ETC AMDOPTERON

AMD Opteron™
Processor
Data Sheet
•
Compatible with Existing 32-Bit Code Base
– Including support for SSE, SSE2, MMX™,
3DNow!™ technology and legacy x86 instructions
– Runs existing operating systems and drivers
– Local APIC on-chip
•
AMD 64-Bit Technology
– AMD’s 64-bit x86 instruction set extensions
– 64-bit integer registers, 48-bit virtual addresses, 40bit physical addresses
– Eight new 64-bit integer registers (16 total)
– Eight new 128-bit SSE/SSE2 registers (16 total)
•
Integrated Memory Controller
– Low-latency, high-bandwidth
– 144-bit DDR SDRAM at 100, 133, and 166 MHz
144-Bit DDR SDRAM Memory
(128 bits + 16 bits ECC)
AMD Opteron™
Processor
HyperTransport™ Links
Three 16x16-bit
1600 MT/s (6.4 Gigabytes/s) Max Each
•
•
HyperTransport™ Technology to I/O Devices
– Three links, 16-bits in each direction, each supports
up to 1600 MT/s or 3.2 GB/s in each direction
– Each link can connect to an I/O device or another
processor
•
64-Kbyte 2-Way Associative ECC-Protected
L1 Data Cache
– Two 64-bit operations per cycle, 3-cycle latency
•
64-Kbyte 2-Way Associative Parity-Protected
L1 Instruction Cache
– With advanced branch prediction
•
1024-Kbyte (1-Mbyte) 16-Way Associative
ECC-Protected L2 Cache
– Exclusive cache architecture—storage in addition
to L1 caches
•
Machine Check Architecture
– Includes hardware scrubbing of major ECCprotected arrays
•
Power Management
– Multiple low-power states
– System Management Mode (SMM)
– ACPI 2.0 compliant
Publication #
Issue Date:
23932
April 2003
Revision:
3.00
Power Supplies
– VDD (core): 1.55-V at 52 Amps (max)
– VDDIO: 2.5-V at 2.9 Amps (max) for DDR
SDRAM I/O
– VLDT: 1.2-V at 1.5 Amps for HyperTransport™
technology interface
– VTT: 1.25-V at 0.2 Amps required for 2.5-V I/Os
– Target CPU Core Power: 80.6 Watts
– Target Maximum Thermal Power: 84.7 Watts
•
Electrical Interfaces
– HyperTransport technology: LVDS-Like
differential, unidirectional
– DDR SDRAM: SSTL_2 per JEDEC specification
– Clock, reset, and test signals also use DDR
SDRAM-like electrical specifications
•
Packaging
– 940-pin lidded ceramic micro PGA
– 1.27-mm pin pitch
– 31x31 row pin array
– 40mm x 40mm ceramic substrate
– Ceramic C4 die attach
AMD Opteron™ Processor Data Sheet
23932
Rev. 3.00
April 2003
Trademarks
AMD, the AMD Arrow logo, AMD Athlon, AMD Opteron and combinations thereof, and 3DNow! are trademarks of
Advanced Micro Devices, Inc.
HyperTransport is a licensed trademark of the HyperTransport Technology Consortium.
MMX is a trademark of Intel Corporation.
Other product names used in this publication are for identification purposes only and may be trademarks of their respective companies.
Disclaimer
The contents of this document are provided in connection with Advanced Micro Devices, Inc. (“AMD”) products. AMD makes no representations or warranties with respect to the accuracy or completeness of the contents of this publication and reserves the right to make
changes to specifications and product descriptions at any time without notice. No license, whether express, implied, arising by estoppel
or otherwise, to any intellectual property rights is granted by this publication. Except as set forth in AMD’s Standard Terms and Conditions of Sale, AMD assumes no liability whatsoever, and disclaims any express or implied warranty, relating to its products including,
but not limited to, the implied warranty of merchantability, fitness for a particular purpose, or infringement of any intellectual property
right.
AMD’s products are not designed, intended, authorized or warranted for use as components in systems intended for surgical implant
into the body, or in other applications intended to support or sustain life, or in any other application in which the failure of AMD’s product could create a situation where personal injury, death, or severe property or environmental damage may occur. AMD reserves the
right to discontinue or make changes to its products at any time without notice.
© 2002, 2003 Advanced Micro Devices, Inc. All rights reserved.
AMD Opteron™ Processor Data Sheet
23932 Rev 3.00 April 2003
Contents
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1
AMD Opteron™ Processor Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1
Instruction Set Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2
Internal Cache Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.1
Level 1 Caches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.2
Level 2 Cache . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3
Error Handling (Machine Check) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4
Northbridge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4.1
2.4.1.1
Link Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4.1.2
HyperTransport™ Technology Transfer Speeds . . . . . . . . . . . . . . . . . . . . . . 14
2.4.2
3
HyperTransport™ Technology Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Memory Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4.2.1
Memory Pin Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4.2.2
DRAM Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4.2.3
DRAM Power Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.4.2.4
Chip Kill . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.4.2.5
Main Memory Hardware Scrubbing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Power Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.1
Halt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2
STPCLK/Stop Grant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.3
PWROK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.4
RESET_L and MEMRESET_L . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.5
Thermal Diode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.6
THERMTRIP_L . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4
Connection Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5
Pin Designations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
6
Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Contents
3
AMD Opteron™ Processor Data Sheet
23932 Rev 3.00 April 2003
6.1
HyperTransport™ Technology Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
6.2
DDR SDRAM Memory Interface Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
6.3
Miscellaneous Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
6.4
Pin States at Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
7
Electrical Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
7.1
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
7.2
HyperTransport™ Technology Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
7.3
7.4
7.5
7.2.1
Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
7.2.2
Reference Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
DDR SDRAM and Miscellaneous Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
7.3.1
Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
7.3.2
AC Operating Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Clocks and THERMTRIP_L Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
7.4.1
Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
7.4.2
Power-Up Signal Sequencing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
7.4.3
Reference Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
7.4.4
Thermal Diode Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Power Supplies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
7.5.1
Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
7.5.2
Power Supply Relationships . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
7.5.2.1
Sequencing Relationships . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
7.5.2.2
Sequencing Relationships: Signals to Power Supplies (Stress Conditions) . . 77
7.5.2.3
Power Failures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
7.5.2.4
Unused Links . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
7.5.2.5
Power States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
8
Package Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
9
Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4
Contents
AMD Opteron™ Processor Data Sheet
23932 Rev 3.00 April 2003
List of Figures
Figure 1.
AMD Opteron™ Processor Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Figure 2.
AMD Opteron™ Processor Micro PGA—Top View, Left Side . . . . . . . . . . . . . . . . . 26
Figure 3.
AMD Opteron™ Processor Micro PGA—Top View, Right Side . . . . . . . . . . . . . . . . 27
Figure 4.
Slew Rate Measurement Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Figure 5.
MEMCLK Output Skew . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Figure 6.
MEMDQS Timing Parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Figure 7.
DSS/tDSH Timing Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Figure 8.
tDQSQV/tDQSQIV Timing Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Figure 9.
MEMADD/CMD to MEMCLK Timing Parameter (Registered DIMMs) . . . . . . . . . . 64
Figure 10.
MEMDQS Edge Arrival Relative to DQs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Figure 11.
Power-Up Signal Sequencing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Figure 12.
Sequencing Relationships for Power Supplies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Figure 13.
Ceramic Micro Pin Grid Array Package: Top, Side, and Bottom Views . . . . . . . . . . . 79
Figure 14.
Ordering Part Number Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
List of Figures
5
AMD Opteron™ Processor Data Sheet
6
23932 Rev 3.00 April 2003
List of Figures
AMD Opteron™ Processor Data Sheet
23932 Rev 3.00 April 2003
List of Tables
Table 1.
DIMM Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Table 2.
DRAM Interface Speed vs. CPU Core Clock Multiplier . . . . . . . . . . . . . . . . . . . . . . . 17
Table 3.
Total Memory Sizes Per Chip Select . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Table 4.
Processor Capabilities Mapped to ACPI States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Table 5.
Pin List by Name. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Table 6.
Pin Description Table Definitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Table 7.
HyperTransport™ Technology Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Table 8.
DDR SDRAM Memory Interface Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Table 9.
Clock Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Table 10.
Miscellaneous Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Table 11.
VID[4:0] Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Table 12.
JTAG Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Table 13.
Debug Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Table 14.
Reset Pin State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Table 15.
Absolute Maximum Ratings for AMD Opteron™ Processor. . . . . . . . . . . . . . . . . . . . 51
Table 16.
DC Operating Conditions for HyperTransport™ Technology Interface . . . . . . . . . . . 52
Table 17.
AC Operating Conditions for HyperTransport™ Technology Interface . . . . . . . . . . . 53
Table 18.
Internal Termination for HyperTransport™ Technology Interface . . . . . . . . . . . . . . . 54
Table 19.
DC Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Table 20.
AC Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Table 21.
Input Capacitance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Table 22.
Slew Rate of DDR SDRAM Signals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Table 23.
Package Routing Skew . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Table 24.
Electrical AC Timing Characteristics for DDR SDRAM Signals . . . . . . . . . . . . . . . . 59
Table 25.
DC Operating Conditions for THERMTRIP_L Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Table 26.
DC Operating Conditions for CLKIN_H/L and FBCLKOUT_H/L Pins . . . . . . . . . . . 67
Table 27.
AC Operating Conditions for THERMTRIP_L Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Table 28.
AC Operating Conditions for CLKIN_H/L and FBCLKOUT_H/L Pins . . . . . . . . . . . 68
List of Tables
7
AMD Opteron™ Processor Data Sheet
23932 Rev 3.00 April 2003
Table 29.
Internal Termination for Miscellaneous Pins Interface. . . . . . . . . . . . . . . . . . . . . . . . . 71
Table 30.
External Required Circuits (Pins Not Normally Used in System) . . . . . . . . . . . . . . . . 72
Table 31.
Thermal Diode Specifications for AMD Opteron™ Processor . . . . . . . . . . . . . . . . . . 72
Table 32.
Combined AC and DC Operating Conditions for Power Supplies . . . . . . . . . . . . . . . . 74
Table 33.
Thermal Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Table 34.
Sequencing Relationships for Power Supplies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Table 35.
Nominal Hookups for Power Supplies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
8
List of Tables
AMD Opteron™ Processor Data Sheet
23932 Rev 3.00 April 2003
Revision History
Date
Revision
Description
April 2003
3.00
Initial release.
Revision History
9
AMD Opteron™ Processor Data Sheet
10
23932 Rev 3.00 April 2003
Revision History
AMD Opteron™ Processor Data Sheet
23932 Rev 3.00 April 2003
1
AMD Opteron™ Processor Overview
The AMD Opteron™ processor is designed for high-performance workstation and server
applications. It provides three high-performance HyperTransport™ links to I/O, as well as a 128-bit
high-performance DDR SDRAM memory controller. A block diagram of the AMD Opteron
processor is shown in Figure 1.
VID[4:0]
64-Kbyte
64-Kbyte
L1 I-Cache L1 D-Cache
THERMDA
THERMDC
THERMTRIP_L
CPU Core
COREFB_H/L
1-Mbyte
L2 Cache
PRESENCE_DET
L1_CLKOUT_H/L[1:0]
L1_CTLOUT_H/L[0]
L1_CADOUT_H/L[15:0]
L2_CLKIN_H/L[1:0]
L2_CTLIN_H/L[0]
L2_CADIN_H/L[15:0]
128-bits DDR SDRAM
100/133/166 MHz
16-bits ECC
L1_CLKIN_H/L[1:0]
L1_CTLIN_H/L[0]
L1_CADIN_H/L[15:0]
Northbridge
DDR SDRAM Interface
L0_REF0
L0_REF1
3 x 16/16
400–1600 MT/s
L0_CLKOUT_H/L[1:0]
L0_CTLOUT_H/L[0]
L0_CADOUT_H/L[15:0]
HyperTransport™
Interface
L0_CLKIN_H/L[1:0]
L0_CTLIN_H/L[0]
L0_CADIN_H/L[15:0]
L2_CLKOUT_H/L[1:0]
L2_CTLOUT_H/L[0]
L2_CADOUT_H/L[15:0]
LDTSTOP_L
RESET_L
PWROK
CLKIN_H/L
FBCLKOUT_H/L
VDDA
MEMCLK_UP_H/L[3:0]
MEMCLK_LO_H/L[3:0]
MEMCKE_UP
MEMCKE_LO
MEMRESET_L
MEMCS_L[7:0]
MEMADD[13:0]
MEMBANK[1:0]
MEMRAS_L
MEMCAS_L
MEMWE_L
MEMDQS[35:0]
MEMDATA[127:0]
MEMCHECK[15:0]
MEMZN
MEMZP
MEMVREF
Control
PLLs
and
Clocks
JTAG
and
Debug
TDI
TDO
TCK
TMS
TRST_L
DBREQ_L
DBRDY
Figure 1. AMD Opteron™ Processor Block Diagram
Chapter 1
AMD Opteron™ Processor Overview
11
AMD Opteron™ Processor Data Sheet
12
AMD Opteron™ Processor Overview
23932 Rev 3.00 April 2003
Chapter 1
AMD Opteron™ Processor Data Sheet
23932 Rev 3.00 April 2003
2
Functional Description
2.1
Instruction Set Support
The AMD Opteron™ processor supports the standard x86-instruction set defined in the AMD x86-64
Architecture Programmer’s Manual, volumes 4–6, order# 24594. In addition, the processor supports
the following extensions to the standard x86 instruction set, which are described in the same volume
set:
•
AMD x86-64 instructions
•
MMX™ and 3DNow!™ technology instructions
•
SSE and SSE2 instructions
2.2
Internal Cache Structures
The AMD Opteron processor implements internal caching structures as described in the following
sections.
2.2.1
Level 1 Caches
The L1 data cache (L1 D-Cache) contains 64 Kbytes of storage organized as two-way set associative.
The L1 data cache is protected with ECC. Two simultaneous 64-bit operations (load, store, or
combination) are supported. The L1 instruction cache (L1 I-Cache) contains 64 Kbytes of storage
organized as two-way associative. The L1 instruction cache is protected with parity.
2.2.2
Level 2 Cache
The L2 cache contains both instruction and data stream information. It is organized as 16-way setassociative. The L2 cache data and tag store is protected with ECC. When a given cache line in the L2
cache contains instruction stream information, the ECC bits associated with the given line are used to
store predecode and branch prediction information.
2.3
Error Handling (Machine Check)
The AMD Opteron processor implements the standard x86 machine check architecture as defined in
the AMD x86-64 Architecture Programmer’s Manual, Volume 2, order# 24593, and the BIOS and
Kernel Developer’s Guide for the AMD Athlon™ 64 and AMD Opteron™ Processors, order# 26094.
Chapter 2
Functional Description
13
AMD Opteron™ Processor Data Sheet
23932 Rev 3.00 April 2003
The machine check architecture is defined with ECC single-bit detection/correction and double-bit
detection for the following arrays:
•
L1 Data Cache Storage
•
L2 Data Cache Storage
•
L2 Data Cache Tag
•
Instruction Cache
•
DRAM. See “Memory Controller” on page 14.
2.4
Northbridge
The Northbridge logic in the AMD Opteron processor refers to the HyperTransport™ technology
interface and the memory controller and their respective interfaces to the CPU cores. These interfaces
are described in more detail in the following sections.
2.4.1
HyperTransport™ Technology Overview
The AMD Opteron processor includes three 16-bit HyperTransport technology interfaces capable of
operating up to 1600 mega-transfers per second (MT/s) with a resulting bandwidth of up to 6.4
Gbytes/s (3.2 Gbytes/s in each direction). The AMD Opteron processor supports HyperTransport
technology synchronous clocking mode. Refer to the HyperTransport™ I/O Link Specification
(www.hypertransport.org) for details of link operation.
2.4.1.1
Link Initialization
The HyperTransport™ I/O Link Specification details the negotiation that occurs at power-on to
determine the widths and rates used with the link. Refer also to the BIOS and Kernel Developer’s
Guide for the AMD Athlon™ 64 and AMD Opteron™ Processors, order# 26094, for information
about link initialization and setup of routing tables.
Refer to the AMD Opteron™ Processor Motherboard Design Guide, order# 25180, for details on the
proper HyperTransport technology signal termination resistor values.
2.4.1.2
HyperTransport™ Technology Transfer Speeds
The HyperTransport link of the AMD Opteron processor is capable of operating at 400, 800, 1200,
and 1600 MT/s. The link transfer rate is determined during the software configuration of the system,
as specified in the HyperTransport™ I/O Link Specification.
2.4.2
Memory Controller
The processor’s memory controller provides a programmable interface to a variety of standard
registered DDR SDRAM DIMM configurations. The following features are supported:
14
Functional Description
Chapter 2
AMD Opteron™ Processor Data Sheet
23932 Rev 3.00 April 2003
•
The AMD Opteron processor supports the registered DIMM configurations listed in Table 1.
Table 1.DIMM Configurations
100 MHz
133 MHz
166 MHz
DDR200
DDR266
DDR333
64-bit plus ECC
4
4
2
128-bit plus ECC
8
8
4
Supported DIMM Configurations
•
Self-Refresh mode supported.
•
The controller provides programmable control of DRAM timing parameters to support the
following memory speeds:
— 100 MHz (DDR200) PC-1600 DIMMs
— 133 MHz (DDR266) PC-2100 DIMMs
— 166 MHz (DDR333) PC-2700 DIMMs
•
The memory controller supports DRAM devices that are 4, 8 and 16 bits wide.
•
Supports DIMM sizes from 32 Mbytes (using 64Mb x16 DRAMs) to 4 Gbytes
(using a stacked DIMM with 1Gb x4 DRAMs).
•
Supports interleaving memory within DIMMs.
•
Stacked registered DIMMs are supported.
•
Supports ECC checking with double-bit detect with single-bit correction.
•
Chip Kill ECC allows continuous correction of 4-bit errors in a failed x4 memory device.
•
The memory controller may be configured for 32-byte or 64-byte burst length.
•
Programmable page-policy:
— Supports up to 16 open pages total across all chip-selects.
— Statically idle open-page time
— Optional dynamic precharge control based on page-hit/miss history
For programming information and specific details of the features listed above, refer to the BIOS and
Kernel Developer’s Guide for the AMD Athlon™ 64 and AMD Opteron™ Processors, order# 26094.
Chapter 2
Functional Description
15
AMD Opteron™ Processor Data Sheet
2.4.2.1
23932 Rev 3.00 April 2003
Memory Pin Interface
The memory controller of the AMD Opteron processor supports registered DDR SDRAM DIMMs.
The following list applies to the pin interface:
•
The MEMRESET_L pin is required for registered DIMMs and is used to reset the register as
required to support the Suspend to RAM power management state (ACPI S3).
•
The memory controller can be configured to support either 64-bit or 128-bit memory interfaces.
Refer to Table 1 on page 15 for restrictions based on DDR SDRAM speed.
•
•
•
A 64-bit memory system can support up to four DIMMs, each 64-bits wide
A 128-bit memory system can support up to eight DIMMs, each 64-bits wide, and must be
populated in even numbered pairs as described in the AMD Opteron™ Processor
Motherboard Design Guide, order# 25180.
Registered DIMMs configured with x4 DRAMs require an additional 16 DQS pins without ECC
support or 18 DQS pins with ECC support. The processor’s memory controller provides a total of
36 DQS pins to accommodate this requirement. The additional DQS pins can be connected to the
DIMM Data Mask (DM) pins when connected to x8 or x16 DIMMs (refer to “DRAM Operation”
on page 16 for further details on partial writes and data masking). DIMMs populated with x4
devices normally connect the DRAM Data Mask (DM) pins to VSS.
2.4.2.2
DRAM Operation
At power-on reset, the MEMCKE_LO/UP and MEMRESET_L pins are driven Low while the
processor PLLs are ramping. Clocks are driven on the MEMCLK_LO_H/L[3:0] and
MEMCLK_UP_H/L[3:0] pins only after BIOS programs the appropriate clock ratio value in the
memory controller configuration registers. The actual DRAM frequency may vary for some speeds
based on the CPU clock multiplier, as shown in Table 2 on page 17. Refer to “RESET_L and
MEMRESET_L” on page 23 for further details on the sequencing of the MEMRESET_L and
MEMCKE_LO/UP pins.
16
Functional Description
Chapter 2
AMD Opteron™ Processor Data Sheet
23932 Rev 3.00 April 2003
Table 2.
DRAM Interface Speed vs. CPU Core Clock Multiplier
Multiplier
Core
Frequency
DRAM Frequency
100 MHz
133 MHz
166 MHz
4
800 MHz
100.00
133.33
160.00
5
1000 MHz
100.00
125.00
166.66
6
1200 MHz
100.00
133.33
150.00
7
1400 MHz
100.00
127.27
155.55
8
1600 MHz
100.00
133.33
160.00
9
1800 MHz
100.00
128.57
163.63
10
2000 MHz
100.00
133.33
166.66
11
2200 MHz
100.00
129.41
157.14
12
2400 MHz
100.00
133.33
160.00
13
2600 MHz
100.00
130.00
162.50
The MEMCKE_LO/UP pins remain Low until the BIOS has forced an initialization process by
writing to the memory controller’s configuration registers. The DRAM initialization process involves
sending NOP cycles and writing to the Mode registers in the DRAM devices to force proper
configuration of the devices, as specified by JEDEC and device manufacturer’s specifications.
Table 3 on page 18 lists the maximum memory sizes per chip-select for the various supported DRAM
device configurations. Note that for DIMMs using two chip-selects, the total memory size per DIMM
is doubled. Refer to the AMD Opteron™ Processor Motherboard Design Guide, order# 25180, for
details on the connection scheme for registered DIMMs in an AMD Opteron processor system.
Chapter 2
Functional Description
17
AMD Opteron™ Processor Data Sheet
Table 3.
23932 Rev 3.00 April 2003
Total Memory Sizes Per Chip Select
Devices Used on DIMMs
Size Per CS
64 M-bit (4M x4-bits x4 banks)
128 Mbyte
64 M-bit (2M x8-bits x4 banks)
64 Mbyte
64 M-bit (1M x16-bits x4 banks)
32 Mbyte
128 M-bit (8M x4-bits x4 banks)
256 Mbyte
128 M-bit (4M x8-bits x4 banks)
128 Mbyte
128 M-bit (2M x16-bits x4 banks)
64 Mbyte
256 M-bit (16M x4-bits x4 banks)
512 Mbyte
256 M-bit (8M x8-bits x4 banks)
256 Mbyte
256 M-bit (4M x16-bits x4 banks)
128 Mbyte
512 M-bit (16M x8-bits x4 banks)
512 Mbyte
512 M-bit (8M x16-bits x4 banks)
256 Mbyte
1 G-bit (64M x4-bits x4 banks)
2 Gbyte
1 G-bit (32M x8-bits x4 banks)
1 Gbyte
1 G-bit (16M x16-bits x4 banks)
512 Mbyte
Comments
The memory controller does not perform partial writes to DRAM (i.e., less than the programmed
DRAM burst length), thus the data mask (DM) function is not required. Instead, all partial writes
result in a read-modify-write transaction. The read portion of these read-modify-writes are
performance-optimized such that they are ordered behind normal read cycles. The processor’s
memory controller always drives the DM pins Low, except when they are functioning as DQS pins, as
described in “Memory Pin Interface” on page 16.
The controller supports programmable timing and refresh as described in the BIOS and Kernel
Developer’s Guide for the AMD Athlon™ 64 and AMD Opteron™ Processors, order# 26094. Autorefresh is supported and is staggered by tRFC across chip-selects to reduce system noise. Unpopulated
DIMM slots are not refreshed.
2.4.2.3
DRAM Power Management
The memory controller supports self-refresh mode to accommodate various power management states
such as ACPI S1 and S3 states. The MEMRESET_L pin is provided for resetting the registers on
registered DDR SDRAM DIMMs as required for the S3 (Suspend-to-RAM) power management
state.
18
Functional Description
Chapter 2
AMD Opteron™ Processor Data Sheet
23932 Rev 3.00 April 2003
2.4.2.4
Chip Kill
The memory controller contains the ability to continuously correct 4-bit errors from a failed x4
memory device across the 128-bit wide data path. This feature optionally takes the place of normal
ECC error detection and correction. Operating the memory controller with Chip Kill enabled will
result in a two clock latency penalty on memory access due to the detection, correction, and data
containment overhead of operating in this mode.
2.4.2.5
Main Memory Hardware Scrubbing
The memory controller scrubs the main memory arrays to prevent the build up of soft errors. Any
correctable or non-correctable errors are logged to the machine check logs and can be programmed to
invoke the machine check interrupt. The scrubbing function can be used in three modes as described
in the following sections.
2.4.2.5.1 Progressive Scrubbing
In this mode, the scrubber progressively proceeds through main memory, performing a read-write
cycle or a read-modify-write cycle if a correctable single-bit error is found. The scrubber scrubs one
cache line on each scrub interval that is programmable from 40 ns to 84 ms.
2.4.2.5.2 Source Correction Scrubbing
In this mode, the scrubber does not progressively proceed through main memory but is directed to
scrub any cache line that is the source of any corrected single bit error. During normal operation,
single-bit errors are corrected on the fly and the corrected data is passed without updating the source
memory location. This mode of scrubbing sets the scrubber to then correct the source memory
location, as well.
2.4.2.5.3 Progressive Plus Source Correction Scrubbing
In this mode, the scrubber progressively proceeds through main memory as in progressive mode, but
the current cache line location is changed to that of the source of any corrected single bit error. The
progressive scrubbing then continues from that location.
Chapter 2
Functional Description
19
AMD Opteron™ Processor Data Sheet
20
Functional Description
23932 Rev 3.00 April 2003
Chapter 2
AMD Opteron™ Processor Data Sheet
23932 Rev 3.00 April 2003
3
Power Management
The AMD Opteron™ processor provides the following power management features designed to be
compliant with the Advanced Configuration and Power Interface (ACPI) Specification and
HyperTransport™ technology:
•
Halt state with associated programmable power savings
•
STPCLK/Stop Grant protocol capable of supporting eight distinct versions of Stop Grant
•
LDTSTOP_L signal support
•
Memory controller and host bridge power management
•
Voltage plane isolation based upon PWROK signal
•
Low-power state while RESET_L signal is asserted
•
On-die thermal diode
Table 4 maps processor capabilities to ACPI states.
Table 4.
Processor Capabilities Mapped to ACPI States
ACPI State
Processor
C1
Halt
Passive Cooling
Passive Cooling is supported by Stop Grant (throttling).
S1
Stop Grant. In response to LDTSTOP_L assertion, memory is placed in self-refresh
mode and the host bridge and memory controller are placed into a low-power state.
S3
Processor core and HyperTransport™ technology voltage planes are not powered.
DDR SDRAM interface remains powered and holds memory in self-refresh mode.
S4, S5, G3
All power is removed from the processor.
3.1
Halt
When the HLT instruction is executed, the processor stops program execution and issues a Halt
special cycle. The power savings associated with the Halt state are determined by configuration
registers in the processor (refer to the BIOS and Kernel Developer’s Guide for the AMD Athlon™ 64
and AMD Opteron™ Processors, order# 26094, for details of these configuration registers). The CPU
clock grid frequency can be divided down in the absence of probe activity that would force the
processor caches to be snooped.
The CPU clock grid is automatically brought to full frequency when probe activity is present and
returned to the low-power state when probe activity ceases.
Chapter 3
Power Management
21
AMD Opteron™ Processor Data Sheet
23932 Rev 3.00 April 2003
If a STPCLK assertion message is received while the processor is in the Halt state, the processor
enters the Stop Grant state and issues a Stop Grant special cycle. When a STPCLK deassertion
message is received, the processor exits the Stop Grant state and returns to the Halt state.
The processor exits the Halt state in response to PWROK deassertion, RESET_L assertion, INIT,
NMI, SMI, or any unmasked interrupt received over the HyperTransport link.
3.2
STPCLK/Stop Grant
When the processor recognizes the STPCLK assertion message, it enters the Stop Grant state on the
next instruction boundary and issues a Stop Grant special cycle. The power savings associated with
the Stop Grant state are determined by configuration registers in the processor. The power savings
mechanisms associated with the Stop Grant state include the following:
•
CPU clock grid divisor applied in the absence of probe activity. If probe activity that requires a
cache snoop occurs while the processor is in the Stop Grant state, the clock grid is ramped back up
to service the probe. When probe activity ceases, the CPU clock grid is ramped back down again.
•
Placing system memory into self-refresh mode in response to LDTSTOP_L signal assertion.
•
Ramping the processor host bridge/memory controller clock grid down in response to
LDTSTOP_L signal assertion.
•
Changing HyperTransport link width and/or link frequency in response to LDTSTOP_L signal
assertion.
The processor exits the Stop Grant state when it receives the following:
•
A STPCLK deassertion message.
•
RESET_L pin asserted or an INIT assertion message.
•
PWROK is deasserted.
If the LDTSTOP_L signal is asserted after the processor is in the Stop Grant state, then LDTSTOP_L
must be deasserted, and the HyperTransport link must be re-initialized before a STPCLK deassertion
message can be received by the processor to bring the processor out of the Stop Grant state.
The processor’s host bridge ensures that STPCLK messages are passed to the CPU prior to the
subsequent I/O response to the cycle that caused STPCLK assertion as long as the subsequent I/O
response message has the PassPW bit clear and the Unit ID of the response matches the Unit ID of the
STPCLK message.
3.3
PWROK
When PWROK is deasserted, the processor performs the following steps:
•
22
Isolates its VDDIO- and VTT-powered logic from all other internal logic to prevent leakage
Power Management
Chapter 3
AMD Opteron™ Processor Data Sheet
23932 Rev 3.00 April 2003
current paths between power planes.
•
Tristates all DDR SDRAM I/O pins except for the MEMCKE_LO/UP and MEMRESET_L outputs, which are driven Low.
•
Drives its VID[4:0] outputs to the value that selects the startup core voltage level.
3.4
RESET_L and MEMRESET_L
When RESET_L is asserted, the processor performs the following steps:
•
The processor core is held in a low-power state.
•
The MEMCKE_LO/UP and MEMRESET_L outputs are forced low.
After RESET_L is deasserted, BIOS must program the appropriate clock divisor in the memory controller configuration registers, causing the MEMCLK_LO_H/L[3:0] and MEMCLK_UP_H/L[3:0]
clocks to be driven. When the Dram_Init bit is set (DRAM Config Low register), the MEMRESET_L
pin is deasserted after a minimum of 394µs at166 MHz (DDR333) or a maximum of 655µs at100
MHz (DDR200). This period is required to allow ample time for PLLs to ramp in registered DDR
SDRAM DIMMs. After 12 memory clock periods, the memory controller drives the MEMCKE_LO/
UP outputs High and the DRAM initialization sequence is performed. Refer to the BIOS and Kernel
Developer’s Guide for the AMD Athlon™ 64 and AMD Opteron™ Processors, order# 26094, for
details on the memory controller configuration registers.
3.5
Thermal Diode
The processor provides an on-die thermal diode with anode and cathode brought out to processor
pins. This diode can be read by an external temperature sensor to determine the processor’s
temperature. Refer to the AMD Opteron™ Processor Motherboard Design Guide, order# 25180, for
details on connecting the thermal diode.
3.6
THERMTRIP_L
The AMD Opteron processor provides a hardware-enforced thermal protection mechanism. When the
processor’s die temperature exceeds a specified temperature, the processor is designed to protect
itself from over-temperature conditions by stopping its internal clocks and asserting the
THERMTRIP_L output.
THERMTRIP_L assertion is only valid when PWROK is asserted and RESET_L is deasserted.
If the processor’s die temperature still exceeds the thermal trip point when RESET_L is deasserted,
THERMTRIP_L will immediately be reasserted and the processor’s internal clocks will be stopped.
Chapter 3
Power Management
23
AMD Opteron™ Processor Data Sheet
23932 Rev 3.00 April 2003
THERMTRIP_L assertion indicates the processor die temperature has exceeded normal operating
parameters. PWROK must be deasserted in response to a THERMTRIP_L assertion to help ensure
proper processor operation.
24
Power Management
Chapter 3
AMD Opteron™ Processor Data Sheet
23932 Rev 3.00 April 2003
4
Connection Diagrams
The pinout for the AMD Opteron™ processor is illustrated in this chapter. The ball map is divided
into two parts. Figure 2 on page 26 shows the left portion of the top view, and Figure 3 on page 27
shows the right portion of the top view.
The pin designations are defined in Chapter 5. Table 5 on page 30 lists the pins alphabetically by pin
name.
Chapter 4
Connection Diagrams
25
AMD Opteron™ Processor Data Sheet
1
2
A
B
23932 Rev 3.00 April 2003
3
4
5
6
7
8
9
10
L1_CADOUT_H[0]
L1_CADOUT_L[0]
L1_CADOUT_H[2]
L1_CADOUT_L[2]
L1_CLKOUT_H[0]
L1_CLKOUT_L[0]
L1_CADOUT_H[5]
L1_CADOUT_L[5]
VSS
L1_CADOUT_H[1]
VDD
L1_CADOUT_H[3]
VSS
L1_CADOUT_H[4]
VDD
L1_CADOUT_H[6]
C
VDDA1
VDDA3
L1_CADOUT_L[8]
L1_CADOUT_L[1]
L1_CADOUT_L[10]
L1_CADOUT_L[3]
L1_CLKOUT_L[1]
L1_CADOUT_L[4]
L1_CADOUT_L[13]
L1_CADOUT_L[6]
D
L0_REF0
VDDA2
L1_CADOUT_H[8]
VDD
L1_CADOUT_H[10]
VSS
L1_CLKOUT_H[1]
VDD
L1_CADOUT_H[13]
VSS
E
L0_REF1
VSS
L1_CADOUT_H[9]
L1_CADOUT_L[9] L1_CADOUT_H[11] L1_CADOUT_L[11] L1_CADOUT_H[12] L1_CADOUT_L[12] L1_CADOUT_H[14] L1_CADOUT_L[14]
11
12
L1_CADOUT_H[7] L1_CADOUT_L[7]
VSS
L1_CTLOUT_H[0]
L1_CADOUT_L[15] L1_CTLOUT_L[0]
13
14
15
L1_CTLIN_L[0]
L1_CTLIN_H[0]
L1_CADIN_L[6]
VDD
L1_CADIN_L[7]
VSS
NC_C13
L1_CADIN_H[7]
L1_CADIN_H[14]
L1_CADOUT_H[15]
VDD
NC_D13
VSS
L1_CADIN_L[14]
NC_E11
NC_E12
L1_CADIN_L[15]
L1_CADIN_H[15]
L1_CADIN_L[13]
F
VSS
VSS
VSS
VDD
NC_F7
VSS
VID[3]
VSS
VDD
PWROK
VSS
VSS
VDD
G
L0_CADIN_H[1]
L0_CADIN_L[0]
L0_CADIN_H[0]
VSS
L0_CADIN_H[8]
NC_G6
VDD
DBRDY
VID[4]
VID[2]
VID[0]
RESET_L
VSS
NC_G14
VSS
H
L0_CADIN_L[1]
VDD
L0_CADIN_H[9]
L0_CADIN_L[9]
L0_CADIN_L[8]
VSS
NC_H7
VLDT_1
NC_H9
VLDT_1
VID[1]
NC_H12
NC_H13
NC_H14
VSS
J
L0_CADIN_H[3]
L0_CADIN_L[2]
L0_CADIN_H[2]
VDD
L0_CADIN_H[10]
LDTSTOP_L
DBREQ_L
VSS
VLDT_1
VSS
VLDT_1
VSS
VDD
VSS
VLDT_1
K
L0_CADIN_L[3]
VSS
L0_CADIN_H[11]
L0_CADIN_L[11]
L0_CADIN_L[10]
VDD
CORESENSE_H
NC_K8
VSS
VLDT_1
VSS
VDD
VSS
VLDT_1
VSS
L
L0_CADIN_H[4]
L0_CLKIN_L[0]
L0_CLKIN_H[0]
VSS
L0_CLKIN_H[1]
COREFB_L
COREFB_H
NC_L8
VDD
VSS
VDD
VSS
VDD
VSS
VDD
M
L0_CADIN_L[4]
VDD
L0_CADIN_H[12]
L0_CADIN_L[12]
L0_CLKIN_L[1]
VSS
VSS
VLDT_0
VSS
VDD
VSS
VDD
VSS
VDD
VSS
N
L0_CADIN_H[6]
L0_CADIN_L[5]
L0_CADIN_H[5]
VDD
L0_CADIN_H[13]
NC_N6
VLDT_0
VSS
VDD
VSS
VDD
VSS
VDD
VSS
VDD
P
L0_CADIN_L[6]
VSS
L0_CADIN_H[14]
L0_CADIN_L[14]
L0_CADIN_L[13]
VDD
VSS
VLDT_0
VSS
VDD
VSS
VDD
VSS
VDD
VSS
R
L0_CTLIN_H[0]
L0_CADIN_L[7]
L0_CADIN_H[7]
VSS
L0_CADIN_H[15]
NC_R6
VLDT_0
VSS
VDD
VSS
VDD
VSS
VDD
VSS
VDD
T
L0_CTLIN_L[0]
VDD
NC_T3
NC_T4
L0_CADIN_L[15]
VSS
NC_T7
VDD
VSS
VDD
VSS
VDD
VSS
VDD
VSS
U
L0_CADOUT_L[7]
L0_CTLOUT_H[0]
L0_CTLOUT_L[0]
VDD
NC_U5
NC_U6
VLDT_0
VSS
VDD
VSS
VDD
VSS
VDD
VSS
VDD
VSS
V
L0_CADOUT_H[7]
W
L0_CADOUT_L[5] L0_CADOUT_H[6]
L0_CADOUT_L[6]
Y
L0_CADOUT_H[5]
L0_CADOUT_L[13] L0_CADOUT_H[13] L0_CADOUT_H[14]
AA
L0_CLKOUT_L[0] L0_CADOUT_H[4]
VDD
AB L0_CLKOUT_H[0]
AC
L0_CADOUT_L[15] L0_CADOUT_H[15]
VSS
L0_CLKOUT_L[1]
L0_CADOUT_L[2] L0_CADOUT_H[3]
AD L0_CADOUT_H[2]
L0_CADOUT_L[4]
VDD
L0_CADOUT_L[3]
VSS
VDD
NC_V5
VDD
VSS
VLDT_0
VSS
VDD
VSS
VDD
VSS
VDD
VSS
L0_CADOUT_L[14]
NC_W6
VLDT_0
VSS
VDD
VSS
VDD
VSS
VDD
VSS
VDD
VSS
VSS
VLDT_0
VSS
VDD
VSS
VDD
VSS
VDD
VSS
NC_AA6
VLDT_0
VSS
VDD
VSS
VDD
VSS
VDD
VSS
VDD
VDD
VSS
VDD
VSS
VLDT_2
VSS
VDD
VSS
VLDT_2
VSS
VLDT_2
VSS
VLDT_2
VSS
VDD
VSS
VLDT_2
L0_CADOUT_L[12]
L0_CLKOUT_H[1] L0_CADOUT_H[12]
VSS
L0_CADOUT_L[11]
NC_AC6
L0_CADOUT_L[10] L0_CADOUT_H[10] L0_CADOUT_H[11]
VSS
TRST_L
VLDT_2
VSS
VLDT_2
VSS
VDD
VSS
VDD
VSS
AE L0_CADOUT_L[0] L0_CADOUT_H[1]
L0_CADOUT_L[1]
VDD
L0_CADOUT_L[9]
TMS
TCK
TDO
NC_AE9
NC_AE10
NC_AE11
NC_AE12
NC_AE13
NC_AE14
THERMTRIP_L
AF
L0_CADOUT_H[0]
VSS
L0_CADOUT_L[8]
L0_CADOUT_H[8]
L0_CADOUT_H[9]
VDD
TDI
VSS
NC_AF9
VDD
NC_AF11
VSS
NC_AF13
VDD
NC_AF15
AG
NC_AG1
VSS
L2_CADIN_H[8]
L2_CADIN_L[8]
L2_CADIN_H[10]
L2_CADIN_L[10]
L2_CLKIN_H[1]
L2_CLKIN_L[1]
L2_CADIN_H[13]
L2_CADIN_L[13]
L2_CADIN_H[15]
L2_CADIN_L[15]
NC_AG13
NC_AG14
L2_CADOUT_L[14]
AH
THERMDC
NC_AH2
VSS
L2_CADIN_L[9]
VDD
L2_CADIN_L[11]
VSS
L2_CADIN_L[12]
VDD
L2_CADIN_L[14]
VSS
NC_AH12
VDD
L2_CADOUT_H[15]
AJ
THERMDA
NC_AJ2
L2_CADIN_H[0]
L2_CADIN_H[9]
L2_CADIN_H[2]
L2_CADIN_H[11]
L2_CLKIN_H[0]
L2_CADIN_H[12]
L2_CADIN_H[5]
L2_CADIN_H[14]
L2_CADIN_H[7]
NC_AJ12
AK
PRESENCE_DET
AL
1
Figure 2.
26
2
L2_CADIN_L[0]
VDD
L2_CADIN_L[2]
VSS
L2_CLKIN_L[0]
VDD
L2_CADIN_L[5]
VSS
L2_CADIN_L[7]
VDD
L2_CADIN_H[1]
L2_CADIN_L[1]
L2_CADIN_H[3]
L2_CADIN_L[3]
L2_CADIN_H[4]
L2_CADIN_L[4]
L2_CADIN_H[6]
L2_CADIN_L[6]
L2_CTLIN_H[0]
L2_CTLIN_L[0]
3
4
5
6
7
8
9
10
11
12
VSS
L2_CTLOUT_L[0] L2_CADOUT_L[15]
L2_CADOUT_L[6]
L2_CTLOUT_H[0]
L2_CADOUT_H[6]
VSS
L2_CADOUT_L[7] L2_CADOUT_H[7]
13
14
L2_CADOUT_L[5]
15
AMD Opteron™ Processor Micro PGA—Top View, Left Side
Connection Diagrams
Chapter 4
AMD Opteron™ Processor Data Sheet
23932 Rev 3.00 April 2003
16
17
18
19
20
21
22
23
24
25
26
27
28
29
L1_CADIN_H[6]
L1_CADIN_L[4]
L1_CADIN_H[4]
L1_CADIN_L[3]
L1_CADIN_H[3]
L1_CADIN_L[1]
L1_CADIN_H[1]
VDDIO
MEMDATA[4]
MEMDATA[1]
MEMDATA[6]
MEMDATA[2]
MEMDATA[3]
MEMDATA[9]
30
31
L1_CADIN_L[5]
VDD
L1_CLKIN_L[0]
VSS
L1_CADIN_L[2]
VDD
L1_CADIN_L[0]
VSS
MEMDATA[0]
MEMDQS[9]
VSS
MEMDATA[7]
MEMDATA[8]
VSS
MEMDATA[13]
L1_CADIN_H[5]
L1_CADIN_H[12]
L1_CLKIN_H[0]
L1_CADIN_H[11]
L1_CADIN_H[2]
L1_CADIN_H[9]
L1_CADIN_H[0]
VDDIO
MEMDATA[5]
MEMDQS[0]
MEMDATA[71]
MEMDATA[72]
MEMDATA[12]
MEMDQS[1]
MEMDQS[10]
MEMDATA[14]
C
A
B
VDD
L1_CADIN_L[12]
VSS
L1_CADIN_L[11]
VDD
L1_CADIN_L[9]
VSS
VSS
MEMDATA[69]
MEMDQS[18]
VDDIO
MEMDATA[76]
VDDIO
MEMDATA[77]
VSS
MEMDATA[15]
D
L1_CADIN_H[13]
L1_CLKIN_L[1]
L1_CLKIN_H[1]
L1_CADIN_L[10]
L1_CADIN_H[10]
L1_CADIN_L[8]
L1_CADIN_H[8]
VDDIO
MEMDATA[65]
MEMDATA[70]
MEMDATA[67]
MEMDATA[73]
MEMDQS[19]
MEMDQS[28]
MEMDATA[10]
MEMDATA[11]
E
VTT
VTT
MEMVREF0
MEMDATA[68]
MEMDQS[27]
MEMDATA[66]
MEMDATA[78]
MEMDATA[79]
MEMDATA[74]
MEMDATA[20]
MEMDATA[16]
MEMDATA[17]
F
VSS
MEMDATA[64]
VSS
MEMRESET_L
VDDIO
MEMDATA[75]
VDDIO
MEMDATA[84]
VSS
MEMDATA[21]
G
H
VSS
VSS
VDD
VDD
CLKIN_H
VSS
FBCLKOUT_H
VTT
CLKIN_L
VSS
FBCLKOUT_L
VTT
VDDIO
MEMCLK_LO_H[3]
MEMCKE_UP
MEMCKE_LO
MEMDATA[80]
MEMDATA[81]
MEMDATA[85]
MEMDQS[2]
MEMDQS[11]
MEMDATA[18]
VLDT_1
VSS
VSS
VTT
VSS
VDDIO
VSS
MEMCLK_LO_L[3]
MEMADD[12]
MEMADD[11]
MEMDQS[20]
MEMDQS[29]
MEMDATA[82]
MEMDATA[22]
MEMDATA[23]
MEMDATA[19]
J
VLDT_1
VSS
VDD
VSS
VDDIO
VSS
VDDIO
MEMADD[9]
VSS
MEMADD[7]
VDDIO
MEMDATA[86]
VDDIO
MEMDATA[87]
VSS
MEMDATA[24]
K
MEMCLK_UP_H[3] MEMCLK_UP_L[3]
VSS
VDD
VSS
VDDIO
VSS
VDDIO
VSS
MEMADD[8]
MEMDATA[83]
MEMDATA[88]
MEMDATA[92]
MEMDATA[28]
MEMDATA[29]
MEMDATA[25]
L
VDD
VSS
VDD
VSS
VDD
VSS
VDDIO
NC_M23
MEMCLK_UP_H[1] MEMCLK_UP_L[1]
MEMADD[5]
MEMADD[6]
MEMDATA[93]
MEMDATA[89]
MEMDQS[21]
MEMDQS[3]
MEMDQS[12]
MEMDATA[30]
M
VSS
VDD
VSS
VDD
VSS
VDDIO
VSS
MEMADD[3]
VSS
MEMADD[4]
VDDIO
MEMDQS[30]
VDDIO
MEMDATA[94]
VSS
MEMDATA[26]
N
VDD
VSS
VDD
VSS
VDD
VSS
VDDIO
MEMADD[2]
MEMCHECK[13]
MEMCHECK[12]
MEMDATA[90]
MEMDATA[91]
MEMDATA[95]
MEMDATA[27]
MEMCHECK[4] MEMDATA[31]
P
VSS
VDD
VSS
VDD
VSS
VDDIO
VSS
MEMCLK_UP_H[0]
MEMCHECK[8]
MEMCHECK[9]
MEMCHECK[10]
MEMDQS[35]
MEMDQS[26]
MEMCHECK[1] MEMCHECK[5] MEMCHECK[0] R
VDD
VSS
VDD
VSS
VDD
VSS
VDDIO
MEMCLK_UP_L[0]
VSS
MEMADD[1]
VSS
VDD
VSS
VDD
VSS
VDDIO
VSS
VDDIO
VDD
VSS
VDD
VSS
VDD
VSS
VDDIO
NC_V23
MEMADD[10]
VSS
VDD
VSS
VDD
VSS
VDDIO
VSS
MEMBANK[0]
VSS
VDD
VSS
VDD
VSS
VDD
VSS
VDDIO
MEMCLK_LO_H[1]
MEMWE_L
VDDIO
MEMCHECK[11]
VDDIO
MEMDATA[100]
MEMDATA[96]
MEMCHECK[15]
MEMCHECK[6] MEMCHECK[2]
MEMADD[0]
MEMDQS[22]
MEMDATA[97]
MEMDATA[101]
MEMDATA[32]
MEMBANK[1]
VDDIO
MEMDATA[98]
VDDIO
MEMDQS[31]
VSS
MEMDATA[36]
W
MEMRAS_L
MEMDATA[99]
MEMDATA[103]
MEMDATA[102]
MEMDQS[4]
MEMDATA[33]
MEMDATA[37]
Y
MEMDQS[13]
AA
MEMCLK_LO_L[0] MEMCLK_LO_H[0]
MEMCHECK[14]
VSS
MEMDQS[8]
T
MEMDQS[17]
U
MEMCHECK[7] MEMCHECK[3] V
VSS
VDD
VSS
VDDIO
VSS
VDDIO
VSS
MEMCLK_LO_L[1]
MEMCS_L[0]
MEMCAS_L
MEMDATA[109]
MEMDATA[104]
MEMDATA[108]
MEMDATA[38]
MEMDATA[34]
VLDT_2
VSS
VDD
VSS
VDDIO
VSS
VDDIO
VDDIOFB_H
VSS
MEMCS_L[1]
VDDIO
MEMDQS[32]
VDDIO
MEMDATA[105]
VSS
MEMDATA[39] AB
VLDT_2
VSS
VTT
VTT
VDD
VSS
MEMZP
VSS
VTT
VTT
VSS
MEMZN
VTT
VTT_SENSE
VSS
VDDIO
VSS
VDDIOFB_L
MEMCS_L[3]
MEMCS_L[2]
MEMDATA[110]
MEMDATA[106]
MEMDQS[23]
MEMDATA[40]
MEMDATA[44]
MEMDATA[35] AC
MEMCLK_LO_L[2]
MEMCLK_LO_H[2]
VDDIO
MEMCS_L[7]
MEMCS_L[5]
MEMCS_L[4]
MEMDATA[112]
MEMDATA[111]
MEMDATA[107]
MEMDQS[14]
MEMDATA[41]
MEMDATA[45] AD
VSS
MEMADD[13]
VSS
MEMCS_L[6]
VDDIO
MEMDATA[113]
VDDIO
MEMDATA[116]
VSS
VSS
MEMVREF1
MEMDATA[123]
MEMDQS[25]
MEMDATA[121]
MEMDATA[118]
MEMDQS[33]
MEMDATA[117]
MEMDATA[43]
MEMDATA[46]
MEMDATA[42] AF
L2_CADOUT_L[9]
L2_CADOUT_H[9]
VDDIO
MEMDATA[127]
MEMDQS[34]
MEMDATA[125]
MEMDATA[119]
MEMDQS[24]
MEMDATA[52]
MEMDATA[48]
MEMDATA[47] AG
MEMCLK_UP_L[2] MEMCLK_UP_H[2]
VDDIO_SENSE
L2_CADOUT_H[14] L2_CADOUT_L[12] L2_CADOUT_H[12] L2_CADOUT_L[11] L2_CADOUT_H[11]
MEMDQS[5]
AE
L2_CADOUT_H[13]
VDD
L2_CLKOUT_H[1]
VSS
L2_CADOUT_H[10]
VDD
L2_CADOUT_H[8]
VSS
MEMDATA[122]
MEMDATA[126]
VDDIO
MEMDATA[124]
VDDIO
MEMDATA[114]
VSS
MEMDATA[49] AH
L2_CADOUT_L[13]
L2_CADOUT_L[4]
L2_CLKOUT_L[1]
L2_CADOUT_L[3]
L2_CADOUT_L[10]
L2_CADOUT_L[1]
L2_CADOUT_L[8]
VDDIO
MEMDATA[63]
MEMDQS[16]
MEMDATA[120]
MEMDATA[60]
MEMDATA[55]
MEMDATA[115]
MEMDQS[15]
MEMDATA[53] AJ
VDD
L2_CADOUT_H[4]
VSS
L2_CADOUT_H[3]
VDD
L2_CADOUT_H[1]
VSS
VSS
MEMDATA[58]
MEMDATA[62]
VSS
MEMDATA[61]
MEMDATA[50]
VSS
MEMDATA[54]
AK
L2_CADOUT_H[5]
L2_CLKOUT_L[0]
L2_CLKOUT_H[0]
L2_CADOUT_L[2]
L2_CADOUT_H[2]
L2_CADOUT_L[0]
L2_CADOUT_H[0]
VDDIO
MEMDATA[59]
MEMDQS[7]
MEMDATA[57]
MEMDATA[56]
MEMDATA[51]
MEMDQS[6]
16
17
18
19
20
21
22
23
24
25
26
27
28
29
Figure 3.
Chapter 4
AL
30
31
AMD Opteron™ Processor Micro PGA—Top View, Right Side
Connection Diagrams
27
AMD Opteron™ Processor Data Sheet
28
23932 Rev 3.00 April 2003
Connection Diagrams
Chapter 4
AMD Opteron™ Processor Data Sheet
23932 Rev 3.00 April 2003
5
Pin Designations
Table 5, beginning on page 30, lists the pins alphabetically by pin name.
Chapter 5
Pin Designations
29
AMD Opteron™ Processor Data Sheet
Table 5.
23932 Rev 3.00 April 2003
Pin List by Name
CLKIN_H
G16
L0_CADIN_L[11]
K4
L0_CADOUT_H[9]
AF5
CLKIN_L
H16
L0_CADIN_L[12]
M4
L0_CADOUT_L[0]
AE1
COREFB_H
L7
L0_CADIN_L[13]
P5
L0_CADOUT_L[1]
AE3
COREFB_L
L6
L0_CADIN_L[14]
P4
L0_CADOUT_L[10]
AD3
CORESENSE_H
K7
L0_CADIN_L[15]
T5
L0_CADOUT_L[11]
AC5
DBRDY
G8
L0_CADIN_L[2]
J2
L0_CADOUT_L[12]
AA5
DBREQ_L
J7
L0_CADIN_L[3]
K1
L0_CADOUT_L[13]
Y3
FBCLKOUT_H
G18
L0_CADIN_L[4]
M1
L0_CADOUT_L[14]
W5
FBCLKOUT_L
H18
L0_CADIN_L[5]
N2
L0_CADOUT_L[15]
V3
L0_CADIN_H[0]
G3
L0_CADIN_L[6]
P1
L0_CADOUT_L[2]
AC1
L0_CADIN_H[1]
G1
L0_CADIN_L[7]
R2
L0_CADOUT_L[3]
AC3
L0_CADIN_H[10]
J5
L0_CADIN_L[8]
H5
L0_CADOUT_L[4]
AA3
L0_CADIN_H[11]
K3
L0_CADIN_L[9]
H4
L0_CADOUT_L[5]
W1
L0_CADIN_H[12]
M3
L0_CADOUT_H[0]
AF1
L0_CADOUT_L[6]
W3
L0_CADIN_H[13]
N5
L0_CADOUT_H[1]
AE2
L0_CADOUT_L[7]
U1
L0_CADIN_H[14]
P3
L0_CADOUT_H[10]
AD4
L0_CADOUT_L[8]
AF3
L0_CADIN_H[15]
R5
L0_CADOUT_H[11]
AD5
L0_CADOUT_L[9]
AE5
L0_CADIN_H[2]
J3
L0_CADOUT_H[12]
AB5
L0_CLKIN_H[0]
L3
L0_CADIN_H[3]
J1
L0_CADOUT_H[13]
Y4
L0_CLKIN_H[1]
L5
L0_CADIN_H[4]
L1
L0_CADOUT_H[14]
Y5
L0_CLKIN_L[0]
L2
L0_CADIN_H[5]
N3
L0_CADOUT_H[15]
V4
L0_CLKIN_L[1]
M5
L0_CADIN_H[6]
N1
L0_CADOUT_H[2]
AD1
L0_CLKOUT_H[0]
AB1
L0_CADIN_H[7]
R3
L0_CADOUT_H[3]
AC2
L0_CLKOUT_H[1]
AB4
L0_CADIN_H[8]
G5
L0_CADOUT_H[4]
AA2
L0_CLKOUT_L[0]
AA1
L0_CADIN_H[9]
H3
L0_CADOUT_H[5]
Y1
L0_CLKOUT_L[1]
AB3
L0_CADIN_L[0]
G2
L0_CADOUT_H[6]
W2
L0_CTLIN_H[0]
R1
L0_CADIN_L[1]
H1
L0_CADOUT_H[7]
V1
L0_CTLIN_L[0]
T1
L0_CADIN_L[10]
K5
L0_CADOUT_H[8]
AF4
L0_CTLOUT_H[0]
U2
30
Pin Designations
Chapter 5
AMD Opteron™ Processor Data Sheet
23932 Rev 3.00 April 2003
Table 5.
Pin List by Name (Continued)
L0_CTLOUT_L[0]
U3
L1_CADIN_L[3]
A19
L1_CADOUT_L[13]
C9
L0_REF0
D1
L1_CADIN_L[4]
A17
L1_CADOUT_L[14]
E10
L0_REF1
E1
L1_CADIN_L[5]
B16
L1_CADOUT_L[15]
C11
L1_CADIN_H[0]
C22
L1_CADIN_L[6]
A15
L1_CADOUT_L[2]
A6
L1_CADIN_H[1]
A22
L1_CADIN_L[7]
B14
L1_CADOUT_L[3]
C6
L1_CADIN_H[10]
E20
L1_CADIN_L[8]
E21
L1_CADOUT_L[4]
C8
L1_CADIN_H[11]
C19
L1_CADIN_L[9]
D21
L1_CADOUT_L[5]
A10
L1_CADIN_H[12]
C17
L1_CADOUT_H[0]
A3
L1_CADOUT_L[6]
C10
L1_CADIN_H[13]
E16
L1_CADOUT_H[1]
B4
L1_CADOUT_L[7]
A12
L1_CADIN_H[14]
C15
L1_CADOUT_H[10]
D5
L1_CADOUT_L[8]
C3
L1_CADIN_H[15]
E14
L1_CADOUT_H[11]
E5
L1_CADOUT_L[9]
E4
L1_CADIN_H[2]
C20
L1_CADOUT_H[12]
E7
L1_CLKIN_H[0]
C18
L1_CADIN_H[3]
A20
L1_CADOUT_H[13]
D9
L1_CLKIN_H[1]
E18
L1_CADIN_H[4]
A18
L1_CADOUT_H[14]
E9
L1_CLKIN_L[0]
B18
L1_CADIN_H[5]
C16
L1_CADOUT_H[15]
D11
L1_CLKIN_L[1]
E17
L1_CADIN_H[6]
A16
L1_CADOUT_H[2]
A5
L1_CLKOUT_H[0]
A7
L1_CADIN_H[7]
C14
L1_CADOUT_H[3]
B6
L1_CLKOUT_H[1]
D7
L1_CADIN_H[8]
E22
L1_CADOUT_H[4]
B8
L1_CLKOUT_L[0]
A8
L1_CADIN_H[9]
C21
L1_CADOUT_H[5]
A9
L1_CLKOUT_L[1]
C7
L1_CADIN_L[0]
B22
L1_CADOUT_H[6]
B10
L1_CTLIN_H[0]
A14
L1_CADIN_L[1]
A21
L1_CADOUT_H[7]
A11
L1_CTLIN_L[0]
A13
L1_CADIN_L[10]
E19
L1_CADOUT_H[8]
D3
L1_CTLOUT_H[0]
B12
L1_CADIN_L[11]
D19
L1_CADOUT_H[9]
E3
L1_CTLOUT_L[0]
C12
L1_CADIN_L[12]
D17
L1_CADOUT_L[0]
A4
L2_CADIN_H[0]
AJ3
L1_CADIN_L[13]
E15
L1_CADOUT_L[1]
C4
L2_CADIN_H[1]
AL3
L1_CADIN_L[14]
D15
L1_CADOUT_L[10]
C5
L2_CADIN_H[10]
AG5
L1_CADIN_L[15]
E13
L1_CADOUT_L[11]
E6
L2_CADIN_H[11]
AJ6
L1_CADIN_L[2]
B20
L1_CADOUT_L[12]
E8
L2_CADIN_H[12]
AJ8
Chapter 5
Pin Designations
31
AMD Opteron™ Processor Data Sheet
Table 5.
23932 Rev 3.00 April 2003
Pin List by Name (Continued)
L2_CADIN_H[13]
AG9
L2_CADOUT_H[1]
AK21
L2_CADOUT_L[7]
AL13
L2_CADIN_H[14]
AJ10
L2_CADOUT_H[10]
AH20
L2_CADOUT_L[8]
AJ22
L2_CADIN_H[15]
AG11
L2_CADOUT_H[11]
AG20
L2_CADOUT_L[9]
AG21
L2_CADIN_H[2]
AJ5
L2_CADOUT_H[12]
AG18
L2_CLKIN_H[0]
AJ7
L2_CADIN_H[3]
AL5
L2_CADOUT_H[13]
AH16
L2_CLKIN_H[1]
AG7
L2_CADIN_H[4]
AL7
L2_CADOUT_H[14]
AG16
L2_CLKIN_L[0]
AK7
L2_CADIN_H[5]
AJ9
L2_CADOUT_H[15]
AH14
L2_CLKIN_L[1]
AG8
L2_CADIN_H[6]
AL9
L2_CADOUT_H[2]
AL20
L2_CLKOUT_H[0]
AL18
L2_CADIN_H[7]
AJ11
L2_CADOUT_H[3]
AK19
L2_CLKOUT_H[1]
AH18
L2_CADIN_H[8]
AG3
L2_CADOUT_H[4]
AK17
L2_CLKOUT_L[0]
AL17
L2_CADIN_H[9]
AJ4
L2_CADOUT_H[5]
AL16
L2_CLKOUT_L[1]
AJ18
L2_CADIN_L[0]
AK3
L2_CADOUT_H[6]
AK15
L2_CTLIN_H[0]
AL11
L2_CADIN_L[1]
AL4
L2_CADOUT_H[7]
AL14
L2_CTLIN_L[0]
AL12
L2_CADIN_L[10]
AG6
L2_CADOUT_H[8]
AH22
L2_CTLOUT_H[0]
AK13
L2_CADIN_L[11]
AH6
L2_CADOUT_H[9]
AG22
L2_CTLOUT_L[0]
AJ13
L2_CADIN_L[12]
AH8
L2_CADOUT_L[0]
AL21
LDTSTOP_L
J6
L2_CADIN_L[13]
AG10
L2_CADOUT_L[1]
AJ21
MEMADD[0]
V25
L2_CADIN_L[14]
AH10
L2_CADOUT_L[10]
AJ20
MEMADD[1]
T25
L2_CADIN_L[15]
AG12
L2_CADOUT_L[11]
AG19
MEMADD[10]
V24
L2_CADIN_L[2]
AK5
L2_CADOUT_L[12]
AG17
MEMADD[11]
J25
L2_CADIN_L[3]
AL6
L2_CADOUT_L[13]
AJ16
MEMADD[12]
J24
L2_CADIN_L[4]
AL8
L2_CADOUT_L[14]
AG15
MEMADD[13]
AE23
L2_CADIN_L[5]
AK9
L2_CADOUT_L[15]
AJ14
MEMADD[2]
P23
L2_CADIN_L[6]
AL10
L2_CADOUT_L[2]
AL19
MEMADD[3]
N23
L2_CADIN_L[7]
AK11
L2_CADOUT_L[3]
AJ19
MEMADD[4]
N25
L2_CADIN_L[8]
AG4
L2_CADOUT_L[4]
AJ17
MEMADD[5]
M24
L2_CADIN_L[9]
AH4
L2_CADOUT_L[5]
AL15
MEMADD[6]
M25
L2_CADOUT_H[0]
AL22
L2_CADOUT_L[6]
AJ15
MEMADD[7]
K25
32
Pin Designations
Chapter 5
AMD Opteron™ Processor Data Sheet
23932 Rev 3.00 April 2003
Table 5.
Pin List by Name (Continued)
MEMADD[8]
L23
MEMCLK_LO_L[1]
AA23
MEMDATA[106]
AC27
MEMADD[9]
K23
MEMCLK_LO_L[2]
AD20
MEMDATA[107]
AD28
MEMBANK[0]
W23
MEMCLK_LO_L[3]
J23
MEMDATA[108]
AA28
MEMBANK[1]
W25
MEMCLK_UP_H[0]
R23
MEMDATA[109]
AA26
MEMCAS_L
AA25
MEMCLK_UP_H[1]
L24
MEMDATA[11]
E31
MEMCHECK[0]
R31
MEMCLK_UP_H[2]
AE21
MEMDATA[110]
AC26
MEMCHECK[1]
R29
MEMCLK_UP_H[3]
G20
MEMDATA[111]
AD27
MEMCHECK[10]
R26
MEMCLK_UP_L[0]
T23
MEMDATA[112]
AD26
MEMCHECK[11]
T27
MEMCLK_UP_L[1]
L25
MEMDATA[113]
AE27
MEMCHECK[12]
P25
MEMCLK_UP_L[2]
AE20
MEMDATA[114]
AH29
MEMCHECK[13]
P24
MEMCLK_UP_L[3]
G21
MEMDATA[115]
AJ29
MEMCHECK[14]
T29
MEMCS_L[0]
AA24
MEMDATA[116]
AE29
MEMCHECK[15]
U28
MEMCS_L[1]
AB25
MEMDATA[117]
AF28
MEMCHECK[2]
U30
MEMCS_L[2]
AC25
MEMDATA[118]
AF26
MEMCHECK[3]
V31
MEMCS_L[3]
AC24
MEMDATA[119]
AG27
MEMCHECK[4]
P30
MEMCS_L[4]
AD25
MEMDATA[12]
C28
MEMCHECK[5]
R30
MEMCS_L[5]
AD24
MEMDATA[120]
AJ26
MEMCHECK[6]
U29
MEMCS_L[6]
AE25
MEMDATA[121]
AF25
MEMCHECK[7]
V30
MEMCS_L[7]
AD23
MEMDATA[122]
AH24
MEMCHECK[8]
R24
MEMDATA[0]
B24
MEMDATA[123]
AF23
MEMCHECK[9]
R25
MEMDATA[1]
A25
MEMDATA[124]
AH27
MEMCKE_LO
H25
MEMDATA[10]
E30
MEMDATA[125]
AG26
MEMCKE_UP
H24
MEMDATA[100]
U26
MEMDATA[126]
AH25
MEMCLK_LO_H[0]
U25
MEMDATA[101]
V28
MEMDATA[127]
AG24
MEMCLK_LO_H[1]
Y23
MEMDATA[102]
Y28
MEMDATA[13]
B30
MEMCLK_LO_H[2]
AD21
MEMDATA[103]
Y27
MEMDATA[14]
C31
MEMCLK_LO_H[3]
H23
MEMDATA[104]
AA27
MEMDATA[15]
D31
MEMCLK_LO_L[0]
U24
MEMDATA[105]
AB29
MEMDATA[16]
F30
Chapter 5
Pin Designations
33
AMD Opteron™ Processor Data Sheet
Table 5.
23932 Rev 3.00 April 2003
Pin List by Name (Continued)
MEMDATA[17]
F31
MEMDATA[42]
AF31
MEMDATA[68]
F23
MEMDATA[18]
H31
MEMDATA[43]
AF29
MEMDATA[69]
D24
MEMDATA[19]
J31
MEMDATA[44]
AC30
MEMDATA[7]
B27
MEMDATA[2]
A27
MEMDATA[45]
AD31
MEMDATA[70]
E25
MEMDATA[20]
F29
MEMDATA[46]
AF30
MEMDATA[71]
C26
MEMDATA[21]
G31
MEMDATA[47]
AG31
MEMDATA[72]
C27
MEMDATA[22]
J29
MEMDATA[48]
AG30
MEMDATA[73]
E27
MEMDATA[23]
J30
MEMDATA[49]
AH31
MEMDATA[74]
F28
MEMDATA[24]
K31
MEMDATA[5]
C24
MEMDATA[75]
G27
MEMDATA[25]
L31
MEMDATA[50]
AK28
MEMDATA[76]
D27
MEMDATA[26]
N31
MEMDATA[51]
AL28
MEMDATA[77]
D29
MEMDATA[27]
P29
MEMDATA[52]
AG29
MEMDATA[78]
F26
MEMDATA[28]
L29
MEMDATA[53]
AJ31
MEMDATA[79]
F27
MEMDATA[29]
L30
MEMDATA[54]
AK30
MEMDATA[8]
B28
MEMDATA[3]
A28
MEMDATA[55]
AJ28
MEMDATA[80]
H26
MEMDATA[30]
M31
MEMDATA[56]
AL27
MEMDATA[81]
H27
MEMDATA[31]
P31
MEMDATA[57]
AL26
MEMDATA[82]
J28
MEMDATA[32]
V29
MEMDATA[58]
AK24
MEMDATA[83]
L26
MEMDATA[33]
Y30
MEMDATA[59]
AL24
MEMDATA[84]
G29
MEMDATA[34]
AA30
MEMDATA[6]
A26
MEMDATA[85]
H28
MEMDATA[35]
AC31
MEMDATA[60]
AJ27
MEMDATA[86]
K27
MEMDATA[36]
W31
MEMDATA[61]
AK27
MEMDATA[87]
K29
MEMDATA[37]
Y31
MEMDATA[62]
AK25
MEMDATA[88]
L27
MEMDATA[38]
AA29
MEMDATA[63]
AJ24
MEMDATA[89]
M27
MEMDATA[39]
AB31
MEMDATA[64]
G23
MEMDATA[9]
A29
MEMDATA[4]
A24
MEMDATA[65]
E24
MEMDATA[90]
P26
MEMDATA[40]
AC29
MEMDATA[66]
F25
MEMDATA[91]
P27
MEMDATA[41]
AD30
MEMDATA[67]
E26
MEMDATA[92]
L28
34
Pin Designations
Chapter 5
AMD Opteron™ Processor Data Sheet
23932 Rev 3.00 April 2003
Table 5.
Pin List by Name (Continued)
MEMDATA[93]
M26
MEMDQS[28]
E29
NC_AE14
AE14
MEMDATA[94]
N29
MEMDQS[29]
J27
NC_AE9
AE9
MEMDATA[95]
P28
MEMDQS[3]
M29
NC_AF11
AF11
MEMDATA[96]
U27
MEMDQS[30]
N27
NC_AF13
AF13
MEMDATA[97]
V27
MEMDQS[31]
W29
NC_AF15
AF15
MEMDATA[98]
W27
MEMDQS[32]
AB27
NC_AF9
AF9
MEMDATA[99]
Y26
MEMDQS[33]
AF27
NC_AG1
AG1
MEMDQS[0]
C25
MEMDQS[34]
AG25
NC_AG13
AG13
MEMDQS[1]
C29
MEMDQS[35]
R27
NC_AG14
AG14
MEMDQS[10]
C30
MEMDQS[4]
Y29
NC_AH12
AH12
MEMDQS[11]
H30
MEMDQS[5]
AE31
NC_AH2
AH2
MEMDQS[12]
M30
MEMDQS[6]
AL29
NC_AJ12
AJ12
MEMDQS[13]
AA31
MEMDQS[7]
AL25
NC_AJ2
AJ2
MEMDQS[14]
AD29
MEMDQS[8]
T31
NC_C13
C13
MEMDQS[15]
AJ30
MEMDQS[9]
B25
NC_D13
D13
MEMDQS[16]
AJ25
MEMRAS_L
Y25
NC_E11
E11
MEMDQS[17]
U31
MEMRESET_L
G25
NC_E12
E12
MEMDQS[18]
D25
MEMVREF0
F22
NC_F7
F7
MEMDQS[19]
E28
MEMVREF1
AF22
NC_G14
G14
MEMDQS[2]
H29
MEMWE_L
Y24
NC_G6
G6
MEMDQS[20]
J26
MEMZN
AF17
NC_H12
H12
MEMDQS[21]
M28
MEMZP
AE16
NC_H13
H13
MEMDQS[22]
V26
NC_AA6
AA6
NC_H14
H14
MEMDQS[23]
AC28
NC_AC6
AC6
NC_H7
H7
MEMDQS[24]
AG28
NC_AE10
AE10
NC_H9
H9
MEMDQS[25]
AF24
NC_AE11
AE11
NC_K8
K8
MEMDQS[26]
R28
NC_AE12
AE12
NC_L8
L8
MEMDQS[27]
F24
NC_AE13
AE13
NC_M23
Chapter 5
Pin Designations
M23
35
AMD Opteron™ Processor Data Sheet
Table 5.
23932 Rev 3.00 April 2003
Pin List by Name (Continued)
NC_N6
N6
VDD
D12
VDD
N9
NC_R6
R6
VDD
D16
VDD
N11
NC_T3
T3
VDD
D20
VDD
N13
NC_T4
T4
VDD
F6
VDD
N15
NC_T7
T7
VDD
F11
VDD
N17
NC_U5
U5
VDD
F15
VDD
N19
NC_U6
U6
VDD
F18
VDD
P6
NC_V23
V23
VDD
F19
VDD
P10
NC_V5
V5
VDD
G7
VDD
P12
NC_W6
W6
VDD
H2
VDD
P14
PRESENCE_DET
AK2
VDD
J4
VDD
P16
PWROK
F12
VDD
J13
VDD
P18
RESET_L
G12
VDD
K6
VDD
P20
TCK
AE7
VDD
K12
VDD
R9
TDI
AF7
VDD
K18
VDD
R11
TDO
AE8
VDD
L9
VDD
R13
THERMDA
AJ1
VDD
L11
VDD
R15
THERMDC
AH1
VDD
L13
VDD
R17
THERMTRIP_L
AE15
VDD
L15
VDD
R19
TMS
AE6
VDD
L17
VDD
T2
TRST_L
AD7
VDD
M2
VDD
T8
VDD
B5
VDD
M10
VDD
T10
VDD
B9
VDD
M12
VDD
T12
VDD
B13
VDD
M14
VDD
T14
VDD
B17
VDD
M16
VDD
T16
VDD
B21
VDD
M18
VDD
T18
VDD
D4
VDD
M20
VDD
T20
VDD
D8
VDD
N4
VDD
U4
36
Pin Designations
Chapter 5
AMD Opteron™ Processor Data Sheet
23932 Rev 3.00 April 2003
Table 5.
Pin List by Name (Continued)
VDD
U9
VDD
AA11
VDDA2
D2
VDD
U11
VDD
AA13
VDDA3
C2
VDD
U13
VDD
AA15
VDDIO
A23
VDD
U15
VDD
AA17
VDDIO
C23
VDD
U17
VDD
AB6
VDDIO
D26
VDD
U19
VDD
AB8
VDDIO
D28
VDD
V6
VDD
AB12
VDDIO
E23
VDD
V10
VDD
AB18
VDDIO
G26
VDD
V12
VDD
AC13
VDDIO
G28
VDD
V14
VDD
AD2
VDDIO
H22
VDD
V16
VDD
AD12
VDDIO
J21
VDD
V18
VDD
AD14
VDDIO
K20
VDD
V20
VDD
AD16
VDDIO
K22
VDD
W9
VDD
AE4
VDDIO
K26
VDD
W11
VDD
AF6
VDDIO
K28
VDD
W13
VDD
AF10
VDDIO
L19
VDD
W15
VDD
AF14
VDDIO
L21
VDD
W17
VDD
AH5
VDDIO
M22
VDD
W19
VDD
AH9
VDDIO
N21
VDD
Y2
VDD
AH13
VDDIO
N26
VDD
Y10
VDD
AH17
VDDIO
N28
VDD
Y12
VDD
AH21
VDDIO
P22
VDD
Y14
VDD
AK4
VDDIO
R21
VDD
Y16
VDD
AK8
VDDIO
T22
VDD
Y18
VDD
AK12
VDDIO
T26
VDD
Y20
VDD
AK16
VDDIO
T28
VDD
AA4
VDD
AK20
VDDIO
U21
VDD
AA9
VDDA1
C1
VDDIO
U23
Chapter 5
Pin Designations
37
AMD Opteron™ Processor Data Sheet
Table 5.
23932 Rev 3.00 April 2003
Pin List by Name (Continued)
VDDIO
V22
VLDT_0
M8
VSS
B7
VDDIO
W21
VLDT_0
N7
VSS
B11
VDDIO
W26
VLDT_0
P8
VSS
B15
VDDIO
W28
VLDT_0
R7
VSS
B19
VDDIO
Y22
VLDT_0
U7
VSS
B23
VDDIO
AA19
VLDT_0
V8
VSS
B26
VDDIO
AA21
VLDT_0
W7
VSS
B29
VDDIO
AB20
VLDT_0
Y8
VSS
D6
VDDIO
AB22
VLDT_0
AA7
VSS
D10
VDDIO
AB26
VLDT_1
H8
VSS
D14
VDDIO
AB28
VLDT_1
H10
VSS
D18
VDDIO
AC21
VLDT_1
J9
VSS
D22
VDDIO
AD22
VLDT_1
J11
VSS
D23
VDDIO
AE26
VLDT_1
J15
VSS
D30
VDDIO
AE28
VLDT_1
J16
VSS
E2
VDDIO
AG23
VLDT_1
K10
VSS
F1
VDDIO
AH26
VLDT_1
K14
VSS
F2
VDDIO
AH28
VLDT_1
K16
VSS
F5
VDDIO
AJ23
VLDT_2
AB10
VSS
F8
VDDIO
AL23
VLDT_2
AB14
VSS
F10
VDDIO_SENSE
AF20
VLDT_2
AB16
VSS
F13
VDDIOFB_H
AB23
VLDT_2
AC9
VSS
F14
VDDIOFB_L
AC23
VLDT_2
AC11
VSS
F16
VID[0]
G11
VLDT_2
AC15
VSS
F17
VID[1]
H11
VLDT_2
AC16
VSS
G4
VID[2]
G10
VLDT_2
AD8
VSS
G13
VID[3]
F9
VLDT_2
AD10
VSS
G15
VID[4]
G9
VSS
B3
VSS
G17
38
Pin Designations
Chapter 5
AMD Opteron™ Processor Data Sheet
23932 Rev 3.00 April 2003
Table 5.
Pin List by Name (Continued)
VSS
G22
VSS
L16
VSS
P15
VSS
G24
VSS
L18
VSS
P17
VSS
G30
VSS
L20
VSS
P19
VSS
H6
VSS
L22
VSS
P21
VSS
H15
VSS
M6
VSS
R4
VSS
H17
VSS
M7
VSS
R8
VSS
J8
VSS
M9
VSS
R10
VSS
J10
VSS
M11
VSS
R12
VSS
J12
VSS
M13
VSS
R14
VSS
J14
VSS
M15
VSS
R16
VSS
J17
VSS
M17
VSS
R18
VSS
J18
VSS
M19
VSS
R20
VSS
J20
VSS
M21
VSS
R22
VSS
J22
VSS
N8
VSS
T6
VSS
K2
VSS
N10
VSS
T9
VSS
K9
VSS
N12
VSS
T11
VSS
K11
VSS
N14
VSS
T13
VSS
K13
VSS
N16
VSS
T15
VSS
K15
VSS
N18
VSS
T17
VSS
K17
VSS
N20
VSS
T19
VSS
K19
VSS
N22
VSS
T21
VSS
K21
VSS
N24
VSS
T24
VSS
K24
VSS
N30
VSS
T30
VSS
K30
VSS
P2
VSS
U8
VSS
L4
VSS
P7
VSS
U10
VSS
L10
VSS
P9
VSS
U12
VSS
L12
VSS
P11
VSS
U14
VSS
L14
VSS
P13
VSS
U16
Chapter 5
Pin Designations
39
AMD Opteron™ Processor Data Sheet
Table 5.
23932 Rev 3.00 April 2003
Pin List by Name (Continued)
VSS
U18
VSS
Y15
VSS
AC20
VSS
U20
VSS
Y17
VSS
AC22
VSS
U22
VSS
Y19
VSS
AD6
VSS
V2
VSS
Y21
VSS
AD9
VSS
V7
VSS
AA8
VSS
AD11
VSS
V9
VSS
AA10
VSS
AD13
VSS
V11
VSS
AA12
VSS
AD15
VSS
V13
VSS
AA14
VSS
AD17
VSS
V15
VSS
AA16
VSS
AE17
VSS
V17
VSS
AA18
VSS
AE22
VSS
V19
VSS
AA20
VSS
AE24
VSS
V21
VSS
AA22
VSS
AE30
VSS
W4
VSS
AB2
VSS
AF2
VSS
W8
VSS
AB7
VSS
AF8
VSS
W10
VSS
AB9
VSS
AF12
VSS
W12
VSS
AB11
VSS
AF16
VSS
W14
VSS
AB13
VSS
AF21
VSS
W16
VSS
AB15
VSS
AG2
VSS
W18
VSS
AB17
VSS
AH3
VSS
W20
VSS
AB19
VSS
AH7
VSS
W22
VSS
AB21
VSS
AH11
VSS
W24
VSS
AB24
VSS
AH15
VSS
W30
VSS
AB30
VSS
AH19
VSS
Y6
VSS
AC4
VSS
AH23
VSS
Y7
VSS
AC10
VSS
AH30
VSS
Y9
VSS
AC12
VSS
AK6
VSS
Y11
VSS
AC14
VSS
AK10
VSS
Y13
VSS
AC17
VSS
AK14
40
Pin Designations
Chapter 5
AMD Opteron™ Processor Data Sheet
23932 Rev 3.00 April 2003
Table 5.
Pin List by Name (Continued)
VSS
AK18
VSS
AK22
VSS
AK23
VSS
AK26
VSS
AK29
VTT
AF18
VTT
F20
VTT
F21
VTT
G19
VTT
H19
VTT
J19
VTT
AC18
VTT
AC19
VTT
AE18
VTT
AE19
VTT_SENSE
AF19
Chapter 5
Pin Designations
41
AMD Opteron™ Processor Data Sheet
42
23932 Rev 3.00 April 2003
Pin Designations
Chapter 5
AMD Opteron™ Processor Data Sheet
23932 Rev 3.00 April 2003
6
Pin Descriptions
Table 6 describes the terms used in the pin description tables found in this chapter. The pins are
organized within the following functional groups:
•
HyperTransport™ technology interface
•
DDR SDRAM memory interface
•
Miscellaneous pins, including clock, JTAG, and debug pins
All pins are described in the tables beginning on page 44.
Table 6.
Pin Description Table Definitions
Pin Types
Applicable Section in Electrical Chapter
I-HT
Input, HyperTransport™ technology, Differential
“HyperTransport™ Technology Interface” on
page 52
O-HT
Output, HyperTransport technology, Differential
“HyperTransport™ Technology Interface” on
page 52
B-IOS
Bidirectional, 2.5-V Single-Ended
“DDR SDRAM and Miscellaneous Pins” on
page 55
I-IOS
Input, 2.5-V, Single-Ended
“DDR SDRAM and Miscellaneous Pins” on
page 55
I-IOD
Input, 2.5-V, Differential
“Clocks and THERMTRIP_L Pins” on page 66
O-IOD
Output, 2.5-V, Differential
“Clocks and THERMTRIP_L Pins” on page 66
O-IOS
Output, 2.5-V, Single-Ended
“DDR SDRAM and Miscellaneous Pins” on
page 55
Output, 2.5-V, Open Drain
“Clocks and THERMTRIP_L Pins” on page 66
A
Analog
“Power Supplies” on page 74
S
Supply Voltage
“Power Supplies” on page 74
Voltage Reference
“DDR SDRAM and Miscellaneous Pins” on
page 55
O-IO-OD
VREF
Chapter 6
Pin Descriptions
43
AMD Opteron™ Processor Data Sheet
23932 Rev 3.00 April 2003
6.1
HyperTransport™ Technology Pins
Table 7.
HyperTransport™ Technology Pin Descriptions
Signal Name
Type
Description
L0_CLKIN_H/L[1:0]
I-HT
Link 0 Clock Input
L0_CTLIN_H/L[0]
I-HT
Link 0 Control Input
L0_CADIN_H/L[15:0]
I-HT
Link 0 Command/Address/Data Input
L0_CLKOUT_H/L[1:0]
O-HT
Link 0 Clock Outputs
L0_CTLOUT_H/L[0]
O-HT
Link 0 Control Output
L0_CADOUT_H/L[15:0]
O-HT
Link 0 Command/Address/Data Outputs
L1_CLKIN_H/L[1:0]
I-HT
Link 1 Clock Input
L1_CTLIN_H/L[0]
I-HT
Link 1 Control Input
L1_CADIN_H/L[15:0]
I-HT
Link 1 Command/Address/Data Input
L1_CLKOUT_H/L[1:0]
O-HT
Link 1 Clock Outputs
L1_CTLOUT_H/L[0]
O-HT
Link 1 Control Output
L1_CADOUT_H/L[15:0]
O-HT
Link 1 Command/Address/Data Outputs
L2_CLKIN_H/L[1:0]
I-HT
Link 2 Clock Input
L2_CTLIN_H/L[0]
I-HT
Link 2 Control Input
L2_CADIN[15:0]
I-HT
Link 2 Command/Address/Data Input
L2_CLKOUT_H/L[1:0]
O-HT
Link 2 Clock Outputs
L2_CTLOUT_H/L[0]
O-HT
Link 2 Control Output
L2_CADOUT_H/L[15:0]
O-HT
Link 2 Command/Address/Data Outputs
L0_REF1
A
Compensation Resistor to VLDT1
L0_REF0
A
Compensation Resistor to VSS1
Notes:
1. These pins are used in an alternating fashion to compensate RTT by internal comparison to 3/4 VLDT and 1/4 VLDT
and compensate RON by comparison to each other around 1/2 VLDT. For proper resistor value, see the
AMD Opteron™ Processor Motherboard Design Guide, order# 25180.
44
Pin Descriptions
Chapter 6
AMD Opteron™ Processor Data Sheet
23932 Rev 3.00 April 2003
6.2
DDR SDRAM Memory Interface Pins
Table 8.
DDR SDRAM Memory Interface Pin Descriptions
Signal Name
Type Description
MEMCLK_UP_H/L[3] O-IOD DRAM Clock connected to DIMM3 for the upper half of the data bus
MEMCLK_UP_H/L[2] O-IOD DRAM Clock connected to DIMM2 for the upper half of the data bus
MEMCLK_UP_H/L[1] O-IOD DRAM Clock connected to DIMM1 for the upper half of the data bus
MEMCLK_UP_H/L[0] O-IOD DRAM Clock connected to DIMM0 for the upper half of the data bus
MEMCLK_LO_H/L[3] O-IOD DRAM Clock connected to DIMM3 for the lower half of the data bus
MEMCLK_LO_H/L[2] O-IOD DRAM Clock connected to DIMM2 for the lower half of the data bus
MEMCLK_LO_H/L[1] O-IOD DRAM Clock connected to DIMM1 for the lower half of the data bus
MEMCLK_LO_H/L[0] O-IOD DRAM Clock connected to DIMM0 for the lower half of the data bus
MEMCKE_UP
O-IOS DRAM Clock Enable
MEMCKE_LO
O-IOS DRAM Clock Enable
MEMDQS[35]
B-IOS DRAM Data Strobe synchronous with MEMCHECK[15:12] for x4 DIMMs.
MEMDQS[34:27]
B-IOS DRAM Data Strobe synchronous with the high-order nibbles of MEMDATA[127:64]
for x4 DIMMs
MEMDQS[26]
B-IOS DRAM data strobe synchronous with MEMCHECK[11:8] for x4 DIMMs and
MEMCHECK[15:8] for x8/x16 DIMMs.
MEMDQS[25:18]
B-IOS DRAM Data Strobe synchronous with the low-order nibbles of MEMDATA[127:64]
for x4 DIMMs and all nibbles for x8/x16 DIMMs
MEMDQS[17]
B-IOS DRAM Data Strobe synchronous with MEMCHECK[7:4] for x4 DIMMs
MEMDQS[16:9]
B-IOS DRAM Data Strobe synchronous with high-order nibbles of MEMDATA[63:0] for x4
DIMMs
MEMDQS[8]
B-IOS DRAM Data Strobe synchronous with MEMCHECK[3:0] for x4 DIMMs and
MEMCHECK[7:0] for x8/x16 DIMMs
MEMDQS[7:0]
B-IOS DRAM Data Strobe synchronous with low-order nibbles of MEMDATA[127:64] for
x4 DIMMs and all nibbles for x8/x16 DIMMs
MEMDATA[127:0]
B-IOS DRAM Interface Data Bus
MEMCHECK[15:0]
B-IOS DRAM Interface ECC Check Bits
MEMCS_L[7:0]
O-IOS DRAM Chip Selects1
MEMRAS_L
O-IOS DRAM Row Address Select
MEMCAS_L
O-IOS DRAM Column Address Select
Chapter 6
Pin Descriptions
45
AMD Opteron™ Processor Data Sheet
Table 8.
23932 Rev 3.00 April 2003
DDR SDRAM Memory Interface Pin Descriptions (Continued)
Signal Name
Type Description
MEMWE_L
O-IOS DRAM Write Enable
MEMADD[13:0]
O-IOS DRAM Column/Row Address
MEMBANK[1:0]
O-IOS DRAM Bank Address
MEMRESET_L
O-IOS DRAM Reset pin for Suspend-to-RAM power management mode. This pin is required
for registered DIMMs only.
MEMVREF
VREF DRAM Interface Voltage Reference1
MEMZP
A
Compensation Resistor tied to VSS1
MEMZN
A
Compensation Resistor tied to 2.5 V1
Notes:
1. For connection details and proper resistor values, see the AMD Opteron™ Processor Motherboard Design Guide,
order# 25180.
46
Pin Descriptions
Chapter 6
AMD Opteron™ Processor Data Sheet
23932 Rev 3.00 April 2003
6.3
Miscellaneous Pins
Table 9.
Clock Pin Descriptions
Signal Name
Type
Description
CLKIN_H/L
I-IOD
200-MHz PLL Reference Clock
FBCLKOUT_H/L
O-IOD
Core Clock PLL 200-MHz Feedback Clock
Table 10. Miscellaneous Pin Descriptions
Signal Name
Type
Description
RESET_L
I-IOS
System Reset
PWROK
I-IOS
Indicates that voltages and clocks have reached specified operation
LDTSTOP_L
I-IOS
HyperTransport™ Technology Stop Control Input. Used for power
management and for changing HyperTransport link width and frequency.
VID[4:0]
O-IOS
Voltage ID to the regulator
THERMDA
A
Anode (+) of the thermal diode
THERMDC
A
Cathode (–) of the thermal diode
THERMTRIP_L
O-IO-OD
Thermal Sensor Trip output, asserted at nominal temperature of 125oC.
COREFB_H/L
A
Differential feedback for VDD Power Supply
VDDIOFB_H/L
A
Differential feedback for VDDIO Power Supply
CORE_SENSE
A
VDD voltage monitor pin
VDDA
S
Filtered PLL Supply Voltage
VTT_SENSE
A
VTT voltage monitor pin
VDDIO_SENSE
A
VDDIO voltage monitor pin
VDD
S
Core power supply
VDDIO
S
DDR SDRAM I/O ring power supply
VLDT_0
VLDT_1
VLDT_2
S
HyperTransport™ I/O ring power supply
VTT
S
VTT regulator voltage
Chapter 6
Pin Descriptions
47
AMD Opteron™ Processor Data Sheet
23932 Rev 3.00 April 2003
Table 10. Miscellaneous Pin Descriptions (Continued)
Signal Name
Type
Description
PRESENCE_DET
S
This pin can be connected to VSS or used for detection of the processor in
multiprocessor configurations. When used as a presence detection bit it
should be pulled up and sensed via the circuitry that is used to detect
installed processors on the motherboard. This pin is connected to VSS
internally.
VSS
S
Ground
Table 11. VID[4:0] Encoding
VID[4:0]
VDD
VID[4:0]
VDD
VID[4:0]
VDD
VID[4:0]
VDD
0x00000
1.550 V
0x01000
1.350 V
0x10000
1.150 V
0x11000
0.950 V
0x00001
1.525 V
0x01001
1.325 V
0x10001
1.125 V
0x11001
0.925 V
0x00010
1.500 V
0x01010
1.300 V
0x10010
1.100 V
0x11010
0.900 V
0x00011
1.475 V
0x01011
1.275 V
0x10011
1.075 V
0x11011
0.875 V
0x00100
1.450 V
0x01100
1.250 V
0x10100
1.050 V
0x11100
0.850 V
0x00101
1.425 V
0x01101
1.225 V
0x10101
1.025 V
0x11101
0.825 V
0x00110
1.400 V
0x01110
1.200 V
0x10110
1.000 V
0x11110
0.800 V
0x00111
1.375 V
0x01111
1.175 V
0x10111
0.975 V
0x11111
Off
Table 12. JTAG Pin Descriptions
Signal Name
Type
Description
TCK
I-IOS
JTAG Clock
TMS
I-IOS
JTAG Mode Select
TRST_L
I-IOS
JTAG Reset
TDI
I-IOS
JTAG Data Input
TDO
O-IOS
JTAG Data Output
48
Pin Descriptions
Chapter 6
AMD Opteron™ Processor Data Sheet
23932 Rev 3.00 April 2003
Table 13. Debug Pin Descriptions
Signal Name
Type
Description
DBREQ_L
I-IOS
Debug Request
DBRDY
O-IOS
Debug Ready
Chapter 6
Pin Descriptions
49
AMD Opteron™ Processor Data Sheet
6.4
23932 Rev 3.00 April 2003
Pin States at Reset
The default pin states are listed below. These are listed for all output and bidirectional pins in the
power-on reset state (reset) as well as the ACPI S1 and S3 power management states.
Table 14. Reset Pin State
Reset
State
S1
State
S3
State
L*_CLKOUT*
T
Z
Z
Tristated in S1 only if programmed to do so.
L*_CTLOUT*
0
Z
Z
Tristated in S1 only if programmed to do so.
L*_CADOUT*
1
Z
Z
Tristated in S1 only if programmed to do so.
MEMCLK*
Z
Z
Z
MEMDQS*
Z
Z
Z
MEMCKE*
0
0
0
MEMDATA*
Z
Z
Z
MEMCHECK*
Z
Z
Z
MEMCS_L*
1
Z
Z
MEMRAS_L
1
Z
Z
MEMCAS_L
1
Z
Z
MEMWE_L
1
Z
Z
MEMADD*
0
Z
Z
MEMBANK*
0
Z
Z
MEMRESET_L
0
0
0
MEMZN
1
1
1
MEMZP
0
0
0
FBCLKOUT*
T
T
Z
TDO
X
X
Z
DBRDY
0
0
Z
VID[4:0]
X
X
X
THERMTRIP_L
Z
X
Z
Pin Name
Comments
In S3, MEMCKE* is forced to a logic Low.
In S3, MEMRESET_L is forced to logic 0.
For differential inputs, “0” and “1” refer to the high-end differential output. Low-end differential outputs are inverted.
Definitions of pin states: X: Either logic 1 or 0, Z: Tristated, T: Toggling between 0 and 1
50
Pin Descriptions
Chapter 6
AMD Opteron™ Processor Data Sheet
23932 Rev 3.00 April 2003
7
Electrical Data
7.1
Absolute Maximum Ratings
Stresses greater than those listed in Table 15 may cause permanent damage to the device and
motherboard. Systems using this device must be designed to ensure that these parameters are not
violated. Violation of these ratings will void the product warranty. Exposure to absolute maximum
rating conditions for extended periods may affect device reliability.
Table 15. Absolute Maximum Ratings for AMD Opteron™ Processor
Characteristic
Range
Case Temperature
69oC max
Storage Temperature
–55oC to 150oC
VLDT supply voltage relative to VSS
–0.3 V to 1.5 V
VDD supply voltage relative to VSS
–0.3 V to 1.65 V
VTT supply voltage relative to VSS
–0.3 V to 1.65 V
VDDIO supply voltage relative to VSS
–1 V to 2.9 V
VDDA supply voltage relative to VSS
–0.3 V to 3.0 V
MEMVREF input voltage relative to VSS
–1 V to 2.9 V
Input voltage relative to VSS for HyperTransport™ technology interface
–0.3 V to 1.5 V
Differential input voltage for HyperTransport™ technology interface
–1.5 V to 1.5 V
Input voltage relative to VSS for DDR SDRAM memory interface and
Miscellaneous pins
–1 V to 2.9V
Chapter 7
Electrical Data
51
AMD Opteron™ Processor Data Sheet
23932 Rev 3.00 April 2003
7.2
HyperTransport™ Technology Interface
7.2.1
Operating Conditions
Table 16. DC Operating Conditions for HyperTransport™ Technology Interface
Symbol
Parameter
Unit
Min
Typ
Max
Notes
VOD
Output Differential Voltage
mV
495
600
715
1, 2
VOCM
Output Common Mode Voltage
mV
495
600
715
1, 2
VID
Input Differential Voltage
mV
200
600
1000
1, 2
VICM
Input Common Mode Voltage
mV
440
600
780
1, 2
DeltaVOD
Change in VOD from 0 to 1 State
mV
–15
0
15
1
DeltaVOCM
Change in VOCM from 0 to 1 State
mV
–15
0
15
1
DeltaVID
Change in VID from 0 to 1 State
mV
–15
0
15
1
DeltaVICM
Change in VICM from 0 to 1 State
mV
–15
0
15
1
Il
Input Leakage Current
mA
–1
1
IOZ
Output Tristate Leakage Current
mA
–1
1
RON
Output Driver Impedance
ohm
45
50
55
DeltaRON
Change in RON Driving 0=>1 or
%
–2.5
0
2.5
ohm
90
100
110
1=>0
RTT
Input Differential Impedance
Notes:
1. Measured by comparing each signal voltage with respect to ground.
2. Measured at <100 MHz, considered slow enough to attain both 0 and 1 logic state voltage levels without AC
transients on signals and supplies.
52
Electrical Data
Chapter 7
AMD Opteron™ Processor Data Sheet
23932 Rev 3.00 April 2003
Table 17. AC Operating Conditions for HyperTransport™ Technology Interface
Symbol
Parameter
Unit
Min
VOD
Output Differential Voltage
mV
VOCM
Output Common Mode Voltage
VID
Typ
Max
Notes
400
820
1
mV
440
780
1
Input Differential Voltage
mV
300
900
1
VICM
Input Common Mode Voltage
mV
385
845
1
DeltaVOD
Change in VOD from 0 to 1 State
mV
–75
75
1
DeltaVOCM
Change in VOCM from 0 to 1 State
mV
–50
50
1
DeltaVID
Change in VID from 0 to 1 State
mV
–125
125
1
DeltaVICM
Change in VICM from 0 to 1 State
mV
–100
100
1
TRISE
Input Rising Edge Rate
V/ns
1
4
1, 2
TFALL
Input Falling Edge Rate
V/ns
1
4
1, 2
CIN
Input Pad Capacitance
pF
2
COUT
Output Pad Capacitance
pF
3
CDELTA
CIN Pad Capacitance Range Across Group
pF
0.5
TCADV
Output CAD Valid
pS
166
459
TPHERR
Accumulated Phase Error, CLKIN_H/L to
L*_CLKOUT_H/L[1:0]
pS
0
5000
TSU
Device Setup Time
pS
110
3, 4
THLD
Device Hold Time
pS
110
3, 4
RTT
Input Differential Impedance
ohm
90
100
110
RON
Output Impedance
ohm
45
50
55
DeltaRON
Change in RON Driving 0=>1 or 1=>0
%
–2.5
3
2.5
Notes:
1. Measured by comparing each signal voltage with respect to ground.
2. Measured in a differential fashion relative to the complement signal.
3. Measured from crossing points of differential pairs.
4. Input setup and hold times are measured from the crossing point of CAD versus the crossing point of CLK, effectively
including the edge time to achieve VID min AC.
Chapter 7
Electrical Data
53
AMD Opteron™ Processor Data Sheet
7.2.2
23932 Rev 3.00 April 2003
Reference Information
Table 18. Internal Termination for HyperTransport™ Technology Interface
Pin
Internal Termination
Value
Tolerance
L*_CADIN*
Differential RTT
100 ohm (PVT-compensated)
±5%
L*_CTLIN*
Differential RTT
100 ohm (PVT-compensated)
±5%
L*_CLKIN*
Differential RTT
100 ohm (PVT-compensated)
±5%
54
Electrical Data
Chapter 7
AMD Opteron™ Processor Data Sheet
23932 Rev 3.00 April 2003
7.3
DDR SDRAM and Miscellaneous Pins
This section includes electrical specifications for all DDR SDRAM pins described in “DDR SDRAM
Memory Interface Pins” on page 45, and the RESET_L, LDTSTOP_L, PWROK, VID[4:0], TCK,
TMS, TRST_L, TDI, TDO, DBREQ_L, and DBRDY pins described in “Miscellaneous Pins” on
page 47.
7.3.1
Operating Conditions
Table 19. DC Operating Conditions
Symbol
Vref
Parameters
Reference voltage (for I/O),
MEMVREF pin
Unit
Min
Typ
Max
Notes
V
0.49*VDDIO_dc
Min
0.5*VDDIO_dc
0.51*VDDIO_dc
Max
1, 12
Il
Input leakage current
Any input: 0 < VIN < VDDIO V
(All other pins not under test =
0V)
mA
-1
1
Ioz
Output leakage current
Any output: 0 < VOUT <
VDDIO V
mA
-1
1
VIH
Input high voltage (logic 1)
V
Vref + 0.15
-
-
2
VIL
Input low voltage (logic 0)
V
-
-
Vref - 0.15
2
VOH
Output high voltage (logic 1)
V
1.8
VOL
Output low voltage (logic 0)
V
IOH
Output levels -Output high current (VOUT= VDDIO/2)
mA
-25
-28
-33
3
IOL
Output levels - Output low current (VOUT=VDDIO/2)
mA
25
28
32
3
VOD
Differential output voltage (for
CK & CK)
V
1.2
1.3
1.4
4
mV
-100
-
100
5
V
1.1
1.25
1.4
6
mV
-100
-
100
7
∆ VOD
Change in VOD magnitude
VOCM
Output common mode voltage
(for CK & CK)
∆ VOCM
Change in VOCM magnitude
0.65
Notes:
The notes for Table 19 through Table 22 appear on page 57.
Chapter 7
Electrical Data
55
AMD Opteron™ Processor Data Sheet
23932 Rev 3.00 April 2003
Table 20. AC Operating Conditions
Symbol
Parameters
Unit
Min
Vref
Reference voltage (for I/O),
MEMVREF pin
V
Vref(DC) 2%
VIH
Input high voltage (logic 1)
V
Vref + 0.35
VIL
Input low voltage (logic 0)
V
VOD
Differential output voltage (for
CK & CK)
V
∆ VOD
Change in VOD magnitude
VOCM
Output common mode voltage (for
CK & CK)
∆ VOCM
Change in VOCM magnitude
Typ
Max
Notes
Vref(DC) +
2%
1
-
2
-
Vref - 0.35
2
1.0
1.3
1.6
4
mV
-150
-
150
5
V
0.9
1.25
1.6
6
mV
-200
-
200
7
Unit
Min
Typ
Max
Notes
Table 21. Input Capacitance
Symbol
Parameters
Cin
Input capacitance (DQ & DQS)
pF
3.0
3.5
4.0
∆C
Delta Input capacitance
pF
-
-
0.4
8
Table 22. Slew Rate of DDR SDRAM Signals
Symbol
Parameters
Unit
Min
Typ
Max
Notes
SOUT
Output slew rate (pullup and pulldown)
V/ns
2
3
4
9
0.75
1
1.25
10
4
11
SOUT_Rat
io
Sin
56
Output slew rate ratio between
pullup and pulldown
Input slew rate
V/ns
0.5
Electrical Data
Chapter 7
AMD Opteron™ Processor Data Sheet
23932 Rev 3.00 April 2003
1. Vref is expected to be equal to 0.5*VDDIO and to track variations in the DC level of the same. Peak to peak noise on
Vref may not exceed + 2% of the DC value.
2. The AC values indicate the voltage levels at which the receiver must meet its timing specifications. The DC values
indicate the voltage levels at which the final logic state of the receiver is unambiguously defined. The receiver
effectively switches to the new logic state when receiver input crosses the AC level. The new logic state is maintained
as long as the input stays beyond the DC threshold.
3. With compensation the granularity between NMOS current and PMOS current cannot exceed 3mA. The range is 6mA
due to 10% variation.
4. VOD is the differential output voltage or the voltage difference between true and complement under DC or AC
conditions.
5. ∆ VOD is the change in magnitude between the differential output voltage while driving a logic 0 and while driving a
logic 1.
6. VOCM is the output common mode voltage defined as the average of the true voltage magnitude and the complement
voltage magnitude relative to ground under DC or AC conditions.
7. ∆ VOCM is the change in magnitude between the output common mode voltage while driving a logic 0 and while
driving a logic 1.
8. ∆ C means the difference in capacitance between any MEMDATA/MEMDQS pin to any other MEMDATA/MEMDQS
pin.
9. Pullup and pulldown slew rate is measured into RTT (50 Ohms) to VTT as shown in Figure 4. The slew rate is measured
between Vref + 300 mV. It is designed for any pattern of data, including all outputs switching and only one output
switching.
10. The ratio of pullup slew rate to pulldown slew rate is specified for the same temperature and voltage, over the entire
temperature and voltage range. For a given output, it represents the maximum difference between pullup and
pulldown drivers due to process variation.
11. The slew rate is measured at the CPU pin between Vref + 150 mV. Minimum and maximum input slew rate
specification is set based on DRAM output slew rate specification.
12. VDDIO_dc is defined in Table 32 on page 74.
VTT
RTT
Driver
0 pF
Figure 4. Slew Rate Measurement Example
Chapter 7
Electrical Data
57
AMD Opteron™ Processor Data Sheet
23932 Rev 3.00 April 2003
Table 23. Package Routing Skew
Routing Measurement
58
Skew (ps)
Any MEMCLK clock pair to any other MEMCLK clock pair
+ 100
Any MEMCLK pair to any MEMDQS pair
+ 100
Any MEMDQS pair to any MEMDATA associated within pair
+ 75
Any MEMCLK pair to any MEMADD/CMD
+ 100
Pad skew
+ 250
Electrical Data
Chapter 7
AMD Opteron™ Processor Data Sheet
23932 Rev 3.00 April 2003
7.3.2
AC Operating Characteristics
Table 24. Electrical AC Timing Characteristics for DDR SDRAM Signals
Symbol
5.
6.
7.
8.
Unit
Min
Typ
Max
Notes
15
tCK
MEMCLK cycle time
ps
5000
-
10000
tCH
MEMCLK high pulse width
ps
0.45*tCK
-
0.55*tCK
tCL
MEMCLK low pulse width
ps
0.45*tCK
-
0.55*tCK
MEMCLK output skew
ps
-350
-
350
1,2,3
tDQSH
MEMDQS high pulse width
ps
0.45*tCK
-
0.55*tCK
1
tDQSL
MEMDQS low pulse width
ps
0.45*tCK
-
0.55*tCK
1
tDQS
MEMCLK to MEMDQS
ps
-350
-
350
1,4,5
tDSS
MEMDQS falling edge to MEMCLK rising edge
ps
0.45*tCK 350
-
-
1,6,7
tDSH
MEMCLK rising edge to MEMDQS falling edge
ps
0.45*tCK 350
-
-
1,6,7
tDQSQV
MEMDQS to MEMDATA shift
(when data becomes valid)
ps
-{0.5*
tDQSHmax [638]}
-
-{0.5*
tDQSHmin
+ [638]}
1,8,9
tDQSQIV
MEMDQS to MEMDATA shift
(when data becomes invalid)
ps
{0.5*tDQSHmin - [638]}
-
{0.5*
tDQSHmax
+ [638]}
1,8,9
t2
MEMADD/CMD to MEMCLK
(Registered DIMM environment MEMADD/CMD are launched 1/2
clock early)
ps
- 350
-
350
1,10,11
t3
MEMDATA edge arrival relative
to MEMDQS
ps
-{tCK/4 [350+0.2*
(tCK/4)]}
-
tCK/4 [350+0.2*
(tCK/4)]
12,13,14
tCKS
1.
2.
3.
4.
Parameters
Write cycle timing parameter
The skew consists of pad output skew (+ 250ps) and package routing skew between any two clock pairs (+ 100ps).
tCKS Timing Parameter, refer to Figure on page 61.
The timing consists of pad output skew (+ 250ps) and package routing skew between any MEMCLK to any MEMDQS
(+ 100ps).
tDQS Timing parameter, refer to Figure on page 61.
The skew consists of pad output skew (+ 250ps) and package routing skew between any MEMCLK to any MEMDQS
(+ 100ps). Minimum DQS pulse width is 45% of MEMCLK.
tDSS, tDSH timing parameters, refer to Figure on page 62.
During write, DQ signals are driven quarter clock earlier such that DQS is placed in the center of data eye window.
The skew consists of pad output skew (+ 250ps), package routing skew between any DQS signals and it’s associated
DQ signals (+ 75ps) and maximum clock granularity (+ 312.5 ps).
Chapter 7
Electrical Data
59
AMD Opteron™ Processor Data Sheet
23932 Rev 3.00 April 2003
9. tDQSQV and tDQSQIV timing parameters apply only within DQS and its associated DQ signals. Refer to Figure on
page 63.
10. The skew consists of pad output skew (+ 250 ps) and package routing skew (+ 100 ps) between any MEMCLK pair to
any MEMADD/CMD signal. Maximum clock granularity skew is 312.5 ps.
11. t2 Timing parameter, applies to registered DIMM Environment Only - MEMADD/CMD signals are launched 1/2 clock
cycle early. The granularity term does not apply here. Refer to Figure on page 64.
12. Read cycle timing parameter.
13. The PDL placement uncertainty is 20%. Package skew between DQS and its associated DQs is 75ps. The sum of
setup/hold time & receiver uncertainty is 275ps.
14. t3 timing parameter, refer to Figure on page 65.
15. The slow operation of 10ns cycle time is specifically included for functional test purpose only. All electrical
characterization will be performed at full speed however all functional tests will be performed at 10ns cycle time.
60
Electrical Data
Chapter 7
AMD Opteron™ Processor Data Sheet
23932 Rev 3.00 April 2003
tCK
CK
CK
tCKS Max
CK
CK
tCKS Min
CK
CK
Figure 5. MEMCLK Output Skew
tCK
CK
CK
DQS
tDQS Max
DQS
tDQS Min
Figure 6. MEMDQS Timing Parameter
Chapter 7
Electrical Data
61
AMD Opteron™ Processor Data Sheet
23932 Rev 3.00 April 2003
t
tCK
CK
CK
tDSS Min
DQS
DQS
tDSH Min
Figure 7. DSS/tDSH Timing Parameters
62
Electrical Data
Chapter 7
AMD Opteron™ Processor Data Sheet
23932 Rev 3.00 April 2003
tCK
CK
CK
DQS
Ideal 90o Phase Shift - tDQSQV Typical
DQs
tDQSQV Min - Latest time Data can become valid
DQs
DQs
tDQSQV Max - Earliest time Data can become valid
Ideal 90o Phase Shift - tDQSQIV Typical
DQs
tDQSQIV Max - Latest time Data can become Invalid
DQs
DQs
tDQSQIV Min - Earliest time Data can become In-valid
Figure 8. tDQSQV/tDQSQIV Timing Parameters
Chapter 7
Electrical Data
63
AMD Opteron™ Processor Data Sheet
23932 Rev 3.00 April 2003
tCK
CK
CK
tCK/2 tCK/2
ADDR/CMD
t2 =0 (Ideal timing)
t2 max
ADDR/CMD
t2 max = 350
ADDR/CMD
t2 min = -350
t2 min
Figure 9. MEMADD/CMD to MEMCLK Timing Parameter (Registered DIMMs)
64
Electrical Data
Chapter 7
AMD Opteron™ Processor Data Sheet
23932 Rev 3.00 April 2003
DQS
DQs Perfect
Edge Aligned
t3 = 0 ps
t3 Max
DQs Late arrival
from strobe
t3 Max
t3 Min
DQs Early
arrival from
strobe
t3 Min
setup
Package + PDL + Receiver uncertainty
Figure 10.MEMDQS Edge Arrival Relative to DQs
Chapter 7
Electrical Data
65
AMD Opteron™ Processor Data Sheet
23932 Rev 3.00 April 2003
7.4
Clocks and THERMTRIP_L Pins
7.4.1
Operating Conditions
Table 25. DC Operating Conditions for THERMTRIP_L Pin
Symbol
Parameter
Unit
Min
Typ
VIH (DC)
Input High Voltage (logic 1)
V
VREF+0.15
-
VIL (DC)
Input Low Voltage (logic 0)
V
IL
Input Leakage Current
Any input 0V < VIN < VDDIO
(All other pins not under test = 0 V)
VOL
Output Low Voltage (logic 0)
V
VOH
Output High Voltage (logic 1)
V
1.8
IOZ
Output Leakage Current
0V < VOUT < VDDIO
mA
–1
-
1
mA
mA
–25
25
–28
28
–33
32
IOH
IOL
Output Levels
Output High Current (VOUT=1.25 V)
Output Low Current (VOUT= 1.25 V)
mA
–1
Max
Notes
1
-
VREF–0.15
-
1
2
0.65
2
Notes:
1. The AC and DC input level specifications are as defined in SSTL_2 standard, i.e., the receiver will effectively switch as
a result of the signal crossing the AC input level and will remain in that state as long as the signal does not ring back
above (or below) the DC input Low (or High) level.
2. With compensator scheme, the granularity between NMOS current and PMOS current cannot exceed 3 mA. (Range is
6 mA due to 10% variation.)
66
Electrical Data
Chapter 7
AMD Opteron™ Processor Data Sheet
23932 Rev 3.00 April 2003
Table 26. DC Operating Conditions for CLKIN_H/L and FBCLKOUT_H/L Pins
Symbol
Parameters
Unit
Min
Typ
VID
Differential Input Voltage
mV
300
2400
DeltaVID
Change in VID Magnitude
mV
–50
50
VICM
Input Common Mode Voltage
mV
VTT–100
DeltaVICM
Change in VICM Magnitude
mV
–50
VOD
Differential Output Voltage
V
1.2
DeltaVOD
Change in VOD Magnitude
mV
–50
VOCM
Output Common Mode Voltage
V
1.1
DeltaVOCM
Change in VOCM Magnitude
mV
–50
VTT
Max
Notes
VTT+100
50
1.3
1.25
1.4
1
50
2
1.4
3
50
4
Notes:
1. VOD is the differential output voltage or the voltage difference between true and complement under DC or AC
conditions.
2. DeltaVOD is the change in magnitude between the differential output voltage while driving logic 0 and while driving
logic 1.
3. VOCM is the output common mode voltage defined as the average of the true voltage magnitude and the complement
voltage relative to ground under DC or AC conditions.
4. DeltaVOCM is the change in magnitude between the output common mode voltage while driving logic 0 and while
driving logic 1 under DC or AC conditions.
Table 27. AC Operating Conditions for THERMTRIP_L Pin
Symbol
Parameter
Unit
Min
VIH (AC)
Input High Voltage (logic 1)
V
VREF + 0.35
VIL (AC)
Input Low Voltage (logic 0)
V
Typ
Max
Notes
1
VREF – 0.35
1
Notes:
1. The AC and DC input level specifications are as defined in SSTL_2 standard, i.e., the receiver will effectively switch as
a result of the signal crossing the AC input level and will remain in that state as long as the signal does not ring back
above (or below) the DC input Low (or High) level.
Chapter 7
Electrical Data
67
AMD Opteron™ Processor Data Sheet
23932 Rev 3.00 April 2003
Table 28. AC Operating Conditions for CLKIN_H/L and FBCLKOUT_H/L Pins
Symbol
Parameter
Unit
Min
F (PLL mode,
VDDA=2.5 V)
Input Frequency Range (SSC)
MHz
DC
Input Duty Cycle (CLKIN_H/L)
VBIAS
Typ
Max
Notes
198.8
200
6
%
30
70
Input BIAS Voltage Node
mV
VTT
VID
Differential Input Voltage
mV
400
2300
DeltaVID
Change in VID Magnitude
mV
–150
150
VICM
Input Common Mode Voltage
mV
VBIAS–200
VBIAS+200
DeltaVICM
Change in VICM Magnitude
mV
–200
200
VOD
Differential Output Voltage
V
1.2
DeltaVOD
Change in VOD Magnitude
mV
–100
VOCM
Output Common Mode Voltage
V
1.1
DeltaVOCM
Change in VOCM Magnitude
mV
IF
Input Falling Edge Rate
IR
Input Rising Edge Rate
CIN
Input Capacitance
VTT
1.3
VTT
1.4
1
100
2
1.4
3
–100
100
4
V/ns
1.2
10
5
V/ns
1.2
10
5
pF
0
5
1.25
Notes:
1. VOD is the differential output voltage or the voltage difference between true and complement under DC or AC
conditions.
2. Delta VOD is the change in magnitude between the differential output voltage while driving logic 0 and while driving
logic 1.
3. VOCM is the output common mode voltage defined as the average of the true voltage magnitude and the complement
voltage relative to ground under DC or AC conditions.
4. Delta VOCM is the change in magnitude between the output common mode voltage while driving logic 0 and while
driving logic 1 under DC or AC conditions.
5. Measured differentially through the range of VICM – 400 mV to VICM + 400 mV.
6. Spread spectrum clocking is limited to –0.5% downspread under normal operation.
68
Electrical Data
Chapter 7
AMD Opteron™ Processor Data Sheet
23932 Rev 3.00 April 2003
7.4.2
Power-Up Signal Sequencing
Figure 11 on page 70 illustrates the signal sequencing requirements during a cold reset (power-up
conditions). The actual reset sequencing is defined in the HyperTransport™ I/O Link Specification.
The following list describes the power-up signal sequencing illustrated in Figure 11. Note that the
numbered items correspond to the numbers in Figure 11.
1. RESET_L must be asserted a minimum of 1 ms prior to the assertion of PWROK, as defined in
the HyperTransport™ I/O Link Specification. The TMS pin must be asserted a minimum of 10 ns
before PWROK assertion and must be held in the High state a minimum of 10 ns after the
assertion of PWROK.
2. CLKIN_H/L must be within specification at the time the VDD power supply begins to ramp.
3. PWROK is asserted at least 1 ms after CLKIN_H/L is stable and voltages to the processor are
within specification. The processor determines if there are devices attached to its HyperTransport
links 10 µs after the assertion of PWROK.
4. After PWROK assertion, the VID[4:0] signals change from the default code (01110b = 1.2 V) to
the value programmed during device manufacturing. The PLL begins locking to the frequency
programmed during device manufacturing 160 µs after PWROK is asserted.
5. LDTSTOP_L must be deasserted a minimum of 1 µs before the deassertion of RESET_L, as
defined by the HyperTransport™ I/O Link Specification.
6. The RESET_L signal is deasserted a minimum of 1 ms after PWROK assertion, as defined in the
HyperTransport™ I/O Link Specification. The clocks from the transmitters of all HyperTransport
technology devices must be stable before RESET_L is deasserted.
7. The MEMCLK_LO_H/L[3:0] and MEMCLK_UP_H/L[3:0] signals are stable after BIOS sets the
Memory Clock Ratio Valid (MCR) bit in the processor’s DRAM Config Upper register. The
MEMCLK* period is defined by the MEMCLK[2:0] field in the DRAM Config Upper register.
8. MEMRESET_L is deasserted a minimum of 394µs at 166 MHz (DDR333) or a maximum of
655µs at 100 MHz (DDR200) after BIOS sets the Dram_Init bit in the DRAM Config Lower
register. This allows time for the PLL on registered DIMMs to stabilize before the deassertion of
the DIMM’s reset signal.
9. The MEMCKE_LO/UP signals are asserted a minimum of 12 MEMCLK* periods following the
deassertion of MEMRESET_L.
Note: Refer to the BIOS and Kernel Developer’s Guide for the AMD Athlon™ 64 and
AMD Opteron™ Processors, order# 26094, for details on the memory configuration registers.
Chapter 7
Electrical Data
69
AMD Opteron™ Processor Data Sheet
23932 Rev 3.00 April 2003
VDD
3
PWROK
4
VID[4:0]
01110 (1.2V)
6
1
RESET_L
L0_CLKIN_H/L[1:0]
5
LDTSTOP_L
8
MEMRESET_L
2
CLKIN_H/L
7
VALID
MEMCLK*
9
MEMCKE*
TMS
Figure 11. Power-Up Signal Sequencing
70
Electrical Data
Chapter 7
AMD Opteron™ Processor Data Sheet
23932 Rev 3.00 April 2003
7.4.3
Reference Information
Table 29. Internal Termination for Miscellaneous Pins Interface
Pin
Type2
Internal Termination
CLKIN_H/L
I-IOD
None1
FBCLKOUT_H/L
O-IOD
80-ohm differential termination
RESET_L
I-IOS
None
PWROK
I-IOS
None
VID[4:0]
O-IOS
None
LDTSTOP_L
I-IOS
None
THERMDA
A
None
THERMDC
A
None
O-IO-OD
None
A
None
THERMTRIP_L
COREFB_H/L
Value
Tolerance
±50%
TCK
I-IOS
Pullup to VDDIO
533 ohms
±50%
TMS
I-IOS
Pullup to VDDIO
533 ohms
±50%
TRST_L
I-IOS
Pullup to VDDIO
533 ohms
±50%
TDI
I-IOS
Pullup to VDDIO
533 ohms
±50%
TDO
O-IOS
None
DBREQ_L
I-IOS
Pullup to VDDIO
533 ohms
±50%
DBRDY
O-IOS
None
Notes:
1. CLKIN_H/L inputs have DC voltage BIAS generating circuits on the inputs. These consist of both a ~250-ohm pullup
resistor to VTT on each input and a ~250-ohm series input resistor.
2. Refer to Table 6 on page 43 for definitions in pin Type column.
3. Systems that do not require use of these pins can rely on the internal termination to pull the signals to the proper
inactive state. When these pins are used they must not be driven with open-drain outputs or additional termination is
required.
Chapter 7
Electrical Data
71
AMD Opteron™ Processor Data Sheet
23932 Rev 3.00 April 2003
Table 30. External Required Circuits (Pins Not Normally Used in System)
Pin
External Circuit (Non-Operating)1
NC_G14
Tied to VDDIO_SUS through resistor
NC_H14
Tied to VSS through resistor
NC_AE14
Tied to VDDIO_RUN through resistor
NC_AF13
Tied to VDDIO_RUN through resistor
NC_AE10
Tied to VSS through resistor
NC_AE11
Tied to VSS through resistor
NC_AF11
Tied to VSS through resistor
NC_AE3
Tied to VSS through resistor
NC_AE12
Tied to VSS through resistor
NC_T3
Tied to VSS through resistor
NC_T4
Tied to VLDT through resistor
Notes:
1. See the AMD Opteron™ Processor Motherboard Design Guide, order# 25180, for proper resistor values.
2. Input pins of the same type may be pulled high or low through a shared resistor provided that VIL Max and VIH Min
specifications are not exceeded for those pin types.
7.4.4
Thermal Diode Specifications
Table 31. Thermal Diode Specifications for AMD Opteron™ Processor
Symbol
Parameter
I
Sourcing Currents
nf
Ideality Factor
TOffset
Temperature Offset
θj-c
Thermal resistance (junction to case)
Units
Min
µA
Max
Notes
5
500
1
1.008
1.096
2
0
32
3, 4, 5, 7
0.32
6
°C
°C/W
Typ
Notes:
1. The sourcing current should always be used in forward bias.
2. Characterized at 95ºC with a forward bias current pair of 10 and 100 µA. The ideality factor limits correspond to the
diode offset limits.
3. Temperature offset is unique for each processor. The diode offset value is found in the Thermtrip Status Register
discussed in the BIOS and Kernel Developer’s Guide for the AMD Athlon™ 64 and AMD Opteron™ Processors,
order# 26094. This diode offset supports temperature sensors using two or more sourcing currents only. Singlesourcing current implementations are not supported by AMD.
4. The temperature offset is set based on a sourcing current pair of 10 and 100 µA and an ideality factor of 1.008. The
diode offset should be subtracted from the temperature sensor reading. If the temperature sensor has an ideality factor
different from 1.008, an additional offset is needed. Contact your temperature sensor vendor about whether an
additional offset is needed.
72
Electrical Data
Chapter 7
AMD Opteron™ Processor Data Sheet
23932 Rev 3.00 April 2003
5. After correcting for the diode offset, the thermal diode has an accuracy of ±10°C. This accuracy is additive to the
temperature sensor accuracy.
6. The temperature specification for the processor is based on the case temperature. The thermal resistance from the
junction to the case is provided as a reference for implementing fan-speed control using the thermal diode.
7. The offset reduces the maximum allowable temperature that can be measured by temperature sensor. For this reason,
extended range temperature sensors (≥ 143°C) are recommended.
Chapter 7
Electrical Data
73
AMD Opteron™ Processor Data Sheet
7.5
Power Supplies
7.5.1
Operating Conditions
23932 Rev 3.00 April 2003
Table 32. Combined AC and DC Operating Conditions for Power Supplies
Symbol
Parameter
Unit
Min
Typ
Max
VID_VDD VID Requested VDD Supply Level
V
VDD
V
VID_VDD
–100 mV
VID_VDD
VID_VDD
+50 mV
VDD_PON VDD Supply Voltage before PWROK
assertion during power-on.
V
1.15
1.20
VDD_max
VDDIO_dc VDDIO Supply Voltage
V
2.40
2.50
2.60
VDDIO_ac VDDIO supply voltage
V
VDDIO_dc
-150 mV
VLDT
VLDT Supply Voltage
V
1.14
VTT_dc
VTT Supply Voltage
V
VTT_ac
VTT Supply Voltage
V
VTT_dc
- 150 mV
VDDA
VDDA Supply Voltage
V
2.40
IDD
VDD Power Supply Current
A
IDDIO1
VDDIO Power Supply Current
A
IDDIO2
VDDIO Power Supply Current in S3
State
mA
350
ITT1
VTT Power Supply Current
mA
200
ITT2
VTT Power Supply Current in S3 State mA
200
ILDT
VLDT Power Supply Current
A
1.5
IDDA
VDDA Power Supply Current
mA
33
IDDslew1
VDD Power Supply Current Change
During Normal Operation
A/µs
.0583*fMHz
3, 7
IDDslew2
VDD Power Supply Current Change
Upon Reset Exit
A/µs
270
3
IDDslew3
VDD Power Supply Current Change
Upon Stop Grant Entry
A/µs
IDDslew4
VDD Power Supply Current Change
Upon Stop Grant Exit
A/µs
IDDslew5
VDD Power Supply Current Change
Upon Non-reset Power Failure
A/µs
VDD Supply Voltage
1.55
Notes
6
VDDIO_dc
+150 mV
1.20
8
9
1.26
VDDIO_dc
VDDIO_dc
VDDIO_dc
Min/2 - 50 mV
Typ/2
Max/2 + 50 mV
VTT_dc
+ 150 mV
2.50
9
2.60
52
2.8
2.9
–270
2, 5
1
3
270
–4.25
4
3
3
Notes:
1. ILDT is specified for three 16x16-bit HyperTransport™ links operating at 1.6 GT/s.
74
Electrical Data
Chapter 7
AMD Opteron™ Processor Data Sheet
23932 Rev 3.00 April 2003
2. VTT must both sink and source current.
3. Current slew rates are controlled by ramping up or down the core frequency in steps during these sequences to control
in-rush currents.
4. VDDIO current is consumed by I, O, I/O switching current and on-chip functions (PDL, DLL, level-shifters, etc.).
5. VTT current is consumed by I, O, I/O switching current and on-chip functions (PDL, DLL, level-shifters, etc.).
6. This is the VID that the processor will request.
7. For example, the IDDslew1 calculation for a 1.2-GHz part is (.0583 x 1200) = 69.96 A/µs.
8. The processor’s VID[4:0] outputs select VID_PON nom before PWROK is asserted. Transients up to VDD_max are
allowed.
9. VDDIO_ac and VTT_ac parameters are measured +/- 1ns of all data bus bits switching.
Table 33. Thermal Power
Symbol
Parameter
PVDD
VDD Thermal Power
PVDDIO
Unit
Min
Typ
Max
Notes
W
80.6
1
VDDIO Thermal Power
W
1.960
2
PVLDT
VLDT Thermal Power
W
1.80
3
PVTT
VTT Thermal Power
W
0.250
4
PVDDA
VDDA Thermal Power
W
0.083
PThermal
Total Thermal Power
W
84.7
Notes:
1. Defined as IDD_max at VDD_typ.
2. Defined as IDDIO_typ at VDDIO_typ – VOH_min. This determines the power dissipated on the CPU. The remainder
of the power for VDDIO is dissipated in the off-chip termination. IDDIO_max should be used for power supply design.
3. Defined as ILDT_max at VLDT_typ and includes power for three 16x16-bit HyperTransport™ links operating at a
speed of 800 MHz /1600 MT/s.
4. Defined as ITT_max at VTT_typ. Includes I/O for DDR SDRAM and miscellaneous outputs and internal current
consumption.
7.5.2
Power Supply Relationships
7.5.2.1
Sequencing Relationships
Power supply relationships during power-up, power-down, and entry and exit of any power
management state must be controlled in order to avoid damage to the device and help ensure proper
operation of the device. Figure 12 shows an example of how these relationships can be maintained by
system power generation and distribution schemes. VTT and VDDIO are considered SUSPEND
planes and are powered in the S0 (working) state and the S1 and S3 sleep states. VDDA, VDD, and
VLDT are considered RUN planes and are powered in the S0 and S1 states only. All power supplies
should be turned off during the S4 (SUSPEND to DISK) and S5 (SOFT-OFF) states. VDDIO (RUN)
is a power rail used for pull-ups on some processor signals that connect to devices that are powered
off during S3, such as THERMTRIP_L.
Chapter 7
Electrical Data
75
AMD Opteron™ Processor Data Sheet
Power Up
23932 Rev 3.00 April 2003
S3 Entry
S3 Exit
Power Down
VTT (SUS)
VDDIO (SUS)
VDDIO (RUN)
VDDA (RUN)
VDD (RUN)
VLDT (RUN)
Figure 12.Sequencing Relationships for Power Supplies
Table 34. Sequencing Relationships for Power Supplies
Power Supply Relationship
Unit
Max
Notes
VTT to VDDIO
V
VTT_dc Max
1, 2
VDDIO to VTT
V
VDDIO_dc Max - VTT_dc Typ
1, 3
VDDIO to VDD
V
VDDIO_dc Max
1, 4
VDDA to VDD
V
VDDA Max
1, 5
VDD to VLDT
V
VDD Max
1, 6
1. Sequencing relationships are measured from supply to supply and must be maintained under all operating conditions
including power up, power down, power failure, and power state transitions in order to avoid device or system
damage. These relationships can be maintained by propagation of PWRGD signals from one supply rail to the
regulator enable of the next supply. The minimum requirements for a proper system implementation are that:
— VDDIO ramps such that VDDIO/2 <= VTT.
— VDD ramps such that VDDIO and VDDA are within spec before VDD is enabled.
— VLDT ramps such that VDD is within spec before VLDT is enabled.
2. The VTT to VDDIO relationship allows for VTT to power-up before VDDIO.
3. The VDDIO to VTT relationship is critical to avoid overstress of the 2.5-V I/O structures that will occur when VDDIO
exceeds VTT by more than about 1.35 V.
4. The VDDIO to VDD relationship allows for VDDIO to power-up before VDD.
5. The VDDA to VDD relationship allows for VDDA to power-up before VDD. VDDA must power-up before VDD to
ensure that internal clock sources are valid before being used and that clock source multiplexors are properly
controlled.
76
Electrical Data
Chapter 7
AMD Opteron™ Processor Data Sheet
23932 Rev 3.00 April 2003
6. The VDD to VLDT relationship allows for VDD to power-up before VLDT and specifically allows for
VDD=VDD_max with VLDT=0 V. VDD must power-up before VLDT to help ensure that PWROK is properly passed
from the pins into the VDD power domain such that the deasserted state can be seen in the VLDT power domain.
7.5.2.2
Sequencing Relationships: Signals to Power Supplies (Stress Conditions)
Once the powerup sequence has been completed and PWROK can be asserted, the sequencing of
input signals to the CPU and output signals from the CPU can begin. The requirements from signals
to power supplies are summarized by type as follows.
•
VDDIO inputs and outputs are allowed to exceed VDDIO by 0.3V and are allowed to be 0.3V
below VSS.
•
VDDIO inputs are allowed to exceed VTT by VTT_dc Max + 0.3V and are allowed to be 0.3V
below VSS.
•
VLDT inputs and outputs are allowed to exceed VLDT by 0.3V and are allowed to be 0.3V below
VSS.
7.5.2.3
Power Failures
The power sequencing relationships defined in sections 7.5.2.1 and 7.5.2.2 must be guaranteed by the
motherboard power supply subsystem in the event of a power failure.
7.5.2.4
Unused Links
Because the AMD Opteron processor has three independent HyperTransport links, some
implementations will not connect one or more of these links. In this case, the VLDT of the link that is
not connected to another device, should be connected to the VLDT of an operating link. Note that
even if the link is not used, the VLDT for the link must be connected so that the internal link detection
circuitry can successfully determine the connection status of the link.
7.5.2.5
Power States
During system power state S3, the RUN supplies (VLDT, VDD, and VDDA) to the CPU are to be
turned off. During this operating mode, all internal leakage paths between SUS supplies (VDDIO and
VTT) and these powered off planes are disabled. During S0 and S1, all RUN and SUS planes are to
be powered on. During S4 and S5, all supplies to the CPU are to be turned off.
Chapter 7
Electrical Data
77
AMD Opteron™ Processor Data Sheet
78
23932 Rev 3.00 April 2003
Electrical Data
Chapter 7
AMD Opteron™ Processor Data Sheet
23932 Rev 3.00 April 2003
8
Package Specifications
D
3
A
D2
A1 CORNER
D1
A1 CORNER
5
Øb1
(Nx Plcs)
E
E2
E1
e
BOTTOM VIEW
B
LID
A
K
NxØb
0.50
0.25
M
M
b1
ccc
A1
L
C
SEE NOTES
TOP VIEW
A2
R
4
DETAIL K
C A B
C
NOT TO SCALE
SIDE VIEW
AMD
PACKAGE
SYMBOL
D/E
GENERAL NOTES
1. All dimensions are specified in millimeters (mm).
2. Dimensioning and tolerancing per ASME-Y14.5M-1994.
3. This corner has a chamfer and a square on top of the
package that identifies the pin A1 corner and can be used for
handling and orientation purposes.
4. Pin tips should have radius.
5. Symbol "M" defines the pin matrix size and "N" is number of pins.
VARIATIONS
xUCG940
min.
39.80
max.
40.20
D1/E1
38.10 BSC
D2/E2
37.4
A
A1
A2
e
37.6
4.88 REF
1.556 1.796
3.05
3.35
1.27 BSC
b
0.275
0.35
b1
0.81
1.06
L
2.03
M
2.29
31
N
940
R
0.30 MAX
ccc
0.125
WT (gms)
45.17 REF
Figure 13. Ceramic Micro Pin Grid Array Package: Top, Side, and Bottom Views
Chapter 8
Package Specifications
79
AMD Opteron™ Processor Data Sheet
80
Package Specifications
23932 Rev 3.00 April 2003
Chapter 8
AMD Opteron™ Processor Data Sheet
23932 Rev 3.00 April 2003
9
Ordering Information
AMD standard products are available in several operating ranges. The ordering part numbers (OPN)
are formed by a combination of the elements, as shown in Figure 14.
OSA 24X C C O 5 AH
Part Definition: AH=CPUID Model 5, Dual-Processor
L2 Cache Size: 5=1 Mbyte
Case Temperature: O=69oC
Operating Voltage: C=1.55 V
Package: C=940 Pin Lidded CuPCGA
Model Number: 240: 1400 MHz
242: 1600 MHz
244: 1800 MHz
Brand: AMD Opteron™ Server
Figure 14. Ordering Part Number Example
Chapter 9
Ordering Information
81