_2 VSS VLDT_2 VSS VDD VSS VLDT_2 L0_CADOUT_L[12] L0_CLKOUT_H[1] L0_CADOUT_H[12] VSS L0_CADOUT_L[11] NC_AC6 L0_CADOUT_L[10] L0_CADOUT_H[10] L0_CADOUT_H[11] VSS TRST_L VLDT_2 VSS VLDT_2 VSS VDD VSS VDD VSS AE L0_CADOUT_L[0] L0_CADOUT_H[1] L0_CADOUT_L[1] VDD L0_CADOUT_L[9] TMS TCK TDO NC_AE9 NC_AE10 NC_AE11 NC_AE12 NC_AE13 NC_AE14 THERMTRIP_L AF L0_CADOUT_H[0] VSS L0_CADOUT_L[8] L0_CADOUT_H[8] L0_CADOUT_H[9] VDD TDI VSS NC_AF9 VDD NC_AF11 VSS NC_AF13 VDD NC_AF15 AG NC_AG1 VSS L2_CADIN_H[8] L2_CADIN_L[8] L2_CADIN_H[10] L2_CADIN_L[10] L2_CLKIN_H[1] L2_CLKIN_L[1] L2_CADIN_H[13] L2_CADIN_L[13] L2_CADIN_H[15] L2_CADIN_L[15] NC_AG13 NC_AG14 L2_CADOUT_L[14] AH THERMDC NC_AH2 VSS L2_CADIN_L[9] VDD L2_CADIN_L[11] VSS L2_CADIN_L[12] VDD L2_CADIN_L[14] VSS NC_AH12 VDD L2_CADOUT_H[15] AJ THERMDA NC_AJ2 L2_CADIN_H[0] L2_CADIN_H[9] L2_CADIN_H[2] L2_CADIN_H[11] L2_CLKIN_H[0] L2_CADIN_H[12] L2_CADIN_H[5] L2_CADIN_H[14] L2_CADIN_H[7] NC_AJ12 AK PRESENCE_DET AL 1 Figure 2. 26 2 L2_CADIN_L[0] VDD L2_CADIN_L[2] VSS L2_CLKIN_L[0] VDD L2_CADIN_L[5] VSS L2_CADIN_L[7] VDD L2_CADIN_H[1] L2_CADIN_L[1] L2_CADIN_H[3] L2_CADIN_L[3] L2_CADIN_H[4] L2_CADIN_L[4] L2_CADIN_H[6] L2_CADIN_L[6] L2_CTLIN_H[0] L2_CTLIN_L[0] 3 4 5 6 7 8 9 10 11 12 VSS L2_CTLOUT_L[0] L2_CADOUT_L[15] L2_CADOUT_L[6] L2_CTLOUT_H[0] L2_CADOUT_H[6] VSS L2_CADOUT_L[7] L2_CADOUT_H[7] 13 14 L2_CADOUT_L[5] 15 AMD Opteron™ Processor Micro PGA—Top View, Left Side Connection Diagrams Chapter 4 AMD Opteron™ Processor Data Sheet 23932 Rev 3.00 April 2003 16 17 18 19 20 21 22 23 24 25 26 27 28 29 L1_CADIN_H[6] L1_CADIN_L[4] L1_CADIN_H[4] L1_CADIN_L[3] L1_CADIN_H[3] L1_CADIN_L[1] L1_CADIN_H[1] VDDIO MEMDATA[4] MEMDATA[1] MEMDATA[6] MEMDATA[2] MEMDATA[3] MEMDATA[9] 30 31 L1_CADIN_L[5] VDD L1_CLKIN_L[0] VSS L1_CADIN_L[2] VDD L1_CADIN_L[0] VSS MEMDATA[0] MEMDQS[9] VSS MEMDATA[7] MEMDATA[8] VSS MEMDATA[13] L1_CADIN_H[5] L1_CADIN_H[12] L1_CLKIN_H[0] L1_CADIN_H[11] L1_CADIN_H[2] L1_CADIN_H[9] L1_CADIN_H[0] VDDIO MEMDATA[5] MEMDQS[0] MEMDATA[71] MEMDATA[72] MEMDATA[12] MEMDQS[1] MEMDQS[10] MEMDATA[14] C A B VDD L1_CADIN_L[12] VSS L1_CADIN_L[11] VDD L1_CADIN_L[9] VSS VSS MEMDATA[69] MEMDQS[18] VDDIO MEMDATA[76] VDDIO MEMDATA[77] VSS MEMDATA[15] D L1_CADIN_H[13] L1_CLKIN_L[1] L1_CLKIN_H[1] L1_CADIN_L[10] L1_CADIN_H[10] L1_CADIN_L[8] L1_CADIN_H[8] VDDIO MEMDATA[65] MEMDATA[70] MEMDATA[67] MEMDATA[73] MEMDQS[19] MEMDQS[28] MEMDATA[10] MEMDATA[11] E VTT VTT MEMVREF0 MEMDATA[68] MEMDQS[27] MEMDATA[66] MEMDATA[78] MEMDATA[79] MEMDATA[74] MEMDATA[20] MEMDATA[16] MEMDATA[17] F VSS MEMDATA[64] VSS MEMRESET_L VDDIO MEMDATA[75] VDDIO MEMDATA[84] VSS MEMDATA[21] G H VSS VSS VDD VDD CLKIN_H VSS FBCLKOUT_H VTT CLKIN_L VSS FBCLKOUT_L VTT VDDIO MEMCLK_LO_H[3] MEMCKE_UP MEMCKE_LO MEMDATA[80] MEMDATA[81] MEMDATA[85] MEMDQS[2] MEMDQS[11] MEMDATA[18] VLDT_1 VSS VSS VTT VSS VDDIO VSS MEMCLK_LO_L[3] MEMADD[12] MEMADD[11] MEMDQS[20] MEMDQS[29] MEMDATA[82] MEMDATA[22] MEMDATA[23] MEMDATA[19] J VLDT_1 VSS VDD VSS VDDIO VSS VDDIO MEMADD[9] VSS MEMADD[7] VDDIO MEMDATA[86] VDDIO MEMDATA[87] VSS MEMDATA[24] K MEMCLK_UP_H[3] MEMCLK_UP_L[3] VSS VDD VSS VDDIO VSS VDDIO VSS MEMADD[8] MEMDATA[83] MEMDATA[88] MEMDATA[92] MEMDATA[28] MEMDATA[29] MEMDATA[25] L VDD VSS VDD VSS VDD VSS VDDIO NC_M23 MEMCLK_UP_H[1] MEMCLK_UP_L[1] MEMADD[5] MEMADD[6] MEMDATA[93] MEMDATA[89] MEMDQS[21] MEMDQS[3] MEMDQS[12] MEMDATA[30] M VSS VDD VSS VDD VSS VDDIO VSS MEMADD[3] VSS MEMADD[4] VDDIO MEMDQS[30] VDDIO MEMDATA[94] VSS MEMDATA[26] N VDD VSS VDD VSS VDD VSS VDDIO MEMADD[2] MEMCHECK[13] MEMCHECK[12] MEMDATA[90] MEMDATA[91] MEMDATA[95] MEMDATA[27] MEMCHECK[4] MEMDATA[31] P VSS VDD VSS VDD VSS VDDIO VSS MEMCLK_UP_H[0] MEMCHECK[8] MEMCHECK[9] MEMCHECK[10] MEMDQS[35] MEMDQS[26] MEMCHECK[1] MEMCHECK[5] MEMCHECK[0] R VDD VSS VDD VSS VDD VSS VDDIO MEMCLK_UP_L[0] VSS MEMADD[1] VSS VDD VSS VDD VSS VDDIO VSS VDDIO VDD VSS VDD VSS VDD VSS VDDIO NC_V23 MEMADD[10] VSS VDD VSS VDD VSS VDDIO VSS MEMBANK[0] VSS VDD VSS VDD VSS VDD VSS VDDIO MEMCLK_LO_H[1] MEMWE_L VDDIO MEMCHECK[11] VDDIO MEMDATA[100] MEMDATA[96] MEMCHECK[15] MEMCHECK[6] MEMCHECK[2] MEMADD[0] MEMDQS[22] MEMDATA[97] MEMDATA[101] MEMDATA[32] MEMBANK[1] VDDIO MEMDATA[98] VDDIO MEMDQS[31] VSS MEMDATA[36] W MEMRAS_L MEMDATA[99] MEMDATA[103] MEMDATA[102] MEMDQS[4] MEMDATA[33] MEMDATA[37] Y MEMDQS[13] AA MEMCLK_LO_L[0] MEMCLK_LO_H[0] MEMCHECK[14] VSS MEMDQS[8] T MEMDQS[17] U MEMCHECK[7] MEMCHECK[3] V VSS VDD VSS VDDIO VSS VDDIO VSS MEMCLK_LO_L[1] MEMCS_L[0] MEMCAS_L MEMDATA[109] MEMDATA[104] MEMDATA[108] MEMDATA[38] MEMDATA[34] VLDT_2 VSS VDD VSS VDDIO VSS VDDIO VDDIOFB_H VSS MEMCS_L[1] VDDIO MEMDQS[32] VDDIO MEMDATA[105] VSS MEMDATA[39] AB VLDT_2 VSS VTT VTT VDD VSS MEMZP VSS VTT VTT VSS MEMZN VTT VTT_SENSE VSS VDDIO VSS VDDIOFB_L MEMCS_L[3] MEMCS_L[2] MEMDATA[110] MEMDATA[106] MEMDQS[23] MEMDATA[40] MEMDATA[44] MEMDATA[35] AC MEMCLK_LO_L[2] MEMCLK_LO_H[2] VDDIO MEMCS_L[7] MEMCS_L[5] MEMCS_L[4] MEMDATA[112] MEMDATA[111] MEMDATA[107] MEMDQS[14] MEMDATA[41] MEMDATA[45] AD VSS MEMADD[13] VSS MEMCS_L[6] VDDIO MEMDATA[113] VDDIO MEMDATA[116] VSS VSS MEMVREF1 MEMDATA[123] MEMDQS[25] MEMDATA[121] MEMDATA[118] MEMDQS[33] MEMDATA[117] MEMDATA[43] MEMDATA[46] MEMDATA[42] AF L2_CADOUT_L[9] L2_CADOUT_H[9] VDDIO MEMDATA[127] MEMDQS[34] MEMDATA[125] MEMDATA[119] MEMDQS[24] MEMDATA[52] MEMDATA[48] MEMDATA[47] AG MEMCLK_UP_L[2] MEMCLK_UP_H[2] VDDIO_SENSE L2_CADOUT_H[14] L2_CADOUT_L[12] L2_CADOUT_H[12] L2_CADOUT_L[11] L2_CADOUT_H[11] MEMDQS[5] AE L2_CADOUT_H[13] VDD L2_CLKOUT_H[1] VSS L2_CADOUT_H[10] VDD L2_CADOUT_H[8] VSS MEMDATA[122] MEMDATA[126] VDDIO MEMDATA[124] VDDIO MEMDATA[114] VSS MEMDATA[49] AH L2_CADOUT_L[13] L2_CADOUT_L[4] L2_CLKOUT_L[1] L2_CADOUT_L[3] L2_CADOUT_L[10] L2_CADOUT_L[1] L2_CADOUT_L[8] VDDIO MEMDATA[63] MEMDQS[16] MEMDATA[120] MEMDATA[60] MEMDATA[55] MEMDATA[115] MEMDQS[15] MEMDATA[53] AJ VDD L2_CADOUT_H[4] VSS L2_CADOUT_H[3] VDD L2_CADOUT_H[1] VSS VSS MEMDATA[58] MEMDATA[62] VSS MEMDATA[61] MEMDATA[50] VSS MEMDATA[54] AK L2_CADOUT_H[5] L2_CLKOUT_L[0] L2_CLKOUT_H[0] L2_CADOUT_L[2] L2_CADOUT_H[2] L2_CADOUT_L[0] L2_CADOUT_H[0] VDDIO MEMDATA[59] MEMDQS[7] MEMDATA[57] MEMDATA[56] MEMDATA[51] MEMDQS[6] 16 17 18 19 20 21 22 23 24 25 26 27 28 29 Figure 3. Chapter 4 AL 30 31 AMD Opteron™ Processor Micro PGA—Top View, Right Side Connection Diagrams 27 AMD Opteron™ Processor Data Sheet 28 23932 Rev 3.00 April 2003 Connection Diagrams Chapter 4 AMD Opteron™ Processor Data Sheet 23932 Rev 3.00 April 2003 5 Pin Designations Table 5, beginning on page 30, lists the pins alphabetically by pin name. Chapter 5 Pin Designations 29 AMD Opteron™ Processor Data Sheet Table 5. 23932 Rev 3.00 April 2003 Pin List by Name CLKIN_H G16 L0_CADIN_L[11] K4 L0_CADOUT_H[9] AF5 CLKIN_L H16 L0_CADIN_L[12] M4 L0_CADOUT_L[0] AE1 COREFB_H L7 L0_CADIN_L[13] P5 L0_CADOUT_L[1] AE3 COREFB_L L6 L0_CADIN_L[14] P4 L0_CADOUT_L[10] AD3 CORESENSE_H K7 L0_CADIN_L[15] T5 L0_CADOUT_L[11] AC5 DBRDY G8 L0_CADIN_L[2] J2 L0_CADOUT_L[12] AA5 DBREQ_L J7 L0_CADIN_L[3] K1 L0_CADOUT_L[13] Y3 FBCLKOUT_H G18 L0_CADIN_L[4] M1 L0_CADOUT_L[14] W5 FBCLKOUT_L H18 L0_CADIN_L[5] N2 L0_CADOUT_L[15] V3 L0_CADIN_H[0] G3 L0_CADIN_L[6] P1 L0_CADOUT_L[2] AC1 L0_CADIN_H[1] G1 L0_CADIN_L[7] R2 L0_CADOUT_L[3] AC3 L0_CADIN_H[10] J5 L0_CADIN_L[8] H5 L0_CADOUT_L[4] AA3 L0_CADIN_H[11] K3 L0_CADIN_L[9] H4 L0_CADOUT_L[5] W1 L0_CADIN_H[12] M3 L0_CADOUT_H[0] AF1 L0_CADOUT_L[6] W3 L0_CADIN_H[13] N5 L0_CADOUT_H[1] AE2 L0_CADOUT_L[7] U1 L0_CADIN_H[14] P3 L0_CADOUT_H[10] AD4 L0_CADOUT_L[8] AF3 L0_CADIN_H[15] R5 L0_CADOUT_H[11] AD5 L0_CADOUT_L[9] AE5 L0_CADIN_H[2] J3 L0_CADOUT_H[12] AB5 L0_CLKIN_H[0] L3 L0_CADIN_H[3] J1 L0_CADOUT_H[13] Y4 L0_CLKIN_H[1] L5 L0_CADIN_H[4] L1 L0_CADOUT_H[14] Y5 L0_CLKIN_L[0] L2 L0_CADIN_H[5] N3 L0_CADOUT_H[15] V4 L0_CLKIN_L[1] M5 L0_CADIN_H[6] N1 L0_CADOUT_H[2] AD1 L0_CLKOUT_H[0] AB1 L0_CADIN_H[7] R3 L0_CADOUT_H[3] AC2 L0_CLKOUT_H[1] AB4 L0_CADIN_H[8] G5 L0_CADOUT_H[4] AA2 L0_CLKOUT_L[0] AA1 L0_CADIN_H[9] H3 L0_CADOUT_H[5] Y1 L0_CLKOUT_L[1] AB3 L0_CADIN_L[0] G2 L0_CADOUT_H[6] W2 L0_CTLIN_H[0] R1 L0_CADIN_L[1] H1 L0_CADOUT_H[7] V1 L0_CTLIN_L[0] T1 L0_CADIN_L[10] K5 L0_CADOUT_H[8] AF4 L0_CTLOUT_H[0] U2 30 Pin Designations Chapter 5 AMD Opteron™ Processor Data Sheet 23932 Rev 3.00 April 2003 Table 5. Pin List by Name (Continued) L0_CTLOUT_L[0] U3 L1_CADIN_L[3] A19 L1_CADOUT_L[13] C9 L0_REF0 D1 L1_CADIN_L[4] A17 L1_CADOUT_L[14] E10 L0_REF1 E1 L1_CADIN_L[5] B16 L1_CADOUT_L[15] C11 L1_CADIN_H[0] C22 L1_CADIN_L[6] A15 L1_CADOUT_L[2] A6 L1_CADIN_H[1] A22 L1_CADIN_L[7] B14 L1_CADOUT_L[3] C6 L1_CADIN_H[10] E20 L1_CADIN_L[8] E21 L1_CADOUT_L[4] C8 L1_CADIN_H[11] C19 L1_CADIN_L[9] D21 L1_CADOUT_L[5] A10 L1_CADIN_H[12] C17 L1_CADOUT_H[0] A3 L1_CADOUT_L[6] C10 L1_CADIN_H[13] E16 L1_CADOUT_H[1] B4 L1_CADOUT_L[7] A12 L1_CADIN_H[14] C15 L1_CADOUT_H[10] D5 L1_CADOUT_L[8] C3 L1_CADIN_H[15] E14 L1_CADOUT_H[11] E5 L1_CADOUT_L[9] E4 L1_CADIN_H[2] C20 L1_CADOUT_H[12] E7 L1_CLKIN_H[0] C18 L1_CADIN_H[3] A20 L1_CADOUT_H[13] D9 L1_CLKIN_H[1] E18 L1_CADIN_H[4] A18 L1_CADOUT_H[14] E9 L1_CLKIN_L[0] B18 L1_CADIN_H[5] C16 L1_CADOUT_H[15] D11 L1_CLKIN_L[1] E17 L1_CADIN_H[6] A16 L1_CADOUT_H[2] A5 L1_CLKOUT_H[0] A7 L1_CADIN_H[7] C14 L1_CADOUT_H[3] B6 L1_CLKOUT_H[1] D7 L1_CADIN_H[8] E22 L1_CADOUT_H[4] B8 L1_CLKOUT_L[0] A8 L1_CADIN_H[9] C21 L1_CADOUT_H[5] A9 L1_CLKOUT_L[1] C7 L1_CADIN_L[0] B22 L1_CADOUT_H[6] B10 L1_CTLIN_H[0] A14 L1_CADIN_L[1] A21 L1_CADOUT_H[7] A11 L1_CTLIN_L[0] A13 L1_CADIN_L[10] E19 L1_CADOUT_H[8] D3 L1_CTLOUT_H[0] B12 L1_CADIN_L[11] D19 L1_CADOUT_H[9] E3 L1_CTLOUT_L[0] C12 L1_CADIN_L[12] D17 L1_CADOUT_L[0] A4 L2_CADIN_H[0] AJ3 L1_CADIN_L[13] E15 L1_CADOUT_L[1] C4 L2_CADIN_H[1] AL3 L1_CADIN_L[14] D15 L1_CADOUT_L[10] C5 L2_CADIN_H[10] AG5 L1_CADIN_L[15] E13 L1_CADOUT_L[11] E6 L2_CADIN_H[11] AJ6 L1_CADIN_L[2] B20 L1_CADOUT_L[12] E8 L2_CADIN_H[12] AJ8 Chapter 5 Pin Designations 31 AMD Opteron™ Processor Data Sheet Table 5. 23932 Rev 3.00 April 2003 Pin List by Name (Continued) L2_CADIN_H[13] AG9 L2_CADOUT_H[1] AK21 L2_CADOUT_L[7] AL13 L2_CADIN_H[14] AJ10 L2_CADOUT_H[10] AH20 L2_CADOUT_L[8] AJ22 L2_CADIN_H[15] AG11 L2_CADOUT_H[11] AG20 L2_CADOUT_L[9] AG21 L2_CADIN_H[2] AJ5 L2_CADOUT_H[12] AG18 L2_CLKIN_H[0] AJ7 L2_CADIN_H[3] AL5 L2_CADOUT_H[13] AH16 L2_CLKIN_H[1] AG7 L2_CADIN_H[4] AL7 L2_CADOUT_H[14] AG16 L2_CLKIN_L[0] AK7 L2_CADIN_H[5] AJ9 L2_CADOUT_H[15] AH14 L2_CLKIN_L[1] AG8 L2_CADIN_H[6] AL9 L2_CADOUT_H[2] AL20 L2_CLKOUT_H[0] AL18 L2_CADIN_H[7] AJ11 L2_CADOUT_H[3] AK19 L2_CLKOUT_H[1] AH18 L2_CADIN_H[8] AG3 L2_CADOUT_H[4] AK17 L2_CLKOUT_L[0] AL17 L2_CADIN_H[9] AJ4 L2_CADOUT_H[5] AL16 L2_CLKOUT_L[1] AJ18 L2_CADIN_L[0] AK3 L2_CADOUT_H[6] AK15 L2_CTLIN_H[0] AL11 L2_CADIN_L[1] AL4 L2_CADOUT_H[7] AL14 L2_CTLIN_L[0] AL12 L2_CADIN_L[10] AG6 L2_CADOUT_H[8] AH22 L2_CTLOUT_H[0] AK13 L2_CADIN_L[11] AH6 L2_CADOUT_H[9] AG22 L2_CTLOUT_L[0] AJ13 L2_CADIN_L[12] AH8 L2_CADOUT_L[0] AL21 LDTSTOP_L J6 L2_CADIN_L[13] AG10 L2_CADOUT_L[1] AJ21 MEMADD[0] V25 L2_CADIN_L[14] AH10 L2_CADOUT_L[10] AJ20 MEMADD[1] T25 L2_CADIN_L[15] AG12 L2_CADOUT_L[11] AG19 MEMADD[10] V24 L2_CADIN_L[2] AK5 L2_CADOUT_L[12] AG17 MEMADD[11] J25 L2_CADIN_L[3] AL6 L2_CADOUT_L[13] AJ16 MEMADD[12] J24 L2_CADIN_L[4] AL8 L2_CADOUT_L[14] AG15 MEMADD[13] AE23 L2_CADIN_L[5] AK9 L2_CADOUT_L[15] AJ14 MEMADD[2] P23 L2_CADIN_L[6] AL10 L2_CADOUT_L[2] AL19 MEMADD[3] N23 L2_CADIN_L[7] AK11 L2_CADOUT_L[3] AJ19 MEMADD[4] N25 L2_CADIN_L[8] AG4 L2_CADOUT_L[4] AJ17 MEMADD[5] M24 L2_CADIN_L[9] AH4 L2_CADOUT_L[5] AL15 MEMADD[6] M25 L2_CADOUT_H[0] AL22 L2_CADOUT_L[6] AJ15 MEMADD[7] K25 32 Pin Designations Chapter 5 AMD Opteron™ Processor Data Sheet 23932 Rev 3.00 April 2003 Table 5. Pin List by Name (Continued) MEMADD[8] L23 MEMCLK_LO_L[1] AA23 MEMDATA[106] AC27 MEMADD[9] K23 MEMCLK_LO_L[2] AD20 MEMDATA[107] AD28 MEMBANK[0] W23 MEMCLK_LO_L[3] J23 MEMDATA[108] AA28 MEMBANK[1] W25 MEMCLK_UP_H[0] R23 MEMDATA[109] AA26 MEMCAS_L AA25 MEMCLK_UP_H[1] L24 MEMDATA[11] E31 MEMCHECK[0] R31 MEMCLK_UP_H[2] AE21 MEMDATA[110] AC26 MEMCHECK[1] R29 MEMCLK_UP_H[3] G20 MEMDATA[111] AD27 MEMCHECK[10] R26 MEMCLK_UP_L[0] T23 MEMDATA[112] AD26 MEMCHECK[11] T27 MEMCLK_UP_L[1] L25 MEMDATA[113] AE27 MEMCHECK[12] P25 MEMCLK_UP_L[2] AE20 MEMDATA[114] AH29 MEMCHECK[13] P24 MEMCLK_UP_L[3] G21 MEMDATA[115] AJ29 MEMCHECK[14] T29 MEMCS_L[0] AA24 MEMDATA[116] AE29 MEMCHECK[15] U28 MEMCS_L[1] AB25 MEMDATA[117] AF28 MEMCHECK[2] U30 MEMCS_L[2] AC25 MEMDATA[118] AF26 MEMCHECK[3] V31 MEMCS_L[3] AC24 MEMDATA[119] AG27 MEMCHECK[4] P30 MEMCS_L[4] AD25 MEMDATA[12] C28 MEMCHECK[5] R30 MEMCS_L[5] AD24 MEMDATA[120] AJ26 MEMCHECK[6] U29 MEMCS_L[6] AE25 MEMDATA[121] AF25 MEMCHECK[7] V30 MEMCS_L[7] AD23 MEMDATA[122] AH24 MEMCHECK[8] R24 MEMDATA[0] B24 MEMDATA[123] AF23 MEMCHECK[9] R25 MEMDATA[1] A25 MEMDATA[124] AH27 MEMCKE_LO H25 MEMDATA[10] E30 MEMDATA[125] AG26 MEMCKE_UP H24 MEMDATA[100] U26 MEMDATA[126] AH25 MEMCLK_LO_H[0] U25 MEMDATA[101] V28 MEMDATA[127] AG24 MEMCLK_LO_H[1] Y23 MEMDATA[102] Y28 MEMDATA[13] B30 MEMCLK_LO_H[2] AD21 MEMDATA[103] Y27 MEMDATA[14] C31 MEMCLK_LO_H[3] H23 MEMDATA[104] AA27 MEMDATA[15] D31 MEMCLK_LO_L[0] U24 MEMDATA[105] AB29 MEMDATA[16] F30 Chapter 5 Pin Designations 33 AMD Opteron™ Processor Data Sheet Table 5. 23932 Rev 3.00 April 2003 Pin List by Name (Continued) MEMDATA[17] F31 MEMDATA[42] AF31 MEMDATA[68] F23 MEMDATA[18] H31 MEMDATA[43] AF29 MEMDATA[69] D24 MEMDATA[19] J31 MEMDATA[44] AC30 MEMDATA[7] B27 MEMDATA[2] A27 MEMDATA[45] AD31 MEMDATA[70] E25 MEMDATA[20] F29 MEMDATA[46] AF30 MEMDATA[71] C26 MEMDATA[21] G31 MEMDATA[47] AG31 MEMDATA[72] C27 MEMDATA[22] J29 MEMDATA[48] AG30 MEMDATA[73] E27 MEMDATA[23] J30 MEMDATA[49] AH31 MEMDATA[74] F28 MEMDATA[24] K31 MEMDATA[5] C24 MEMDATA[75] G27 MEMDATA[25] L31 MEMDATA[50] AK28 MEMDATA[76] D27 MEMDATA[26] N31 MEMDATA[51] AL28 MEMDATA[77] D29 MEMDATA[27] P29 MEMDATA[52] AG29 MEMDATA[78] F26 MEMDATA[28] L29 MEMDATA[53] AJ31 MEMDATA[79] F27 MEMDATA[29] L30 MEMDATA[54] AK30 MEMDATA[8] B28 MEMDATA[3] A28 MEMDATA[55] AJ28 MEMDATA[80] H26 MEMDATA[30] M31 MEMDATA[56] AL27 MEMDATA[81] H27 MEMDATA[31] P31 MEMDATA[57] AL26 MEMDATA[82] J28 MEMDATA[32] V29 MEMDATA[58] AK24 MEMDATA[83] L26 MEMDATA[33] Y30 MEMDATA[59] AL24 MEMDATA[84] G29 MEMDATA[34] AA30 MEMDATA[6] A26 MEMDATA[85] H28 MEMDATA[35] AC31 MEMDATA[60] AJ27 MEMDATA[86] K27 MEMDATA[36] W31 MEMDATA[61] AK27 MEMDATA[87] K29 MEMDATA[37] Y31 MEMDATA[62] AK25 MEMDATA[88] L27 MEMDATA[38] AA29 MEMDATA[63] AJ24 MEMDATA[89] M27 MEMDATA[39] AB31 MEMDATA[64] G23 MEMDATA[9] A29 MEMDATA[4] A24 MEMDATA[65] E24 MEMDATA[90] P26 MEMDATA[40] AC29 MEMDATA[66] F25 MEMDATA[91] P27 MEMDATA[41] AD30 MEMDATA[67] E26 MEMDATA[92] L28 34 Pin Designations Chapter 5 AMD Opteron™ Processor Data Sheet 23932 Rev 3.00 April 2003 Table 5. Pin List by Name (Continued) MEMDATA[93] M26 MEMDQS[28] E29 NC_AE14 AE14 MEMDATA[94] N29 MEMDQS[29] J27 NC_AE9 AE9 MEMDATA[95] P28 MEMDQS[3] M29 NC_AF11 AF11 MEMDATA[96] U27 MEMDQS[30] N27 NC_AF13 AF13 MEMDATA[97] V27 MEMDQS[31] W29 NC_AF15 AF15 MEMDATA[98] W27 MEMDQS[32] AB27 NC_AF9 AF9 MEMDATA[99] Y26 MEMDQS[33] AF27 NC_AG1 AG1 MEMDQS[0] C25 MEMDQS[34] AG25 NC_AG13 AG13 MEMDQS[1] C29 MEMDQS[35] R27 NC_AG14 AG14 MEMDQS[10] C30 MEMDQS[4] Y29 NC_AH12 AH12 MEMDQS[11] H30 MEMDQS[5] AE31 NC_AH2 AH2 MEMDQS[12] M30 MEMDQS[6] AL29 NC_AJ12 AJ12 MEMDQS[13] AA31 MEMDQS[7] AL25 NC_AJ2 AJ2 MEMDQS[14] AD29 MEMDQS[8] T31 NC_C13 C13 MEMDQS[15] AJ30 MEMDQS[9] B25 NC_D13 D13 MEMDQS[16] AJ25 MEMRAS_L Y25 NC_E11 E11 MEMDQS[17] U31 MEMRESET_L G25 NC_E12 E12 MEMDQS[18] D25 MEMVREF0 F22 NC_F7 F7 MEMDQS[19] E28 MEMVREF1 AF22 NC_G14 G14 MEMDQS[2] H29 MEMWE_L Y24 NC_G6 G6 MEMDQS[20] J26 MEMZN AF17 NC_H12 H12 MEMDQS[21] M28 MEMZP AE16 NC_H13 H13 MEMDQS[22] V26 NC_AA6 AA6 NC_H14 H14 MEMDQS[23] AC28 NC_AC6 AC6 NC_H7 H7 MEMDQS[24] AG28 NC_AE10 AE10 NC_H9 H9 MEMDQS[25] AF24 NC_AE11 AE11 NC_K8 K8 MEMDQS[26] R28 NC_AE12 AE12 NC_L8 L8 MEMDQS[27] F24 NC_AE13 AE13 NC_M23 Chapter 5 Pin Designations M23 35 AMD Opteron™ Processor Data Sheet Table 5. 23932 Rev 3.00 April 2003 Pin List by Name (Continued) NC_N6 N6 VDD D12 VDD N9 NC_R6 R6 VDD D16 VDD N11 NC_T3 T3 VDD D20 VDD N13 NC_T4 T4 VDD F6 VDD N15 NC_T7 T7 VDD F11 VDD N17 NC_U5 U5 VDD F15 VDD N19 NC_U6 U6 VDD F18 VDD P6 NC_V23 V23 VDD F19 VDD P10 NC_V5 V5 VDD G7 VDD P12 NC_W6 W6 VDD H2 VDD P14 PRESENCE_DET AK2 VDD J4 VDD P16 PWROK F12 VDD J13 VDD P18 RESET_L G12 VDD K6 VDD P20 TCK AE7 VDD K12 VDD R9 TDI AF7 VDD K18 VDD R11 TDO AE8 VDD L9 VDD R13 THERMDA AJ1 VDD L11 VDD R15 THERMDC AH1 VDD L13 VDD R17 THERMTRIP_L AE15 VDD L15 VDD R19 TMS AE6 VDD L17 VDD T2 TRST_L AD7 VDD M2 VDD T8 VDD B5 VDD M10 VDD T10 VDD B9 VDD M12 VDD T12 VDD B13 VDD M14 VDD T14 VDD B17 VDD M16 VDD T16 VDD B21 VDD M18 VDD T18 VDD D4 VDD M20 VDD T20 VDD D8 VDD N4 VDD U4 36 Pin Designations Chapter 5 AMD Opteron™ Processor Data Sheet 23932 Rev 3.00 April 2003 Table 5. Pin List by Name (Continued) VDD U9 VDD AA11 VDDA2 D2 VDD U11 VDD AA13 VDDA3 C2 VDD U13 VDD AA15 VDDIO A23 VDD U15 VDD AA17 VDDIO C23 VDD U17 VDD AB6 VDDIO D26 VDD U19 VDD AB8 VDDIO D28 VDD V6 VDD AB12 VDDIO E23 VDD V10 VDD AB18 VDDIO G26 VDD V12 VDD AC13 VDDIO G28 VDD V14 VDD AD2 VDDIO H22 VDD V16 VDD AD12 VDDIO J21 VDD V18 VDD AD14 VDDIO K20 VDD V20 VDD AD16 VDDIO K22 VDD W9 VDD AE4 VDDIO K26 VDD W11 VDD AF6 VDDIO K28 VDD W13 VDD AF10 VDDIO L19 VDD W15 VDD AF14 VDDIO L21 VDD W17 VDD AH5 VDDIO M22 VDD W19 VDD AH9 VDDIO N21 VDD Y2 VDD AH13 VDDIO N26 VDD Y10 VDD AH17 VDDIO N28 VDD Y12 VDD AH21 VDDIO P22 VDD Y14 VDD AK4 VDDIO R21 VDD Y16 VDD AK8 VDDIO T22 VDD Y18 VDD AK12 VDDIO T26 VDD Y20 VDD AK16 VDDIO T28 VDD AA4 VDD AK20 VDDIO U21 VDD AA9 VDDA1 C1 VDDIO U23 Chapter 5 Pin Designations 37 AMD Opteron™ Processor Data Sheet Table 5. 23932 Rev 3.00 April 2003 Pin List by Name (Continued) VDDIO V22 VLDT_0 M8 VSS B7 VDDIO W21 VLDT_0 N7 VSS B11 VDDIO W26 VLDT_0 P8 VSS B15 VDDIO W28 VLDT_0 R7 VSS B19 VDDIO Y22 VLDT_0 U7 VSS B23 VDDIO AA19 VLDT_0 V8 VSS B26 VDDIO AA21 VLDT_0 W7 VSS B29 VDDIO AB20 VLDT_0 Y8 VSS D6 VDDIO AB22 VLDT_0 AA7 VSS D10 VDDIO AB26 VLDT_1 H8 VSS D14 VDDIO AB28 VLDT_1 H10 VSS D18 VDDIO AC21 VLDT_1 J9 VSS D22 VDDIO AD22 VLDT_1 J11 VSS D23 VDDIO AE26 VLDT_1 J15 VSS D30 VDDIO AE28 VLDT_1 J16 VSS E2 VDDIO AG23 VLDT_1 K10 VSS F1 VDDIO AH26 VLDT_1 K14 VSS F2 VDDIO AH28 VLDT_1 K16 VSS F5 VDDIO AJ23 VLDT_2 AB10 VSS F8 VDDIO AL23 VLDT_2 AB14 VSS F10 VDDIO_SENSE AF20 VLDT_2 AB16 VSS F13 VDDIOFB_H AB23 VLDT_2 AC9 VSS F14 VDDIOFB_L AC23 VLDT_2 AC11 VSS F16 VID[0] G11 VLDT_2 AC15 VSS F17 VID[1] H11 VLDT_2 AC16 VSS G4 VID[2] G10 VLDT_2 AD8 VSS G13 VID[3] F9 VLDT_2 AD10 VSS G15 VID[4] G9 VSS B3 VSS G17 38 Pin Designations Chapter 5 AMD Opteron™ Processor Data Sheet 23932 Rev 3.00 April 2003 Table 5. Pin List by Name (Continued) VSS G22 VSS L16 VSS P15 VSS G24 VSS L18 VSS P17 VSS G30 VSS L20 VSS P19 VSS H6 VSS L22 VSS P21 VSS H15 VSS M6 VSS R4 VSS H17 VSS M7 VSS R8 VSS J8 VSS M9 VSS R10 VSS J10 VSS M11 VSS R12 VSS J12 VSS M13 VSS R14 VSS J14 VSS M15 VSS R16 VSS J17 VSS M17 VSS R18 VSS J18 VSS M19 VSS R20 VSS J20 VSS M21 VSS R22 VSS J22 VSS N8 VSS T6 VSS K2 VSS N10 VSS T9 VSS K9 VSS N12 VSS T11 VSS K11 VSS N14 VSS T13 VSS K13 VSS N16 VSS T15 VSS K15 VSS N18 VSS T17 VSS K17 VSS N20 VSS T19 VSS K19 VSS N22 VSS T21 VSS K21 VSS N24 VSS T24 VSS K24 VSS N30 VSS T30 VSS K30 VSS P2 VSS U8 VSS L4 VSS P7 VSS U10 VSS L10 VSS P9 VSS U12 VSS L12 VSS P11 VSS U14 VSS L14 VSS P13 VSS U16 Chapter 5 Pin Designations 39 AMD Opteron™ Processor Data Sheet Table 5. 23932 Rev 3.00 April 2003 Pin List by Name (Continued) VSS U18 VSS Y15 VSS AC20 VSS U20 VSS Y17 VSS AC22 VSS U22 VSS Y19 VSS AD6 VSS V2 VSS Y21 VSS AD9 VSS V7 VSS AA8 VSS AD11 VSS V9 VSS AA10 VSS AD13 VSS V11 VSS AA12 VSS AD15 VSS V13 VSS AA14 VSS AD17 VSS V15 VSS AA16 VSS AE17 VSS V17 VSS AA18 VSS AE22 VSS V19 VSS AA20 VSS AE24 VSS V21 VSS AA22 VSS AE30 VSS W4 VSS AB2 VSS AF2 VSS W8 VSS AB7 VSS AF8 VSS W10 VSS AB9 VSS AF12 VSS W12 VSS AB11 VSS AF16 VSS W14 VSS AB13 VSS AF21 VSS W16 VSS AB15 VSS AG2 VSS W18 VSS AB17 VSS AH3 VSS W20 VSS AB19 VSS AH7 VSS W22 VSS AB21 VSS AH11 VSS W24 VSS AB24 VSS AH15 VSS W30 VSS AB30 VSS AH19 VSS Y6 VSS AC4 VSS AH23 VSS Y7 VSS AC10 VSS AH30 VSS Y9 VSS AC12 VSS AK6 VSS Y11 VSS AC14 VSS AK10 VSS Y13 VSS AC17 VSS AK14 40 Pin Designations Chapter 5 AMD Opteron™ Processor Data Sheet 23932 Rev 3.00 April 2003 Table 5. Pin List by Name (Continued) VSS AK18 VSS AK22 VSS AK23 VSS AK26 VSS AK29 VTT AF18 VTT F20 VTT F21 VTT G19 VTT H19 VTT J19 VTT AC18 VTT AC19 VTT AE18 VTT AE19 VTT_SENSE AF19 Chapter 5 Pin Designations 41 AMD Opteron™ Processor Data Sheet 42 23932 Rev 3.00 April 2003 Pin Designations Chapter 5 AMD Opteron™ Processor Data Sheet 23932 Rev 3.00 April 2003 6 Pin Descriptions Table 6 describes the terms used in the pin description tables found in this chapter. The pins are organized within the following functional groups: • HyperTransport™ technology interface • DDR SDRAM memory interface • Miscellaneous pins, including clock, JTAG, and debug pins All pins are described in the tables beginning on page 44. Table 6. Pin Description Table Definitions Pin Types Applicable Section in Electrical Chapter I-HT Input, HyperTransport™ technology, Differential “HyperTransport™ Technology Interface” on page 52 O-HT Output, HyperTransport technology, Differential “HyperTransport™ Technology Interface” on page 52 B-IOS Bidirectional, 2.5-V Single-Ended “DDR SDRAM and Miscellaneous Pins” on page 55 I-IOS Input, 2.5-V, Single-Ended “DDR SDRAM and Miscellaneous Pins” on page 55 I-IOD Input, 2.5-V, Differential “Clocks and THERMTRIP_L Pins” on page 66 O-IOD Output, 2.5-V, Differential “Clocks and THERMTRIP_L Pins” on page 66 O-IOS Output, 2.5-V, Single-Ended “DDR SDRAM and Miscellaneous Pins” on page 55 Output, 2.5-V, Open Drain “Clocks and THERMTRIP_L Pins” on page 66 A Analog “Power Supplies” on page 74 S Supply Voltage “Power Supplies” on page 74 Voltage Reference “DDR SDRAM and Miscellaneous Pins” on page 55 O-IO-OD VREF Chapter 6 Pin Descriptions 43 AMD Opteron™ Processor Data Sheet 23932 Rev 3.00 April 2003 6.1 HyperTransport™ Technology Pins Table 7. HyperTransport™ Technology Pin Descriptions Signal Name Type Description L0_CLKIN_H/L[1:0] I-HT Link 0 Clock Input L0_CTLIN_H/L[0] I-HT Link 0 Control Input L0_CADIN_H/L[15:0] I-HT Link 0 Command/Address/Data Input L0_CLKOUT_H/L[1:0] O-HT Link 0 Clock Outputs L0_CTLOUT_H/L[0] O-HT Link 0 Control Output L0_CADOUT_H/L[15:0] O-HT Link 0 Command/Address/Data Outputs L1_CLKIN_H/L[1:0] I-HT Link 1 Clock Input L1_CTLIN_H/L[0] I-HT Link 1 Control Input L1_CADIN_H/L[15:0] I-HT Link 1 Command/Address/Data Input L1_CLKOUT_H/L[1:0] O-HT Link 1 Clock Outputs L1_CTLOUT_H/L[0] O-HT Link 1 Control Output L1_CADOUT_H/L[15:0] O-HT Link 1 Command/Address/Data Outputs L2_CLKIN_H/L[1:0] I-HT Link 2 Clock Input L2_CTLIN_H/L[0] I-HT Link 2 Control Input L2_CADIN[15:0] I-HT Link 2 Command/Address/Data Input L2_CLKOUT_H/L[1:0] O-HT Link 2 Clock Outputs L2_CTLOUT_H/L[0] O-HT Link 2 Control Output L2_CADOUT_H/L[15:0] O-HT Link 2 Command/Address/Data Outputs L0_REF1 A Compensation Resistor to VLDT1 L0_REF0 A Compensation Resistor to VSS1 Notes: 1. These pins are used in an alternating fashion to compensate RTT by internal comparison to 3/4 VLDT and 1/4 VLDT and compensate RON by comparison to each other around 1/2 VLDT. For proper resistor value, see the AMD Opteron™ Processor Motherboard Design Guide, order# 25180. 44 Pin Descriptions Chapter 6 AMD Opteron™ Processor Data Sheet 23932 Rev 3.00 April 2003 6.2 DDR SDRAM Memory Interface Pins Table 8. DDR SDRAM Memory Interface Pin Descriptions Signal Name Type Description MEMCLK_UP_H/L[3] O-IOD DRAM Clock connected to DIMM3 for the upper half of the data bus MEMCLK_UP_H/L[2] O-IOD DRAM Clock connected to DIMM2 for the upper half of the data bus MEMCLK_UP_H/L[1] O-IOD DRAM Clock connected to DIMM1 for the upper half of the data bus MEMCLK_UP_H/L[0] O-IOD DRAM Clock connected to DIMM0 for the upper half of the data bus MEMCLK_LO_H/L[3] O-IOD DRAM Clock connected to DIMM3 for the lower half of the data bus MEMCLK_LO_H/L[2] O-IOD DRAM Clock connected to DIMM2 for the lower half of the data bus MEMCLK_LO_H/L[1] O-IOD DRAM Clock connected to DIMM1 for the lower half of the data bus MEMCLK_LO_H/L[0] O-IOD DRAM Clock connected to DIMM0 for the lower half of the data bus MEMCKE_UP O-IOS DRAM Clock Enable MEMCKE_LO O-IOS DRAM Clock Enable MEMDQS[35] B-IOS DRAM Data Strobe synchronous with MEMCHECK[15:12] for x4 DIMMs. MEMDQS[34:27] B-IOS DRAM Data Strobe synchronous with the high-order nibbles of MEMDATA[127:64] for x4 DIMMs MEMDQS[26] B-IOS DRAM data strobe synchronous with MEMCHECK[11:8] for x4 DIMMs and MEMCHECK[15:8] for x8/x16 DIMMs. MEMDQS[25:18] B-IOS DRAM Data Strobe synchronous with the low-order nibbles of MEMDATA[127:64] for x4 DIMMs and all nibbles for x8/x16 DIMMs MEMDQS[17] B-IOS DRAM Data Strobe synchronous with MEMCHECK[7:4] for x4 DIMMs MEMDQS[16:9] B-IOS DRAM Data Strobe synchronous with high-order nibbles of MEMDATA[63:0] for x4 DIMMs MEMDQS[8] B-IOS DRAM Data Strobe synchronous with MEMCHECK[3:0] for x4 DIMMs and MEMCHECK[7:0] for x8/x16 DIMMs MEMDQS[7:0] B-IOS DRAM Data Strobe synchronous with low-order nibbles of MEMDATA[127:64] for x4 DIMMs and all nibbles for x8/x16 DIMMs MEMDATA[127:0] B-IOS DRAM Interface Data Bus MEMCHECK[15:0] B-IOS DRAM Interface ECC Check Bits MEMCS_L[7:0] O-IOS DRAM Chip Selects1 MEMRAS_L O-IOS DRAM Row Address Select MEMCAS_L O-IOS DRAM Column Address Select Chapter 6 Pin Descriptions 45 AMD Opteron™ Processor Data Sheet Table 8. 23932 Rev 3.00 April 2003 DDR SDRAM Memory Interface Pin Descriptions (Continued) Signal Name Type Description MEMWE_L O-IOS DRAM Write Enable MEMADD[13:0] O-IOS DRAM Column/Row Address MEMBANK[1:0] O-IOS DRAM Bank Address MEMRESET_L O-IOS DRAM Reset pin for Suspend-to-RAM power management mode. This pin is required for registered DIMMs only. MEMVREF VREF DRAM Interface Voltage Reference1 MEMZP A Compensation Resistor tied to VSS1 MEMZN A Compensation Resistor tied to 2.5 V1 Notes: 1. For connection details and proper resistor values, see the AMD Opteron™ Processor Motherboard Design Guide, order# 25180. 46 Pin Descriptions Chapter 6 AMD Opteron™ Processor Data Sheet 23932 Rev 3.00 April 2003 6.3 Miscellaneous Pins Table 9. Clock Pin Descriptions Signal Name Type Description CLKIN_H/L I-IOD 200-MHz PLL Reference Clock FBCLKOUT_H/L O-IOD Core Clock PLL 200-MHz Feedback Clock Table 10. Miscellaneous Pin Descriptions Signal Name Type Description RESET_L I-IOS System Reset PWROK I-IOS Indicates that voltages and clocks have reached specified operation LDTSTOP_L I-IOS HyperTransport™ Technology Stop Control Input. Used for power management and for changing HyperTransport link width and frequency. VID[4:0] O-IOS Voltage ID to the regulator THERMDA A Anode (+) of the thermal diode THERMDC A Cathode (–) of the thermal diode THERMTRIP_L O-IO-OD Thermal Sensor Trip output, asserted at nominal temperature of 125oC. COREFB_H/L A Differential feedback for VDD Power Supply VDDIOFB_H/L A Differential feedback for VDDIO Power Supply CORE_SENSE A VDD voltage monitor pin VDDA S Filtered PLL Supply Voltage VTT_SENSE A VTT voltage monitor pin VDDIO_SENSE A VDDIO voltage monitor pin VDD S Core power supply VDDIO S DDR SDRAM I/O ring power supply VLDT_0 VLDT_1 VLDT_2 S HyperTransport™ I/O ring power supply VTT S VTT regulator voltage Chapter 6 Pin Descriptions 47 AMD Opteron™ Processor Data Sheet 23932 Rev 3.00 April 2003 Table 10. Miscellaneous Pin Descriptions (Continued) Signal Name Type Description PRESENCE_DET S This pin can be connected to VSS or used for detection of the processor in multiprocessor configurations. When used as a presence detection bit it should be pulled up and sensed via the circuitry that is used to detect installed processors on the motherboard. This pin is connected to VSS internally. VSS S Ground Table 11. VID[4:0] Encoding VID[4:0] VDD VID[4:0] VDD VID[4:0] VDD VID[4:0] VDD 0x00000 1.550 V 0x01000 1.350 V 0x10000 1.150 V 0x11000 0.950 V 0x00001 1.525 V 0x01001 1.325 V 0x10001 1.125 V 0x11001 0.925 V 0x00010 1.500 V 0x01010 1.300 V 0x10010 1.100 V 0x11010 0.900 V 0x00011 1.475 V 0x01011 1.275 V 0x10011 1.075 V 0x11011 0.875 V 0x00100 1.450 V 0x01100 1.250 V 0x10100 1.050 V 0x11100 0.850 V 0x00101 1.425 V 0x01101 1.225 V 0x10101 1.025 V 0x11101 0.825 V 0x00110 1.400 V 0x01110 1.200 V 0x10110 1.000 V 0x11110 0.800 V 0x00111 1.375 V 0x01111 1.175 V 0x10111 0.975 V 0x11111 Off Table 12. JTAG Pin Descriptions Signal Name Type Description TCK I-IOS JTAG Clock TMS I-IOS JTAG Mode Select TRST_L I-IOS JTAG Reset TDI I-IOS JTAG Data Input TDO O-IOS JTAG Data Output 48 Pin Descriptions Chapter 6 AMD Opteron™ Processor Data Sheet 23932 Rev 3.00 April 2003 Table 13. Debug Pin Descriptions Signal Name Type Description DBREQ_L I-IOS Debug Request DBRDY O-IOS Debug Ready Chapter 6 Pin Descriptions 49 AMD Opteron™ Processor Data Sheet 6.4 23932 Rev 3.00 April 2003 Pin States at Reset The default pin states are listed below. These are listed for all output and bidirectional pins in the power-on reset state (reset) as well as the ACPI S1 and S3 power management states. Table 14. Reset Pin State Reset State S1 State S3 State L*_CLKOUT* T Z Z Tristated in S1 only if programmed to do so. L*_CTLOUT* 0 Z Z Tristated in S1 only if programmed to do so. L*_CADOUT* 1 Z Z Tristated in S1 only if programmed to do so. MEMCLK* Z Z Z MEMDQS* Z Z Z MEMCKE* 0 0 0 MEMDATA* Z Z Z MEMCHECK* Z Z Z MEMCS_L* 1 Z Z MEMRAS_L 1 Z Z MEMCAS_L 1 Z Z MEMWE_L 1 Z Z MEMADD* 0 Z Z MEMBANK* 0 Z Z MEMRESET_L 0 0 0 MEMZN 1 1 1 MEMZP 0 0 0 FBCLKOUT* T T Z TDO X X Z DBRDY 0 0 Z VID[4:0] X X X THERMTRIP_L Z X Z Pin Name Comments In S3, MEMCKE* is forced to a logic Low. In S3, MEMRESET_L is forced to logic 0. For differential inputs, “0” and “1” refer to the high-end differential output. Low-end differential outputs are inverted. Definitions of pin states: X: Either logic 1 or 0, Z: Tristated, T: Toggling between 0 and 1 50 Pin Descriptions Chapter 6 AMD Opteron™ Processor Data Sheet 23932 Rev 3.00 April 2003 7 Electrical Data 7.1 Absolute Maximum Ratings Stresses greater than those listed in Table 15 may cause permanent damage to the device and motherboard. Systems using this device must be designed to ensure that these parameters are not violated. Violation of these ratings will void the product warranty. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Table 15. Absolute Maximum Ratings for AMD Opteron™ Processor Characteristic Range Case Temperature 69oC max Storage Temperature –55oC to 150oC VLDT supply voltage relative to VSS –0.3 V to 1.5 V VDD supply voltage relative to VSS –0.3 V to 1.65 V VTT supply voltage relative to VSS –0.3 V to 1.65 V VDDIO supply voltage relative to VSS –1 V to 2.9 V VDDA supply voltage relative to VSS –0.3 V to 3.0 V MEMVREF input voltage relative to VSS –1 V to 2.9 V Input voltage relative to VSS for HyperTransport™ technology interface –0.3 V to 1.5 V Differential input voltage for HyperTransport™ technology interface –1.5 V to 1.5 V Input voltage relative to VSS for DDR SDRAM memory interface and Miscellaneous pins –1 V to 2.9V Chapter 7 Electrical Data 51 AMD Opteron™ Processor Data Sheet 23932 Rev 3.00 April 2003 7.2 HyperTransport™ Technology Interface 7.2.1 Operating Conditions Table 16. DC Operating Conditions for HyperTransport™ Technology Interface Symbol Parameter Unit Min Typ Max Notes VOD Output Differential Voltage mV 495 600 715 1, 2 VOCM Output Common Mode Voltage mV 495 600 715 1, 2 VID Input Differential Voltage mV 200 600 1000 1, 2 VICM Input Common Mode Voltage mV 440 600 780 1, 2 DeltaVOD Change in VOD from 0 to 1 State mV –15 0 15 1 DeltaVOCM Change in VOCM from 0 to 1 State mV –15 0 15 1 DeltaVID Change in VID from 0 to 1 State mV –15 0 15 1 DeltaVICM Change in VICM from 0 to 1 State mV –15 0 15 1 Il Input Leakage Current mA –1 1 IOZ Output Tristate Leakage Current mA –1 1 RON Output Driver Impedance ohm 45 50 55 DeltaRON Change in RON Driving 0=>1 or % –2.5 0 2.5 ohm 90 100 110 1=>0 RTT Input Differential Impedance Notes: 1. Measured by comparing each signal voltage with respect to ground. 2. Measured at <100 MHz, considered slow enough to attain both 0 and 1 logic state voltage levels without AC transients on signals and supplies. 52 Electrical Data Chapter 7 AMD Opteron™ Processor Data Sheet 23932 Rev 3.00 April 2003 Table 17. AC Operating Conditions for HyperTransport™ Technology Interface Symbol Parameter Unit Min VOD Output Differential Voltage mV VOCM Output Common Mode Voltage VID Typ Max Notes 400 820 1 mV 440 780 1 Input Differential Voltage mV 300 900 1 VICM Input Common Mode Voltage mV 385 845 1 DeltaVOD Change in VOD from 0 to 1 State mV –75 75 1 DeltaVOCM Change in VOCM from 0 to 1 State mV –50 50 1 DeltaVID Change in VID from 0 to 1 State mV –125 125 1 DeltaVICM Change in VICM from 0 to 1 State mV –100 100 1 TRISE Input Rising Edge Rate V/ns 1 4 1, 2 TFALL Input Falling Edge Rate V/ns 1 4 1, 2 CIN Input Pad Capacitance pF 2 COUT Output Pad Capacitance pF 3 CDELTA CIN Pad Capacitance Range Across Group pF 0.5 TCADV Output CAD Valid pS 166 459 TPHERR Accumulated Phase Error, CLKIN_H/L to L*_CLKOUT_H/L[1:0] pS 0 5000 TSU Device Setup Time pS 110 3, 4 THLD Device Hold Time pS 110 3, 4 RTT Input Differential Impedance ohm 90 100 110 RON Output Impedance ohm 45 50 55 DeltaRON Change in RON Driving 0=>1 or 1=>0 % –2.5 3 2.5 Notes: 1. Measured by comparing each signal voltage with respect to ground. 2. Measured in a differential fashion relative to the complement signal. 3. Measured from crossing points of differential pairs. 4. Input setup and hold times are measured from the crossing point of CAD versus the crossing point of CLK, effectively including the edge time to achieve VID min AC. Chapter 7 Electrical Data 53 AMD Opteron™ Processor Data Sheet 7.2.2 23932 Rev 3.00 April 2003 Reference Information Table 18. Internal Termination for HyperTransport™ Technology Interface Pin Internal Termination Value Tolerance L*_CADIN* Differential RTT 100 ohm (PVT-compensated) ±5% L*_CTLIN* Differential RTT 100 ohm (PVT-compensated) ±5% L*_CLKIN* Differential RTT 100 ohm (PVT-compensated) ±5% 54 Electrical Data Chapter 7 AMD Opteron™ Processor Data Sheet 23932 Rev 3.00 April 2003 7.3 DDR SDRAM and Miscellaneous Pins This section includes electrical specifications for all DDR SDRAM pins described in “DDR SDRAM Memory Interface Pins” on page 45, and the RESET_L, LDTSTOP_L, PWROK, VID[4:0], TCK, TMS, TRST_L, TDI, TDO, DBREQ_L, and DBRDY pins described in “Miscellaneous Pins” on page 47. 7.3.1 Operating Conditions Table 19. DC Operating Conditions Symbol Vref Parameters Reference voltage (for I/O), MEMVREF pin Unit Min Typ Max Notes V 0.49*VDDIO_dc Min 0.5*VDDIO_dc 0.51*VDDIO_dc Max 1, 12 Il Input leakage current Any input: 0 < VIN < VDDIO V (All other pins not under test = 0V) mA -1 1 Ioz Output leakage current Any output: 0 < VOUT < VDDIO V mA -1 1 VIH Input high voltage (logic 1) V Vref + 0.15 - - 2 VIL Input low voltage (logic 0) V - - Vref - 0.15 2 VOH Output high voltage (logic 1) V 1.8 VOL Output low voltage (logic 0) V IOH Output levels -Output high current (VOUT= VDDIO/2) mA -25 -28 -33 3 IOL Output levels - Output low current (VOUT=VDDIO/2) mA 25 28 32 3 VOD Differential output voltage (for CK & CK) V 1.2 1.3 1.4 4 mV -100 - 100 5 V 1.1 1.25 1.4 6 mV -100 - 100 7 ∆ VOD Change in VOD magnitude VOCM Output common mode voltage (for CK & CK) ∆ VOCM Change in VOCM magnitude 0.65 Notes: The notes for Table 19 through Table 22 appear on page 57. Chapter 7 Electrical Data 55 AMD Opteron™ Processor Data Sheet 23932 Rev 3.00 April 2003 Table 20. AC Operating Conditions Symbol Parameters Unit Min Vref Reference voltage (for I/O), MEMVREF pin V Vref(DC) 2% VIH Input high voltage (logic 1) V Vref + 0.35 VIL Input low voltage (logic 0) V VOD Differential output voltage (for CK & CK) V ∆ VOD Change in VOD magnitude VOCM Output common mode voltage (for CK & CK) ∆ VOCM Change in VOCM magnitude Typ Max Notes Vref(DC) + 2% 1 - 2 - Vref - 0.35 2 1.0 1.3 1.6 4 mV -150 - 150 5 V 0.9 1.25 1.6 6 mV -200 - 200 7 Unit Min Typ Max Notes Table 21. Input Capacitance Symbol Parameters Cin Input capacitance (DQ & DQS) pF 3.0 3.5 4.0 ∆C Delta Input capacitance pF - - 0.4 8 Table 22. Slew Rate of DDR SDRAM Signals Symbol Parameters Unit Min Typ Max Notes SOUT Output slew rate (pullup and pulldown) V/ns 2 3 4 9 0.75 1 1.25 10 4 11 SOUT_Rat io Sin 56 Output slew rate ratio between pullup and pulldown Input slew rate V/ns 0.5 Electrical Data Chapter 7 AMD Opteron™ Processor Data Sheet 23932 Rev 3.00 April 2003 1. Vref is expected to be equal to 0.5*VDDIO and to track variations in the DC level of the same. Peak to peak noise on Vref may not exceed + 2% of the DC value. 2. The AC values indicate the voltage levels at which the receiver must meet its timing specifications. The DC values indicate the voltage levels at which the final logic state of the receiver is unambiguously defined. The receiver effectively switches to the new logic state when receiver input crosses the AC level. The new logic state is maintained as long as the input stays beyond the DC threshold. 3. With compensation the granularity between NMOS current and PMOS current cannot exceed 3mA. The range is 6mA due to 10% variation. 4. VOD is the differential output voltage or the voltage difference between true and complement under DC or AC conditions. 5. ∆ VOD is the change in magnitude between the differential output voltage while driving a logic 0 and while driving a logic 1. 6. VOCM is the output common mode voltage defined as the average of the true voltage magnitude and the complement voltage magnitude relative to ground under DC or AC conditions. 7. ∆ VOCM is the change in magnitude between the output common mode voltage while driving a logic 0 and while driving a logic 1. 8. ∆ C means the difference in capacitance between any MEMDATA/MEMDQS pin to any other MEMDATA/MEMDQS pin. 9. Pullup and pulldown slew rate is measured into RTT (50 Ohms) to VTT as shown in Figure 4. The slew rate is measured between Vref + 300 mV. It is designed for any pattern of data, including all outputs switching and only one output switching. 10. The ratio of pullup slew rate to pulldown slew rate is specified for the same temperature and voltage, over the entire temperature and voltage range. For a given output, it represents the maximum difference between pullup and pulldown drivers due to process variation. 11. The slew rate is measured at the CPU pin between Vref + 150 mV. Minimum and maximum input slew rate specification is set based on DRAM output slew rate specification. 12. VDDIO_dc is defined in Table 32 on page 74. VTT RTT Driver 0 pF Figure 4. Slew Rate Measurement Example Chapter 7 Electrical Data 57 AMD Opteron™ Processor Data Sheet 23932 Rev 3.00 April 2003 Table 23. Package Routing Skew Routing Measurement 58 Skew (ps) Any MEMCLK clock pair to any other MEMCLK clock pair + 100 Any MEMCLK pair to any MEMDQS pair + 100 Any MEMDQS pair to any MEMDATA associated within pair + 75 Any MEMCLK pair to any MEMADD/CMD + 100 Pad skew + 250 Electrical Data Chapter 7 AMD Opteron™ Processor Data Sheet 23932 Rev 3.00 April 2003 7.3.2 AC Operating Characteristics Table 24. Electrical AC Timing Characteristics for DDR SDRAM Signals Symbol 5. 6. 7. 8. Unit Min Typ Max Notes 15 tCK MEMCLK cycle time ps 5000 - 10000 tCH MEMCLK high pulse width ps 0.45*tCK - 0.55*tCK tCL MEMCLK low pulse width ps 0.45*tCK - 0.55*tCK MEMCLK output skew ps -350 - 350 1,2,3 tDQSH MEMDQS high pulse width ps 0.45*tCK - 0.55*tCK 1 tDQSL MEMDQS low pulse width ps 0.45*tCK - 0.55*tCK 1 tDQS MEMCLK to MEMDQS ps -350 - 350 1,4,5 tDSS MEMDQS falling edge to MEMCLK rising edge ps 0.45*tCK 350 - - 1,6,7 tDSH MEMCLK rising edge to MEMDQS falling edge ps 0.45*tCK 350 - - 1,6,7 tDQSQV MEMDQS to MEMDATA shift (when data becomes valid) ps -{0.5* tDQSHmax [638]} - -{0.5* tDQSHmin + [638]} 1,8,9 tDQSQIV MEMDQS to MEMDATA shift (when data becomes invalid) ps {0.5*tDQSHmin - [638]} - {0.5* tDQSHmax + [638]} 1,8,9 t2 MEMADD/CMD to MEMCLK (Registered DIMM environment MEMADD/CMD are launched 1/2 clock early) ps - 350 - 350 1,10,11 t3 MEMDATA edge arrival relative to MEMDQS ps -{tCK/4 [350+0.2* (tCK/4)]} - tCK/4 [350+0.2* (tCK/4)] 12,13,14 tCKS 1. 2. 3. 4. Parameters Write cycle timing parameter The skew consists of pad output skew (+ 250ps) and package routing skew between any two clock pairs (+ 100ps). tCKS Timing Parameter, refer to Figure on page 61. The timing consists of pad output skew (+ 250ps) and package routing skew between any MEMCLK to any MEMDQS (+ 100ps). tDQS Timing parameter, refer to Figure on page 61. The skew consists of pad output skew (+ 250ps) and package routing skew between any MEMCLK to any MEMDQS (+ 100ps). Minimum DQS pulse width is 45% of MEMCLK. tDSS, tDSH timing parameters, refer to Figure on page 62. During write, DQ signals are driven quarter clock earlier such that DQS is placed in the center of data eye window. The skew consists of pad output skew (+ 250ps), package routing skew between any DQS signals and it’s associated DQ signals (+ 75ps) and maximum clock granularity (+ 312.5 ps). Chapter 7 Electrical Data 59 AMD Opteron™ Processor Data Sheet 23932 Rev 3.00 April 2003 9. tDQSQV and tDQSQIV timing parameters apply only within DQS and its associated DQ signals. Refer to Figure on page 63. 10. The skew consists of pad output skew (+ 250 ps) and package routing skew (+ 100 ps) between any MEMCLK pair to any MEMADD/CMD signal. Maximum clock granularity skew is 312.5 ps. 11. t2 Timing parameter, applies to registered DIMM Environment Only - MEMADD/CMD signals are launched 1/2 clock cycle early. The granularity term does not apply here. Refer to Figure on page 64. 12. Read cycle timing parameter. 13. The PDL placement uncertainty is 20%. Package skew between DQS and its associated DQs is 75ps. The sum of setup/hold time & receiver uncertainty is 275ps. 14. t3 timing parameter, refer to Figure on page 65. 15. The slow operation of 10ns cycle time is specifically included for functional test purpose only. All electrical characterization will be performed at full speed however all functional tests will be performed at 10ns cycle time. 60 Electrical Data Chapter 7 AMD Opteron™ Processor Data Sheet 23932 Rev 3.00 April 2003 tCK CK CK tCKS Max CK CK tCKS Min CK CK Figure 5. MEMCLK Output Skew tCK CK CK DQS tDQS Max DQS tDQS Min Figure 6. MEMDQS Timing Parameter Chapter 7 Electrical Data 61 AMD Opteron™ Processor Data Sheet 23932 Rev 3.00 April 2003 t tCK CK CK tDSS Min DQS DQS tDSH Min Figure 7. DSS/tDSH Timing Parameters 62 Electrical Data Chapter 7 AMD Opteron™ Processor Data Sheet 23932 Rev 3.00 April 2003 tCK CK CK DQS Ideal 90o Phase Shift - tDQSQV Typical DQs tDQSQV Min - Latest time Data can become valid DQs DQs tDQSQV Max - Earliest time Data can become valid Ideal 90o Phase Shift - tDQSQIV Typical DQs tDQSQIV Max - Latest time Data can become Invalid DQs DQs tDQSQIV Min - Earliest time Data can become In-valid Figure 8. tDQSQV/tDQSQIV Timing Parameters Chapter 7 Electrical Data 63 AMD Opteron™ Processor Data Sheet 23932 Rev 3.00 April 2003 tCK CK CK tCK/2 tCK/2 ADDR/CMD t2 =0 (Ideal timing) t2 max ADDR/CMD t2 max = 350 ADDR/CMD t2 min = -350 t2 min Figure 9. MEMADD/CMD to MEMCLK Timing Parameter (Registered DIMMs) 64 Electrical Data Chapter 7 AMD Opteron™ Processor Data Sheet 23932 Rev 3.00 April 2003 DQS DQs Perfect Edge Aligned t3 = 0 ps t3 Max DQs Late arrival from strobe t3 Max t3 Min DQs Early arrival from strobe t3 Min setup Package + PDL + Receiver uncertainty Figure 10.MEMDQS Edge Arrival Relative to DQs Chapter 7 Electrical Data 65 AMD Opteron™ Processor Data Sheet 23932 Rev 3.00 April 2003 7.4 Clocks and THERMTRIP_L Pins 7.4.1 Operating Conditions Table 25. DC Operating Conditions for THERMTRIP_L Pin Symbol Parameter Unit Min Typ VIH (DC) Input High Voltage (logic 1) V VREF+0.15 - VIL (DC) Input Low Voltage (logic 0) V IL Input Leakage Current Any input 0V < VIN < VDDIO (All other pins not under test = 0 V) VOL Output Low Voltage (logic 0) V VOH Output High Voltage (logic 1) V 1.8 IOZ Output Leakage Current 0V < VOUT < VDDIO mA –1 - 1 mA mA –25 25 –28 28 –33 32 IOH IOL Output Levels Output High Current (VOUT=1.25 V) Output Low Current (VOUT= 1.25 V) mA –1 Max Notes 1 - VREF–0.15 - 1 2 0.65 2 Notes: 1. The AC and DC input level specifications are as defined in SSTL_2 standard, i.e., the receiver will effectively switch as a result of the signal crossing the AC input level and will remain in that state as long as the signal does not ring back above (or below) the DC input Low (or High) level. 2. With compensator scheme, the granularity between NMOS current and PMOS current cannot exceed 3 mA. (Range is 6 mA due to 10% variation.) 66 Electrical Data Chapter 7 AMD Opteron™ Processor Data Sheet 23932 Rev 3.00 April 2003 Table 26. DC Operating Conditions for CLKIN_H/L and FBCLKOUT_H/L Pins Symbol Parameters Unit Min Typ VID Differential Input Voltage mV 300 2400 DeltaVID Change in VID Magnitude mV –50 50 VICM Input Common Mode Voltage mV VTT–100 DeltaVICM Change in VICM Magnitude mV –50 VOD Differential Output Voltage V 1.2 DeltaVOD Change in VOD Magnitude mV –50 VOCM Output Common Mode Voltage V 1.1 DeltaVOCM Change in VOCM Magnitude mV –50 VTT Max Notes VTT+100 50 1.3 1.25 1.4 1 50 2 1.4 3 50 4 Notes: 1. VOD is the differential output voltage or the voltage difference between true and complement under DC or AC conditions. 2. DeltaVOD is the change in magnitude between the differential output voltage while driving logic 0 and while driving logic 1. 3. VOCM is the output common mode voltage defined as the average of the true voltage magnitude and the complement voltage relative to ground under DC or AC conditions. 4. DeltaVOCM is the change in magnitude between the output common mode voltage while driving logic 0 and while driving logic 1 under DC or AC conditions. Table 27. AC Operating Conditions for THERMTRIP_L Pin Symbol Parameter Unit Min VIH (AC) Input High Voltage (logic 1) V VREF + 0.35 VIL (AC) Input Low Voltage (logic 0) V Typ Max Notes 1 VREF – 0.35 1 Notes: 1. The AC and DC input level specifications are as defined in SSTL_2 standard, i.e., the receiver will effectively switch as a result of the signal crossing the AC input level and will remain in that state as long as the signal does not ring back above (or below) the DC input Low (or High) level. Chapter 7 Electrical Data 67 AMD Opteron™ Processor Data Sheet 23932 Rev 3.00 April 2003 Table 28. AC Operating Conditions for CLKIN_H/L and FBCLKOUT_H/L Pins Symbol Parameter Unit Min F (PLL mode, VDDA=2.5 V) Input Frequency Range (SSC) MHz DC Input Duty Cycle (CLKIN_H/L) VBIAS Typ Max Notes 198.8 200 6 % 30 70 Input BIAS Voltage Node mV VTT VID Differential Input Voltage mV 400 2300 DeltaVID Change in VID Magnitude mV –150 150 VICM Input Common Mode Voltage mV VBIAS–200 VBIAS+200 DeltaVICM Change in VICM Magnitude mV –200 200 VOD Differential Output Voltage V 1.2 DeltaVOD Change in VOD Magnitude mV –100 VOCM Output Common Mode Voltage V 1.1 DeltaVOCM Change in VOCM Magnitude mV IF Input Falling Edge Rate IR Input Rising Edge Rate CIN Input Capacitance VTT 1.3 VTT 1.4 1 100 2 1.4 3 –100 100 4 V/ns 1.2 10 5 V/ns 1.2 10 5 pF 0 5 1.25 Notes: 1. VOD is the differential output voltage or the voltage difference between true and complement under DC or AC conditions. 2. Delta VOD is the change in magnitude between the differential output voltage while driving logic 0 and while driving logic 1. 3. VOCM is the output common mode voltage defined as the average of the true voltage magnitude and the complement voltage relative to ground under DC or AC conditions. 4. Delta VOCM is the change in magnitude between the output common mode voltage while driving logic 0 and while driving logic 1 under DC or AC conditions. 5. Measured differentially through the range of VICM – 400 mV to VICM + 400 mV. 6. Spread spectrum clocking is limited to –0.5% downspread under normal operation. 68 Electrical Data Chapter 7 AMD Opteron™ Processor Data Sheet 23932 Rev 3.00 April 2003 7.4.2 Power-Up Signal Sequencing Figure 11 on page 70 illustrates the signal sequencing requirements during a cold reset (power-up conditions). The actual reset sequencing is defined in the HyperTransport™ I/O Link Specification. The following list describes the power-up signal sequencing illustrated in Figure 11. Note that the numbered items correspond to the numbers in Figure 11. 1. RESET_L must be asserted a minimum of 1 ms prior to the assertion of PWROK, as defined in the HyperTransport™ I/O Link Specification. The TMS pin must be asserted a minimum of 10 ns before PWROK assertion and must be held in the High state a minimum of 10 ns after the assertion of PWROK. 2. CLKIN_H/L must be within specification at the time the VDD power supply begins to ramp. 3. PWROK is asserted at least 1 ms after CLKIN_H/L is stable and voltages to the processor are within specification. The processor determines if there are devices attached to its HyperTransport links 10 µs after the assertion of PWROK. 4. After PWROK assertion, the VID[4:0] signals change from the default code (01110b = 1.2 V) to the value programmed during device manufacturing. The PLL begins locking to the frequency programmed during device manufacturing 160 µs after PWROK is asserted. 5. LDTSTOP_L must be deasserted a minimum of 1 µs before the deassertion of RESET_L, as defined by the HyperTransport™ I/O Link Specification. 6. The RESET_L signal is deasserted a minimum of 1 ms after PWROK assertion, as defined in the HyperTransport™ I/O Link Specification. The clocks from the transmitters of all HyperTransport technology devices must be stable before RESET_L is deasserted. 7. The MEMCLK_LO_H/L[3:0] and MEMCLK_UP_H/L[3:0] signals are stable after BIOS sets the Memory Clock Ratio Valid (MCR) bit in the processor’s DRAM Config Upper register. The MEMCLK* period is defined by the MEMCLK[2:0] field in the DRAM Config Upper register. 8. MEMRESET_L is deasserted a minimum of 394µs at 166 MHz (DDR333) or a maximum of 655µs at 100 MHz (DDR200) after BIOS sets the Dram_Init bit in the DRAM Config Lower register. This allows time for the PLL on registered DIMMs to stabilize before the deassertion of the DIMM’s reset signal. 9. The MEMCKE_LO/UP signals are asserted a minimum of 12 MEMCLK* periods following the deassertion of MEMRESET_L. Note: Refer to the BIOS and Kernel Developer’s Guide for the AMD Athlon™ 64 and AMD Opteron™ Processors, order# 26094, for details on the memory configuration registers. Chapter 7 Electrical Data 69 AMD Opteron™ Processor Data Sheet 23932 Rev 3.00 April 2003 VDD 3 PWROK 4 VID[4:0] 01110 (1.2V) 6 1 RESET_L L0_CLKIN_H/L[1:0] 5 LDTSTOP_L 8 MEMRESET_L 2 CLKIN_H/L 7 VALID MEMCLK* 9 MEMCKE* TMS Figure 11. Power-Up Signal Sequencing 70 Electrical Data Chapter 7 AMD Opteron™ Processor Data Sheet 23932 Rev 3.00 April 2003 7.4.3 Reference Information Table 29. Internal Termination for Miscellaneous Pins Interface Pin Type2 Internal Termination CLKIN_H/L I-IOD None1 FBCLKOUT_H/L O-IOD 80-ohm differential termination RESET_L I-IOS None PWROK I-IOS None VID[4:0] O-IOS None LDTSTOP_L I-IOS None THERMDA A None THERMDC A None O-IO-OD None A None THERMTRIP_L COREFB_H/L Value Tolerance ±50% TCK I-IOS Pullup to VDDIO 533 ohms ±50% TMS I-IOS Pullup to VDDIO 533 ohms ±50% TRST_L I-IOS Pullup to VDDIO 533 ohms ±50% TDI I-IOS Pullup to VDDIO 533 ohms ±50% TDO O-IOS None DBREQ_L I-IOS Pullup to VDDIO 533 ohms ±50% DBRDY O-IOS None Notes: 1. CLKIN_H/L inputs have DC voltage BIAS generating circuits on the inputs. These consist of both a ~250-ohm pullup resistor to VTT on each input and a ~250-ohm series input resistor. 2. Refer to Table 6 on page 43 for definitions in pin Type column. 3. Systems that do not require use of these pins can rely on the internal termination to pull the signals to the proper inactive state. When these pins are used they must not be driven with open-drain outputs or additional termination is required. Chapter 7 Electrical Data 71 AMD Opteron™ Processor Data Sheet 23932 Rev 3.00 April 2003 Table 30. External Required Circuits (Pins Not Normally Used in System) Pin External Circuit (Non-Operating)1 NC_G14 Tied to VDDIO_SUS through resistor NC_H14 Tied to VSS through resistor NC_AE14 Tied to VDDIO_RUN through resistor NC_AF13 Tied to VDDIO_RUN through resistor NC_AE10 Tied to VSS through resistor NC_AE11 Tied to VSS through resistor NC_AF11 Tied to VSS through resistor NC_AE3 Tied to VSS through resistor NC_AE12 Tied to VSS through resistor NC_T3 Tied to VSS through resistor NC_T4 Tied to VLDT through resistor Notes: 1. See the AMD Opteron™ Processor Motherboard Design Guide, order# 25180, for proper resistor values. 2. Input pins of the same type may be pulled high or low through a shared resistor provided that VIL Max and VIH Min specifications are not exceeded for those pin types. 7.4.4 Thermal Diode Specifications Table 31. Thermal Diode Specifications for AMD Opteron™ Processor Symbol Parameter I Sourcing Currents nf Ideality Factor TOffset Temperature Offset θj-c Thermal resistance (junction to case) Units Min µA Max Notes 5 500 1 1.008 1.096 2 0 32 3, 4, 5, 7 0.32 6 °C °C/W Typ Notes: 1. The sourcing current should always be used in forward bias. 2. Characterized at 95ºC with a forward bias current pair of 10 and 100 µA. The ideality factor limits correspond to the diode offset limits. 3. Temperature offset is unique for each processor. The diode offset value is found in the Thermtrip Status Register discussed in the BIOS and Kernel Developer’s Guide for the AMD Athlon™ 64 and AMD Opteron™ Processors, order# 26094. This diode offset supports temperature sensors using two or more sourcing currents only. Singlesourcing current implementations are not supported by AMD. 4. The temperature offset is set based on a sourcing current pair of 10 and 100 µA and an ideality factor of 1.008. The diode offset should be subtracted from the temperature sensor reading. If the temperature sensor has an ideality factor different from 1.008, an additional offset is needed. Contact your temperature sensor vendor about whether an additional offset is needed. 72 Electrical Data Chapter 7 AMD Opteron™ Processor Data Sheet 23932 Rev 3.00 April 2003 5. After correcting for the diode offset, the thermal diode has an accuracy of ±10°C. This accuracy is additive to the temperature sensor accuracy. 6. The temperature specification for the processor is based on the case temperature. The thermal resistance from the junction to the case is provided as a reference for implementing fan-speed control using the thermal diode. 7. The offset reduces the maximum allowable temperature that can be measured by temperature sensor. For this reason, extended range temperature sensors (≥ 143°C) are recommended. Chapter 7 Electrical Data 73 AMD Opteron™ Processor Data Sheet 7.5 Power Supplies 7.5.1 Operating Conditions 23932 Rev 3.00 April 2003 Table 32. Combined AC and DC Operating Conditions for Power Supplies Symbol Parameter Unit Min Typ Max VID_VDD VID Requested VDD Supply Level V VDD V VID_VDD –100 mV VID_VDD VID_VDD +50 mV VDD_PON VDD Supply Voltage before PWROK assertion during power-on. V 1.15 1.20 VDD_max VDDIO_dc VDDIO Supply Voltage V 2.40 2.50 2.60 VDDIO_ac VDDIO supply voltage V VDDIO_dc -150 mV VLDT VLDT Supply Voltage V 1.14 VTT_dc VTT Supply Voltage V VTT_ac VTT Supply Voltage V VTT_dc - 150 mV VDDA VDDA Supply Voltage V 2.40 IDD VDD Power Supply Current A IDDIO1 VDDIO Power Supply Current A IDDIO2 VDDIO Power Supply Current in S3 State mA 350 ITT1 VTT Power Supply Current mA 200 ITT2 VTT Power Supply Current in S3 State mA 200 ILDT VLDT Power Supply Current A 1.5 IDDA VDDA Power Supply Current mA 33 IDDslew1 VDD Power Supply Current Change During Normal Operation A/µs .0583*fMHz 3, 7 IDDslew2 VDD Power Supply Current Change Upon Reset Exit A/µs 270 3 IDDslew3 VDD Power Supply Current Change Upon Stop Grant Entry A/µs IDDslew4 VDD Power Supply Current Change Upon Stop Grant Exit A/µs IDDslew5 VDD Power Supply Current Change Upon Non-reset Power Failure A/µs VDD Supply Voltage 1.55 Notes 6 VDDIO_dc +150 mV 1.20 8 9 1.26 VDDIO_dc VDDIO_dc VDDIO_dc Min/2 - 50 mV Typ/2 Max/2 + 50 mV VTT_dc + 150 mV 2.50 9 2.60 52 2.8 2.9 –270 2, 5 1 3 270 –4.25 4 3 3 Notes: 1. ILDT is specified for three 16x16-bit HyperTransport™ links operating at 1.6 GT/s. 74 Electrical Data Chapter 7 AMD Opteron™ Processor Data Sheet 23932 Rev 3.00 April 2003 2. VTT must both sink and source current. 3. Current slew rates are controlled by ramping up or down the core frequency in steps during these sequences to control in-rush currents. 4. VDDIO current is consumed by I, O, I/O switching current and on-chip functions (PDL, DLL, level-shifters, etc.). 5. VTT current is consumed by I, O, I/O switching current and on-chip functions (PDL, DLL, level-shifters, etc.). 6. This is the VID that the processor will request. 7. For example, the IDDslew1 calculation for a 1.2-GHz part is (.0583 x 1200) = 69.96 A/µs. 8. The processor’s VID[4:0] outputs select VID_PON nom before PWROK is asserted. Transients up to VDD_max are allowed. 9. VDDIO_ac and VTT_ac parameters are measured +/- 1ns of all data bus bits switching. Table 33. Thermal Power Symbol Parameter PVDD VDD Thermal Power PVDDIO Unit Min Typ Max Notes W 80.6 1 VDDIO Thermal Power W 1.960 2 PVLDT VLDT Thermal Power W 1.80 3 PVTT VTT Thermal Power W 0.250 4 PVDDA VDDA Thermal Power W 0.083 PThermal Total Thermal Power W 84.7 Notes: 1. Defined as IDD_max at VDD_typ. 2. Defined as IDDIO_typ at VDDIO_typ – VOH_min. This determines the power dissipated on the CPU. The remainder of the power for VDDIO is dissipated in the off-chip termination. IDDIO_max should be used for power supply design. 3. Defined as ILDT_max at VLDT_typ and includes power for three 16x16-bit HyperTransport™ links operating at a speed of 800 MHz /1600 MT/s. 4. Defined as ITT_max at VTT_typ. Includes I/O for DDR SDRAM and miscellaneous outputs and internal current consumption. 7.5.2 Power Supply Relationships 7.5.2.1 Sequencing Relationships Power supply relationships during power-up, power-down, and entry and exit of any power management state must be controlled in order to avoid damage to the device and help ensure proper operation of the device. Figure 12 shows an example of how these relationships can be maintained by system power generation and distribution schemes. VTT and VDDIO are considered SUSPEND planes and are powered in the S0 (working) state and the S1 and S3 sleep states. VDDA, VDD, and VLDT are considered RUN planes and are powered in the S0 and S1 states only. All power supplies should be turned off during the S4 (SUSPEND to DISK) and S5 (SOFT-OFF) states. VDDIO (RUN) is a power rail used for pull-ups on some processor signals that connect to devices that are powered off during S3, such as THERMTRIP_L. Chapter 7 Electrical Data 75 AMD Opteron™ Processor Data Sheet Power Up 23932 Rev 3.00 April 2003 S3 Entry S3 Exit Power Down VTT (SUS) VDDIO (SUS) VDDIO (RUN) VDDA (RUN) VDD (RUN) VLDT (RUN) Figure 12.Sequencing Relationships for Power Supplies Table 34. Sequencing Relationships for Power Supplies Power Supply Relationship Unit Max Notes VTT to VDDIO V VTT_dc Max 1, 2 VDDIO to VTT V VDDIO_dc Max - VTT_dc Typ 1, 3 VDDIO to VDD V VDDIO_dc Max 1, 4 VDDA to VDD V VDDA Max 1, 5 VDD to VLDT V VDD Max 1, 6 1. Sequencing relationships are measured from supply to supply and must be maintained under all operating conditions including power up, power down, power failure, and power state transitions in order to avoid device or system damage. These relationships can be maintained by propagation of PWRGD signals from one supply rail to the regulator enable of the next supply. The minimum requirements for a proper system implementation are that: — VDDIO ramps such that VDDIO/2 <= VTT. — VDD ramps such that VDDIO and VDDA are within spec before VDD is enabled. — VLDT ramps such that VDD is within spec before VLDT is enabled. 2. The VTT to VDDIO relationship allows for VTT to power-up before VDDIO. 3. The VDDIO to VTT relationship is critical to avoid overstress of the 2.5-V I/O structures that will occur when VDDIO exceeds VTT by more than about 1.35 V. 4. The VDDIO to VDD relationship allows for VDDIO to power-up before VDD. 5. The VDDA to VDD relationship allows for VDDA to power-up before VDD. VDDA must power-up before VDD to ensure that internal clock sources are valid before being used and that clock source multiplexors are properly controlled. 76 Electrical Data Chapter 7 AMD Opteron™ Processor Data Sheet 23932 Rev 3.00 April 2003 6. The VDD to VLDT relationship allows for VDD to power-up before VLDT and specifically allows for VDD=VDD_max with VLDT=0 V. VDD must power-up before VLDT to help ensure that PWROK is properly passed from the pins into the VDD power domain such that the deasserted state can be seen in the VLDT power domain. 7.5.2.2 Sequencing Relationships: Signals to Power Supplies (Stress Conditions) Once the powerup sequence has been completed and PWROK can be asserted, the sequencing of input signals to the CPU and output signals from the CPU can begin. The requirements from signals to power supplies are summarized by type as follows. • VDDIO inputs and outputs are allowed to exceed VDDIO by 0.3V and are allowed to be 0.3V below VSS. • VDDIO inputs are allowed to exceed VTT by VTT_dc Max + 0.3V and are allowed to be 0.3V below VSS. • VLDT inputs and outputs are allowed to exceed VLDT by 0.3V and are allowed to be 0.3V below VSS. 7.5.2.3 Power Failures The power sequencing relationships defined in sections 7.5.2.1 and 7.5.2.2 must be guaranteed by the motherboard power supply subsystem in the event of a power failure. 7.5.2.4 Unused Links Because the AMD Opteron processor has three independent HyperTransport links, some implementations will not connect one or more of these links. In this case, the VLDT of the link that is not connected to another device, should be connected to the VLDT of an operating link. Note that even if the link is not used, the VLDT for the link must be connected so that the internal link detection circuitry can successfully determine the connection status of the link. 7.5.2.5 Power States During system power state S3, the RUN supplies (VLDT, VDD, and VDDA) to the CPU are to be turned off. During this operating mode, all internal leakage paths between SUS supplies (VDDIO and VTT) and these powered off planes are disabled. During S0 and S1, all RUN and SUS planes are to be powered on. During S4 and S5, all supplies to the CPU are to be turned off. Chapter 7 Electrical Data 77 AMD Opteron™ Processor Data Sheet 78 23932 Rev 3.00 April 2003 Electrical Data Chapter 7 AMD Opteron™ Processor Data Sheet 23932 Rev 3.00 April 2003 8 Package Specifications D 3 A D2 A1 CORNER D1 A1 CORNER 5 Øb1 (Nx Plcs) E E2 E1 e BOTTOM VIEW B LID A K NxØb 0.50 0.25 M M b1 ccc A1 L C SEE NOTES TOP VIEW A2 R 4 DETAIL K C A B C NOT TO SCALE SIDE VIEW AMD PACKAGE SYMBOL D/E GENERAL NOTES 1. All dimensions are specified in millimeters (mm). 2. Dimensioning and tolerancing per ASME-Y14.5M-1994. 3. This corner has a chamfer and a square on top of the package that identifies the pin A1 corner and can be used for handling and orientation purposes. 4. Pin tips should have radius. 5. Symbol "M" defines the pin matrix size and "N" is number of pins. VARIATIONS xUCG940 min. 39.80 max. 40.20 D1/E1 38.10 BSC D2/E2 37.4 A A1 A2 e 37.6 4.88 REF 1.556 1.796 3.05 3.35 1.27 BSC b 0.275 0.35 b1 0.81 1.06 L 2.03 M 2.29 31 N 940 R 0.30 MAX ccc 0.125 WT (gms) 45.17 REF Figure 13. Ceramic Micro Pin Grid Array Package: Top, Side, and Bottom Views Chapter 8 Package Specifications 79 AMD Opteron™ Processor Data Sheet 80 Package Specifications 23932 Rev 3.00 April 2003 Chapter 8 AMD Opteron™ Processor Data Sheet 23932 Rev 3.00 April 2003 9 Ordering Information AMD standard products are available in several operating ranges. The ordering part numbers (OPN) are formed by a combination of the elements, as shown in Figure 14. OSA 24X C C O 5 AH Part Definition: AH=CPUID Model 5, Dual-Processor L2 Cache Size: 5=1 Mbyte Case Temperature: O=69oC Operating Voltage: C=1.55 V Package: C=940 Pin Lidded CuPCGA Model Number: 240: 1400 MHz 242: 1600 MHz 244: 1800 MHz Brand: AMD Opteron™ Server Figure 14. Ordering Part Number Example Chapter 9 Ordering Information 81