AMD Functional Data Sheet, 940 Pin Package (public)

AMD Functional Data Sheet,
940 Pin Package
Publication #
Issue Date:
31412
June 2004
Revision:
3.05
AMD Functional Data Sheet, 940 Pin Package
31412
Rev. 3.05
June 2004
Trademarks
AMD, the AMD Arrow logo, AMD Athlon, AMD Opteron and combinations thereof, and 3DNow! are trademarks of
Advanced Micro Devices, Inc.
HyperTransport is a licensed trademark of the HyperTransport Technology Consortium.
MMX is a trademark of Intel Corporation.
Other product names used in this publication are for identification purposes only and may be trademarks of their respective companies.
Disclaimer
The contents of this document are provided in connection with Advanced Micro Devices, Inc. (“AMD”) products. AMD makes no representations or warranties with respect to the accuracy or completeness of the contents of this publication and reserves the right to make
changes to specifications and product descriptions at any time without notice. No license, whether express, implied, arising by estoppel
or otherwise, to any intellectual property rights is granted by this publication. Except as set forth in AMD’s Standard Terms and Conditions of Sale, AMD assumes no liability whatsoever, and disclaims any express or implied warranty, relating to its products including,
but not limited to, the implied warranty of merchantability, fitness for a particular purpose, or infringement of any intellectual property
right.
AMD’s products are not designed, intended, authorized or warranted for use as components in systems intended for surgical implant
into the body, or in other applications intended to support or sustain life, or in any other application in which the failure of AMD’s product could create a situation where personal injury, death, or severe property or environmental damage may occur. AMD reserves the
right to discontinue or make changes to its products at any time without notice.
© 2002, 2003, 2004 Advanced Micro Devices, Inc. All rights reserved.
31412 Rev 3.05 June 2004
AMD Functional Data Sheet, 940 Pin Package
Contents
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1
Instruction Set Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2
Internal Cache Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.1
Level 1 Caches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.2
Level 2 Cache . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3
Error Handling (Machine Check) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4
Northbridge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4.1
2.4.1.1
Link Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4.1.2
HyperTransport™ Technology Transfer Speeds . . . . . . . . . . . . . . . . . . . . . . 12
2.4.2
3
HyperTransport™ Technology Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Memory Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4.2.1
Memory Pin Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4.2.2
DRAM Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4.2.3
DRAM Power Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4.2.4
Chip Kill (Server/Workstation Products Only) . . . . . . . . . . . . . . . . . . . . . . . 15
2.4.2.5
Main Memory Hardware Scrubbing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Power Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.1
Halt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2
STPCLK/Stop Grant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.3
PWROK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.4
RESET_L and MEMRESET_L . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.5
Thermal Diode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.6
THERMTRIP_L . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4
Connection Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5
Pin Designations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
6
Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Contents
3
AMD Functional Data Sheet, 940 Pin Package
6.1
HyperTransport™ Technology Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
6.2
DDR SDRAM Memory Interface Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
6.3
Miscellaneous Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
6.4
Pin States at Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
7
Electrical Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
7.1
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
7.2
HyperTransport™ Technology Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
7.3
7.4
7.2.1
Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
7.2.2
Reference Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
DDR SDRAM and Miscellaneous Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
7.3.1
Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
7.3.2
AC Operating Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Clock Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
7.4.1
Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
7.5
Power-Up Signal Sequencing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
7.6
Reference Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
7.7
Thermal Diode Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
7.8
Power Supplies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
8
4
31412 Rev 3.05 June 2004
7.8.1
Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
7.8.2
Thermal Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
7.8.3
Power Supply Relationships . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
7.8.3.1
Sequencing Relationships . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
7.8.3.2
Sequencing Relationships: Signals to Power Supplies (Stress Conditions) . . 78
7.8.3.3
Power Failures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
7.8.3.4
Power States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
7.8.3.5
Unused Links . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Package Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
8.1
Mechanical Loading for Lidded Parts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
8.2
Package Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Contents
31412 Rev 3.05 June 2004
AMD Functional Data Sheet, 940 Pin Package
List of Figures
Figure 1.
Processor Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Figure 2.
940 Pin Micro PGA—Top View, Left Side . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Figure 3.
940 Pin Micro PGA—Top View, Right Side . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Figure 4.
Slew Rate Measurement Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Figure 5.
MEMCLK Output Skew . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Figure 6.
MEMDQS Timing Parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Figure 7.
DSS/tDSH Timing Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Figure 8.
tDQSQV/tDQSQIV Timing Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Figure 9.
MEMADD/CMD to MEMCLK Timing Parameter (Registered DIMMs) . . . . . . . . . . 63
Figure 10.
MEMDQS Edge Arrival Relative to DQs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Figure 11.
MEMRESET_L and MEMCKE_LO/UP Sequencing . . . . . . . . . . . . . . . . . . . . . . . . . 68
Figure 12.
Power-Up Signal Sequencing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Figure 13.
Sequencing Relationships for Power Supplies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Figure 14.
Ceramic Micro Pin Grid Array Package: Top, Side, and Bottom Views . . . . . . . . . . . 80
List of Figures
5
AMD Functional Data Sheet, 940 Pin Package
31412 Rev 3.05 June 2004
List of Tables
Table 1.
Product-Specific HyperTransport™ Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Table 2.
DRAM Interface Speed vs. CPU Core Clock Multiplier . . . . . . . . . . . . . . . . . . . . . . . 14
Table 3.
Total Memory Sizes Per Chip Select . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Table 4.
Processor Capabilities Mapped to ACPI States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Table 5.
Pin List by Name. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Table 6.
Pin Description Table Definitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Table 7.
HyperTransport™ Technology Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Table 8.
DDR SDRAM Memory Interface Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Table 9.
Clock Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Table 10.
Miscellaneous Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Table 11.
VID[4:0] Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Table 12.
JTAG Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Table 13.
Debug Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Table 14.
Reset Pin State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Table 15.
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Table 16.
DC Operating Conditions for HyperTransport™ Technology Interface . . . . . . . . . . . 50
Table 17.
AC Operating Conditions for HyperTransport™ Technology Interface . . . . . . . . . . . 51
Table 18.
Internal Termination for HyperTransport™ Technology Interface . . . . . . . . . . . . . . . 52
Table 19.
DC Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Table 20.
AC Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Table 21.
Input Capacitance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Table 22.
Slew Rate of DDR SDRAM Signals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Table 23.
Slew Rate of RESET_L, LDTSTOP_L, and PWROK . . . . . . . . . . . . . . . . . . . . . . . . . 56
Table 24.
Package Routing Skew . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Table 25.
Electrical AC Timing Characteristics for DDR SDRAM Signals . . . . . . . . . . . . . . . . 58
Table 26.
DC Operating Conditions for CLKIN_H/L and FBCLKOUT_H/L Pins . . . . . . . . . . . 65
Table 27.
AC Operating Conditions for CLKIN_H/L and FBCLKOUT_H/L Pins . . . . . . . . . . . 66
Table 28.
Metal Mask VID[4:0] Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
6
List of Tables
31412 Rev 3.05 June 2004
AMD Functional Data Sheet, 940 Pin Package
Table 29.
MEMRESET_L and MEMCKE_LO/UP Initialization Timing . . . . . . . . . . . . . . . . . . 68
Table 30.
MEMCKE_LO/UP Delay from MEMRESET_L During Exit from Self-Refresh . . . . 69
Table 31.
Internal Termination for Miscellaneous Pins Interface. . . . . . . . . . . . . . . . . . . . . . . . . 71
Table 32.
External Required Circuits (Pins Not Normally Used in System) . . . . . . . . . . . . . . . . 72
Table 33.
Thermal Diode Specification Revision and Frequency Guide . . . . . . . . . . . . . . . . . . . 73
Table 34.
Thermal Diode Specifications (Revision and Frequency Dependent, see Table 33) . . 73
Table 35.
Thermal Diode Specifications (Revision and Frequency Dependent, see Table 33) . . 74
Table 36.
Combined AC and DC Operating Conditions for Power Supplies . . . . . . . . . . . . . . . . 75
Table 37.
Sequencing Relationships for Power Supplies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Table 38.
Mechanical Loading for Lidded Parts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
List of Tables
7
AMD Functional Data Sheet, 940 Pin Package
31412 Rev 3.05 June 2004
Revision History
8
Date
Revision
June 2004
3.05
Description
New document per new data sheet structuring. Specification modifications
from previous document structure include: Added mechanical loading Section
8.1. Thermal diode change to 2 sourcing currents only in section 7.7. Clarified
THERMTRIP_L operation in Section 3.6. Added Table 27 to Section 7.5 to
enumerate metal mask VID[4:0] encodings for different processor revisions.
Clarified DDR400 VDDIO specification in Table 35. Added slew rates for
some misc signals in Table 22. Corrected MEMDQS naming in Table 7. Added
Table 1 to clarify HyperTransport™ support. Clarified burst length support in
Section 2.4.2.
Revision History
AMD Functional Data Sheet, 940 Pin Package
31412 Rev 3.05 June 2004
1
Overview
The processor is designed for high-performance applications. It provides up to three highperformance HyperTransport™ links to I/O, as well as a 128-bit high-performance DDR SDRAM
memory controller. A block diagram of the processor is shown in Figure 1.
VID[4:0]
THERMDA
THERMDC
64-Kbyte
64-Kbyte
L1 I-Cache L1 D-Cache
CPU Core
THERMTRIP_L
COREFB_H/L
1-Mbyte
L2 Cache
PRESENCE_DET
L1_CLKOUT_H/L[1:0]
L1_CTLOUT_H/L[0]
L1_CADOUT_H/L[15:0]
L2_CLKIN_H/L[1:0]
L2_CTLIN_H/L[0]
L2_CADIN_H/L[15:0]
128-bits DDR SDRAM
100/133/166/200 MHz
16-bits ECC
L1_CLKIN_H/L[1:0]
L1_CTLIN_H/L[0]
L1_CADIN_H/L[15:0]
Northbridge
DDR SDRAM Interface
L0_REF0
L0_REF1
3 x 16/16
400–1600 MT/s
L0_CLKOUT_H/L[1:0]
L0_CTLOUT_H/L[0]
L0_CADOUT_H/L[15:0]
HyperTransport™
Interface
L0_CLKIN_H/L[1:0]
L0_CTLIN_H/L[0]
L0_CADIN_H/L[15:0]
L2_CLKOUT_H/L[1:0]
L2_CTLOUT_H/L[0]
L2_CADOUT_H/L[15:0]
LDTSTOP_L
RESET_L
PWROK
CLKIN_H/L
FBCLKOUT_H/L
VDDA
Links 1 and 2 are available
on Server/Workstation
products only.
MEMCLK_UP_H/L[3:0]
MEMCLK_LO_H/L[3:0]
MEMCKE_UP
MEMCKE_LO
MEMRESET_L
MEMCS_L[7:0]
MEMADD[13:0]
MEMBANK[1:0]
MEMRAS_L
MEMCAS_L
MEMWE_L
MEMDQS[35:0]
MEMDATA[127:0]
MEMCHECK[15:0]
MEMZN
MEMZP
MEMVREF
Control
JTAG
and
Debug
PLLs
and
Clocks
TDI
TDO
TCK
TMS
TRST_L
DBREQ_L
DBRDY
Figure 1. Processor Block Diagram
Chapter 1
Overview
9
AMD Functional Data Sheet, 940 Pin Package
2
Functional Description
2.1
Instruction Set Support
31412 Rev 3.05 June 2004
The processor supports the standard x86-instruction set defined in the AMD64 Architecture
Programmer’s Manual, volumes 3–5, order# 24594. In addition, the processor supports the following
extensions to the standard x86 instruction set, which are described in the same volume set:
•
AMD64 instructions
•
MMX™ and 3DNow!™ technology instructions
•
SSE and SSE2 instructions
2.2
Internal Cache Structures
The processor implements internal caching structures as described in the following sections.
2.2.1
Level 1 Caches
The L1 data cache (L1 D-Cache) contains 64 Kbytes of storage organized as two-way set associative.
The L1 data cache is protected with ECC. Two simultaneous 64-bit operations (load, store, or
combination) are supported. The L1 instruction cache (L1 I-Cache) contains 64 Kbytes of storage
organized as two-way associative. The L1 instruction cache is protected with parity.
2.2.2
Level 2 Cache
The L2 cache contains both instruction and data stream information. It is organized as 16-way setassociative. The L2 cache data and tag store is protected with ECC. When a given cache line in the L2
cache contains instruction stream information, the ECC bits associated with the given line are used to
store predecode and branch prediction information.
2.3
Error Handling (Machine Check)
The processor implements the standard x86 machine check architecture as defined in the AMD64
Architecture Programmer’s Manual, Volume 2, order# 24593, and the BIOS and Kernel Developer’s
Guide for the AMD Athlon™ 64 and AMD Opteron™ Processors, order# 26094.
10
Functional Description
Chapter 2
AMD Functional Data Sheet, 940 Pin Package
31412 Rev 3.05 June 2004
The machine check architecture is defined with ECC single-bit detection/correction and double-bit
detection for the following arrays:
•
L1 Data Cache Storage
•
L2 Data Cache Storage
•
L2 Data Cache Tag
•
Instruction Cache
•
DRAM. See “Memory Controller” on page 12.
2.4
Northbridge
The Northbridge logic in the processor refers to the HyperTransport™ technology interface and the
memory controller and their respective interfaces to the CPU cores. These interfaces are described in
more detail in the following sections.
2.4.1
HyperTransport™ Technology Overview
The processor includes up to three16-bit HyperTransport™ technology interfaces capable of
operating up to 1600 mega-transfers per second (MT/s) with a resulting bandwidth of up to 6.4
Gbytes/s (3.2 Gbytes/s in each direction). Refer to Table 1 for product-specific details on
HyperTransport™ interfaces. The processor supports HyperTransport™ technology synchronous
clocking mode. Refer to the HyperTransport™ I/O Link Specification (www.hypertransport.org) for
details of link operation.
Table 1.Product-Specific HyperTransport™ Support
Product
Number of Interfaces
Maximum Number of
Coherent Interfaces
Desktop
1
0
Server/Workstation Uni-Processor (UP)
3
0
Server/Workstation Dual-Processor (DP)
3
11
Server/Workstation Multi-Processor (MP)
3
3
Notes:
1. Coherency is supported on any one of the three HyperTransport™ interfaces on Server/Workstation DP products.
Chapter 2
Functional Description
11
AMD Functional Data Sheet, 940 Pin Package
2.4.1.1
31412 Rev 3.05 June 2004
Link Initialization
The HyperTransport™ I/O Link Specification details the negotiation that occurs at power-on to
determine the widths and rates used with the link. Refer also to the BIOS and Kernel Developer’s
Guide for the AMD Athlon™ 64 and AMD Opteron™ Processors, order# 26094, for information
about link initialization and setup of routing tables.
Refer to the AMD Athlon™ 64 FX and AMD Opteron™ Processor Motherboard Design Guide,
order# 25180, for details on the proper HyperTransport™ technology signal termination resistor
values.
2.4.1.2
HyperTransport™ Technology Transfer Speeds
The HyperTransport™ link of the processor is capable of operating at 400, 800, 1200, and 1600 MT/
s. The link transfer rate is determined during the software configuration of the system, as specified in
the HyperTransport™ I/O Link Specification.
2.4.2
Memory Controller
The processor’s memory controller provides a programmable interface to a variety of standard
registered DDR SDRAM DIMM configurations. Refer to the BIOS and Kernel Developer’s Guide for
the AMD Athlon™ 64 and AMD Opteron™ Processors, order# 26094, for supported DRAM speeds
under specific loading conditions.
•
Self-Refresh mode
•
The controller provides programmable control of DRAM timing parameters to support the
following memory speeds:
— 100 MHz (DDR200) PC-1600 DIMMs
— 133 MHz (DDR266) PC-2100 DIMMs
— 166 MHz (DDR333) PC-2700 DIMMs
— 200 MHz (DDR400) PC-3200 DIMMs*
•
DRAM devices that are 4, 8 and 16 bits wide
•
DIMM sizes from 32 Mbytes (using 64Mb x16 DRAMs) to 4 Gbytes (using a stacked DIMM
with 1Gb x4 DRAMs)
•
Interleaving memory within DIMMs
•
Stacked registered DIMMs
•
ECC checking with single-bit correction and double-bit detection
•
Chip Kill ECC allows single symbol correction and double symbol detection (Server/Workstation
products only)
•
May be configured for 32-byte or 64-byte burst length (32-byte mode applies only when operat-
12
Functional Description
Chapter 2
AMD Functional Data Sheet, 940 Pin Package
31412 Rev 3.05 June 2004
ing with a 64-bit DRAM interface).
•
Programmable page-policy:
— Supports up to 16 open pages total across all chip-selects
— Statically idle open-page time
— Optional dynamic precharge control based on page-hit/miss history
* DDR400 supported by Rev C0 and later, Refer to AMD Opteron™ Processor Power and Thermal
Data Sheet, order# 30417, for silicon revision determination
For programming information and specific details of the features listed above, refer to the BIOS and
Kernel Developer’s Guide for the AMD Athlon™ 64 and AMD Opteron™ Processors, order# 26094.
2.4.2.1
Memory Pin Interface
The memory controller of the processor supports registered DDR SDRAM DIMMs. The following
list applies to the pin interface:
•
The MEMRESET_L pin is required for registered DIMMs and is used to reset the register as
required to support the Suspend to RAM power management state (ACPI S3).
•
The memory controller can be configured to support either 64-bit or 128-bit memory interfaces.
Refer to the BIOS and Kernel Developer’s Guide for the AMD Athlon™ 64 and AMD Opteron™
Processors, order# 26094, for restrictions based on DDR SDRAM speed.
•
•
•
A 64-bit memory system can support up to four DIMMs, each 64-bits wide
A 128-bit memory system can support up to eight DIMMs, each 64-bits wide, and must be
populated in even numbered pairs as described in the AMD Athlon™ 64 FX and AMD
Opteron™ Processor Motherboard Design Guide, order# 25180.
Registered DIMMs configured with x4 DRAMs require an additional 16 DQS pins without ECC
support or 18 DQS pins with ECC support. The processor’s memory controller provides a total of
36 DQS pins to accommodate this requirement. The additional DQS pins can be connected to the
DIMM Data Mask (DM) pins when connected to x8 or x16 DIMMs. DIMMs populated with x4
devices normally connect the DRAM Data Mask (DM) pins to VSS.
2.4.2.2
DRAM Operation
At power-on reset, the MEMCKE_LO/UP and MEMRESET_L pins are driven Low while the
processor PLLs are ramping. Clocks are driven on the MEMCLK_LO_H/L[3:0] and
MEMCLK_UP_H/L[3:0] pins only after BIOS programs the appropriate clock ratio value in the
memory controller configuration registers. The actual DRAM frequency may vary for some speeds
based on the CPU clock multiplier, as shown in Table 2 on page 14 (the memory controller
automatically adjusts refresh counters at all speeds as required to meet the device refresh
specifications). Refer to “Power-Up Signal Sequencing” on page 67 for further details on the
sequencing of the MEMRESET_L and MEMCKE_LO/UP pins.
Chapter 2
Functional Description
13
AMD Functional Data Sheet, 940 Pin Package
Table 2.
31412 Rev 3.05 June 2004
DRAM Interface Speed vs. CPU Core Clock Multiplier
Multiplier
Core
Frequency
DRAM Frequency
100 MHz
133 MHz
166 MHz
200 MHz1
4
800 MHz
100.00
133.33
160.00
160.00
5
1000 MHz
100.00
125.00
166.66
200.00
6
1200 MHz
100.00
133.33
150.00
200.00
7
1400 MHz
100.00
127.27
155.55
200.00
8
1600 MHz
100.00
133.33
160.00
200.00
9
1800 MHz
100.00
128.57
163.63
200.00
10
2000 MHz
100.00
133.33
166.66
200.00
11
2200 MHz
100.00
129.41
157.14
200.00
12
2400 MHz
100.00
133.33
160.00
200.00
13
2600 MHz
100.00
130.00
162.50
200.00
Notes:
1. DDR400 (200MHz) supported by Rev C0 and later. Refer to the AMD Opteron™ Processor Power and Thermal
Data Sheet, order# 30417 for silicon revision determination.
Table 3 on page 15 lists the maximum memory sizes per chip-select for the various supported DRAM
device configurations. Note that for DIMMs using two chip-selects, the total memory size per DIMM
is doubled. Refer to the AMD Athlon™ 64 FX and AMD Opteron™ Processor Motherboard Design
Guide, order# 25180, for details on the connection scheme for registered DIMMs.
14
Functional Description
Chapter 2
AMD Functional Data Sheet, 940 Pin Package
31412 Rev 3.05 June 2004
Table 3.
Total Memory Sizes Per Chip Select
Devices Used on DIMMs
Size Per CS
64 M-bit (4M x4-bits x4 banks)
128 Mbyte
64 M-bit (2M x8-bits x4 banks)
64 Mbyte
64 M-bit (1M x16-bits x4 banks)
32 Mbyte
128 M-bit (8M x4-bits x4 banks)
256 Mbyte
128 M-bit (4M x8-bits x4 banks)
128 Mbyte
128 M-bit (2M x16-bits x4 banks)
64 Mbyte
256 M-bit (16M x4-bits x4 banks)
512 Mbyte
256 M-bit (8M x8-bits x4 banks)
256 Mbyte
256 M-bit (4M x16-bits x4 banks)
128 Mbyte
512 M-bit (32M x4-bits x4 banks)
1 Gbyte
512 M-bit (16M x8-bits x4 banks)
512 Mbyte
512 M-bit (8M x16-bits x4 banks)
256 Mbyte
1 G-bit (64M x4-bits x4 banks)
2 Gbyte
1 G-bit (32M x8-bits x4 banks)
1 Gbyte
1 G-bit (16M x16-bits x4 banks)
512 Mbyte
The controller supports programmable timing and refresh as described in the BIOS and Kernel
Developer’s Guide for the AMD Athlon™ 64 and AMD Opteron™ Processors, order# 26094. Autorefresh is supported and is staggered by tRFC across chip-selects to reduce system noise. Unpopulated
DIMM slots are not refreshed.
2.4.2.3
DRAM Power Management
The memory controller supports self-refresh mode to accommodate various power management states
such as ACPI S1 and S3 states. The MEMRESET_L pin is provided for resetting the registers on
registered DDR SDRAM DIMMs as required for the S3 (Suspend-to-RAM) power management
state.
2.4.2.4
Chip Kill (Server/Workstation Products Only)
In Chip Kill mode the memory controller can correct single symbol errors and detect double symbol
errors across the 128-bit wide data path. This feature optionally takes the place of normal ECC error
detection and correction. Operating the memory controller with Chip Kill enabled will result in a two
Chapter 2
Functional Description
15
AMD Functional Data Sheet, 940 Pin Package
31412 Rev 3.05 June 2004
clock latency penalty on memory access due to the detection, correction, and data containment
overhead of operating in this mode.
2.4.2.5
Main Memory Hardware Scrubbing
The memory controller scrubs the main memory arrays to prevent the build up of soft errors. Any
correctable or non-correctable errors are logged to the machine check logs and non-correctable errors
can be programmed to invoke the machine check interrupt. A correctable error is a single-bit error in
normal ECC mode or a single symbol error in Chip Kill mode (Server/Workstation products only).
There are two modes of main memory scrubbing that can be used independently or combined, as
described in the following sections.
2.4.2.5.1 Sequential Scrubbing
In this mode, the scrubber sequentially proceeds through main memory, performing a read-write cycle
or a read-modify-write cycle if a correctable error is found. The scrubber scrubs one cache line on
each scrub interval that is programmable from 40 ns to 84 ms.
2.4.2.5.2 Source Correction Scrubbing
In this mode, the scrubber is directed to scrub any cache line that is the source of any corrected error
during normal accesses. During normal operation when source correction scrubbing is disabled,
single-bit errors are corrected on the fly and the corrected data is passed without updating the source
memory location. When source scrubbing is enabled the scrubber also corrects the source memory
location.
2.4.2.5.3 Sequential Plus Source Correction Scrubbing
When both sequential and source correction scrubbing are enabled, the scrubber sequentially
proceeds through main memory. If a correctable error is detected during normal operation, the
scrubber is redirected to the location of the error, and after it corrects that location in main memory it
resumes sequential scrubbing at the previous location.
16
Functional Description
Chapter 2
AMD Functional Data Sheet, 940 Pin Package
31412 Rev 3.05 June 2004
3
Power Management
The processor provides the following power management features designed to be compliant with the
Advanced Configuration and Power Interface (ACPI) Specification and HyperTransport™
technology:
•
Halt state with associated programmable power savings
•
STPCLK/Stop Grant protocol capable of supporting eight distinct versions of Stop Grant
•
LDTSTOP_L signal support
•
Memory controller and host bridge power management
•
Voltage plane isolation based upon PWROK signal
•
Low-power state while RESET_L signal is asserted
•
On-die thermal diode
Table 4 maps processor capabilities to ACPI states.
Table 4.
Processor Capabilities Mapped to ACPI States
ACPI State
Processor
C1
Halt
Passive Cooling
Passive Cooling is supported by Stop Grant (throttling).
S1
Stop Grant. In response to LDTSTOP_L assertion, memory is placed in self-refresh
mode and the host bridge and memory controller are placed into a low-power state.
S3
Processor core and HyperTransport™ technology voltage planes are not powered.
DDR SDRAM interface remains powered and holds memory in self-refresh mode.
S4, S5, G3
All power is removed from the processor.
3.1
Halt
When the HLT instruction is executed, the processor stops program execution and issues a Halt
special cycle. The power savings associated with the Halt state are determined by configuration
registers in the processor (refer to the BIOS and Kernel Developer’s Guide for the AMD Athlon™ 64
and AMD Opteron™ Processors, order# 26094, for details of these configuration registers). The CPU
clock grid frequency can be divided down in the absence of probe activity that would force the
processor caches to be snooped.
The CPU clock grid is automatically brought to full frequency when probe activity is present and
returned to the low-power state when probe activity ceases.
Chapter 3
Power Management
17
AMD Functional Data Sheet, 940 Pin Package
31412 Rev 3.05 June 2004
If a STPCLK assertion message is received while the processor is in the Halt state, the processor
enters the Stop Grant state and issues a Stop Grant special cycle. When a STPCLK deassertion
message is received, the processor exits the Stop Grant state and returns to the Halt state.
The processor exits the Halt state in response to PWROK deassertion, RESET_L assertion, INIT,
NMI, SMI, or any unmasked interrupt received over the HyperTransport™ link.
3.2
STPCLK/Stop Grant
When the processor recognizes the STPCLK assertion message, it enters the Stop Grant state on the
next instruction boundary and issues a Stop Grant special cycle. The power savings associated with
the Stop Grant state are determined by configuration registers in the processor. The power savings
mechanisms associated with the Stop Grant state include the following:
•
CPU clock grid divisor applied in the absence of probe activity. If probe activity that requires a
cache snoop occurs while the processor is in the Stop Grant state, the clock grid is ramped back up
to service the probe. When probe activity ceases, the CPU clock grid is ramped back down again.
•
Placing system memory into self-refresh mode in response to LDTSTOP_L signal assertion.
•
Ramping the processor host bridge/memory controller clock grid down in response to
LDTSTOP_L signal assertion.
•
Changing HyperTransport™ link width and/or link frequency in response to LDTSTOP_L signal
assertion.
The processor exits the Stop Grant state when it receives the following:
•
A STPCLK deassertion message.
•
RESET_L pin asserted or an INIT assertion message.
•
PWROK is deasserted.
If the LDTSTOP_L signal is asserted after the processor is in the Stop Grant state, then LDTSTOP_L
must be deasserted, and the HyperTransport™ link must be re-initialized before a STPCLK
deassertion message can be received by the processor to bring the processor out of the Stop Grant
state.
The processor’s host bridge ensures that STPCLK messages are passed to the CPU prior to the
subsequent I/O response to the cycle that caused STPCLK assertion as long as the subsequent I/O
response message has the PassPW bit clear and the Unit ID of the response matches the Unit ID of the
STPCLK message.
3.3
PWROK
When PWROK is deasserted, the processor performs the following steps:
18
Power Management
Chapter 3
AMD Functional Data Sheet, 940 Pin Package
31412 Rev 3.05 June 2004
•
Isolates its VDDIO- and VTT-powered logic from all other internal logic to prevent leakage
current paths between power planes.
•
Tristates all DDR SDRAM I/O pins except for the MEMCKE_LO/UP and MEMRESET_L outputs, which are driven Low.
•
Drives its VID[4:0] outputs to the value that selects the startup core voltage level.
3.4
RESET_L and MEMRESET_L
When RESET_L is asserted, the processor performs the following steps:
•
The processor core is held in a low-power state.
•
The MEMCKE_LO/UP and MEMRESET_L outputs are forced low.
After RESET_L is deasserted, BIOS must program the appropriate clock divisor in the memory controller configuration registers, causing the MEMCLK_LO_H/L[3:0] and MEMCLK_UP_H/L[3:0]
clocks to be driven. Refer to “Power-Up Signal Sequencing” on page 67 for details of RESET_L and
MEMRESET_L sequencing during initial power-on.
3.5
Thermal Diode
The processor provides an on-die thermal diode with anode and cathode brought out to processor
pins. This diode can be read by an external temperature sensor to determine the processor’s
temperature. Refer to the AMD Athlon™ 64 FX and AMD Opteron™ Processor Motherboard Design
Guide, order# 25180, for details on connecting the thermal diode.
3.6
THERMTRIP_L
The processor provides a hardware-enforced thermal protection mechanism. When the processor’s
die temperature exceeds a specified temperature, the processor is designed to stop its internal clocks
and asserting the THERMTRIP_L output.
THERMTRIP_L assertion is only valid when PWROK is asserted and RESET_L is deasserted.
THERMTRIP_L assertion indicates the processor die temperature has exceeded normal operating
parameters. PWROK must be deasserted in response to a THERMTRIP_L assertion to help ensure
proper processor operation.
Once asserted THERMTRIP_L remains asserted until RESET_L is asserted.
If the processor’s die temperature still exceeds the thermal trip point when RESET_L is deasserted,
THERMTRIP_L will immediately be reasserted and the processor’s internal clocks will be stopped.
Chapter 3
Power Management
19
AMD Functional Data Sheet, 940 Pin Package
20
Power Management
31412 Rev 3.05 June 2004
Chapter 3
31412 Rev 3.05 June 2004
4
AMD Functional Data Sheet, 940 Pin Package
Connection Diagrams
The pinout for the AMD Opteron™ processor is illustrated in this chapter. The ball map is divided
into two parts. Figure 2 on page 22 shows the left portion of the top view, and Figure 3 on page 23
shows the right portion of the top view.
The pin designations are defined in Chapter 5. Table 5 on page 26 lists the pins alphabetically by pin
name.
Chapter 4
Connection Diagrams
21
AMD Functional Data Sheet, 940 Pin Package
1
2
3
A
4
1
B
5
1
L1_CADOUT_H[0]
L1_CADOUT_L[0]
6
1
31412 Rev 3.05 June 2004
7
L1_CADOUT_H[2]
L1_CADOUT_L[2]
1
8
1
9
L1_CLKOUT_H[0]
L1_CLKOUT_L[0]
1
10
L1_CADOUT_H[5]
1
11
1
L1_CADOUT_L[5]
VSS
L1_CADOUT_H[1]1
VDD
L1_CADOUT_H[3]1
VSS
L1_CADOUT_H[4]1
VDD
L1_CADOUT_H[6]1
C
VDDA1
VDDA3
L1_CADOUT_L[8]1
L1_CADOUT_L[1]1
L1_CADOUT_L[10]1
L1_CADOUT_L[3]1
L1_CLKOUT_L[1]1
L1_CADOUT_L[4]1
L1_CADOUT_L[13]1
L1_CADOUT_L[6]1
D
L0_REF0
VDDA2
L1_CADOUT_H[8]1
VDD
L1_CADOUT_H[10]1
VSS
L1_CLKOUT_H[1]1
VDD
L1_CADOUT_H[13]1
VSS
E
L0_REF1
VSS
L1_CADOUT_H[9]1
L1_CADOUT_L[9]1
F
VSS
VSS
G
L0_CADIN_H[1]
L0_CADIN_L[0]
L0_CADIN_H[0]
H
L0_CADIN_L[1]
VDD
L0_CADIN_H[9]
J
L0_CADIN_H[3]
L1_CADOUT_H[11]1 L1_CADOUT_L[11]1 L1_CADOUT_H[12]1 L1_CADOUT_L[12]1 L1_CADOUT_H[14]1 L1_CADOUT_L[14]1
12
1
13
1
L1_CADOUT_H[7]
L1_CADOUT_L[7]
VSS
L1_CTLOUT_H[0]1
L1_CTLIN_L[0]
14
1
15
L1_CTLIN_H[0]
1
L1_CADIN_L[6]1
VDD
L1_CADIN_L[7]1
VSS
L1_CADOUT_L[15]1 L1_CTLOUT_L[0]1
NC_C13
L1_CADIN_H[7]1
L1_CADIN_H[14]1
L1_CADOUT_H[15]1
VDD
NC_D13
VSS
L1_CADIN_L[14]1
NC_E11
NC_E12
L1_CADIN_L[15]1
L1_CADIN_H[15]1
L1_CADIN_L[13]1
VSS
VDD
NC_F7
VSS
VID[3]
VSS
VDD
PWROK
VSS
VSS
VDD
VSS
L0_CADIN_H[8]
NC_G6
VDD
DBRDY
VID[4]
VID[2]
VID[0]
RESET_L
VSS
NC_G14
VSS
L0_CADIN_L[9]
L0_CADIN_L[8]
VSS
NC_H7
VLDT_13
NC_H9
VLDT_13
VID[1]
NC_H12
NC_H13
NC_H14
VSS
VSS
VDD
VSS
VLDT_13
L0_CADIN_L[2]
L0_CADIN_H[2]
VDD
L0_CADIN_H[10]
LDTSTOP_L
DBREQ_L
VSS
VLDT_1
3
VSS
VLDT_1
3
K
L0_CADIN_L[3]
VSS
L0_CADIN_H[11]
L0_CADIN_L[11]
L0_CADIN_L[10]
VDD
CORESENSE_H
NC_K8
VSS
VLDT_13
VSS
VDD
VSS
VLDT_13
VSS
L
L0_CADIN_H[4]
L0_CLKIN_L[0]
L0_CLKIN_H[0]
VSS
L0_CLKIN_H[1]
COREFB_L
COREFB_H
NC_L8
VDD
VSS
VDD
VSS
VDD
VSS
VDD
M
L0_CADIN_L[4]
VDD
L0_CADIN_H[12]
L0_CADIN_L[12]
L0_CLKIN_L[1]
VSS
VSS
VLDT_03
VSS
VDD
VSS
VDD
VSS
VDD
VSS
N
L0_CADIN_H[6]
L0_CADIN_L[5]
L0_CADIN_H[5]
VDD
L0_CADIN_H[13]
NC_N6
VLDT_03
VSS
VDD
VSS
VDD
VSS
VDD
VSS
VDD
P
L0_CADIN_L[6]
VSS
L0_CADIN_H[14]
L0_CADIN_L[14]
L0_CADIN_L[13]
VDD
VSS
VLDT_03
VSS
VDD
VSS
VDD
VSS
VDD
VSS
R
L0_CTLIN_H[0]
L0_CADIN_L[7]
L0_CADIN_H[7]
VSS
L0_CADIN_H[15]
NC_R6
VLDT_03
VSS
VDD
VSS
VDD
VSS
VDD
VSS
VDD
T
L0_CTLIN_L[0]
VDD
NC_T3
NC_T4
L0_CADIN_L[15]
VSS
NC_T7
VDD
VSS
VDD
VSS
VDD
VSS
VDD
VSS
U
L0_CADOUT_L[7]
L0_CTLOUT_H[0]
L0_CTLOUT_L[0]
VDD
NC_U5
NC_U6
VLDT_03
VSS
VDD
VSS
VDD
VSS
VDD
VSS
VDD
VSS
VLDT_03
VSS
VDD
VSS
VDD
VSS
VDD
VSS
VSS
VDD
VSS
VDD
VSS
VDD
VSS
VDD
V
L0_CADOUT_H[7]
VSS
L0_CADOUT_L[15]
L0_CADOUT_H[15]
NC_V5
VDD
W
L0_CADOUT_L[5]
L0_CADOUT_H[6]
L0_CADOUT_L[6]
VSS
L0_CADOUT_L[14]
NC_W6
Y
L0_CADOUT_H[5]
VDD
L0_CADOUT_L[13]
L0_CADOUT_H[13]
L0_CADOUT_H[14]
VSS
VSS
VLDT_03
VSS
VDD
VSS
VDD
VSS
VDD
VSS
AA
L0_CLKOUT_L[0]
L0_CADOUT_H[4]
L0_CADOUT_L[4]
VDD
L0_CADOUT_L[12]
NC_AA6
VLDT_03
VSS
VDD
VSS
VDD
VSS
VDD
VSS
VDD
AB
L0_CLKOUT_L[1]
L0_CLKOUT_H[1]
L0_CADOUT_H[12]
VDD
VSS
VDD
VSS
VLDT_23
VSS
VDD
VSS
VLDT_23
VSS
VLDT_23
VLDT_0
3
L0_CLKOUT_H[0]
VSS
AC
L0_CADOUT_L[2]
L0_CADOUT_H[3]
L0_CADOUT_L[3]
VSS
L0_CADOUT_L[11]
NC_AC6
VLDT_23
VSS
VLDT_23
VSS
VDD
VSS
AD
L0_CADOUT_H[2]
VDD
L0_CADOUT_L[10]
L0_CADOUT_H[10]
L0_CADOUT_H[11]
VSS
TRST_L
VLDT_23
VSS
VLDT_23
VSS
VDD
VSS
VDD
VSS
AE
L0_CADOUT_L[0]
L0_CADOUT_H[1]
L0_CADOUT_L[1]
VDD
L0_CADOUT_L[9]
TMS
TCK
TDO
NC_AE9
NC_AE10
NC_AE11
NC_AE12
NC_AE13
NC_AE14
THERMTRIP_L
AF
L0_CADOUT_H[0]
VSS
L0_CADOUT_L[8]
L0_CADOUT_H[8]
L0_CADOUT_H[9]
VDD
NC_AF13
VDD
NC_AF15
1
NC_AG13
NC_AG14
L2_CADOUT_L[14]1
VDD
L2_CADOUT_H[15]1
TDI
VSS
NC_AF9
VDD
NC_AF11
VSS
AG
NC_AG1
VSS
AH
THERMDC
NC_AH2
VSS
L2_CADIN_L[9]1
VDD
L2_CADIN_L[11]1
VSS
L2_CADIN_L[12]1
VDD
L2_CADIN_L[14]1
VSS
NC_AH12
AJ
THERMDA
NC_AJ2
L2_CADIN_H[0]1
L2_CADIN_H[9]1
L2_CADIN_H[2]1
L2_CADIN_H[11]1
L2_CLKIN_H[0]1
L2_CADIN_H[12]1
L2_CADIN_H[5]1
L2_CADIN_H[14]1
L2_CADIN_H[7]1
NC_AJ12
PRESENCE_DET2
L2_CADIN_L[0]1
VDD
L2_CADIN_L[2]1
VSS
L2_CLKIN_L[0]1
VDD
L2_CADIN_L[5]1
VSS
L2_CADIN_L[7]1
VDD
L2_CADIN_H[1]1
L2_CADIN_L[1]1
L2_CADIN_H[3]1
L2_CADIN_L[3]1
L2_CADIN_H[4]1
L2_CADIN_L[4]1
L2_CADIN_H[6]1
L2_CADIN_L[6]1
L2_CTLIN_H[0]1
L2_CTLIN_L[0]1
3
4
5
6
7
8
9
10
11
12
AK
AL
1
2
L2_CADIN_H[8]
L2_CADIN_L[8]
1
L2_CADIN_H[10]
1
1
L2_CADIN_L[10]
L2_CLKIN_H[1]
1
L2_CLKIN_L[1]
1
L2_CADIN_H[13]
1
L2_CADIN_L[13]
1
L2_CADIN_H[15]
1
L2_CADIN_L[15]
1
VSS
L2_CTLOUT_L[0]1 L2_CADOUT_L[15]1
L2_CADOUT_L[6]1
L2_CTLOUT_H[0]1
L2_CADOUT_H[6]1
VSS
L2_CADOUT_L[7]1 L2_CADOUT_H[7]1
13
14
L2_CADOUT_L[5]1
15
Notes:
1. Links 1 and 2 are available on Server/Workstation products only. See Table 5 on page 26 for proper no connect
(NC_*) naming for Desktop products.
2. PRESENCE_DET is used for Server/Workstation products only. This pin should be connected to VSS for Desktop
products. See the AMD Athlon™ 64 FX and AMD Opteron™ Processor Motherboard Design Guide, order# 25180,
for connection details.
3. VLDT is referenced as a unified plane for Desktop products. See Table 5 on page 26 for proper VLDT pin naming for
Desktop products.
Figure 2.
22
940 Pin Micro PGA—Top View, Left Side
Connection Diagrams
Chapter 4
AMD Functional Data Sheet, 940 Pin Package
31412 Rev 3.05 June 2004
16
17
18
19
20
21
22
23
24
25
26
27
28
29
L1_CADIN_H[6]1
L1_CADIN_L[4]1
L1_CADIN_H[4]1
L1_CADIN_L[3]1
L1_CADIN_H[3]1
L1_CADIN_L[1]1
L1_CADIN_H[1]1
VDDIO
MEMDATA[4]
MEMDATA[1]
MEMDATA[6]
MEMDATA[2]
MEMDATA[3]
MEMDATA[9]
VSS
MEMDATA[0]
MEMDQS[9]
VSS
MEMDATA[7]
MEMDATA[8]
VSS
MEMDATA[13]
1
VDD
L1_CLKIN_L[0]
L1_CADIN_H[5]1
L1_CADIN_H[12]1
VDD
L1_CADIN_L[12]1
L1_CADIN_L[5]
1
1
L1_CADIN_H[13]
L1_CLKIN_L[1]
1
VSS
L1_CLKIN_H[0]1
VSS
L1_CLKIN_H[1]
1
1
1
30
31
A
L1_CADIN_L[2]
VDD
L1_CADIN_L[0]
L1_CADIN_H[11]1
L1_CADIN_H[2]1
L1_CADIN_H[9]1
L1_CADIN_H[0]1
VDDIO
MEMDATA[5]
MEMDQS[0]
MEMDATA[71]
MEMDATA[72]
MEMDATA[12]
MEMDQS[1]
MEMDQS[10]
MEMDATA[14]
C
L1_CADIN_L[11]1
VDD
L1_CADIN_L[9]1
VSS
VSS
MEMDATA[69]
MEMDQS[18]
VDDIO
MEMDATA[76]
VDDIO
MEMDATA[77]
VSS
MEMDATA[15]
D
VDDIO
MEMDATA[65]
MEMDATA[70]
MEMDATA[67]
MEMDATA[73]
MEMDQS[19]
MEMDQS[28]
MEMDATA[10]
MEMDATA[11]
E
1
L1_CADIN_L[10]
1
L1_CADIN_H[10]
1
L1_CADIN_L[8]
L1_CADIN_H[8]
1
B
VSS
VSS
VDD
VDD
VTT
VTT
MEMVREF0
MEMDATA[68]
MEMDQS[27]
MEMDATA[66]
MEMDATA[78]
MEMDATA[79]
MEMDATA[74]
MEMDATA[20]
MEMDATA[16]
MEMDATA[17]
F
CLKIN_H
VSS
FBCLKOUT_H
VTT
MEMCLK_UP_H[3]
MEMCLK_UP_L[3]
VSS
MEMDATA[64]
VSS
MEMRESET_L
VDDIO
MEMDATA[75]
VDDIO
MEMDATA[84]
VSS
MEMDATA[21]
G
CLKIN_L
VSS
FBCLKOUT_L
VTT
VDDIO
MEMCLK_LO_H[3]
MEMCKE_UP
MEMCKE_LO
MEMDATA[80]
MEMDATA[81]
MEMDATA[85]
MEMDQS[2]
MEMDQS[11]
MEMDATA[18]
H
VLDT_12
VSS
VSS
VTT
VSS
VDDIO
VSS
MEMCLK_LO_L[3]
MEMADD[12]
MEMADD[11]
MEMDQS[20]
MEMDQS[29]
MEMDATA[82]
MEMDATA[22]
MEMDATA[23]
MEMDATA[19]
J
2
VSS
VDD
VSS
VDDIO
VSS
VDDIO
MEMADD[9]
VSS
MEMADD[7]
VDDIO
MEMDATA[86]
VDDIO
MEMDATA[87]
VSS
MEMDATA[24]
K
VLDT_1
VSS
VDD
VSS
VDDIO
VSS
VDDIO
VSS
MEMADD[8]
MEMCLK_UP_H[1]
MEMCLK_UP_L[1]
MEMDATA[83]
MEMDATA[88]
MEMDATA[92]
MEMDATA[28]
MEMDATA[29]
MEMDATA[25]
L
VDD
VSS
VDD
VSS
VDD
VSS
VDDIO
NC_M23
MEMADD[5]
MEMADD[6]
MEMDATA[93]
MEMDATA[89]
MEMDQS[21]
MEMDQS[3]
MEMDQS[12]
MEMDATA[30]
M
N
VSS
VDD
VSS
VDD
VSS
VDDIO
VSS
MEMADD[3]
VSS
MEMADD[4]
VDDIO
MEMDQS[30]
VDDIO
MEMDATA[94]
VSS
MEMDATA[26]
VDD
VSS
VDD
VSS
VDD
VSS
VDDIO
MEMADD[2]
MEMCHECK[13]
MEMCHECK[12]
MEMDATA[90]
MEMDATA[91]
MEMDATA[95]
MEMDATA[27]
MEMCHECK[4]
MEMDATA[31]
P
VSS
VDD
VSS
VDD
VSS
VDDIO
VSS
MEMCLK_UP_H[0]
MEMCHECK[8]
MEMCHECK[9]
MEMCHECK[10]
MEMDQS[35]
MEMDQS[26]
MEMCHECK[1]
MEMCHECK[5] MEMCHECK[0]
R
VDD
VSS
VDD
VSS
VDD
VSS
VDDIO
MEMCLK_UP_L[0]
VSS
MEMADD[1]
VDDIO
MEMCHECK[11]
VDDIO
MEMCHECK[14]
VSS
MEMDQS[8]
T
MEMDQS[17]
U
VSS
VDD
VSS
VDD
VSS
VDDIO
VSS
VDDIO
MEMCLK_LO_L[0]
MEMCLK_LO_H[0]
MEMDATA[100]
MEMDATA[96]
MEMCHECK[15]
MEMCHECK[6]
MEMCHECK[2]
VDD
VSS
VDD
VSS
VDD
VSS
VDDIO
NC_V23
MEMADD[10]
MEMADD[0]
MEMDQS[22]
MEMDATA[97]
MEMDATA[101]
MEMDATA[32]
MEMCHECK[7] MEMCHECK[3]
VSS
VDD
VSS
VDD
VSS
VDDIO
VSS
MEMBANK[0]
VSS
MEMBANK[1]
VDDIO
MEMDATA[98]
VDDIO
MEMDQS[31]
VSS
MEMDATA[36]
VDD
VSS
VDD
VSS
VDD
VSS
VDDIO
MEMCLK_LO_H[1]
MEMWE_L
MEMRAS_L
MEMDATA[99]
MEMDATA[103]
MEMDATA[102]
MEMDQS[4]
MEMDATA[33]
MEMDATA[37]
Y
VSS
VDD
VSS
VDDIO
VSS
VDDIO
VSS
MEMCLK_LO_L[1]
MEMCS_L[0]
MEMCAS_L
MEMDATA[109]
MEMDATA[104]
MEMDATA[108]
MEMDATA[38]
MEMDATA[34]
MEMDQS[13]
AA
VLDT_22
VSS
VDD
VSS
VDDIO
VSS
VDDIO
VDDIOFB_H
VSS
MEMCS_L[1]
VDDIO
MEMDQS[32]
VDDIO
MEMDATA[105]
VSS
MEMDATA[39] AB
2
VSS
VTT
VTT
VLDT_2
VDD
VSS
MEMZP
VSS
VTT
VSS
MEMZN
VTT
VSS
VDDIO
VSS
VDDIOFB_L
MEMCS_L[3]
MEMCS_L[2]
MEMDATA[110]
MEMDATA[106]
MEMDQS[23]
MEMDATA[40]
MEMDATA[44]
MEMDATA[35] AC
MEMCLK_LO_L[2]
MEMCLK_LO_H[2]
VDDIO
MEMCS_L[7]
MEMCS_L[5]
MEMCS_L[4]
MEMDATA[112]
MEMDATA[111]
MEMDATA[107]
MEMDQS[14]
MEMDATA[41]
MEMDATA[45] AD
VTT
MEMCLK_UP_L[2]
MEMCLK_UP_H[2]
VSS
MEMADD[13]
VSS
MEMCS_L[6]
VDDIO
MEMDATA[113]
VDDIO
MEMDATA[116]
VSS
VTT_SENSE
VDDIO_SENSE
VSS
MEMVREF1
MEMDATA[123]
MEMDQS[25]
MEMDATA[121]
MEMDATA[118]
MEMDQS[33]
MEMDATA[117]
MEMDATA[43]
MEMDATA[46]
MEMDATA[42] AF
MEMDATA[125]
MEMDATA[119]
MEMDQS[24]
MEMDATA[52]
MEMDATA[48]
MEMDATA[47] AG
MEMDATA[49] AH
L2_CADOUT_H[14]1 L2_CADOUT_L[12]1 L2_CADOUT_H[12]1 L2_CADOUT_L[11]1 L2_CADOUT_H[11]1 L2_CADOUT_L[9]1 L2_CADOUT_H[9]1
L2_CADOUT_H[13]1
VDD
L2_CADOUT_L[13]1 L2_CADOUT_L[4]1
L2_CLKOUT_H[1]1
L2_CLKOUT_L[1]1
V
W
VSS
L2_CADOUT_H[10]1
VDD
L2_CADOUT_L[3]1 L2_CADOUT_L[10]1 L2_CADOUT_L[1]1
VDD
L2_CADOUT_H[4]1
VSS
L2_CADOUT_H[3]1
VDD
L2_CADOUT_H[5]1
L2_CLKOUT_L[0]1
L2_CLKOUT_H[0]1
L2_CADOUT_L[2]1
L2_CADOUT_H[2]1
16
17
18
19
20
L2_CADOUT_H[1]1
VDDIO
MEMDATA[127]
MEMDQS[34]
L2_CADOUT_H[8]1
VSS
MEMDATA[122]
MEMDATA[126]
VDDIO
MEMDATA[124]
VDDIO
MEMDATA[114]
VSS
L2_CADOUT_L[8]1
VDDIO
MEMDATA[63]
MEMDQS[16]
MEMDATA[120]
MEMDATA[60]
MEMDATA[55]
MEMDATA[115]
MEMDQS[15]
VSS
VSS
MEMDATA[58]
MEMDATA[62]
VSS
MEMDATA[61]
MEMDATA[50]
VSS
MEMDATA[54]
VDDIO
MEMDATA[59]
MEMDQS[7]
MEMDATA[57]
MEMDATA[56]
MEMDATA[51]
MEMDQS[6]
23
24
25
26
27
28
29
L2_CADOUT_L[0]1 L2_CADOUT_H[0]1
21
22
MEMDQS[5]
MEMDATA[53]
AE
AJ
AK
AL
30
31
Notes:
1. Links 1 and 2 are available on Server/Workstation products only. See Table 5 on page 26 for proper no connect
(NC_*) naming for Desktop products.
2. VLDT is referenced as a unified plane for Desktop products. See Table 5 on page 26 for proper VLDT pin naming for
Desktop products.
Figure 3.
940 Pin Micro PGA—Top View, Right Side
Chapter 4
Connection Diagrams
23
AMD Functional Data Sheet, 940 Pin Package
24
Connection Diagrams
31412 Rev 3.05 June 2004
Chapter 4
AMD Functional Data Sheet, 940 Pin Package
31412 Rev 3.05 June 2004
5
Pin Designations
Table 5, beginning on page 26, lists the pins alphabetically by pin name.
Chapter 5
Pin Designations
25
AMD Functional Data Sheet, 940 Pin Package
Table 5.
31412 Rev 3.05 June 2004
Pin List by Name
CLKIN_H
G16
L0_CADIN_L[3]
K1
L0_CADOUT_H[15]
CLKIN_L
H16
L0_CADIN_L[4]
M1
L0_CADOUT_L[0]
AE1
COREFB_H
L7
L0_CADIN_L[5]
N2
L0_CADOUT_L[1]
AE3
COREFB_L
L6
L0_CADIN_L[6]
P1
L0_CADOUT_L[2]
AC1
CORESENSE_H
K7
L0_CADIN_L[7]
R2
L0_CADOUT_L[3]
AC3
DBRDY
G8
L0_CADIN_L[8]
H5
L0_CADOUT_L[4]
AA3
DBREQ_L
J7
L0_CADIN_L[9]
H4
L0_CADOUT_L[5]
W1
FBCLKOUT_H
G18
L0_CADIN_L[10]
K5
L0_CADOUT_L[6]
W3
FBCLKOUT_L
H18
L0_CADIN_L[11]
K4
L0_CADOUT_L[7]
U1
L0_CADIN_H[0]
G3
L0_CADIN_L[12]
M4
L0_CADOUT_L[8]
AF3
L0_CADIN_H[1]
G1
L0_CADIN_L[13]
P5
L0_CADOUT_L[9]
AE5
L0_CADIN_H[2]
J3
L0_CADIN_L[14]
P4
L0_CADOUT_L[10]
AD3
L0_CADIN_H[3]
J1
L0_CADIN_L[15]
T5
L0_CADOUT_L[11]
AC5
L0_CADIN_H[4]
L1
L0_CADOUT_H[0]
AF1
L0_CADOUT_L[12]
AA5
L0_CADIN_H[5]
N3
L0_CADOUT_H[1]
AE2
L0_CADOUT_L[13]
Y3
L0_CADIN_H[6]
N1
L0_CADOUT_H[2]
AD1
L0_CADOUT_L[14]
W5
L0_CADIN_H[7]
R3
L0_CADOUT_H[3]
AC2
L0_CADOUT_L[15]
V3
L0_CADIN_H[8]
G5
L0_CADOUT_H[4]
AA2
L0_CLKIN_H[0]
L3
L0_CADIN_H[9]
H3
L0_CADOUT_H[5]
Y1
L0_CLKIN_H[1]
L5
L0_CADIN_H[10]
J5
L0_CADOUT_H[6]
W2
L0_CLKIN_L[0]
L2
L0_CADIN_H[11]
K3
L0_CADOUT_H[7]
V1
L0_CLKIN_L[1]
M5
L0_CADIN_H[12]
M3
L0_CADOUT_H[8]
AF4
L0_CLKOUT_H[0]
AB1
L0_CADIN_H[13]
N5
L0_CADOUT_H[9]
AF5
L0_CLKOUT_H[1]
AB4
L0_CADIN_H[14]
P3
L0_CADOUT_H[10]
AD4
L0_CLKOUT_L[0]
AA1
L0_CADIN_H[15]
R5
L0_CADOUT_H[11]
AD5
L0_CLKOUT_L[1]
AB3
L0_CADIN_L[0]
G2
L0_CADOUT_H[12]
AB5
L0_CTLIN_H[0]
R1
L0_CADIN_L[1]
H1
L0_CADOUT_H[13]
Y4
L0_CTLIN_L[0]
T1
L0_CADIN_L[2]
J2
L0_CADOUT_H[14]
Y5
L0_CTLOUT_H[0]
U2
26
Pin Designations
V4
Chapter 5
AMD Functional Data Sheet, 940 Pin Package
31412 Rev 3.05 June 2004
Table 5.
Pin List by Name (Continued)
L0_CTLOUT_L[0]
U3
L1_CADIN_H[13] /
E16
1
NC_E16
L0_REF0
D1
L1_CADIN_H[14] /
NC_E15
C15
1
E1
L1_CADIN_H[15] /
E14
NC_E14
NC_C22
C22
1
L1_CADIN_H[1] /
C20
A20
A18
C16
NC_C14
A16
C14
E22
C21
Chapter 5
A15
L1_CADIN_L[7] /
L1_CADIN_L[8] /
L1_CADIN_L[9] /
E20
L1_CADIN_L[10] /
B14
E21
L1_CADIN_L[12] /
NC_D171
Pin Designations
L1_CADOUT_H[4] /
L1_CADOUT_H[5] /
L1_CADOUT_H[6] /
L1_CADOUT_H[7] /
L1_CADOUT_H[8] /
NC_D3
D21
B8
A9
B10
A11
E19
E3
1
L1_CADOUT_H[10] /
NC_D5
D19
D3
1
L1_CADOUT_H[9] /
NC_E3
NC_D191
C17
B6
NC_A11
NC_E19
L1_CADIN_L[11] /
L1_CADOUT_H[3] /
1
1
C19
A5
NC_B101
NC_D21
NC_C191
NC_C171
L1_CADIN_L[6] /
L1_CADOUT_H[2] /
NC_A91
1
NC_E20
L1_CADIN_H[12] /
B16
NC_E21
1
L1_CADIN_H[11] /
L1_CADIN_L[5] /
B4
NC_B81
1
1
L1_CADIN_H[10] /
A17
NC_B14
NC_E22
NC_C21
L1_CADIN_L[4] /
L1_CADOUT_H[1] /
NC_B61
1
1
L1_CADIN_H[9] /
A19
NC_A151
1
L1_CADIN_H[8] /
L1_CADIN_L[3] /
A3
1
NC_A51
NC_B161
NC_A161
L1_CADIN_H[7] /
B20
NC_A171
NC_C161
L1_CADIN_H[6] /
L1_CADIN_L[2] /
E13
NC_B41
NC_A191
NC_A181
L1_CADIN_H[5] /
A21
NC_B201
NC_A201
L1_CADIN_H[4] /
L1_CADIN_L[1] /
D15
1
L1_CADOUT_H[0] /
NC_A3
NC_A211
NC_C201
L1_CADIN_H[3] /
B22
NC_B22
A22
L1_CADIN_L[15] /
NC_E13
1
NC_A221
L1_CADIN_H[2] /
L1_CADIN_L[0] /
L1_CADIN_L[14] /
NC_D15
1
L1_CADIN_H[0] /
E15
1
1
NC_C15
L0_REF1
L1_CADIN_L[13] /
D5
1
L1_CADOUT_H[11] /
E5
NC_E51
D17
L1_CADOUT_H[12] /
E7
NC_E71
27
AMD Functional Data Sheet, 940 Pin Package
Table 5.
Pin List by Name (Continued)
L1_CADOUT_H[13] /
D9
1
NC_D9
E9
1
NC_E9
D11
1
A4
L1_CADOUT_L[14] /
E10
1
L1_CADOUT_L[15] /
C11
L1_CLKIN_H[0] /
C18
C4
NC_C41
A6
NC_A61
C6
NC_C61
L1_CLKIN_H[1] /
E18
C8
NC_C81
L1_CLKIN_L[0] /
B18
A10
NC_A101
L1_CADOUT_L[6] /
L1_CLKIN_L[1] /
E17
C10
L1_CADOUT_L[7] /
L1_CLKOUT_H[0] /
A7
A12
NC_A12
L1_CADOUT_L[8] /
C3
1
NC_C3
L1_CADOUT_L[9] /
E4
NC_E4
C5
A8
E6
L1_CLKOUT_L[1] /
C7
1
L2_CADIN_H[7] /
L2_CADIN_H[8] /
L2_CADIN_H[9] /
L2_CADIN_H[10] /
L2_CADIN_H[11] /
NC_AJ6
L1_CTLIN_H[0] /
A14
1
AJ11
AG3
AJ4
AG5
L1_CTLIN_L[0] /
A13
1
B12
L2_CADIN_H[13] /
C12
AG9
1
L2_CADIN_H[14] /
NC_AJ10
L1_CTLOUT_L[0] /
AJ8
1
NC_AG9
L1_CTLOUT_H[0] /
AJ6
1
L2_CADIN_H[12] /
NC_AJ8
NC_C121
E8
AL9
NC_AG51
NC_B12
NC_E61
L1_CADOUT_L[12] /
D7
1
NC_C5
L1_CADOUT_L[11] /
L1_CLKOUT_L[0] /
NC_A13
1
L2_CADIN_H[6] /
NC_AJ41
NC_A14
1
L1_CADOUT_L[10] /
L1_CLKOUT_H[1]/
NC_C7
AJ9
NC_AG31
NC_A81
1
L2_CADIN_H[5] /
NC_AJ111
NC_D71
NC_C101
AL7
NC_AL91
NC_A71
L1_CADOUT_L[5] /
L2_CADIN_H[4] /
NC_AJ91
NC_E171
L1_CADOUT_L[4] /
AL5
1
NC_AL7
NC_B181
L1_CADOUT_L[3] /
L2_CADIN_H[3] /
1
NC_E181
L1_CADOUT_L[2] /
AJ5
1
NC_AL5
NC_C18
L1_CADOUT_L[1] /
L2_CADIN_H[2] /
NC_AJ5
1
NC_A4
AL3
NC_AL3
NC_C11
1
L2_CADIN_H[1] /
1
1
NC_D11
L1_CADOUT_L[0] /
C9
1
NC_E10
L1_CADOUT_H[15] /
28
L1_CADOUT_L[13] /
NC_C9
L1_CADOUT_H[14] /
NC_E81
31412 Rev 3.05 June 2004
AJ10
1
L2_CADIN_H[15] /
AG11
NC_AG111
L2_CADIN_H[0] /
NC_AJ31
AJ3
L2_CADIN_L[0] /
AK3
NC_AK31
Pin Designations
Chapter 5
AMD Functional Data Sheet, 940 Pin Package
31412 Rev 3.05 June 2004
Table 5.
Pin List by Name (Continued)
L2_CADIN_L[1] /
NC_AL4
NC_AK5
AK5
1
AL6
AL8
AK19
AK17
NC_AK17
AK9
L2_CADOUT_H[5] /
AL10
NC_AL101
L2_CADIN_L[7] /
AL16
AK11
L2_CADOUT_H[7] /
AK15
AG4
L2_CADOUT_H[8] /
AL14
AH4
NC_AH41
L2_CADOUT_H[9] /
AH22
AG6
NC_AG61
L2_CADOUT_H[10] /
AG22
AH6
1
L2_CADOUT_H[11] /
AH20
AG20
NC_AG20
AH8
1
L2_CADOUT_H[12] /
AG18
NC_AG18
AG10
1
L2_CADIN_L[14] /
NC_AL221
L2_CADOUT_H[14] /
AG16
NC_AG16
AG12
L2_CADOUT_H[15] /
L2_CADOUT_L[0] /
NC_AL211
Pin Designations
L2_CADOUT_L[10] /
L2_CADOUT_L[11] /
AL13
AJ22
AG21
AJ20
AH14
AG19
1
L2_CADOUT_L[12] /
AG17
1
L2_CADOUT_L[13] /
AJ16
1
L2_CADOUT_L[14] /
NC_AG15
NC_AH141
AL22
L2_CADOUT_L[9] /
NC_AJ16
1
NC_AG121
L2_CADOUT_H[0] /
AH16
NC_AH16
AH10
L2_CADOUT_L[8] /
NC_AG17
1
1
L2_CADIN_L[15] /
L2_CADOUT_H[13] /
L2_CADOUT_L[7] /
NC_AG19
1
L2_CADIN_L[13] /
AJ15
NC_AJ201
1
L2_CADIN_L[12] /
L2_CADOUT_L[6] /
NC_AG211
NC_AH201
L2_CADIN_L[11] /
AL15
NC_AJ221
NC_AG221
L2_CADIN_L[10] /
L2_CADOUT_L[5] /
NC_AL131
NC_AH221
L2_CADIN_L[9] /
AJ17
1
NC_AJ151
NC_AL141
NC_AG41
AJ19
NC_AL151
NC_AK151
NC_AK111
L2_CADIN_L[8] /
L2_CADOUT_H[6] /
AL19
1
L2_CADOUT_L[4] /
NC_AJ17
NC_AL161
L2_CADIN_L[6] /
L2_CADOUT_L[3] /
NC_AJ19
1
NC_AK91
Chapter 5
L2_CADOUT_H[4] /
L2_CADOUT_L[2] /
NC_AL19
NC_AK19
L2_CADIN_L[5] /
NC_AH10
L2_CADOUT_H[3] /
AJ21
1
1
1
1
NC_AG10
AL20
NC_AL20
L2_CADIN_L[4] /
NC_AH8
L2_CADOUT_H[2] /
L2_CADOUT_L[1] /
NC_AJ21
1
1
NC_AH6
AK21
NC_AK21
L2_CADIN_L[3] /
NC_AL8
L2_CADOUT_H[1] /
1
L2_CADIN_L[2] /
NC_AL6
AL4
1
AG15
1
L2_CADOUT_L[15] /
AJ14
NC_AJ141
AL21
L2_CLKIN_H[0] /
AJ7
NC_AJ71
29
AMD Functional Data Sheet, 940 Pin Package
Table 5.
31412 Rev 3.05 June 2004
Pin List by Name (Continued)
L2_CLKIN_H[1] /
AG7
MEMADD[8]
L23
MEMCHECK[11]
T27
AK7
MEMADD[9]
K23
MEMCHECK[12]
P25
AG8
MEMADD[10]
V24
MEMCHECK[13]
P24
AL18
MEMADD[11]
J25
MEMCHECK[14]
T29
AH18
MEMADD[12]
J24
MEMCHECK[15]
U28
AL17
MEMADD[13]
AE23
MEMCKE_LO
H25
AJ18
MEMBANK[0]
W23
MEMCKE_UP
H24
AL11
MEMBANK[1]
W25
MEMCLK_LO_H[0]
U25
AL12
MEMCAS_L
AA25
MEMCLK_LO_H[1]
Y23
AK13
MEMCHECK[0]
R31
MEMCLK_LO_H[2]
AD21
AJ13
MEMCHECK[1]
R29
MEMCLK_LO_H[3]
H23
LDTSTOP_L
J6
MEMCHECK[2]
U30
MEMCLK_LO_L[0]
U24
MEMADD[0]
V25
MEMCHECK[3]
V31
MEMCLK_LO_L[1]
AA23
MEMADD[1]
T25
MEMCHECK[4]
P30
MEMCLK_LO_L[2]
AD20
MEMADD[2]
P23
MEMCHECK[5]
R30
MEMCLK_LO_L[3]
J23
MEMADD[3]
N23
MEMCHECK[6]
U29
MEMCLK_UP_H[0]
R23
MEMADD[4]
N25
MEMCHECK[7]
V30
MEMCLK_UP_H[1]
L24
MEMADD[5]
M24
MEMCHECK[8]
R24
MEMCLK_UP_H[2]
AE21
MEMADD[6]
M25
MEMCHECK[9]
R25
MEMCLK_UP_H[3]
G20
MEMADD[7]
K25
MEMCHECK[10]
R26
MEMCLK_UP_L[0]
T23
1
NC_AG7
L2_CLKIN_L[0] /
1
NC_AK7
L2_CLKIN_L[1] /
1
NC_AG8
L2_CLKOUT_H[0] /
1
NC_AL18
L2_CLKOUT_H[1] /
NC_AH181
L2_CLKOUT_L[0]/
NC_AL171
L2_CLKOUT_L[1] /
NC_AJ181
L2_CTLIN_H[0] /
NC_AL111
L2_CTLIN_L[0] /
NC_AL121
L2_CTLOUT_H[0] /
NC_AK131
L2_CTLOUT_L[0] /
1
NC_AJ13
30
Pin Designations
Chapter 5
AMD Functional Data Sheet, 940 Pin Package
31412 Rev 3.05 June 2004
Table 5.
Pin List by Name (Continued)
MEMCLK_UP_L[1]
L25
MEMDATA[17]
F31
MEMDATA[45]
AD31
MEMCLK_UP_L[2]
AE20
MEMDATA[18]
H31
MEMDATA[46]
AF30
MEMCLK_UP_L[3]
G21
MEMDATA[19]
J31
MEMDATA[47]
AG31
MEMCS_L[0]
AA24
MEMDATA[20]
F29
MEMDATA[48]
AG30
MEMCS_L[1]
AB25
MEMDATA[21]
G31
MEMDATA[49]
AH31
MEMCS_L[2]
AC25
MEMDATA[22]
J29
MEMDATA[50]
AK28
MEMCS_L[3]
AC24
MEMDATA[23]
J30
MEMDATA[51]
AL28
MEMCS_L[4]
AD25
MEMDATA[24]
K31
MEMDATA[52]
AG29
MEMCS_L[5]
AD24
MEMDATA[25]
L31
MEMDATA[53]
AJ31
MEMCS_L[6]
AE25
MEMDATA[26]
N31
MEMDATA[54]
AK30
MEMCS_L[7]
AD23
MEMDATA[27]
P29
MEMDATA[55]
AJ28
MEMDATA[0]
B24
MEMDATA[28]
L29
MEMDATA[56]
AL27
MEMDATA[1]
A25
MEMDATA[29]
L30
MEMDATA[57]
AL26
MEMDATA[2]
A27
MEMDATA[30]
M31
MEMDATA[58]
AK24
MEMDATA[3]
A28
MEMDATA[31]
P31
MEMDATA[59]
AL24
MEMDATA[4]
A24
MEMDATA[32]
V29
MEMDATA[60]
AJ27
MEMDATA[5]
C24
MEMDATA[33]
Y30
MEMDATA[61]
AK27
MEMDATA[6]
A26
MEMDATA[34]
AA30
MEMDATA[62]
AK25
MEMDATA[7]
B27
MEMDATA[35]
AC31
MEMDATA[63]
AJ24
MEMDATA[8]
B28
MEMDATA[36]
W31
MEMDATA[64]
G23
MEMDATA[9]
A29
MEMDATA[37]
Y31
MEMDATA[65]
E24
MEMDATA[10]
E30
MEMDATA[38]
AA29
MEMDATA[66]
F25
MEMDATA[11]
E31
MEMDATA[39]
AB31
MEMDATA[67]
E26
MEMDATA[12]
C28
MEMDATA[40]
AC29
MEMDATA[68]
F23
MEMDATA[13]
B30
MEMDATA[41]
AD30
MEMDATA[69]
D24
MEMDATA[14]
C31
MEMDATA[42]
AF31
MEMDATA[70]
E25
MEMDATA[15]
D31
MEMDATA[43]
AF29
MEMDATA[71]
C26
MEMDATA[16]
F30
MEMDATA[44]
AC30
MEMDATA[72]
C27
Chapter 5
Pin Designations
31
AMD Functional Data Sheet, 940 Pin Package
Table 5.
31412 Rev 3.05 June 2004
Pin List by Name (Continued)
MEMDATA[73]
E27
MEMDATA[101]
V28
MEMDQS[1]
C29
MEMDATA[74]
F28
MEMDATA[102]
Y28
MEMDQS[2]
H29
MEMDATA[75]
G27
MEMDATA[103]
Y27
MEMDQS[3]
M29
MEMDATA[76]
D27
MEMDATA[104]
AA27
MEMDQS[4]
Y29
MEMDATA[77]
D29
MEMDATA[105]
AB29
MEMDQS[5]
AE31
MEMDATA[78]
F26
MEMDATA[106]
AC27
MEMDQS[6]
AL29
MEMDATA[79]
F27
MEMDATA[107]
AD28
MEMDQS[7]
AL25
MEMDATA[80]
H26
MEMDATA[108]
AA28
MEMDQS[8]
T31
MEMDATA[81]
H27
MEMDATA[109]
AA26
MEMDQS[9]
B25
MEMDATA[82]
J28
MEMDATA[110]
AC26
MEMDQS[10]
C30
MEMDATA[83]
L26
MEMDATA[111]
AD27
MEMDQS[11]
H30
MEMDATA[84]
G29
MEMDATA[112]
AD26
MEMDQS[12]
M30
MEMDATA[85]
H28
MEMDATA[113]
AE27
MEMDQS[13]
AA31
MEMDATA[86]
K27
MEMDATA[114]
AH29
MEMDQS[14]
AD29
MEMDATA[87]
K29
MEMDATA[115]
AJ29
MEMDQS[15]
AJ30
MEMDATA[88]
L27
MEMDATA[116]
AE29
MEMDQS[16]
AJ25
MEMDATA[89]
M27
MEMDATA[117]
AF28
MEMDQS[17]
U31
MEMDATA[90]
P26
MEMDATA[118]
AF26
MEMDQS[18]
D25
MEMDATA[91]
P27
MEMDATA[119]
AG27
MEMDQS[19]
E28
MEMDATA[92]
L28
MEMDATA[120]
AJ26
MEMDQS[20]
J26
MEMDATA[93]
M26
MEMDATA[121]
AF25
MEMDQS[21]
M28
MEMDATA[94]
N29
MEMDATA[122]
AH24
MEMDQS[22]
V26
MEMDATA[95]
P28
MEMDATA[123]
AF23
MEMDQS[23]
AC28
MEMDATA[96]
U27
MEMDATA[124]
AH27
MEMDQS[24]
AG28
MEMDATA[97]
V27
MEMDATA[125]
AG26
MEMDQS[25]
AF24
MEMDATA[98]
W27
MEMDATA[126]
AH25
MEMDQS[26]
R28
MEMDATA[99]
Y26
MEMDATA[127]
AG24
MEMDQS[27]
F24
MEMDATA[100]
U26
MEMDQS[0]
C25
MEMDQS[28]
E29
32
Pin Designations
Chapter 5
AMD Functional Data Sheet, 940 Pin Package
31412 Rev 3.05 June 2004
Table 5.
Pin List by Name (Continued)
MEMDQS[29]
J27
NC_AG14
AG14
NC_V5
V5
MEMDQS[30]
N27
NC_AH12
AH12
NC_W6
W6
MEMDQS[31]
W29
NC_AH2
AH2
PRESENCE_DET / VSS2
AK2
MEMDQS[32]
AB27
NC_AJ12
AJ12
PWROK
F12
MEMDQS[33]
AF27
NC_AJ2
AJ2
RESET_L
G12
MEMDQS[34]
AG25
NC_C13
C13
TCK
AE7
MEMDQS[35]
R27
NC_D13
D13
TDI
AF7
MEMRAS_L
Y25
NC_E11
E11
TDO
AE8
MEMRESET_L
G25
NC_E12
E12
THERMDA
AJ1
MEMVREF0
F22
NC_F7
F7
THERMDC
AH1
MEMVREF1
AF22
NC_G14
G14
THERMTRIP_L
AE15
MEMWE_L
Y24
NC_G6
G6
TMS
AE6
MEMZN
AF17
NC_H12
H12
TRST_L
AD7
MEMZP
AE16
NC_H13
H13
VDD
AA4
NC_AA6
AA6
NC_H14
H14
VDD
AA9
NC_AC6
AC6
NC_H7
H7
VDD
AA11
NC_AE10
AE10
NC_H9
H9
VDD
AA13
NC_AE11
AE11
NC_K8
K8
VDD
AA15
NC_AE12
AE12
NC_L8
L8
VDD
AA17
NC_AE13
AE13
NC_M23
M23
VDD
AB6
NC_AE14
AE14
NC_N6
N6
VDD
AB8
NC_AE9
AE9
NC_R6
R6
VDD
AB12
NC_AF11
AF11
NC_T3
T3
VDD
AB18
NC_AF13
AF13
NC_T4
T4
VDD
AC13
NC_AF15
AF15
NC_T7
T7
VDD
AD2
NC_AF9
AF9
NC_U5
U5
VDD
AD12
NC_AG1
AG1
NC_U6
U6
VDD
AD14
NC_AG13
AG13
NC_V23
V23
VDD
AD16
Chapter 5
Pin Designations
33
AMD Functional Data Sheet, 940 Pin Package
Table 5.
31412 Rev 3.05 June 2004
Pin List by Name (Continued)
VDD
AE4
VDD
F19
VDD
P10
VDD
AF6
VDD
G7
VDD
P12
VDD
AF10
VDD
H2
VDD
P14
VDD
AF14
VDD
J4
VDD
P16
VDD
AH5
VDD
J13
VDD
P18
VDD
AH9
VDD
K6
VDD
P20
VDD
AH13
VDD
K12
VDD
R9
VDD
AH17
VDD
K18
VDD
R11
VDD
AH21
VDD
L9
VDD
R13
VDD
AK4
VDD
L11
VDD
R15
VDD
AK8
VDD
L13
VDD
R17
VDD
AK12
VDD
L15
VDD
R19
VDD
AK16
VDD
L17
VDD
T2
VDD
AK20
VDD
M2
VDD
T8
VDD
B5
VDD
M10
VDD
T10
VDD
B9
VDD
M12
VDD
T12
VDD
B13
VDD
M14
VDD
T14
VDD
B17
VDD
M16
VDD
T16
VDD
B21
VDD
M18
VDD
T18
VDD
D4
VDD
M20
VDD
T20
VDD
D8
VDD
N4
VDD
U4
VDD
D12
VDD
N9
VDD
U9
VDD
D16
VDD
N11
VDD
U11
VDD
D20
VDD
N13
VDD
U13
VDD
F6
VDD
N15
VDD
U15
VDD
F11
VDD
N17
VDD
U17
VDD
F15
VDD
N19
VDD
U19
VDD
F18
VDD
P6
VDD
V6
34
Pin Designations
Chapter 5
AMD Functional Data Sheet, 940 Pin Package
31412 Rev 3.05 June 2004
Table 5.
Pin List by Name (Continued)
VDD
V10
VDDIO
G26
VDDIO
AA21
VDD
V12
VDDIO
G28
VDDIO
AB20
VDD
V14
VDDIO
H22
VDDIO
AB22
VDD
V16
VDDIO
J21
VDDIO
AB26
VDD
V18
VDDIO
K20
VDDIO
AB28
VDD
V20
VDDIO
K22
VDDIO
AC21
VDD
W9
VDDIO
K26
VDDIO
AD22
VDD
W11
VDDIO
K28
VDDIO
AE26
VDD
W13
VDDIO
L19
VDDIO
AE28
VDD
W15
VDDIO
L21
VDDIO
AG23
VDD
W17
VDDIO
M22
VDDIO
AH26
VDD
W19
VDDIO
N21
VDDIO
AH28
VDD
Y2
VDDIO
N26
VDDIO
AJ23
VDD
Y10
VDDIO
N28
VDDIO
AL23
VDD
Y12
VDDIO
P22
VDDIO_SENSE
AF20
VDD
Y14
VDDIO
R21
VDDIOFB_H
AB23
VDD
Y16
VDDIO
T22
VDDIOFB_L
AC23
VDD
Y18
VDDIO
T26
VID[0]
G11
VDD
Y20
VDDIO
T28
VID[1]
H11
VDDA1 / VDDA
C1
VDDIO
U21
VID[2]
G10
VDDA2 / VDDA
D2
VDDIO
U23
VID[3]
F9
VDDA3 / VDDA
C2
VDDIO
V22
VID[4]
G9
VDDIO
A23
VDDIO
W21
VLDT_0 / VLDT3
M8
VDDIO
C23
VDDIO
W26
VLDT_0 / VLDT3
N7
VDDIO
D26
VDDIO
W28
VLDT_0 / VLDT3
P8
VDDIO
D28
VDDIO
Y22
VLDT_0 / VLDT3
R7
VDDIO
E23
VDDIO
AA19
VLDT_0 / VLDT3
U7
Chapter 5
Pin Designations
35
AMD Functional Data Sheet, 940 Pin Package
Table 5.
31412 Rev 3.05 June 2004
Pin List by Name (Continued)
VLDT_0 / VLDT3
V8
VSS
AA16
VSS
AD15
VLDT_0 / VLDT3
W7
VSS
AA18
VSS
AD17
VLDT_0 / VLDT3
Y8
VSS
AA20
VSS
AE17
VLDT_0 / VLDT3
AA7
VSS
AA22
VSS
AE22
VLDT_1 / VLDT3
H8
VSS
AB2
VSS
AE24
VLDT_1 / VLDT3
H10
VSS
AB7
VSS
AE30
VLDT_1 / VLDT3
J9
VSS
AB9
VSS
AF2
VLDT_1 / VLDT3
J11
VSS
AB11
VSS
AF8
VLDT_1 / VLDT3
J15
VSS
AB13
VSS
AF12
VLDT_1 / VLDT3
J16
VSS
AB15
VSS
AF16
VLDT_1 / VLDT3
K10
VSS
AB17
VSS
AF21
VLDT_1 / VLDT3
K14
VSS
AB19
VSS
AG2
VLDT_1 / VLDT3
K16
VSS
AB21
VSS
AH3
VLDT_2 / VLDT3
AB10
VSS
AB24
VSS
AH7
VLDT_2 / VLDT3
AB14
VSS
AB30
VSS
AH11
VLDT_2 / VLDT3
AB16
VSS
AC4
VSS
AH15
VLDT_2 / VLDT3
AC9
VSS
AC10
VSS
AH19
VLDT_2 / VLDT3
AC11
VSS
AC12
VSS
AH23
VLDT_2 / VLDT3
AC15
VSS
AC14
VSS
AH30
VLDT_2 / VLDT3
AC16
VSS
AC17
VSS
AK6
VLDT_2 / VLDT3
AD8
VSS
AC20
VSS
AK10
VLDT_2 / VLDT3
AD10
VSS
AC22
VSS
AK14
VSS
AA8
VSS
AD6
VSS
AK18
VSS
AA10
VSS
AD9
VSS
AK22
VSS
AA12
VSS
AD11
VSS
AK23
VSS
AA14
VSS
AD13
VSS
AK26
36
Pin Designations
Chapter 5
AMD Functional Data Sheet, 940 Pin Package
31412 Rev 3.05 June 2004
Table 5.
Pin List by Name (Continued)
VSS
AK29
VSS
G15
VSS
L12
VSS
B3
VSS
G17
VSS
L14
VSS
B7
VSS
G22
VSS
L16
VSS
B11
VSS
G24
VSS
L18
VSS
B15
VSS
G30
VSS
L20
VSS
B19
VSS
H6
VSS
L22
VSS
B23
VSS
H15
VSS
M6
VSS
B26
VSS
F10
VSS
M7
VSS
B29
VSS
J8
VSS
M9
VSS
D6
VSS
J10
VSS
M11
VSS
D10
VSS
J12
VSS
M13
VSS
D14
VSS
J14
VSS
M15
VSS
D18
VSS
J17
VSS
M17
VSS
D22
VSS
J18
VSS
M19
VSS
D23
VSS
J20
VSS
M21
VSS
D30
VSS
J22
VSS
N8
VSS
E2
VSS
K2
VSS
N10
VSS
F1
VSS
K9
VSS
N12
VSS
F2
VSS
K11
VSS
N14
VSS
F5
VSS
K13
VSS
N16
VSS
F8
VSS
K15
VSS
N18
VSS
F10
VSS
K17
VSS
N20
VSS
F13
VSS
K19
VSS
N22
VSS
F14
VSS
K21
VSS
N24
VSS
F16
VSS
K24
VSS
N30
VSS
F17
VSS
K30
VSS
P2
VSS
G4
VSS
L4
VSS
P7
VSS
G13
VSS
L10
VSS
P9
Chapter 5
Pin Designations
37
AMD Functional Data Sheet, 940 Pin Package
Table 5.
31412 Rev 3.05 June 2004
Pin List by Name
VSS
P11
VSS
U8
VSS
W20
VSS
P13
VSS
U10
VSS
W22
VSS
P15
VSS
U12
VSS
W24
VSS
P17
VSS
U14
VSS
W30
VSS
P19
VSS
U16
VSS
Y6
VSS
P21
VSS
U18
VSS
Y7
VSS
R4
VSS
U20
VSS
Y9
VSS
R8
VSS
U22
VSS
Y11
VSS
R10
VSS
V2
VSS
Y13
VSS
R12
VSS
V7
VSS
Y15
VSS
R14
VSS
V9
VSS
Y17
VSS
R16
VSS
V11
VSS
Y19
VSS
R18
VSS
V13
VSS
Y21
VSS
R20
VSS
V15
VTT
AF18
VSS
R22
VSS
V17
VTT
F20
VSS
T6
VSS
V19
VTT
F21
VSS
T9
VSS
V21
VTT
G19
VSS
T11
VSS
W4
VTT
H19
VSS
T13
VSS
W8
VTT
J19
VSS
T15
VSS
W10
VTT
AC18
VSS
T17
VSS
W12
VTT
AC19
VSS
T19
VSS
W14
VTT
AE18
VSS
T21
VSS
W16
VTT
AE19
VSS
T24
VSS
W18
VTT_SENSE
AF19
VSS
T30
Notes:
1. Links 1 and 2 are available on Server/Workstation products only. No connect (NC_*) names apply to Desktop products.
38
Pin Designations
Chapter 5
31412 Rev 3.05 June 2004
AMD Functional Data Sheet, 940 Pin Package
2. PRESENCE_DET is used for Server/Workstation products only. This pin should be connected to VSS for Desktop
products. See the AMD Athlon™ 64 FX and AMD Opteron™ Processor Motherboard Design Guide, order# 25180, for
connection details.
3. VLDT is referenced as a unified plane for Desktop products.
Chapter 5
Pin Designations
39
AMD Functional Data Sheet, 940 Pin Package
40
Pin Designations
31412 Rev 3.05 June 2004
Chapter 5
AMD Functional Data Sheet, 940 Pin Package
31412 Rev 3.05 June 2004
6
Pin Descriptions
Table 6 describes the terms used in the pin description tables found in this chapter. The pins are
organized within the following functional groups:
•
HyperTransport™ technology interface
•
DDR SDRAM memory interface
•
Miscellaneous pins, including clock, JTAG, and debug pins
All pins are described in the tables beginning on page 42.
Table 6.
Pin Description Table Definitions
Pin Types
Applicable Section in Electrical Chapter
I-HT
Input, HyperTransport™ technology, Differential
“HyperTransport™ Technology Interface” on
page 50
O-HT
Output, HyperTransport™ technology,
Differential
“HyperTransport™ Technology Interface” on
page 50
B-IOS
Bidirectional, VDDIO1 Single-Ended
“DDR SDRAM and Miscellaneous Pins” on
page 53
I-IOS
Input, VDDIO1, Single-Ended
“DDR SDRAM and Miscellaneous Pins” on
page 53
I-IOD
Input, VDDIO1, Differential
“Clock Pins” on page 65
O-IOD
Output, VDDIO1, Differential
“Clock Pins” on page 65
O-IOS
Output, VDDIO1, Single-Ended
“DDR SDRAM and Miscellaneous Pins” on
page 53
Output, VDDIO1, Open Drain
“DDR SDRAM and Miscellaneous Pins” on
page 53
A
Analog
“Power Supplies” on page 75
S
Supply Voltage
“Power Supplies” on page 75
Voltage Reference
“DDR SDRAM and Miscellaneous Pins” on
page 53
O-IO-OD
VREF
Notes:
1. Refer to Table 36, “Combined AC and DC Operating Conditions for Power Supplies,” on page 75 for VDDIO voltage
specifications.
Chapter 6
Pin Descriptions
41
AMD Functional Data Sheet, 940 Pin Package
6.1
HyperTransport™ Technology Pins
Table 7.
HyperTransport™ Technology Pin Descriptions
Signal Name
Type
Description
L0_CLKIN_H/L[1:0]
I-HT
Link 0 Clock Input
L0_CTLIN_H/L[0]
I-HT
Link 0 Control Input
L0_CADIN_H/L[15:0]
I-HT
Link 0 Command/Address/Data Input
L0_CLKOUT_H/L[1:0]
O-HT
Link 0 Clock Outputs
L0_CTLOUT_H/L[0]
O-HT
Link 0 Control Output
L0_CADOUT_H/L[15:0]
O-HT
Link 0 Command/Address/Data Outputs
L1_CLKIN_H/L[1:0]2
I-HT
Link 1 Clock Input
L1_CTLIN_H/L[0]2
I-HT
Link 1 Control Input
L1_CADIN_H/L[15:0]2
I-HT
Link 1 Command/Address/Data Input
L1_CLKOUT_H/L[1:0]2
O-HT
Link 1 Clock Outputs
L1_CTLOUT_H/L[0]2
O-HT
Link 1 Control Output
L1_CADOUT_H/L[15:0]2
O-HT
Link 1 Command/Address/Data Outputs
L2_CLKIN_H/L[1:0]2
I-HT
Link 2 Clock Input
L2_CTLIN_H/L[0]2
I-HT
Link 2 Control Input
L2_CADIN[15:0]2
I-HT
Link 2 Command/Address/Data Input
L2_CLKOUT_H/L[1:0]2
O-HT
Link 2 Clock Outputs
L2_CTLOUT_H/L[0]2
O-HT
Link 2 Control Output
L2_CADOUT_H/L[15:0]2
O-HT
Link 2 Command/Address/Data Outputs
L0_REF1
A
Compensation Resistor to VLDT1
L0_REF0
A
Compensation Resistor to VSS1
31412 Rev 3.05 June 2004
Notes:
1. These pins are used in an alternating fashion to compensate RTT by internal comparison to 3/4 VLDT and 1/4 VLDT
and compensate RON by comparison to each other around 1/2 VLDT. For proper resistor value, see the AMD
Athlon™ 64 FX and AMD Opteron™ Processor Motherboard Design Guide, order# 25180.
2. Link 1 and Link 2 are available only on Server products.
42
Pin Descriptions
Chapter 6
AMD Functional Data Sheet, 940 Pin Package
31412 Rev 3.05 June 2004
6.2
DDR SDRAM Memory Interface Pins
Table 8.
DDR SDRAM Memory Interface Pin Descriptions
Signal Name
Type Description
MEMCLK_UP_H/L[3] O-IOD DRAM Clock connected to DIMM3 for the upper half of the data bus
MEMCLK_UP_H/L[2] O-IOD DRAM Clock connected to DIMM2 for the upper half of the data bus
MEMCLK_UP_H/L[1] O-IOD DRAM Clock connected to DIMM1 for the upper half of the data bus
MEMCLK_UP_H/L[0] O-IOD DRAM Clock connected to DIMM0 for the upper half of the data bus
MEMCLK_LO_H/L[3] O-IOD DRAM Clock connected to DIMM3 for the lower half of the data bus
MEMCLK_LO_H/L[2] O-IOD DRAM Clock connected to DIMM2 for the lower half of the data bus
MEMCLK_LO_H/L[1] O-IOD DRAM Clock connected to DIMM1 for the lower half of the data bus
MEMCLK_LO_H/L[0] O-IOD DRAM Clock connected to DIMM0 for the lower half of the data bus
MEMCKE_UP
O-IOS DRAM Clock Enable
MEMCKE_LO
O-IOS DRAM Clock Enable
MEMDQS[35:0]
B-IOS DRAM Data Strobe synchronous with MEMCHECK[15:12] for x4 DIMMs.
MEMDQS[34:27]
B-IOS DRAM Data Strobe synchronous with the high-order nibbles of MEMDATA[127:64]
for x4 DIMMs
MEMDQS[26]
B-IOS DRAM data strobe synchronous with MEMCHECK[11:8] for x4 DIMMs and
MEMCHECK[15:8] for x8/x16 DIMMs.
MEMDQS[25:18]
B-IOS DRAM Data Strobe synchronous with the low-order nibbles of MEMDATA[127:64]
for x4 DIMMs and all nibbles for x8/x16 DIMMs
MEMDQS[17]
B-IOS DRAM Data Strobe synchronous with MEMCHECK[7:4] for x4 DIMMs
MEMDQS[16:9]
B-IOS DRAM Data Strobe synchronous with high-order nibbles of MEMDATA[63:0] for x4
DIMMs
MEMDQS[8]
B-IOS DRAM Data Strobe synchronous with MEMCHECK[3:0] for x4 DIMMs and
MEMCHECK[7:0] for x8/x16 DIMMs
MEMDQS[7:0]
B-IOS DRAM Data Strobe synchronous with low-order nibbles of MEMDATA[127:64] for
x4 DIMMs and all nibbles for x8/x16 DIMMs
MEMDATA[127:0]
B-IOS DRAM Interface Data Bus
MEMCHECK[15:0]
B-IOS DRAM Interface ECC Check Bits
MEMCS_L[7:0]
O-IOS DRAM Chip Selects1
MEMRAS_L
O-IOS DRAM Row Address Select
MEMCAS_L
O-IOS DRAM Column Address Select
Chapter 6
Pin Descriptions
43
AMD Functional Data Sheet, 940 Pin Package
Table 8.
31412 Rev 3.05 June 2004
DDR SDRAM Memory Interface Pin Descriptions (Continued)
Signal Name
Type Description
MEMWE_L
O-IOS DRAM Write Enable
MEMADD[13:0]
O-IOS DRAM Column/Row Address
MEMBANK[1:0]
O-IOS DRAM Bank Address
MEMRESET_L
O-IOS DRAM Reset pin for Suspend-to-RAM power management mode. This pin is required
for registered DIMMs only.
MEMVREF
VREF DRAM Interface Voltage Reference1
MEMZP
A
Compensation Resistor tied to VSS1
MEMZN
A
Compensation Resistor tied to VDDIO1
Notes:
1. For connection details and proper resistor values, see the AMD Athlon™ 64 FX and AMD Opteron™ Processor
Motherboard Design Guide, order# 25180.
44
Pin Descriptions
Chapter 6
AMD Functional Data Sheet, 940 Pin Package
31412 Rev 3.05 June 2004
6.3
Miscellaneous Pins
Table 9.
Clock Pin Descriptions
Signal Name
Type
Description
CLKIN_H/L
I-IOD
200-MHz PLL Reference Clock
FBCLKOUT_H/L
O-IOD
Core Clock PLL 200-MHz Feedback Clock
Table 10. Miscellaneous Pin Descriptions
Signal Name
Type
Description
RESET_L
I-IOS
System Reset
PWROK
I-IOS
Indicates that voltages and clocks have reached specified operation
LDTSTOP_L
I-IOS
HyperTransport™ Technology Stop Control Input. Used for power
management and for changing HyperTransport™ link width and frequency.
VID[4:0]
O-IOS
Voltage ID to the regulator
THERMDA
A
Anode (+) of the thermal diode
THERMDC
A
Cathode (–) of the thermal diode
THERMTRIP_L
O-IO-OD
Thermal Sensor Trip output, asserted at nominal temperature of 125oC.
COREFB_H/L
A
Differential feedback for VDD Power Supply
VDDIOFB_H/L
A
Differential feedback for VDDIO Power Supply
CORE_SENSE
A
VDD voltage monitor pin
VDDA
S
Filtered PLL Supply Voltage
VTT_SENSE
A
VTT voltage monitor pin
VDDIO_SENSE
A
VDDIO voltage monitor pin
VDD
S
Core power supply
VDDIO
S
DDR SDRAM I/O ring power supply
VLDT_01
VLDT_11
VLDT_21
S
HyperTransport™ I/O ring power supply
VTT
S
VTT regulator voltage
Chapter 6
Pin Descriptions
45
AMD Functional Data Sheet, 940 Pin Package
31412 Rev 3.05 June 2004
Table 10. Miscellaneous Pin Descriptions (Continued)
Signal Name
Type
Description
PRESENCE_DET2
S
This pin can be connected to VSS or used for detection of the processor in
multiprocessor configurations. When used as a presence detection bit it
should be pulled up and sensed via the circuitry that is used to detect
installed processors on the motherboard. This pin is connected to VSS
internally.
VSS
S
Ground
Notes:
1. VLDT is referenced as a unified plane for Desktop products.
2. PRESENCE_DET is used for Server/Workstation products only. This pin should be connected to VSS for Desktop
products. See the AMD Athlon™ 64 FX and AMD Opteron™ Processor Motherboard Design Guide, order# 25180,
for connection details.
Table 11. VID[4:0] Encoding
VID[4:0]
VDD
VID[4:0]
VDD
VID[4:0]
VDD
VID[4:0]
VDD
0x00000
1.550 V
0x01000
1.350 V
0x10000
1.150 V
0x11000
0.950 V
0x00001
1.525 V
0x01001
1.325 V
0x10001
1.125 V
0x11001
0.925 V
0x00010
1.500 V
0x01010
1.300 V
0x10010
1.100 V
0x11010
0.900 V
0x00011
1.475 V
0x01011
1.275 V
0x10011
1.075 V
0x11011
0.875 V
0x00100
1.450 V
0x01100
1.250 V
0x10100
1.050 V
0x11100
0.850 V
0x00101
1.425 V
0x01101
1.225 V
0x10101
1.025 V
0x11101
0.825 V
0x00110
1.400 V
0x01110
1.200 V
0x10110
1.000 V
0x11110
0.800 V
0x00111
1.375 V
0x01111
1.175 V
0x10111
0.975 V
0x11111
Off
Table 12. JTAG Pin Descriptions
Signal Name
Type
Description
TCK
I-IOS
JTAG Clock
TMS
I-IOS
JTAG Mode Select
TRST_L
I-IOS
JTAG Reset
TDI
I-IOS
JTAG Data Input
TDO
O-IOS
JTAG Data Output
46
Pin Descriptions
Chapter 6
AMD Functional Data Sheet, 940 Pin Package
31412 Rev 3.05 June 2004
Table 13. Debug Pin Descriptions
Signal Name
Type
Description
DBREQ_L
I-IOS
Debug Request
DBRDY
O-IOS
Debug Ready
Chapter 6
Pin Descriptions
47
AMD Functional Data Sheet, 940 Pin Package
6.4
31412 Rev 3.05 June 2004
Pin States at Reset
The default pin states are listed below. These are listed for all output and bidirectional pins in the
power-on reset state (reset) as well as the ACPI S1 and S3 power management states.
Table 14. Reset Pin State
Reset
State
S1
State
S3
State
L*_CLKOUT*
T
Z
Z
Tristated in S1 only if programmed to do so.
L*_CTLOUT*
0
Z
Z
Tristated in S1 only if programmed to do so.
L*_CADOUT*
1
Z
Z
Tristated in S1 only if programmed to do so.
MEMCLK*
Z
Z
Z
MEMDQS*
Z
Z
Z
MEMCKE*
0
0
0
MEMDATA*
Z
Z
Z
MEMCHECK*
Z
Z
Z
MEMCS_L*
1
Z
Z
MEMRAS_L
1
Z
Z
MEMCAS_L
1
Z
Z
MEMWE_L
1
Z
Z
MEMADD*
0
Z
Z
MEMBANK*
0
Z
Z
MEMRESET_L
0
0
0
MEMZN
1
1
1
MEMZP
0
0
0
FBCLKOUT*
T
T
Z
TDO
X
X
Z
DBRDY
0
0
Z
VID[4:0]
X
X
X
THERMTRIP_L
Z
X
Z
Pin Name
Comments
In S3, MEMCKE* is forced to a logic Low.
In S3, MEMRESET_L is forced to logic 0.
For differential inputs, “0” and “1” refer to the high-end differential output. Low-end differential outputs are inverted.
Definitions of pin states: X: Either logic 1 or 0, Z: Tristated, T: Toggling between 0 and 1
48
Pin Descriptions
Chapter 6
AMD Functional Data Sheet, 940 Pin Package
31412 Rev 3.05 June 2004
7
Electrical Data
7.1
Absolute Maximum Ratings
Stresses greater than those listed in Table 15 may cause permanent damage to the device and
motherboard. Systems using this device must be designed to ensure that these parameters are not
violated. Violation of these ratings will void the product warranty. Exposure to absolute maximum
rating conditions for extended periods may affect device reliability.
Table 15. Absolute Maximum Ratings
Characteristic
Range
Storage Temperature
–55oC to 85oC
VLDT supply voltage relative to VSS
–0.3 V to 1.5 V
VDD supply voltage relative to VSS
–0.3 V to 1.65 V
VTT supply voltage relative to VSS
–0.3 V to 1.65 V
VDDIO supply voltage relative to VSS
–1 V to 2.9 V
VDDA supply voltage relative to VSS
–0.3 V to 3.0 V
MEMVREF input voltage relative to VSS
–1 V to 2.9 V
Input voltage relative to VSS for HyperTransport™ technology interface
–0.3 V to 1.5 V
Differential input voltage for HyperTransport™ technology interface
–1.5 V to 1.5 V
Input voltage relative to VSS for DDR SDRAM memory interface and
Miscellaneous pins
–1 V to 2.9V
Refer to AMD Opteron™ Processor Power and Thermal Data Sheet, order# 30417, for maximum
case temperature specifications.
Chapter 7
Electrical Data
49
AMD Functional Data Sheet, 940 Pin Package
31412 Rev 3.05 June 2004
7.2
HyperTransport™ Technology Interface
7.2.1
Operating Conditions
Table 16. DC Operating Conditions for HyperTransport™ Technology Interface
Symbol
Parameter
Unit
Min
Typ
Max
Notes
VOD
Output Differential Voltage
mV
495
600
715
1, 2
VOCM
Output Common Mode Voltage
mV
495
600
715
1, 2
VID
Input Differential Voltage
mV
200
600
1000
1, 2
VICM
Input Common Mode Voltage
mV
440
600
780
1, 2
DeltaVOD
Change in VOD from 0 to 1 State
mV
–15
0
15
1
DeltaVOCM
Change in VOCM from 0 to 1 State
mV
–15
0
15
1
DeltaVID
Change in VID from 0 to 1 State
mV
–15
0
15
1
DeltaVICM
Change in VICM from 0 to 1 State
mV
–15
0
15
1
Il
Input Leakage Current
mA
–1
1
IOZ
Output Tristate Leakage Current
mA
–1
1
RON
Output Driver Impedance
ohm
45
50
55
DeltaRON
Change in RON Driving 0=>1 or
%
–2.5
0
2.5
ohm
90
100
110
1=>0
RTT
Input Differential Impedance
Notes:
1. Measured by comparing each signal voltage with respect to ground.
2. Measured at <100 MHz, considered slow enough to attain both 0 and 1 logic state voltage levels without AC
transients on signals and supplies.
50
Electrical Data
Chapter 7
AMD Functional Data Sheet, 940 Pin Package
31412 Rev 3.05 June 2004
Table 17. AC Operating Conditions for HyperTransport™ Technology Interface
Symbol
Parameter
Unit
Min
VOD
Output Differential Voltage
mV
VOCM
Output Common Mode Voltage
VID
Typ
Max
Notes
400
820
1
mV
440
780
1
Input Differential Voltage
mV
300
900
1
VICM
Input Common Mode Voltage
mV
385
845
1
DeltaVOD
Change in VOD from 0 to 1 State
mV
–75
75
1
DeltaVOCM
Change in VOCM from 0 to 1 State
mV
–50
50
1
DeltaVID
Change in VID from 0 to 1 State
mV
–125
125
1
DeltaVICM
Change in VICM from 0 to 1 State
mV
–100
100
1
TRISE
Input Rising Edge Rate
V/ns
1
4
1, 2
TFALL
Input Falling Edge Rate
V/ns
1
4
1, 2
CIN
Input Pad Capacitance
pF
2
COUT
Output Pad Capacitance
pF
3
CDELTA
CIN Pad Capacitance Range Across Group
pF
0.5
TCADV
Output CAD Valid
pS
166
459
TPHERR
Accumulated Phase Error, CLKIN_H/L to
L*_CLKOUT_H/L[1:0]
pS
0
5000
TSU
Device Setup Time
pS
110
3, 4
THLD
Device Hold Time
pS
110
3, 4
RTT
Input Differential Impedance
ohm
90
100
110
RON
Output Impedance
ohm
45
50
55
DeltaRON
Change in RON Driving 0=>1 or 1=>0
%
–2.5
3
2.5
Notes:
1. Measured by comparing each signal voltage with respect to ground.
2. Measured in a differential fashion relative to the complement signal.
3. Measured from crossing points of differential pairs.
4. Input setup and hold times are measured from the crossing point of CAD versus the crossing point of CLK, effectively
including the edge time to achieve VID min AC.
Chapter 7
Electrical Data
51
AMD Functional Data Sheet, 940 Pin Package
7.2.2
31412 Rev 3.05 June 2004
Reference Information
Table 18. Internal Termination for HyperTransport™ Technology Interface
Pin
Internal Termination
Value
Tolerance
L*_CADIN*
Differential RTT
100 ohm (PVT-compensated)
±10%
L*_CTLIN*
Differential RTT
100 ohm (PVT-compensated)
±10%
L*_CLKIN*
Differential RTT
100 ohm (PVT-compensated)
±10%
52
Electrical Data
Chapter 7
31412 Rev 3.05 June 2004
7.3
AMD Functional Data Sheet, 940 Pin Package
DDR SDRAM and Miscellaneous Pins
This section includes electrical specifications for all DDR SDRAM pins described in “DDR SDRAM
Memory Interface Pins” on page 43, and the THERMTRIP_L, RESET_L, LDTSTOP_L,
PWROK, VID[4:0], TCK, TMS, TRST_L, TDI, TDO, DBREQ_L, and DBRDY pins described in
“Miscellaneous Pins” on page 45.
Chapter 7
Electrical Data
53
AMD Functional Data Sheet, 940 Pin Package
7.3.1
31412 Rev 3.05 June 2004
Operating Conditions
Table 19. DC Operating Conditions
Symbol
Vref
Parameters
Reference voltage (for I/O),
MEMVREF pin
Unit
Min
Typ
Max
Notes
V
0.49*VDDIO_dc
Min
0.5*VDDIO_dc
0.51*VDDIO_dc
Max
1, 12
Il
Input leakage current
Any input: 0 < VIN < VDDIO V
(All other pins not under test =
0V)
mA
-1
1
Ioz
Output leakage current
Any output: 0 < VOUT <
VDDIO V
mA
-1
1
VIH
Input high voltage (logic 1)
V
Vref + 0.15
-
-
2
VIL
Input low voltage (logic 0)
V
-
-
Vref - 0.15
2
Output high voltage (logic 1)
(for VID[4:0])
V
2.0
Output high voltage (logic 1)
(for all other pins)
V
1.8
VOL
Output low voltage (logic 0)
V
IOH
Output levels -Output high current (VOUT= VDDIO/2)
mA
-25
-28
-33
3
IOL
Output levels - Output low current (VOUT=VDDIO/2)
mA
25
28
32
3
VOD
Differential output voltage (for
CK & CK)
V
1.2
1.3
1.4
4
mV
-100
-
100
5
V
1.1
1.25
1.4
6
mV
-100
-
100
7
VOH
∆ VOD
Change in VOD magnitude
VOCM
Output common mode voltage
(for CK & CK)
∆ VOCM
Change in VOCM magnitude
0.65
Notes:
The notes for Table 19 through Table 22 appear on page 56.
54
Electrical Data
Chapter 7
AMD Functional Data Sheet, 940 Pin Package
31412 Rev 3.05 June 2004
Table 20. AC Operating Conditions
Symbol
Parameters
Unit
Min
Vref
Reference voltage (for I/O),
MEMVREF pin
V
Vref(DC) 2%
VIH
Input high voltage (logic 1)
V
Vref + 0.35
VIL
Input low voltage (logic 0)
V
VOD
Differential output voltage (for
CK & CK)
V
∆ VOD
Change in VOD magnitude
VOCM
Output common mode voltage (for
CK & CK)
∆ VOCM
Change in VOCM magnitude
Typ
Max
Notes
Vref(DC) +
2%
1
-
2
-
Vref - 0.35
2
1.0
1.3
1.6
4
mV
-150
-
150
5
V
0.9
1.25
1.6
6
mV
-200
-
200
7
Unit
Min
Typ
Max
Notes
Table 21. Input Capacitance
Symbol
Parameters
Cin
Input capacitance (DQ & DQS)
pF
3.0
3.5
4.0
∆C
Delta Input capacitance
pF
-
-
0.4
8
Table 22. Slew Rate of DDR SDRAM Signals
Symbol
Parameters
Unit
Min
Typ
Max
Notes
SOUT
Output slew rate (pullup and pulldown)
V/ns
2
3
4
9
0.75
1
1.25
10
4
11
SOUT_Rat
io
Sin
Chapter 7
Output slew rate ratio between
pullup and pulldown
Input slew rate
V/ns
0.5
Electrical Data
55
AMD Functional Data Sheet, 940 Pin Package
31412 Rev 3.05 June 2004
Table 23. Slew Rate of RESET_L, LDTSTOP_L, and PWROK
Symbol
Sin
Parameters
Input slew rate
Unit
Min
V/ns
0.01
Typ
Max
Notes
13
1. Vref is expected to be equal to 0.5*VDDIO and to track variations in the DC level of the same. Peak to peak noise on
Vref may not exceed + 2% of the DC value.
2. The AC values indicate the voltage levels at which the receiver must meet its timing specifications. The DC values
indicate the voltage levels at which the final logic state of the receiver is unambiguously defined. The receiver
effectively switches to the new logic state when receiver input crosses the AC level. The new logic state is maintained
as long as the input stays beyond the DC threshold.
3. With compensation the granularity between NMOS current and PMOS current cannot exceed 3mA. The range is 6mA
due to 10% variation.
4. VOD is the differential output voltage or the voltage difference between true and complement under DC or AC
conditions.
5. ∆ VOD is the change in magnitude between the differential output voltage while driving a logic 0 and while driving a
logic 1.
6. VOCM is the output common mode voltage defined as the average of the true voltage magnitude and the complement
voltage magnitude relative to ground under DC or AC conditions.
7. ∆ VOCM is the change in magnitude between the output common mode voltage while driving a logic 0 and while
driving a logic 1.
8. ∆ C means the difference in capacitance between any MEMDATA/MEMDQS pin to any other MEMDATA/MEMDQS
pin.
9. Pullup and pulldown slew rate is measured into RTT (50 Ohms) to VTT as shown in Figure 4. The slew rate is measured
between Vref + 300 mV. It is designed for any pattern of data, including all outputs switching and only one output
switching.
10. The ratio of pullup slew rate to pulldown slew rate is specified for the same temperature and voltage, over the entire
temperature and voltage range. For a given output, it represents the maximum difference between pullup and
pulldown drivers due to process variation.
11. The slew rate is measured at the CPU pin between Vref + 150 mV. Minimum and maximum input slew rate
specification is set based on DRAM output slew rate specification.
12. VDDIO_dc is defined in Table 36 on page 75.
13. The slew rate is measured at the CPU pin between Vref + 150 mV. Minimum input slew rate specification is based on
HyperTransport™ input minimum slew rate specification for single-ended signals.
56
Electrical Data
Chapter 7
AMD Functional Data Sheet, 940 Pin Package
31412 Rev 3.05 June 2004
VTT
RTT
Driver
0 pF
Figure 4. Slew Rate Measurement Example
Table 24. Package Routing Skew
Routing Measurement
Chapter 7
Skew (ps)
Any MEMCLK clock pair to any other MEMCLK clock pair
+ 100
Any MEMCLK pair to any MEMDQS pair
+ 100
Any MEMDQS pair to any MEMDATA associated within pair
+ 75
Any MEMCLK pair to any MEMADD/CMD
+ 100
Pad skew
+ 250
Electrical Data
57
AMD Functional Data Sheet, 940 Pin Package
7.3.2
31412 Rev 3.05 June 2004
AC Operating Characteristics
Table 25. Electrical AC Timing Characteristics for DDR SDRAM Signals
Symbol
5.
6.
7.
8.
58
Unit
Min
Typ
Max
Notes
15
tCK
MEMCLK cycle time
ps
5000
-
10000
tCH
MEMCLK high pulse width
ps
0.45*tCK
-
0.55*tCK
tCL
MEMCLK low pulse width
ps
0.45*tCK
-
0.55*tCK
MEMCLK output skew
ps
-350
-
350
1,2,3
tDQSH
MEMDQS high pulse width
ps
0.45*tCK
-
0.55*tCK
1
tDQSL
MEMDQS low pulse width
ps
0.45*tCK
-
0.55*tCK
1
tDQS
MEMCLK to MEMDQS
ps
-350
-
350
1,4,5
tDSS
MEMDQS falling edge to MEMCLK rising edge
ps
0.45*tCK 350
-
-
1,6,7
tDSH
MEMCLK rising edge to MEMDQS falling edge
ps
0.45*tCK 350
-
-
1,6,7
tDQSQV
MEMDQS to MEMDATA shift
(when data becomes valid)
ps
-{0.5*
tDQSHmax [638]}
-
-{0.5*
tDQSHmin
+ [638]}
1,8,9
tDQSQIV
MEMDQS to MEMDATA shift
(when data becomes invalid)
ps
{0.5*tDQSHmin - [638]}
-
{0.5*
tDQSHmax
+ [638]}
1,8,9
t2
MEMADD/CMD to MEMCLK
(Registered DIMM environment MEMADD/CMD are launched 1/2
clock early)
ps
- 350
-
350
1,10,11
t3
MEMDATA edge arrival relative
to MEMDQS
ps
-{tCK/4 [350+0.2*
(tCK/4)]}
-
tCK/4 [350+0.2*
(tCK/4)]
12,13,14
tCKS
1.
2.
3.
4.
Parameters
Write cycle timing parameter
The skew consists of pad output skew (+ 250ps) and package routing skew between any two clock pairs (+ 100ps).
tCKS Timing Parameter, refer to Figure 5 on page 60.
The timing consists of pad output skew (+ 250ps) and package routing skew between any MEMCLK to any MEMDQS
(+ 100ps).
tDQS Timing parameter, refer to Figure 6 on page 60.
The skew consists of pad output skew (+ 250ps) and package routing skew between any MEMCLK to any MEMDQS
(+ 100ps). Minimum DQS pulse width is 45% of MEMCLK.
tDSS, tDSH timing parameters, refer to Figure 7 on page 61.
During write, DQ signals are driven quarter clock earlier such that DQS is placed in the center of data eye window.
The skew consists of pad output skew (+ 250ps), package routing skew between any DQS signals and it’s associated
DQ signals (+ 75ps) and maximum clock granularity (+ 312.5 ps).
Electrical Data
Chapter 7
31412 Rev 3.05 June 2004
AMD Functional Data Sheet, 940 Pin Package
9. tDQSQV and tDQSQIV timing parameters apply only within DQS and its associated DQ signals. Refer to Figure 8 on
page 62.
10. The skew consists of pad output skew (+ 250 ps) and package routing skew (+ 100 ps) between any MEMCLK pair to
any MEMADD/CMD signal. Maximum clock granularity skew is 312.5 ps.
11. t2 Timing parameter, applies to registered DIMM Environment Only - MEMADD/CMD signals are launched 1/2 clock
cycle early. The granularity term does not apply here. Refer to Figure 9 on page 63.
12. Read cycle timing parameter.
13. The PDL placement uncertainty is 20%. Package skew between DQS and its associated DQs is 75ps. The sum of
setup/hold time & receiver uncertainty is 275ps.
14. t3 timing parameter, refer to Figure 10 on page 64.
15. The slow operation of 10ns cycle time is specifically included for functional test purpose only. All electrical
characterization will be performed at full speed however all functional tests will be performed at 10ns cycle time.
Chapter 7
Electrical Data
59
AMD Functional Data Sheet, 940 Pin Package
31412 Rev 3.05 June 2004
tCK
CK
CK
tCKS Max
CK
CK
tCKS Min
CK
CK
Figure 5. MEMCLK Output Skew
tCK
CK
CK
DQS
tDQS Max
DQS
tDQS Min
Figure 6. MEMDQS Timing Parameter
60
Electrical Data
Chapter 7
AMD Functional Data Sheet, 940 Pin Package
31412 Rev 3.05 June 2004
t
tCK
CK
CK
tDSS Min
DQS
DQS
tDSH Min
Figure 7. DSS/tDSH Timing Parameters
Chapter 7
Electrical Data
61
AMD Functional Data Sheet, 940 Pin Package
31412 Rev 3.05 June 2004
tCK
CK
CK
DQS
Ideal 90o Phase Shift - tDQSQV Typical
DQs
tDQSQV Min - Latest time Data can become valid
DQs
DQs
tDQSQV Max - Earliest time Data can become valid
Ideal 90o Phase Shift - tDQSQIV Typical
DQs
tDQSQIV Max - Latest time Data can become Invalid
DQs
DQs
tDQSQIV Min - Earliest time Data can become In-valid
Figure 8. tDQSQV/tDQSQIV Timing Parameters
62
Electrical Data
Chapter 7
AMD Functional Data Sheet, 940 Pin Package
31412 Rev 3.05 June 2004
tCK
CK
CK
tCK/2 tCK/2
ADDR/CMD
t2 =0 (Ideal timing)
t2 max
ADDR/CMD
t2 max = 350
ADDR/CMD
t2 min = -350
t2 min
Figure 9. MEMADD/CMD to MEMCLK Timing Parameter (Registered DIMMs)
Chapter 7
Electrical Data
63
AMD Functional Data Sheet, 940 Pin Package
31412 Rev 3.05 June 2004
DQS
DQs Perfect
Edge Aligned
t3 = 0 ps
t3 Max
DQs Late arrival
from strobe
t3 Max
t3 Min
DQs Early
arrival from
strobe
t3 Min
setup
Package + PDL + Receiver uncertainty
Figure 10.MEMDQS Edge Arrival Relative to DQs
64
Electrical Data
Chapter 7
AMD Functional Data Sheet, 940 Pin Package
31412 Rev 3.05 June 2004
7.4
Clock Pins
7.4.1
Operating Conditions
Table 26. DC Operating Conditions for CLKIN_H/L and FBCLKOUT_H/L Pins
Symbol
Parameters
Unit
Min
Typ
VID
Differential Input Voltage
mV
300
2400
DeltaVID
Change in VID Magnitude
mV
–50
50
VICM
Input Common Mode Voltage
mV
VTT–100
DeltaVICM
Change in VICM Magnitude
mV
–50
VOD
Differential Output Voltage
V
1.2
DeltaVOD
Change in VOD Magnitude
mV
–50
VOCM
Output Common Mode Voltage
V
1.1
DeltaVOCM
Change in VOCM Magnitude
mV
–50
VTT
Max
Notes
VTT+100
50
1.3
1.25
1.4
1
50
2
1.4
3
50
4
Notes:
1. VOD is the differential output voltage or the voltage difference between true and complement under DC or AC
conditions.
2. DeltaVOD is the change in magnitude between the differential output voltage while driving logic 0 and while driving
logic 1.
3. VOCM is the output common mode voltage defined as the average of the true voltage magnitude and the complement
voltage relative to ground under DC or AC conditions.
4. DeltaVOCM is the change in magnitude between the output common mode voltage while driving logic 0 and while
driving logic 1 under DC or AC conditions.
Chapter 7
Electrical Data
65
AMD Functional Data Sheet, 940 Pin Package
31412 Rev 3.05 June 2004
Table 27. AC Operating Conditions for CLKIN_H/L and FBCLKOUT_H/L Pins
Symbol
Parameter
Unit
Min
F (PLL mode,
VDDA=2.5 V)
Input Frequency Range (SSC)
MHz
TJC
Jitter, Cycle-to-Cycle
DC
Input Duty Cycle (CLKIN_H/L)
VBIAS
Typ
Max
Notes
198.8
200
6
pS
0
200
7
%
30
70
Input BIAS Voltage Node
mV
VTT
VID
Differential Input Voltage
mV
400
2300
DeltaVID
Change in VID Magnitude
mV
–150
150
VICM
Input Common Mode Voltage
mV
VBIAS–200
VBIAS+200
DeltaVICM
Change in VICM Magnitude
mV
–200
200
VOD
Differential Output Voltage
V
1.2
DeltaVOD
Change in VOD Magnitude
mV
–100
VOCM
Output Common Mode Voltage
V
1.1
DeltaVOCM
Change in VOCM Magnitude
mV
IF
Input Falling Edge Rate
IR
Input Rising Edge Rate
CIN
Input Capacitance
VTT
1.3
VTT
1.4
1
100
2
1.4
3
–100
100
4
V/ns
1.2
10
5
V/ns
1.2
10
5
pF
0
5
1.25
Notes:
1. VOD is the differential output voltage or the voltage difference between true and complement under DC or AC
conditions.
2. Delta VOD is the change in magnitude between the differential output voltage while driving logic 0 and while driving
logic 1.
3. VOCM is the output common mode voltage defined as the average of the true voltage magnitude and the complement
voltage relative to ground under DC or AC conditions.
4. Delta VOCM is the change in magnitude between the output common mode voltage while driving logic 0 and while
driving logic 1 under DC or AC conditions.
5. Measured differentially through the range of VICM – 400 mV to VICM + 400 mV.
6. Spread spectrum clocking is limited to –0.5% downspread under normal operation.
7. Measured at the differential crossing point. Maximum difference of cycle time between two adjacent cycles.
66
Electrical Data
Chapter 7
31412 Rev 3.05 June 2004
7.5
AMD Functional Data Sheet, 940 Pin Package
Power-Up Signal Sequencing
Figure 12 on page 70 illustrates the signal sequencing requirements during a cold reset (power-up
conditions). The HyperTransport™ link reset sequencing is defined in the HyperTransport™ I/O Link
Specification.
The following list describes the power-up signal sequencing illustrated in Figure 12. Note that the
numbered items correspond to the numbers in Figure 12.
1. RESET_L must be asserted a minimum of 1ms prior to the assertion of PWROK, as defined in the
HyperTransport™ I/O Link Specification. The TMS pin must be asserted a minimum of 10ns
before PWROK assertion and must be held in the High state a minimum of 10ns after the
assertion of PWROK.
2. CLKIN_H/L must be within specification at the time the VDD power supply begins to ramp.
3. PWROK remains deasserted at least 1ms after CLKIN_H/L is stable and voltages to the processor
are within specification. The processor determines if there are devices attached to its
HyperTransport™ links 10µs after the assertion of PWROK.
4. After PWROK assertion, the VID[4:0] signals change from the metal mask VID[4:0]* to the
value programmed during device manufacturing. The PLL begins locking to the frequency
programmed during device manufacturing 160µs after PWROK is asserted.
5. LDTSTOP_L must be deasserted a minimum of 1µs before the deassertion of RESET_L, as
defined by the HyperTransport™ I/O Link Specification.
6. The RESET_L signal remains asserted a minimum of 1mS after PWROK assertion, as defined in
the HyperTransport™ I/O Link Specification. The clocks from the transmitters of all
HyperTransport™ technology devices must be stable before RESET_L is deasserted.
7. The MEMCLK_LO_H/L[3:0] and MEMCLK_UP_H/L[3:0] signals are stable after BIOS sets the
Memory Clock Ratio Valid (MCR) bit in the processor’s DRAM Config Upper register. The
MEMCLK* period is defined by the MEMCLK[2:0] field in the DRAM Config Upper register.
8. MEMRESET_L is deasserted after BIOS sets the Dram_Init bit in the DRAM Config Lower
register. This allows time for the PLL on registered DIMMs to stabilize before the deassertion of
the DIMM’s reset signal. The delay between these events depends on the silicon revision and the
DRAM operating speed as described in Figure 11 and Table 29 on page 68.
9. The MEMCKE_LO/UP signals are asserted following the deassertion of MEMRESET_L. The
delay between these events depends on the silicon revision and the DRAM operating speed as
described in Figure 11 and Table 29 on page 68. Note that the MEMCKE_LO/UP delay from
MEMRESET_L is different when exiting self-refresh as listed in Table 30 on page 69.
* The metal mask VID[4:0] is the value driven on the VID[4:0] lines prior to PWROK assertion.
Refer to Table 28 for metal mask VID[4:0] values.
Chapter 7
Electrical Data
67
AMD Functional Data Sheet, 940 Pin Package
31412 Rev 3.05 June 2004
Table 28. Metal Mask VID[4:0] Values
Processor Revision1
VID[4:0]2
B3
0Eh
C0
0Eh
CG
0Eh
Notes:
1.Refer to the AMD Opteron™ Processor Power and
Thermal Data Sheet, order# 30417, for silicon
revision determination.
2.Refer to the BIOS and Kernel Developer’s Guide
for the AMD Athlon™ 64 and AMD Opteron™
Processors, order# 26094, for information on
translating VID[4:0] encodings to voltage levels.
Figure 11. MEMRESET_L and MEMCKE_LO/UP Sequencing
Dram_Init (BIOS)
MEMRESET_L
MEMCKE_LO/UP
B
A
Table 29. MEMRESET_L and MEMCKE_LO/UP Initialization Timing
Silicon Revision
Rev B
Rev C
68
DRAM Speed
Timing Parameter A
Timing Parameter B
DDR200
655µS
120nS
DDR266
492.8µS
90.2nS
DDR333
394.8µS
72.3nS
DDR200
163.8µS
491.5µS
DDR266
123.2µS
369.6µS
DDR333
98.7µS
296.1µS
DDR400
81.9µS
245.8µS
Electrical Data
Chapter 7
AMD Functional Data Sheet, 940 Pin Package
31412 Rev 3.05 June 2004
Table 30. MEMCKE_LO/UP Delay from MEMRESET_L During Exit from Self-Refresh
Silicon Revision
Rev B
Rev C
Note:
DRAM Speed
Registered DIMMs
DDR200
120nS
DDR266
90.2nS
DDR333
72.2nS
DDR200
10.24µS
DDR266
7.6µS
DDR333
6.1µS
DDR400
5.1µS
Refer to the AMD Opteron™ Processor Power and Thermal Data Sheet, order# 30417, for silicon
revision determination.
Chapter 7
Electrical Data
69
AMD Functional Data Sheet, 940 Pin Package
31412 Rev 3.05 June 2004
VDD
3
PWROK
4
VID[4:0]
(Metal Mask VID[4:0])
6
1
RESET_L
L0_CLKIN_H/L[1:0]
5
LDTSTOP_L
8
MEMRESET_L
2
CLKIN_H/L
7
VALID
MEMCLK*
9
MEMCKE*
TMS
Figure 12.Power-Up Signal Sequencing
70
Electrical Data
Chapter 7
AMD Functional Data Sheet, 940 Pin Package
31412 Rev 3.05 June 2004
7.6
Reference Information
Table 31. Internal Termination for Miscellaneous Pins Interface
Pin
Type2
Internal Termination
CLKIN_H/L
I-IOD
None1
FBCLKOUT_H/L
O-IOD
80-ohm differential termination
RESET_L
I-IOS
None
PWROK
I-IOS
None
VID[4:0]
O-IOS
None
LDTSTOP_L
I-IOS
None
THERMDA
A
None
THERMDC
A
None
O-IO-OD
None
A
None
THERMTRIP_L
COREFB_H/L
Value
Tolerance
±50%
TCK
I-IOS
Pullup to VDDIO3
533 ohms
±50%
TMS
I-IOS
Pullup to VDDIO3
533 ohms
±50%
TRST_L
I-IOS
Pullup to VDDIO3
533 ohms
±50%
TDI
I-IOS
Pullup to VDDIO3
533 ohms
±50%
TDO
O-IOS
Pullup to VDDIO
533 ohms
±50%
DBREQ_L
I-IOS
Pullup to VDDIO3
533 ohms
±50%
DBRDY
O-IOS
Pullup to VDDIO
533 ohms
±50%
Notes:
1. CLKIN_H/L inputs have DC voltage BIAS generating circuits on the inputs. These consist of both a ~250-ohm pullup
resistor to VTT on each input and a ~250-ohm series input resistor.
2. Refer to Table 6 on page 41 for definitions in pin Type column.
3. Systems that do not require use of these pins can rely on the internal termination to pull the signals to the proper
inactive state. When these pins are used they must not be driven with open-drain outputs or additional termination is
required.
Chapter 7
Electrical Data
71
AMD Functional Data Sheet, 940 Pin Package
31412 Rev 3.05 June 2004
Table 32. External Required Circuits (Pins Not Normally Used in System)
Pin
External Circuit (Non-Operating)1
NC_G14
Tied to VDDIO_SUS through resistor
NC_H14
Tied to VSS through resistor
NC_AE14
Tied to VDDIO_RUN through resistor
NC_AF13
Tied to VDDIO_RUN through resistor
NC_AE10
Tied to VSS through resistor
NC_AE11
Tied to VSS through resistor
NC_AF11
Tied to VSS through resistor
NC_AE13
Tied to VSS through resistor
NC_AE12
Tied to VSS through resistor
NC_T3
Tied to VSS through resistor
NC_T4
Tied to VLDT through resistor
Notes:
1. See the AMD Athlon™ 64 FX and AMD Opteron™ Processor Motherboard Design Guide, order# 25180, for proper
resistor values.
2. Input pins of the same type may be pulled high or low through a shared resistor provided that VIL Max and VIH Min
specifications are not exceeded for those pin types.
72
Electrical Data
Chapter 7
AMD Functional Data Sheet, 940 Pin Package
31412 Rev 3.05 June 2004
7.7
Thermal Diode Specifications
An on-die thermal diode is provided as a tool for thermal management. An external sensor is
necessary to measure the temperature of the thermal diode.
Thermal solutions should be not designed and validated using the thermal diode. Thermal solutions
should be designed and validated against the case temperature specification per the methodology
specified in AMD Athlon™ 64 and AMD Opteron™ Processors Thermal Design Guide, order#
26633.
Table 33. Thermal Diode Specification Revision and Frequency Guide
Rev/Freq
< 2.2GHz
>= 2.2GHz
B3
Table 34
N/A
C0
Table 34
Table 35
CG and later
Table 35
Table 35
Note:
Refer to the AMD Opteron™ Processor Power and Thermal Data Sheet, order# 30417 for silicon revision determination.
Table 34. Thermal Diode Specifications (Revision and Frequency Dependent, see
Table 33)
Symbol
Parameter
I
Sourcing Currents
nf
Ideality Factor
TOffset
Temperature Offset
θj-c
Thermal resistance (junction to case)
Units
Min
µA
Max
Notes
5
500
1
1.008
1.096
2
0
32
3, 4, 5, 6
0.32
7
°C
°C/W
Typ
Notes:
1. The sourcing current should always be used in forward bias.
2. Characterized at 95ºC with a forward bias current pair of 10 and 100 µA. The ideality factor limits correspond to the
diode offset limits.
3. Temperature offset is unique for each processor. The diode offset value is found in the Thermtrip Status Register
discussed in the BIOS and Kernel Developer’s Guide for the AMD Athlon™ 64 and AMD Opteron™ Processors,
order# 26094.
4. This diode offset supports temperature sensors using two sourcing currents only. Other sourcing current
implementations are not supported by AMD.
5. The temperature offset is set based on a sourcing current pair of 10 and 100 µA and an ideality factor of 1.008. The
diode offset should be subtracted from the temperature sensor reading. If the temperature sensor has an ideality factor
different from 1.008, an additional offset is needed. Contact your temperature sensor vendor about whether an
additional offset is needed.
6. After correcting for the diode offset, the thermal diode has an accuracy of ±10°C. This accuracy is additive to the
temperature sensor accuracy.
Chapter 7
Electrical Data
73
AMD Functional Data Sheet, 940 Pin Package
31412 Rev 3.05 June 2004
7. The temperature specification for the processor is based on the case temperature. The thermal resistance from the
junction to the case is provided as a reference for implementing fan-speed control using the thermal diode.
Table 35. Thermal Diode Specifications (Revision and Frequency Dependent, see
Table 33)
Symbol
Parameter
Units
Min
I
Sourcing Currents
µA
TOffset
Temperature Offset
°C
Typ
Max
Notes
5
500
1
0
52
2, 3, 4, 5
Notes:
1. The sourcing current should always be used in forward bias.
2. The temperature offset is used to normalize the thermal diode measurement to reflect case temperature at the worst
case conditions for a part.
3. This diode offset supports temperature sensors using two sourcing currents only. Single sourcing current
implementations are not supported by AMD.
4. The temperature offset is unique for each processor and is programmed at the factory. The diode offset value is found
in the Thermtrip Status Register described in the BIOS and Kernel Developer’s Guide for the AMD Athlon™ 64 and
AMD Opteron™ Processors, order# 26094.
5. TOffset should be subtracted from the temperature sensor reading. If the temperature sensor has an ideality factor
different from 1.008, a small correction to this offset is required. Contact your temperature sensor vendor to determine
if additional correction is required.
74
Electrical Data
Chapter 7
AMD Functional Data Sheet, 940 Pin Package
31412 Rev 3.05 June 2004
7.8
Power Supplies
7.8.1
Operating Conditions
Table 36. Combined AC and DC Operating Conditions for Power Supplies
Symbol
Parameter
Unit
Min
VID_VDD VID Requested VDD Supply Level
V
VDD_dc
VDD Supply Voltage
V
VID_VDD
–50 mV
VDD_ac
VDD Supply Voltage
V
VID_VDD
–100 mV
VDD_PON VDD Supply Voltage before PWROK
assertion during power-on.
V
1.15
VDDIO_dc VDDIO Supply Voltage for DDR333
and below
V
VDDIO_dc VDDIO Supply Voltage for DDR400
and below
Typ
Max
See Note 11
VID_VDD
Notes
6
VID_VDD
+50 mV
VID_VDD
+100 mV
13
1.20
VDD_max
8
2.40
2.50
2.60
10
V
2.50
2.60
2.65
10, 12
VDDIO_ac VDDIO supply voltage
V
VDDIO_dc
-150 mV
VDDIO_dc
+150 mV
9
VLDT
VLDT Supply Voltage
V
1.14
VTT_dc
VTT Supply Voltage
V
VTT_ac
VTT Supply Voltage
V
VTT_dc
- 150 mV
VDDA
VDDA Supply Voltage
V
2.40
IDD
VDD Power Supply Current
A
See Note 11
IDDIO1
VDDIO Power Supply Current
A
2.8
IDDIO2
VDDIO Power Supply Current in S3
State
mA
850
ITT1
VTT Power Supply Current
mA
200
ITT2
VTT Power Supply Current in S3 State mA
200
ILDT
VLDT Power Supply Current
A
1.5
IDDA
VDDA Power Supply Current
mA
33
IDDslew1
VDD Power Supply Current Change
During Normal Operation
A/µs
.0583*fMHz
3, 7
IDDslew2
VDD Power Supply Current Change
Upon Reset Exit
A/µs
270
3
IDDslew3
VDD Power Supply Current Change
Upon Stop Grant Entry
A/µs
Chapter 7
1.20
1.26
VDDIO_dc
VDDIO_dc
VDDIO_dc
Min/2 - 50 mV
Typ/2
Max/2 + 50 mV
–270
Electrical Data
VTT_dc
+ 150 mV
2.50
9
2.60
2.9
4
2, 5
1
3
75
AMD Functional Data Sheet, 940 Pin Package
31412 Rev 3.05 June 2004
Table 36. Combined AC and DC Operating Conditions for Power Supplies
Symbol
Parameter
Unit
IDDslew4
VDD Power Supply Current Change
Upon Stop Grant Exit
A/µs
IDDslew5
VDD Power Supply Current Change
Upon Non-reset Power Failure
A/µs
Min
–4.25
Typ
Max
Notes
270
3
3
Notes:
1. ILDT is specified for three 16x16-bit HyperTransport™ links operating at 1.6 GT/s.
2. VTT must both sink and source current.
3. Current slew rates are controlled by ramping up or down the core frequency in steps during these sequences to control
in-rush currents.
4. VDDIO current is consumed by I, O, I/O switching current and on-chip functions (PDL, DLL, level-shifters, etc.).
5. VTT current is consumed by I, O, I/O switching current and on-chip functions (PDL, DLL, level-shifters, etc.).
6. The processor drives a VID code corresponding to this voltage.
7. For example, the IDDslew1 calculation for a 1.2-GHz part is (.0583 x 1200) = 69.96 A/µs.
8. The processor’s VID[4:0] outputs select VID_PON nom before PWROK is asserted. Transients up to VDD_max are
allowed.
9. VDDIO_ac and VTT_ac parameters are measured +/- 1ns of all data bus bits switching.
10. Systems designed to DDR400 power supply parameters will also operate correctly with DDR333 and below.
11. Refer to the AMD Opteron™ Processor Power and Thermal Data Sheet, order# 30417, for these specifications.
12. DDR400 (200MHz) supported by Rev C0 and later. Refer to the AMD Opteron™ Processor Power and Thermal
Data Sheet, order# 30417 for silicon revision determination.
13. Transient duration below VDD_dc min is limited to < 5µs. Transient duration above VDD_dc max is limited to < 2%
duty cycle. Test by probing differentially at COREFB_H and COREFB_L with 20MHz scope bandwidth limit. Test
conditions are while running AMD’s MAXPOWER64 utility using AMD thermal approved production grade heat sinks
in normal room ambient conditions.
7.8.2
Thermal Power
Refer to AMD Opteron™ Processor Power and Thermal Data Sheet, order# 30417, for thermal
power specifications.
7.8.3
Power Supply Relationships
7.8.3.1
Sequencing Relationships
Power supply relationships during power-up, power-down, and entry and exit of any power
management state must be controlled in order to avoid damage to the device and help ensure proper
operation of the device. Figure 13 shows an example of how these relationships can be maintained by
system power generation and distribution schemes. PWROK must be deasserted as VDD decays
during power down. VTT and VDDIO are considered SUSPEND planes and are powered in the S0
(working) state and the S1 and S3 sleep states. VDDA, VDD, and VLDT are considered RUN planes
and are powered in the S0 and S1 states only. All power supplies should be turned off during the S4
(SUSPEND to DISK) and S5 (SOFT-OFF) states. VDDIO (RUN) is a power rail used for pull-ups on
76
Electrical Data
Chapter 7
AMD Functional Data Sheet, 940 Pin Package
31412 Rev 3.05 June 2004
some processor signals that connect to devices that are powered off during S3, such as
THERMTRIP_L.
Power Up
S3 Entry
S3 Exit
Power Down
VTT (SUS)
VDDIO (SUS)
VDDIO (RUN)
VDDA (RUN)
VDD (RUN)
VLDT (RUN)
Figure 13.Sequencing Relationships for Power Supplies
Table 37. Sequencing Relationships for Power Supplies
Power Supply Relationship
Unit
Max
Notes
VTT to VDDIO
V
VTT_dc Max
1, 2
VDDIO to VTT
V
VDDIO_dc Max - VTT_dc Typ
1, 3
VDDIO to VDD
V
VDDIO_dc Max
1, 4
VDDA to VDD
V
VDDA Max
1, 5
VDD to VLDT
V
VDD Max
1, 6
1. Sequencing relationships are measured from supply to supply and cover the DC voltage relationships between
supplies that must be maintained under all operating conditions including power up, power down, power failure, and
power state transitions in order to avoid device or system damage. These relationships can be maintained by
propagation of PWRGD signals from one supply rail to the regulator enable of the next supply. The minimum
requirements for a proper system implementation are that:
— VDDIO ramps such that VDDIO/2 <= VTT.
— VDD ramps such that VDDIO and VDDA are within spec before VDD is enabled.
— VLDT ramps such that VDD is within spec before VLDT is enabled.
2. The VTT to VDDIO relationship allows for VTT to power-up before VDDIO.
3. The VDDIO to VTT relationship is critical to avoid overstress of the 2.5-V I/O structures that will occur when VDDIO
exceeds VTT by 1.35 V during normal operation. VTT must track VDDIO/2 to maintain this specification. During
power up and power down VDDIO may exceed VTT by up to 1.5V for no more than 100ms.
Chapter 7
Electrical Data
77
AMD Functional Data Sheet, 940 Pin Package
31412 Rev 3.05 June 2004
4. The VDDIO to VDD relationship allows for VDDIO to power-up before VDD.
5. The VDDA to VDD relationship allows for VDDA to power-up before VDD. VDDA must power-up before VDD to
ensure that internal clock sources are valid before being used and that clock source multiplexors are properly
controlled.
6. The VDD to VLDT relationship allows for VDD to power-up before VLDT and specifically allows for
VDD=VDD_max with VLDT=0 V. VDD must power-up before VLDT to help ensure that PWROK is properly passed
from the pins into the VDD power domain such that the deasserted state can be seen in the VLDT power domain.
7.8.3.2
Sequencing Relationships: Signals to Power Supplies (Stress Conditions)
Once the powerup sequence has been completed and PWROK can be asserted, the sequencing of
input signals to the CPU and output signals from the CPU can begin. The requirements from signals
to power supplies are summarized by type as follows.
•
VDDIO inputs and outputs are allowed to exceed VDDIO by 0.3V and are allowed to be 0.3V
below VSS.
•
VDDIO inputs are allowed to exceed VTT by VTT_dc Max + 0.3V and are allowed to be 0.3V
below VSS.
•
VLDT inputs and outputs are allowed to exceed VLDT by 0.3V and are allowed to be 0.3V below
VSS.
7.8.3.3
Power Failures
The power sequencing relationships defined in sections 7.8.3.1 and 7.8.3.2 must be guaranteed by the
motherboard power supply subsystem in the event of a power failure.
7.8.3.4
Power States
During system power state S3, the RUN supplies (VLDT, VDD, and VDDA) to the CPU are to be
turned off. During this operating mode, all internal leakage paths between SUS supplies (VDDIO and
VTT) and these powered off planes are disabled. During S0 and S1, all RUN and SUS planes are to
be powered on. During S4 and S5, all supplies to the CPU are to be turned off.
7.8.3.5
Unused Links
Because the processor has up to three independent HyperTransport™ links, some implementations
will not connect one or more of these links. In this case, the VLDT of the link that is not connected to
another device, should be connected to the VLDT of an operating link. Note that even if the link is not
used, the VLDT for the link must be connected so that the internal link detection circuitry can
successfully determine the connection status of the link.
78
Electrical Data
Chapter 7
AMD Functional Data Sheet, 940 Pin Package
31412 Rev 3.05 June 2004
8
Package Specifications
8.1
Mechanical Loading for Lidded Parts
Table 38 provides the mechanical loading specification for lidded parts. These specifications should
not be exceeded during heat sink installation, system testing, or system shipment. Refer to the AMD
Athlon™ 64 and AMD Opteron™ Processors Thermal Design Guide, order# 26633, for more
information on properly designing a heat sink to meet these specifications.
Table 38. Mechanical Loading for Lidded Parts
Type
Units
Maximum
Force
Notes
Static
lbf
100
1, 2
Dynamic
lbf
200
1, 3
Notes:
1.Load specified for coplanar, uniform contact to lid surface.
2.The static specification specifies the allowable range to be applied by the heat sink to the processor package.
3.The dynamic specification assumes a dynamic load that includes the static load and is applied at 50G for 11ms
Chapter 8
Package Specifications
79
AMD Functional Data Sheet, 940 Pin Package
8.2
31412 Rev 3.05 June 2004
Package Diagram
D
3
A
D2
A1 CORNER
D1
A1 CORNER
5
Øb1
(Nx Plcs)
E
E2
E1
e
BOTTOM VIEW
B
LID
A
K
NxØb
0.50
0.25
M
M
b1
ccc
A1
L
C
SEE NOTES
TOP VIEW
A2
R
4
DETAIL K
C A B
C
NOT TO SCALE
SIDE VIEW
AMD
PACKAGE
SYMBOL
D/E
GENERAL NOTES
1. All dimensions are specified in millimeters (mm).
2. Dimensioning and tolerancing per ASME-Y14.5M-1994.
3. This corner has a chamfer and a square on top of the
package that identifies the pin A1 corner and can be used for
handling and orientation purposes.
4. Pin tips should have radius.
5. Symbol "M" defines the pin matrix size and "N" is number of pins.
VARIATIONS
xUCG940
min.
39.80
max.
40.20
D1/E1
38.10 BSC
D2/E2
37.4
A
A1
A2
e
37.6
4.88 REF
1.556 1.796
3.05
3.35
1.27 BSC
b
0.275
0.35
b1
0.81
1.06
L
2.03
M
2.29
31
N
940
R
0.30 MAX
ccc
0.125
WT (gms)
45.17 REF
Figure 14. Ceramic Micro Pin Grid Array Package: Top, Side, and Bottom Views
80
Package Specifications
Chapter 8