AMD Functional Data Sheet, 940 Pin Package Publication # Issue Date: 31412 June 2004 Revision: 3.05 AMD Functional Data Sheet, 940 Pin Package 31412 Rev. 3.05 June 2004 Trademarks AMD, the AMD Arrow logo, AMD Athlon, AMD Opteron and combinations thereof, and 3DNow! are trademarks of Advanced Micro Devices, Inc. HyperTransport is a licensed trademark of the HyperTransport Technology Consortium. MMX is a trademark of Intel Corporation. Other product names used in this publication are for identification purposes only and may be trademarks of their respective companies. Disclaimer The contents of this document are provided in connection with Advanced Micro Devices, Inc. (“AMD”) products. AMD makes no representations or warranties with respect to the accuracy or completeness of the contents of this publication and reserves the right to make changes to specifications and product descriptions at any time without notice. No license, whether express, implied, arising by estoppel or otherwise, to any intellectual property rights is granted by this publication. Except as set forth in AMD’s Standard Terms and Conditions of Sale, AMD assumes no liability whatsoever, and disclaims any express or implied warranty, relating to its products including, but not limited to, the implied warranty of merchantability, fitness for a particular purpose, or infringement of any intellectual property right. AMD’s products are not designed, intended, authorized or warranted for use as components in systems intended for surgical implant into the body, or in other applications intended to support or sustain life, or in any other application in which the failure of AMD’s product could create a situation where personal injury, death, or severe property or environmental damage may occur. AMD reserves the right to discontinue or make changes to its products at any time without notice. © 2002, 2003, 2004 Advanced Micro Devices, Inc. All rights reserved. 31412 Rev 3.05 June 2004 AMD Functional Data Sheet, 940 Pin Package Contents Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.1 Instruction Set Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.2 Internal Cache Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.2.1 Level 1 Caches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.2.2 Level 2 Cache . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.3 Error Handling (Machine Check) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.4 Northbridge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.4.1 2.4.1.1 Link Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.4.1.2 HyperTransport™ Technology Transfer Speeds . . . . . . . . . . . . . . . . . . . . . . 12 2.4.2 3 HyperTransport™ Technology Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Memory Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.4.2.1 Memory Pin Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.4.2.2 DRAM Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.4.2.3 DRAM Power Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.4.2.4 Chip Kill (Server/Workstation Products Only) . . . . . . . . . . . . . . . . . . . . . . . 15 2.4.2.5 Main Memory Hardware Scrubbing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Power Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.1 Halt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.2 STPCLK/Stop Grant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.3 PWROK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.4 RESET_L and MEMRESET_L . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.5 Thermal Diode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.6 THERMTRIP_L . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 4 Connection Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 5 Pin Designations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 6 Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Contents 3 AMD Functional Data Sheet, 940 Pin Package 6.1 HyperTransport™ Technology Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 6.2 DDR SDRAM Memory Interface Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 6.3 Miscellaneous Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 6.4 Pin States at Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 7 Electrical Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 7.1 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 7.2 HyperTransport™ Technology Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 7.3 7.4 7.2.1 Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 7.2.2 Reference Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 DDR SDRAM and Miscellaneous Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 7.3.1 Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 7.3.2 AC Operating Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 Clock Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 7.4.1 Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 7.5 Power-Up Signal Sequencing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 7.6 Reference Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 7.7 Thermal Diode Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 7.8 Power Supplies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 8 4 31412 Rev 3.05 June 2004 7.8.1 Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 7.8.2 Thermal Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 7.8.3 Power Supply Relationships . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 7.8.3.1 Sequencing Relationships . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 7.8.3.2 Sequencing Relationships: Signals to Power Supplies (Stress Conditions) . . 78 7.8.3.3 Power Failures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 7.8.3.4 Power States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 7.8.3.5 Unused Links . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 Package Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 8.1 Mechanical Loading for Lidded Parts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 8.2 Package Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 Contents 31412 Rev 3.05 June 2004 AMD Functional Data Sheet, 940 Pin Package List of Figures Figure 1. Processor Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Figure 2. 940 Pin Micro PGA—Top View, Left Side . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Figure 3. 940 Pin Micro PGA—Top View, Right Side . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Figure 4. Slew Rate Measurement Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 Figure 5. MEMCLK Output Skew . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 Figure 6. MEMDQS Timing Parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 Figure 7. DSS/tDSH Timing Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 Figure 8. tDQSQV/tDQSQIV Timing Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 Figure 9. MEMADD/CMD to MEMCLK Timing Parameter (Registered DIMMs) . . . . . . . . . . 63 Figure 10. MEMDQS Edge Arrival Relative to DQs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 Figure 11. MEMRESET_L and MEMCKE_LO/UP Sequencing . . . . . . . . . . . . . . . . . . . . . . . . . 68 Figure 12. Power-Up Signal Sequencing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 Figure 13. Sequencing Relationships for Power Supplies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 Figure 14. Ceramic Micro Pin Grid Array Package: Top, Side, and Bottom Views . . . . . . . . . . . 80 List of Figures 5 AMD Functional Data Sheet, 940 Pin Package 31412 Rev 3.05 June 2004 List of Tables Table 1. Product-Specific HyperTransport™ Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Table 2. DRAM Interface Speed vs. CPU Core Clock Multiplier . . . . . . . . . . . . . . . . . . . . . . . 14 Table 3. Total Memory Sizes Per Chip Select . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Table 4. Processor Capabilities Mapped to ACPI States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Table 5. Pin List by Name. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Table 6. Pin Description Table Definitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Table 7. HyperTransport™ Technology Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 Table 8. DDR SDRAM Memory Interface Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Table 9. Clock Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 Table 10. Miscellaneous Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 Table 11. VID[4:0] Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 Table 12. JTAG Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 Table 13. Debug Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 Table 14. Reset Pin State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 Table 15. Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 Table 16. DC Operating Conditions for HyperTransport™ Technology Interface . . . . . . . . . . . 50 Table 17. AC Operating Conditions for HyperTransport™ Technology Interface . . . . . . . . . . . 51 Table 18. Internal Termination for HyperTransport™ Technology Interface . . . . . . . . . . . . . . . 52 Table 19. DC Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 Table 20. AC Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 Table 21. Input Capacitance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 Table 22. Slew Rate of DDR SDRAM Signals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 Table 23. Slew Rate of RESET_L, LDTSTOP_L, and PWROK . . . . . . . . . . . . . . . . . . . . . . . . . 56 Table 24. Package Routing Skew . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 Table 25. Electrical AC Timing Characteristics for DDR SDRAM Signals . . . . . . . . . . . . . . . . 58 Table 26. DC Operating Conditions for CLKIN_H/L and FBCLKOUT_H/L Pins . . . . . . . . . . . 65 Table 27. AC Operating Conditions for CLKIN_H/L and FBCLKOUT_H/L Pins . . . . . . . . . . . 66 Table 28. Metal Mask VID[4:0] Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 6 List of Tables 31412 Rev 3.05 June 2004 AMD Functional Data Sheet, 940 Pin Package Table 29. MEMRESET_L and MEMCKE_LO/UP Initialization Timing . . . . . . . . . . . . . . . . . . 68 Table 30. MEMCKE_LO/UP Delay from MEMRESET_L During Exit from Self-Refresh . . . . 69 Table 31. Internal Termination for Miscellaneous Pins Interface. . . . . . . . . . . . . . . . . . . . . . . . . 71 Table 32. External Required Circuits (Pins Not Normally Used in System) . . . . . . . . . . . . . . . . 72 Table 33. Thermal Diode Specification Revision and Frequency Guide . . . . . . . . . . . . . . . . . . . 73 Table 34. Thermal Diode Specifications (Revision and Frequency Dependent, see Table 33) . . 73 Table 35. Thermal Diode Specifications (Revision and Frequency Dependent, see Table 33) . . 74 Table 36. Combined AC and DC Operating Conditions for Power Supplies . . . . . . . . . . . . . . . . 75 Table 37. Sequencing Relationships for Power Supplies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 Table 38. Mechanical Loading for Lidded Parts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 List of Tables 7 AMD Functional Data Sheet, 940 Pin Package 31412 Rev 3.05 June 2004 Revision History 8 Date Revision June 2004 3.05 Description New document per new data sheet structuring. Specification modifications from previous document structure include: Added mechanical loading Section 8.1. Thermal diode change to 2 sourcing currents only in section 7.7. Clarified THERMTRIP_L operation in Section 3.6. Added Table 27 to Section 7.5 to enumerate metal mask VID[4:0] encodings for different processor revisions. Clarified DDR400 VDDIO specification in Table 35. Added slew rates for some misc signals in Table 22. Corrected MEMDQS naming in Table 7. Added Table 1 to clarify HyperTransport™ support. Clarified burst length support in Section 2.4.2. Revision History AMD Functional Data Sheet, 940 Pin Package 31412 Rev 3.05 June 2004 1 Overview The processor is designed for high-performance applications. It provides up to three highperformance HyperTransport™ links to I/O, as well as a 128-bit high-performance DDR SDRAM memory controller. A block diagram of the processor is shown in Figure 1. VID[4:0] THERMDA THERMDC 64-Kbyte 64-Kbyte L1 I-Cache L1 D-Cache CPU Core THERMTRIP_L COREFB_H/L 1-Mbyte L2 Cache PRESENCE_DET L1_CLKOUT_H/L[1:0] L1_CTLOUT_H/L[0] L1_CADOUT_H/L[15:0] L2_CLKIN_H/L[1:0] L2_CTLIN_H/L[0] L2_CADIN_H/L[15:0] 128-bits DDR SDRAM 100/133/166/200 MHz 16-bits ECC L1_CLKIN_H/L[1:0] L1_CTLIN_H/L[0] L1_CADIN_H/L[15:0] Northbridge DDR SDRAM Interface L0_REF0 L0_REF1 3 x 16/16 400–1600 MT/s L0_CLKOUT_H/L[1:0] L0_CTLOUT_H/L[0] L0_CADOUT_H/L[15:0] HyperTransport™ Interface L0_CLKIN_H/L[1:0] L0_CTLIN_H/L[0] L0_CADIN_H/L[15:0] L2_CLKOUT_H/L[1:0] L2_CTLOUT_H/L[0] L2_CADOUT_H/L[15:0] LDTSTOP_L RESET_L PWROK CLKIN_H/L FBCLKOUT_H/L VDDA Links 1 and 2 are available on Server/Workstation products only. MEMCLK_UP_H/L[3:0] MEMCLK_LO_H/L[3:0] MEMCKE_UP MEMCKE_LO MEMRESET_L MEMCS_L[7:0] MEMADD[13:0] MEMBANK[1:0] MEMRAS_L MEMCAS_L MEMWE_L MEMDQS[35:0] MEMDATA[127:0] MEMCHECK[15:0] MEMZN MEMZP MEMVREF Control JTAG and Debug PLLs and Clocks TDI TDO TCK TMS TRST_L DBREQ_L DBRDY Figure 1. Processor Block Diagram Chapter 1 Overview 9 AMD Functional Data Sheet, 940 Pin Package 2 Functional Description 2.1 Instruction Set Support 31412 Rev 3.05 June 2004 The processor supports the standard x86-instruction set defined in the AMD64 Architecture Programmer’s Manual, volumes 3–5, order# 24594. In addition, the processor supports the following extensions to the standard x86 instruction set, which are described in the same volume set: • AMD64 instructions • MMX™ and 3DNow!™ technology instructions • SSE and SSE2 instructions 2.2 Internal Cache Structures The processor implements internal caching structures as described in the following sections. 2.2.1 Level 1 Caches The L1 data cache (L1 D-Cache) contains 64 Kbytes of storage organized as two-way set associative. The L1 data cache is protected with ECC. Two simultaneous 64-bit operations (load, store, or combination) are supported. The L1 instruction cache (L1 I-Cache) contains 64 Kbytes of storage organized as two-way associative. The L1 instruction cache is protected with parity. 2.2.2 Level 2 Cache The L2 cache contains both instruction and data stream information. It is organized as 16-way setassociative. The L2 cache data and tag store is protected with ECC. When a given cache line in the L2 cache contains instruction stream information, the ECC bits associated with the given line are used to store predecode and branch prediction information. 2.3 Error Handling (Machine Check) The processor implements the standard x86 machine check architecture as defined in the AMD64 Architecture Programmer’s Manual, Volume 2, order# 24593, and the BIOS and Kernel Developer’s Guide for the AMD Athlon™ 64 and AMD Opteron™ Processors, order# 26094. 10 Functional Description Chapter 2 AMD Functional Data Sheet, 940 Pin Package 31412 Rev 3.05 June 2004 The machine check architecture is defined with ECC single-bit detection/correction and double-bit detection for the following arrays: • L1 Data Cache Storage • L2 Data Cache Storage • L2 Data Cache Tag • Instruction Cache • DRAM. See “Memory Controller” on page 12. 2.4 Northbridge The Northbridge logic in the processor refers to the HyperTransport™ technology interface and the memory controller and their respective interfaces to the CPU cores. These interfaces are described in more detail in the following sections. 2.4.1 HyperTransport™ Technology Overview The processor includes up to three16-bit HyperTransport™ technology interfaces capable of operating up to 1600 mega-transfers per second (MT/s) with a resulting bandwidth of up to 6.4 Gbytes/s (3.2 Gbytes/s in each direction). Refer to Table 1 for product-specific details on HyperTransport™ interfaces. The processor supports HyperTransport™ technology synchronous clocking mode. Refer to the HyperTransport™ I/O Link Specification (www.hypertransport.org) for details of link operation. Table 1.Product-Specific HyperTransport™ Support Product Number of Interfaces Maximum Number of Coherent Interfaces Desktop 1 0 Server/Workstation Uni-Processor (UP) 3 0 Server/Workstation Dual-Processor (DP) 3 11 Server/Workstation Multi-Processor (MP) 3 3 Notes: 1. Coherency is supported on any one of the three HyperTransport™ interfaces on Server/Workstation DP products. Chapter 2 Functional Description 11 AMD Functional Data Sheet, 940 Pin Package 2.4.1.1 31412 Rev 3.05 June 2004 Link Initialization The HyperTransport™ I/O Link Specification details the negotiation that occurs at power-on to determine the widths and rates used with the link. Refer also to the BIOS and Kernel Developer’s Guide for the AMD Athlon™ 64 and AMD Opteron™ Processors, order# 26094, for information about link initialization and setup of routing tables. Refer to the AMD Athlon™ 64 FX and AMD Opteron™ Processor Motherboard Design Guide, order# 25180, for details on the proper HyperTransport™ technology signal termination resistor values. 2.4.1.2 HyperTransport™ Technology Transfer Speeds The HyperTransport™ link of the processor is capable of operating at 400, 800, 1200, and 1600 MT/ s. The link transfer rate is determined during the software configuration of the system, as specified in the HyperTransport™ I/O Link Specification. 2.4.2 Memory Controller The processor’s memory controller provides a programmable interface to a variety of standard registered DDR SDRAM DIMM configurations. Refer to the BIOS and Kernel Developer’s Guide for the AMD Athlon™ 64 and AMD Opteron™ Processors, order# 26094, for supported DRAM speeds under specific loading conditions. • Self-Refresh mode • The controller provides programmable control of DRAM timing parameters to support the following memory speeds: — 100 MHz (DDR200) PC-1600 DIMMs — 133 MHz (DDR266) PC-2100 DIMMs — 166 MHz (DDR333) PC-2700 DIMMs — 200 MHz (DDR400) PC-3200 DIMMs* • DRAM devices that are 4, 8 and 16 bits wide • DIMM sizes from 32 Mbytes (using 64Mb x16 DRAMs) to 4 Gbytes (using a stacked DIMM with 1Gb x4 DRAMs) • Interleaving memory within DIMMs • Stacked registered DIMMs • ECC checking with single-bit correction and double-bit detection • Chip Kill ECC allows single symbol correction and double symbol detection (Server/Workstation products only) • May be configured for 32-byte or 64-byte burst length (32-byte mode applies only when operat- 12 Functional Description Chapter 2 AMD Functional Data Sheet, 940 Pin Package 31412 Rev 3.05 June 2004 ing with a 64-bit DRAM interface). • Programmable page-policy: — Supports up to 16 open pages total across all chip-selects — Statically idle open-page time — Optional dynamic precharge control based on page-hit/miss history * DDR400 supported by Rev C0 and later, Refer to AMD Opteron™ Processor Power and Thermal Data Sheet, order# 30417, for silicon revision determination For programming information and specific details of the features listed above, refer to the BIOS and Kernel Developer’s Guide for the AMD Athlon™ 64 and AMD Opteron™ Processors, order# 26094. 2.4.2.1 Memory Pin Interface The memory controller of the processor supports registered DDR SDRAM DIMMs. The following list applies to the pin interface: • The MEMRESET_L pin is required for registered DIMMs and is used to reset the register as required to support the Suspend to RAM power management state (ACPI S3). • The memory controller can be configured to support either 64-bit or 128-bit memory interfaces. Refer to the BIOS and Kernel Developer’s Guide for the AMD Athlon™ 64 and AMD Opteron™ Processors, order# 26094, for restrictions based on DDR SDRAM speed. • • • A 64-bit memory system can support up to four DIMMs, each 64-bits wide A 128-bit memory system can support up to eight DIMMs, each 64-bits wide, and must be populated in even numbered pairs as described in the AMD Athlon™ 64 FX and AMD Opteron™ Processor Motherboard Design Guide, order# 25180. Registered DIMMs configured with x4 DRAMs require an additional 16 DQS pins without ECC support or 18 DQS pins with ECC support. The processor’s memory controller provides a total of 36 DQS pins to accommodate this requirement. The additional DQS pins can be connected to the DIMM Data Mask (DM) pins when connected to x8 or x16 DIMMs. DIMMs populated with x4 devices normally connect the DRAM Data Mask (DM) pins to VSS. 2.4.2.2 DRAM Operation At power-on reset, the MEMCKE_LO/UP and MEMRESET_L pins are driven Low while the processor PLLs are ramping. Clocks are driven on the MEMCLK_LO_H/L[3:0] and MEMCLK_UP_H/L[3:0] pins only after BIOS programs the appropriate clock ratio value in the memory controller configuration registers. The actual DRAM frequency may vary for some speeds based on the CPU clock multiplier, as shown in Table 2 on page 14 (the memory controller automatically adjusts refresh counters at all speeds as required to meet the device refresh specifications). Refer to “Power-Up Signal Sequencing” on page 67 for further details on the sequencing of the MEMRESET_L and MEMCKE_LO/UP pins. Chapter 2 Functional Description 13 AMD Functional Data Sheet, 940 Pin Package Table 2. 31412 Rev 3.05 June 2004 DRAM Interface Speed vs. CPU Core Clock Multiplier Multiplier Core Frequency DRAM Frequency 100 MHz 133 MHz 166 MHz 200 MHz1 4 800 MHz 100.00 133.33 160.00 160.00 5 1000 MHz 100.00 125.00 166.66 200.00 6 1200 MHz 100.00 133.33 150.00 200.00 7 1400 MHz 100.00 127.27 155.55 200.00 8 1600 MHz 100.00 133.33 160.00 200.00 9 1800 MHz 100.00 128.57 163.63 200.00 10 2000 MHz 100.00 133.33 166.66 200.00 11 2200 MHz 100.00 129.41 157.14 200.00 12 2400 MHz 100.00 133.33 160.00 200.00 13 2600 MHz 100.00 130.00 162.50 200.00 Notes: 1. DDR400 (200MHz) supported by Rev C0 and later. Refer to the AMD Opteron™ Processor Power and Thermal Data Sheet, order# 30417 for silicon revision determination. Table 3 on page 15 lists the maximum memory sizes per chip-select for the various supported DRAM device configurations. Note that for DIMMs using two chip-selects, the total memory size per DIMM is doubled. Refer to the AMD Athlon™ 64 FX and AMD Opteron™ Processor Motherboard Design Guide, order# 25180, for details on the connection scheme for registered DIMMs. 14 Functional Description Chapter 2 AMD Functional Data Sheet, 940 Pin Package 31412 Rev 3.05 June 2004 Table 3. Total Memory Sizes Per Chip Select Devices Used on DIMMs Size Per CS 64 M-bit (4M x4-bits x4 banks) 128 Mbyte 64 M-bit (2M x8-bits x4 banks) 64 Mbyte 64 M-bit (1M x16-bits x4 banks) 32 Mbyte 128 M-bit (8M x4-bits x4 banks) 256 Mbyte 128 M-bit (4M x8-bits x4 banks) 128 Mbyte 128 M-bit (2M x16-bits x4 banks) 64 Mbyte 256 M-bit (16M x4-bits x4 banks) 512 Mbyte 256 M-bit (8M x8-bits x4 banks) 256 Mbyte 256 M-bit (4M x16-bits x4 banks) 128 Mbyte 512 M-bit (32M x4-bits x4 banks) 1 Gbyte 512 M-bit (16M x8-bits x4 banks) 512 Mbyte 512 M-bit (8M x16-bits x4 banks) 256 Mbyte 1 G-bit (64M x4-bits x4 banks) 2 Gbyte 1 G-bit (32M x8-bits x4 banks) 1 Gbyte 1 G-bit (16M x16-bits x4 banks) 512 Mbyte The controller supports programmable timing and refresh as described in the BIOS and Kernel Developer’s Guide for the AMD Athlon™ 64 and AMD Opteron™ Processors, order# 26094. Autorefresh is supported and is staggered by tRFC across chip-selects to reduce system noise. Unpopulated DIMM slots are not refreshed. 2.4.2.3 DRAM Power Management The memory controller supports self-refresh mode to accommodate various power management states such as ACPI S1 and S3 states. The MEMRESET_L pin is provided for resetting the registers on registered DDR SDRAM DIMMs as required for the S3 (Suspend-to-RAM) power management state. 2.4.2.4 Chip Kill (Server/Workstation Products Only) In Chip Kill mode the memory controller can correct single symbol errors and detect double symbol errors across the 128-bit wide data path. This feature optionally takes the place of normal ECC error detection and correction. Operating the memory controller with Chip Kill enabled will result in a two Chapter 2 Functional Description 15 AMD Functional Data Sheet, 940 Pin Package 31412 Rev 3.05 June 2004 clock latency penalty on memory access due to the detection, correction, and data containment overhead of operating in this mode. 2.4.2.5 Main Memory Hardware Scrubbing The memory controller scrubs the main memory arrays to prevent the build up of soft errors. Any correctable or non-correctable errors are logged to the machine check logs and non-correctable errors can be programmed to invoke the machine check interrupt. A correctable error is a single-bit error in normal ECC mode or a single symbol error in Chip Kill mode (Server/Workstation products only). There are two modes of main memory scrubbing that can be used independently or combined, as described in the following sections. 2.4.2.5.1 Sequential Scrubbing In this mode, the scrubber sequentially proceeds through main memory, performing a read-write cycle or a read-modify-write cycle if a correctable error is found. The scrubber scrubs one cache line on each scrub interval that is programmable from 40 ns to 84 ms. 2.4.2.5.2 Source Correction Scrubbing In this mode, the scrubber is directed to scrub any cache line that is the source of any corrected error during normal accesses. During normal operation when source correction scrubbing is disabled, single-bit errors are corrected on the fly and the corrected data is passed without updating the source memory location. When source scrubbing is enabled the scrubber also corrects the source memory location. 2.4.2.5.3 Sequential Plus Source Correction Scrubbing When both sequential and source correction scrubbing are enabled, the scrubber sequentially proceeds through main memory. If a correctable error is detected during normal operation, the scrubber is redirected to the location of the error, and after it corrects that location in main memory it resumes sequential scrubbing at the previous location. 16 Functional Description Chapter 2 AMD Functional Data Sheet, 940 Pin Package 31412 Rev 3.05 June 2004 3 Power Management The processor provides the following power management features designed to be compliant with the Advanced Configuration and Power Interface (ACPI) Specification and HyperTransport™ technology: • Halt state with associated programmable power savings • STPCLK/Stop Grant protocol capable of supporting eight distinct versions of Stop Grant • LDTSTOP_L signal support • Memory controller and host bridge power management • Voltage plane isolation based upon PWROK signal • Low-power state while RESET_L signal is asserted • On-die thermal diode Table 4 maps processor capabilities to ACPI states. Table 4. Processor Capabilities Mapped to ACPI States ACPI State Processor C1 Halt Passive Cooling Passive Cooling is supported by Stop Grant (throttling). S1 Stop Grant. In response to LDTSTOP_L assertion, memory is placed in self-refresh mode and the host bridge and memory controller are placed into a low-power state. S3 Processor core and HyperTransport™ technology voltage planes are not powered. DDR SDRAM interface remains powered and holds memory in self-refresh mode. S4, S5, G3 All power is removed from the processor. 3.1 Halt When the HLT instruction is executed, the processor stops program execution and issues a Halt special cycle. The power savings associated with the Halt state are determined by configuration registers in the processor (refer to the BIOS and Kernel Developer’s Guide for the AMD Athlon™ 64 and AMD Opteron™ Processors, order# 26094, for details of these configuration registers). The CPU clock grid frequency can be divided down in the absence of probe activity that would force the processor caches to be snooped. The CPU clock grid is automatically brought to full frequency when probe activity is present and returned to the low-power state when probe activity ceases. Chapter 3 Power Management 17 AMD Functional Data Sheet, 940 Pin Package 31412 Rev 3.05 June 2004 If a STPCLK assertion message is received while the processor is in the Halt state, the processor enters the Stop Grant state and issues a Stop Grant special cycle. When a STPCLK deassertion message is received, the processor exits the Stop Grant state and returns to the Halt state. The processor exits the Halt state in response to PWROK deassertion, RESET_L assertion, INIT, NMI, SMI, or any unmasked interrupt received over the HyperTransport™ link. 3.2 STPCLK/Stop Grant When the processor recognizes the STPCLK assertion message, it enters the Stop Grant state on the next instruction boundary and issues a Stop Grant special cycle. The power savings associated with the Stop Grant state are determined by configuration registers in the processor. The power savings mechanisms associated with the Stop Grant state include the following: • CPU clock grid divisor applied in the absence of probe activity. If probe activity that requires a cache snoop occurs while the processor is in the Stop Grant state, the clock grid is ramped back up to service the probe. When probe activity ceases, the CPU clock grid is ramped back down again. • Placing system memory into self-refresh mode in response to LDTSTOP_L signal assertion. • Ramping the processor host bridge/memory controller clock grid down in response to LDTSTOP_L signal assertion. • Changing HyperTransport™ link width and/or link frequency in response to LDTSTOP_L signal assertion. The processor exits the Stop Grant state when it receives the following: • A STPCLK deassertion message. • RESET_L pin asserted or an INIT assertion message. • PWROK is deasserted. If the LDTSTOP_L signal is asserted after the processor is in the Stop Grant state, then LDTSTOP_L must be deasserted, and the HyperTransport™ link must be re-initialized before a STPCLK deassertion message can be received by the processor to bring the processor out of the Stop Grant state. The processor’s host bridge ensures that STPCLK messages are passed to the CPU prior to the subsequent I/O response to the cycle that caused STPCLK assertion as long as the subsequent I/O response message has the PassPW bit clear and the Unit ID of the response matches the Unit ID of the STPCLK message. 3.3 PWROK When PWROK is deasserted, the processor performs the following steps: 18 Power Management Chapter 3 AMD Functional Data Sheet, 940 Pin Package 31412 Rev 3.05 June 2004 • Isolates its VDDIO- and VTT-powered logic from all other internal logic to prevent leakage current paths between power planes. • Tristates all DDR SDRAM I/O pins except for the MEMCKE_LO/UP and MEMRESET_L outputs, which are driven Low. • Drives its VID[4:0] outputs to the value that selects the startup core voltage level. 3.4 RESET_L and MEMRESET_L When RESET_L is asserted, the processor performs the following steps: • The processor core is held in a low-power state. • The MEMCKE_LO/UP and MEMRESET_L outputs are forced low. After RESET_L is deasserted, BIOS must program the appropriate clock divisor in the memory controller configuration registers, causing the MEMCLK_LO_H/L[3:0] and MEMCLK_UP_H/L[3:0] clocks to be driven. Refer to “Power-Up Signal Sequencing” on page 67 for details of RESET_L and MEMRESET_L sequencing during initial power-on. 3.5 Thermal Diode The processor provides an on-die thermal diode with anode and cathode brought out to processor pins. This diode can be read by an external temperature sensor to determine the processor’s temperature. Refer to the AMD Athlon™ 64 FX and AMD Opteron™ Processor Motherboard Design Guide, order# 25180, for details on connecting the thermal diode. 3.6 THERMTRIP_L The processor provides a hardware-enforced thermal protection mechanism. When the processor’s die temperature exceeds a specified temperature, the processor is designed to stop its internal clocks and asserting the THERMTRIP_L output. THERMTRIP_L assertion is only valid when PWROK is asserted and RESET_L is deasserted. THERMTRIP_L assertion indicates the processor die temperature has exceeded normal operating parameters. PWROK must be deasserted in response to a THERMTRIP_L assertion to help ensure proper processor operation. Once asserted THERMTRIP_L remains asserted until RESET_L is asserted. If the processor’s die temperature still exceeds the thermal trip point when RESET_L is deasserted, THERMTRIP_L will immediately be reasserted and the processor’s internal clocks will be stopped. Chapter 3 Power Management 19 AMD Functional Data Sheet, 940 Pin Package 20 Power Management 31412 Rev 3.05 June 2004 Chapter 3 31412 Rev 3.05 June 2004 4 AMD Functional Data Sheet, 940 Pin Package Connection Diagrams The pinout for the AMD Opteron™ processor is illustrated in this chapter. The ball map is divided into two parts. Figure 2 on page 22 shows the left portion of the top view, and Figure 3 on page 23 shows the right portion of the top view. The pin designations are defined in Chapter 5. Table 5 on page 26 lists the pins alphabetically by pin name. Chapter 4 Connection Diagrams 21 AMD Functional Data Sheet, 940 Pin Package 1 2 3 A 4 1 B 5 1 L1_CADOUT_H[0] L1_CADOUT_L[0] 6 1 31412 Rev 3.05 June 2004 7 L1_CADOUT_H[2] L1_CADOUT_L[2] 1 8 1 9 L1_CLKOUT_H[0] L1_CLKOUT_L[0] 1 10 L1_CADOUT_H[5] 1 11 1 L1_CADOUT_L[5] VSS L1_CADOUT_H[1]1 VDD L1_CADOUT_H[3]1 VSS L1_CADOUT_H[4]1 VDD L1_CADOUT_H[6]1 C VDDA1 VDDA3 L1_CADOUT_L[8]1 L1_CADOUT_L[1]1 L1_CADOUT_L[10]1 L1_CADOUT_L[3]1 L1_CLKOUT_L[1]1 L1_CADOUT_L[4]1 L1_CADOUT_L[13]1 L1_CADOUT_L[6]1 D L0_REF0 VDDA2 L1_CADOUT_H[8]1 VDD L1_CADOUT_H[10]1 VSS L1_CLKOUT_H[1]1 VDD L1_CADOUT_H[13]1 VSS E L0_REF1 VSS L1_CADOUT_H[9]1 L1_CADOUT_L[9]1 F VSS VSS G L0_CADIN_H[1] L0_CADIN_L[0] L0_CADIN_H[0] H L0_CADIN_L[1] VDD L0_CADIN_H[9] J L0_CADIN_H[3] L1_CADOUT_H[11]1 L1_CADOUT_L[11]1 L1_CADOUT_H[12]1 L1_CADOUT_L[12]1 L1_CADOUT_H[14]1 L1_CADOUT_L[14]1 12 1 13 1 L1_CADOUT_H[7] L1_CADOUT_L[7] VSS L1_CTLOUT_H[0]1 L1_CTLIN_L[0] 14 1 15 L1_CTLIN_H[0] 1 L1_CADIN_L[6]1 VDD L1_CADIN_L[7]1 VSS L1_CADOUT_L[15]1 L1_CTLOUT_L[0]1 NC_C13 L1_CADIN_H[7]1 L1_CADIN_H[14]1 L1_CADOUT_H[15]1 VDD NC_D13 VSS L1_CADIN_L[14]1 NC_E11 NC_E12 L1_CADIN_L[15]1 L1_CADIN_H[15]1 L1_CADIN_L[13]1 VSS VDD NC_F7 VSS VID[3] VSS VDD PWROK VSS VSS VDD VSS L0_CADIN_H[8] NC_G6 VDD DBRDY VID[4] VID[2] VID[0] RESET_L VSS NC_G14 VSS L0_CADIN_L[9] L0_CADIN_L[8] VSS NC_H7 VLDT_13 NC_H9 VLDT_13 VID[1] NC_H12 NC_H13 NC_H14 VSS VSS VDD VSS VLDT_13 L0_CADIN_L[2] L0_CADIN_H[2] VDD L0_CADIN_H[10] LDTSTOP_L DBREQ_L VSS VLDT_1 3 VSS VLDT_1 3 K L0_CADIN_L[3] VSS L0_CADIN_H[11] L0_CADIN_L[11] L0_CADIN_L[10] VDD CORESENSE_H NC_K8 VSS VLDT_13 VSS VDD VSS VLDT_13 VSS L L0_CADIN_H[4] L0_CLKIN_L[0] L0_CLKIN_H[0] VSS L0_CLKIN_H[1] COREFB_L COREFB_H NC_L8 VDD VSS VDD VSS VDD VSS VDD M L0_CADIN_L[4] VDD L0_CADIN_H[12] L0_CADIN_L[12] L0_CLKIN_L[1] VSS VSS VLDT_03 VSS VDD VSS VDD VSS VDD VSS N L0_CADIN_H[6] L0_CADIN_L[5] L0_CADIN_H[5] VDD L0_CADIN_H[13] NC_N6 VLDT_03 VSS VDD VSS VDD VSS VDD VSS VDD P L0_CADIN_L[6] VSS L0_CADIN_H[14] L0_CADIN_L[14] L0_CADIN_L[13] VDD VSS VLDT_03 VSS VDD VSS VDD VSS VDD VSS R L0_CTLIN_H[0] L0_CADIN_L[7] L0_CADIN_H[7] VSS L0_CADIN_H[15] NC_R6 VLDT_03 VSS VDD VSS VDD VSS VDD VSS VDD T L0_CTLIN_L[0] VDD NC_T3 NC_T4 L0_CADIN_L[15] VSS NC_T7 VDD VSS VDD VSS VDD VSS VDD VSS U L0_CADOUT_L[7] L0_CTLOUT_H[0] L0_CTLOUT_L[0] VDD NC_U5 NC_U6 VLDT_03 VSS VDD VSS VDD VSS VDD VSS VDD VSS VLDT_03 VSS VDD VSS VDD VSS VDD VSS VSS VDD VSS VDD VSS VDD VSS VDD V L0_CADOUT_H[7] VSS L0_CADOUT_L[15] L0_CADOUT_H[15] NC_V5 VDD W L0_CADOUT_L[5] L0_CADOUT_H[6] L0_CADOUT_L[6] VSS L0_CADOUT_L[14] NC_W6 Y L0_CADOUT_H[5] VDD L0_CADOUT_L[13] L0_CADOUT_H[13] L0_CADOUT_H[14] VSS VSS VLDT_03 VSS VDD VSS VDD VSS VDD VSS AA L0_CLKOUT_L[0] L0_CADOUT_H[4] L0_CADOUT_L[4] VDD L0_CADOUT_L[12] NC_AA6 VLDT_03 VSS VDD VSS VDD VSS VDD VSS VDD AB L0_CLKOUT_L[1] L0_CLKOUT_H[1] L0_CADOUT_H[12] VDD VSS VDD VSS VLDT_23 VSS VDD VSS VLDT_23 VSS VLDT_23 VLDT_0 3 L0_CLKOUT_H[0] VSS AC L0_CADOUT_L[2] L0_CADOUT_H[3] L0_CADOUT_L[3] VSS L0_CADOUT_L[11] NC_AC6 VLDT_23 VSS VLDT_23 VSS VDD VSS AD L0_CADOUT_H[2] VDD L0_CADOUT_L[10] L0_CADOUT_H[10] L0_CADOUT_H[11] VSS TRST_L VLDT_23 VSS VLDT_23 VSS VDD VSS VDD VSS AE L0_CADOUT_L[0] L0_CADOUT_H[1] L0_CADOUT_L[1] VDD L0_CADOUT_L[9] TMS TCK TDO NC_AE9 NC_AE10 NC_AE11 NC_AE12 NC_AE13 NC_AE14 THERMTRIP_L AF L0_CADOUT_H[0] VSS L0_CADOUT_L[8] L0_CADOUT_H[8] L0_CADOUT_H[9] VDD NC_AF13 VDD NC_AF15 1 NC_AG13 NC_AG14 L2_CADOUT_L[14]1 VDD L2_CADOUT_H[15]1 TDI VSS NC_AF9 VDD NC_AF11 VSS AG NC_AG1 VSS AH THERMDC NC_AH2 VSS L2_CADIN_L[9]1 VDD L2_CADIN_L[11]1 VSS L2_CADIN_L[12]1 VDD L2_CADIN_L[14]1 VSS NC_AH12 AJ THERMDA NC_AJ2 L2_CADIN_H[0]1 L2_CADIN_H[9]1 L2_CADIN_H[2]1 L2_CADIN_H[11]1 L2_CLKIN_H[0]1 L2_CADIN_H[12]1 L2_CADIN_H[5]1 L2_CADIN_H[14]1 L2_CADIN_H[7]1 NC_AJ12 PRESENCE_DET2 L2_CADIN_L[0]1 VDD L2_CADIN_L[2]1 VSS L2_CLKIN_L[0]1 VDD L2_CADIN_L[5]1 VSS L2_CADIN_L[7]1 VDD L2_CADIN_H[1]1 L2_CADIN_L[1]1 L2_CADIN_H[3]1 L2_CADIN_L[3]1 L2_CADIN_H[4]1 L2_CADIN_L[4]1 L2_CADIN_H[6]1 L2_CADIN_L[6]1 L2_CTLIN_H[0]1 L2_CTLIN_L[0]1 3 4 5 6 7 8 9 10 11 12 AK AL 1 2 L2_CADIN_H[8] L2_CADIN_L[8] 1 L2_CADIN_H[10] 1 1 L2_CADIN_L[10] L2_CLKIN_H[1] 1 L2_CLKIN_L[1] 1 L2_CADIN_H[13] 1 L2_CADIN_L[13] 1 L2_CADIN_H[15] 1 L2_CADIN_L[15] 1 VSS L2_CTLOUT_L[0]1 L2_CADOUT_L[15]1 L2_CADOUT_L[6]1 L2_CTLOUT_H[0]1 L2_CADOUT_H[6]1 VSS L2_CADOUT_L[7]1 L2_CADOUT_H[7]1 13 14 L2_CADOUT_L[5]1 15 Notes: 1. Links 1 and 2 are available on Server/Workstation products only. See Table 5 on page 26 for proper no connect (NC_*) naming for Desktop products. 2. PRESENCE_DET is used for Server/Workstation products only. This pin should be connected to VSS for Desktop products. See the AMD Athlon™ 64 FX and AMD Opteron™ Processor Motherboard Design Guide, order# 25180, for connection details. 3. VLDT is referenced as a unified plane for Desktop products. See Table 5 on page 26 for proper VLDT pin naming for Desktop products. Figure 2. 22 940 Pin Micro PGA—Top View, Left Side Connection Diagrams Chapter 4 AMD Functional Data Sheet, 940 Pin Package 31412 Rev 3.05 June 2004 16 17 18 19 20 21 22 23 24 25 26 27 28 29 L1_CADIN_H[6]1 L1_CADIN_L[4]1 L1_CADIN_H[4]1 L1_CADIN_L[3]1 L1_CADIN_H[3]1 L1_CADIN_L[1]1 L1_CADIN_H[1]1 VDDIO MEMDATA[4] MEMDATA[1] MEMDATA[6] MEMDATA[2] MEMDATA[3] MEMDATA[9] VSS MEMDATA[0] MEMDQS[9] VSS MEMDATA[7] MEMDATA[8] VSS MEMDATA[13] 1 VDD L1_CLKIN_L[0] L1_CADIN_H[5]1 L1_CADIN_H[12]1 VDD L1_CADIN_L[12]1 L1_CADIN_L[5] 1 1 L1_CADIN_H[13] L1_CLKIN_L[1] 1 VSS L1_CLKIN_H[0]1 VSS L1_CLKIN_H[1] 1 1 1 30 31 A L1_CADIN_L[2] VDD L1_CADIN_L[0] L1_CADIN_H[11]1 L1_CADIN_H[2]1 L1_CADIN_H[9]1 L1_CADIN_H[0]1 VDDIO MEMDATA[5] MEMDQS[0] MEMDATA[71] MEMDATA[72] MEMDATA[12] MEMDQS[1] MEMDQS[10] MEMDATA[14] C L1_CADIN_L[11]1 VDD L1_CADIN_L[9]1 VSS VSS MEMDATA[69] MEMDQS[18] VDDIO MEMDATA[76] VDDIO MEMDATA[77] VSS MEMDATA[15] D VDDIO MEMDATA[65] MEMDATA[70] MEMDATA[67] MEMDATA[73] MEMDQS[19] MEMDQS[28] MEMDATA[10] MEMDATA[11] E 1 L1_CADIN_L[10] 1 L1_CADIN_H[10] 1 L1_CADIN_L[8] L1_CADIN_H[8] 1 B VSS VSS VDD VDD VTT VTT MEMVREF0 MEMDATA[68] MEMDQS[27] MEMDATA[66] MEMDATA[78] MEMDATA[79] MEMDATA[74] MEMDATA[20] MEMDATA[16] MEMDATA[17] F CLKIN_H VSS FBCLKOUT_H VTT MEMCLK_UP_H[3] MEMCLK_UP_L[3] VSS MEMDATA[64] VSS MEMRESET_L VDDIO MEMDATA[75] VDDIO MEMDATA[84] VSS MEMDATA[21] G CLKIN_L VSS FBCLKOUT_L VTT VDDIO MEMCLK_LO_H[3] MEMCKE_UP MEMCKE_LO MEMDATA[80] MEMDATA[81] MEMDATA[85] MEMDQS[2] MEMDQS[11] MEMDATA[18] H VLDT_12 VSS VSS VTT VSS VDDIO VSS MEMCLK_LO_L[3] MEMADD[12] MEMADD[11] MEMDQS[20] MEMDQS[29] MEMDATA[82] MEMDATA[22] MEMDATA[23] MEMDATA[19] J 2 VSS VDD VSS VDDIO VSS VDDIO MEMADD[9] VSS MEMADD[7] VDDIO MEMDATA[86] VDDIO MEMDATA[87] VSS MEMDATA[24] K VLDT_1 VSS VDD VSS VDDIO VSS VDDIO VSS MEMADD[8] MEMCLK_UP_H[1] MEMCLK_UP_L[1] MEMDATA[83] MEMDATA[88] MEMDATA[92] MEMDATA[28] MEMDATA[29] MEMDATA[25] L VDD VSS VDD VSS VDD VSS VDDIO NC_M23 MEMADD[5] MEMADD[6] MEMDATA[93] MEMDATA[89] MEMDQS[21] MEMDQS[3] MEMDQS[12] MEMDATA[30] M N VSS VDD VSS VDD VSS VDDIO VSS MEMADD[3] VSS MEMADD[4] VDDIO MEMDQS[30] VDDIO MEMDATA[94] VSS MEMDATA[26] VDD VSS VDD VSS VDD VSS VDDIO MEMADD[2] MEMCHECK[13] MEMCHECK[12] MEMDATA[90] MEMDATA[91] MEMDATA[95] MEMDATA[27] MEMCHECK[4] MEMDATA[31] P VSS VDD VSS VDD VSS VDDIO VSS MEMCLK_UP_H[0] MEMCHECK[8] MEMCHECK[9] MEMCHECK[10] MEMDQS[35] MEMDQS[26] MEMCHECK[1] MEMCHECK[5] MEMCHECK[0] R VDD VSS VDD VSS VDD VSS VDDIO MEMCLK_UP_L[0] VSS MEMADD[1] VDDIO MEMCHECK[11] VDDIO MEMCHECK[14] VSS MEMDQS[8] T MEMDQS[17] U VSS VDD VSS VDD VSS VDDIO VSS VDDIO MEMCLK_LO_L[0] MEMCLK_LO_H[0] MEMDATA[100] MEMDATA[96] MEMCHECK[15] MEMCHECK[6] MEMCHECK[2] VDD VSS VDD VSS VDD VSS VDDIO NC_V23 MEMADD[10] MEMADD[0] MEMDQS[22] MEMDATA[97] MEMDATA[101] MEMDATA[32] MEMCHECK[7] MEMCHECK[3] VSS VDD VSS VDD VSS VDDIO VSS MEMBANK[0] VSS MEMBANK[1] VDDIO MEMDATA[98] VDDIO MEMDQS[31] VSS MEMDATA[36] VDD VSS VDD VSS VDD VSS VDDIO MEMCLK_LO_H[1] MEMWE_L MEMRAS_L MEMDATA[99] MEMDATA[103] MEMDATA[102] MEMDQS[4] MEMDATA[33] MEMDATA[37] Y VSS VDD VSS VDDIO VSS VDDIO VSS MEMCLK_LO_L[1] MEMCS_L[0] MEMCAS_L MEMDATA[109] MEMDATA[104] MEMDATA[108] MEMDATA[38] MEMDATA[34] MEMDQS[13] AA VLDT_22 VSS VDD VSS VDDIO VSS VDDIO VDDIOFB_H VSS MEMCS_L[1] VDDIO MEMDQS[32] VDDIO MEMDATA[105] VSS MEMDATA[39] AB 2 VSS VTT VTT VLDT_2 VDD VSS MEMZP VSS VTT VSS MEMZN VTT VSS VDDIO VSS VDDIOFB_L MEMCS_L[3] MEMCS_L[2] MEMDATA[110] MEMDATA[106] MEMDQS[23] MEMDATA[40] MEMDATA[44] MEMDATA[35] AC MEMCLK_LO_L[2] MEMCLK_LO_H[2] VDDIO MEMCS_L[7] MEMCS_L[5] MEMCS_L[4] MEMDATA[112] MEMDATA[111] MEMDATA[107] MEMDQS[14] MEMDATA[41] MEMDATA[45] AD VTT MEMCLK_UP_L[2] MEMCLK_UP_H[2] VSS MEMADD[13] VSS MEMCS_L[6] VDDIO MEMDATA[113] VDDIO MEMDATA[116] VSS VTT_SENSE VDDIO_SENSE VSS MEMVREF1 MEMDATA[123] MEMDQS[25] MEMDATA[121] MEMDATA[118] MEMDQS[33] MEMDATA[117] MEMDATA[43] MEMDATA[46] MEMDATA[42] AF MEMDATA[125] MEMDATA[119] MEMDQS[24] MEMDATA[52] MEMDATA[48] MEMDATA[47] AG MEMDATA[49] AH L2_CADOUT_H[14]1 L2_CADOUT_L[12]1 L2_CADOUT_H[12]1 L2_CADOUT_L[11]1 L2_CADOUT_H[11]1 L2_CADOUT_L[9]1 L2_CADOUT_H[9]1 L2_CADOUT_H[13]1 VDD L2_CADOUT_L[13]1 L2_CADOUT_L[4]1 L2_CLKOUT_H[1]1 L2_CLKOUT_L[1]1 V W VSS L2_CADOUT_H[10]1 VDD L2_CADOUT_L[3]1 L2_CADOUT_L[10]1 L2_CADOUT_L[1]1 VDD L2_CADOUT_H[4]1 VSS L2_CADOUT_H[3]1 VDD L2_CADOUT_H[5]1 L2_CLKOUT_L[0]1 L2_CLKOUT_H[0]1 L2_CADOUT_L[2]1 L2_CADOUT_H[2]1 16 17 18 19 20 L2_CADOUT_H[1]1 VDDIO MEMDATA[127] MEMDQS[34] L2_CADOUT_H[8]1 VSS MEMDATA[122] MEMDATA[126] VDDIO MEMDATA[124] VDDIO MEMDATA[114] VSS L2_CADOUT_L[8]1 VDDIO MEMDATA[63] MEMDQS[16] MEMDATA[120] MEMDATA[60] MEMDATA[55] MEMDATA[115] MEMDQS[15] VSS VSS MEMDATA[58] MEMDATA[62] VSS MEMDATA[61] MEMDATA[50] VSS MEMDATA[54] VDDIO MEMDATA[59] MEMDQS[7] MEMDATA[57] MEMDATA[56] MEMDATA[51] MEMDQS[6] 23 24 25 26 27 28 29 L2_CADOUT_L[0]1 L2_CADOUT_H[0]1 21 22 MEMDQS[5] MEMDATA[53] AE AJ AK AL 30 31 Notes: 1. Links 1 and 2 are available on Server/Workstation products only. See Table 5 on page 26 for proper no connect (NC_*) naming for Desktop products. 2. VLDT is referenced as a unified plane for Desktop products. See Table 5 on page 26 for proper VLDT pin naming for Desktop products. Figure 3. 940 Pin Micro PGA—Top View, Right Side Chapter 4 Connection Diagrams 23 AMD Functional Data Sheet, 940 Pin Package 24 Connection Diagrams 31412 Rev 3.05 June 2004 Chapter 4 AMD Functional Data Sheet, 940 Pin Package 31412 Rev 3.05 June 2004 5 Pin Designations Table 5, beginning on page 26, lists the pins alphabetically by pin name. Chapter 5 Pin Designations 25 AMD Functional Data Sheet, 940 Pin Package Table 5. 31412 Rev 3.05 June 2004 Pin List by Name CLKIN_H G16 L0_CADIN_L[3] K1 L0_CADOUT_H[15] CLKIN_L H16 L0_CADIN_L[4] M1 L0_CADOUT_L[0] AE1 COREFB_H L7 L0_CADIN_L[5] N2 L0_CADOUT_L[1] AE3 COREFB_L L6 L0_CADIN_L[6] P1 L0_CADOUT_L[2] AC1 CORESENSE_H K7 L0_CADIN_L[7] R2 L0_CADOUT_L[3] AC3 DBRDY G8 L0_CADIN_L[8] H5 L0_CADOUT_L[4] AA3 DBREQ_L J7 L0_CADIN_L[9] H4 L0_CADOUT_L[5] W1 FBCLKOUT_H G18 L0_CADIN_L[10] K5 L0_CADOUT_L[6] W3 FBCLKOUT_L H18 L0_CADIN_L[11] K4 L0_CADOUT_L[7] U1 L0_CADIN_H[0] G3 L0_CADIN_L[12] M4 L0_CADOUT_L[8] AF3 L0_CADIN_H[1] G1 L0_CADIN_L[13] P5 L0_CADOUT_L[9] AE5 L0_CADIN_H[2] J3 L0_CADIN_L[14] P4 L0_CADOUT_L[10] AD3 L0_CADIN_H[3] J1 L0_CADIN_L[15] T5 L0_CADOUT_L[11] AC5 L0_CADIN_H[4] L1 L0_CADOUT_H[0] AF1 L0_CADOUT_L[12] AA5 L0_CADIN_H[5] N3 L0_CADOUT_H[1] AE2 L0_CADOUT_L[13] Y3 L0_CADIN_H[6] N1 L0_CADOUT_H[2] AD1 L0_CADOUT_L[14] W5 L0_CADIN_H[7] R3 L0_CADOUT_H[3] AC2 L0_CADOUT_L[15] V3 L0_CADIN_H[8] G5 L0_CADOUT_H[4] AA2 L0_CLKIN_H[0] L3 L0_CADIN_H[9] H3 L0_CADOUT_H[5] Y1 L0_CLKIN_H[1] L5 L0_CADIN_H[10] J5 L0_CADOUT_H[6] W2 L0_CLKIN_L[0] L2 L0_CADIN_H[11] K3 L0_CADOUT_H[7] V1 L0_CLKIN_L[1] M5 L0_CADIN_H[12] M3 L0_CADOUT_H[8] AF4 L0_CLKOUT_H[0] AB1 L0_CADIN_H[13] N5 L0_CADOUT_H[9] AF5 L0_CLKOUT_H[1] AB4 L0_CADIN_H[14] P3 L0_CADOUT_H[10] AD4 L0_CLKOUT_L[0] AA1 L0_CADIN_H[15] R5 L0_CADOUT_H[11] AD5 L0_CLKOUT_L[1] AB3 L0_CADIN_L[0] G2 L0_CADOUT_H[12] AB5 L0_CTLIN_H[0] R1 L0_CADIN_L[1] H1 L0_CADOUT_H[13] Y4 L0_CTLIN_L[0] T1 L0_CADIN_L[2] J2 L0_CADOUT_H[14] Y5 L0_CTLOUT_H[0] U2 26 Pin Designations V4 Chapter 5 AMD Functional Data Sheet, 940 Pin Package 31412 Rev 3.05 June 2004 Table 5. Pin List by Name (Continued) L0_CTLOUT_L[0] U3 L1_CADIN_H[13] / E16 1 NC_E16 L0_REF0 D1 L1_CADIN_H[14] / NC_E15 C15 1 E1 L1_CADIN_H[15] / E14 NC_E14 NC_C22 C22 1 L1_CADIN_H[1] / C20 A20 A18 C16 NC_C14 A16 C14 E22 C21 Chapter 5 A15 L1_CADIN_L[7] / L1_CADIN_L[8] / L1_CADIN_L[9] / E20 L1_CADIN_L[10] / B14 E21 L1_CADIN_L[12] / NC_D171 Pin Designations L1_CADOUT_H[4] / L1_CADOUT_H[5] / L1_CADOUT_H[6] / L1_CADOUT_H[7] / L1_CADOUT_H[8] / NC_D3 D21 B8 A9 B10 A11 E19 E3 1 L1_CADOUT_H[10] / NC_D5 D19 D3 1 L1_CADOUT_H[9] / NC_E3 NC_D191 C17 B6 NC_A11 NC_E19 L1_CADIN_L[11] / L1_CADOUT_H[3] / 1 1 C19 A5 NC_B101 NC_D21 NC_C191 NC_C171 L1_CADIN_L[6] / L1_CADOUT_H[2] / NC_A91 1 NC_E20 L1_CADIN_H[12] / B16 NC_E21 1 L1_CADIN_H[11] / L1_CADIN_L[5] / B4 NC_B81 1 1 L1_CADIN_H[10] / A17 NC_B14 NC_E22 NC_C21 L1_CADIN_L[4] / L1_CADOUT_H[1] / NC_B61 1 1 L1_CADIN_H[9] / A19 NC_A151 1 L1_CADIN_H[8] / L1_CADIN_L[3] / A3 1 NC_A51 NC_B161 NC_A161 L1_CADIN_H[7] / B20 NC_A171 NC_C161 L1_CADIN_H[6] / L1_CADIN_L[2] / E13 NC_B41 NC_A191 NC_A181 L1_CADIN_H[5] / A21 NC_B201 NC_A201 L1_CADIN_H[4] / L1_CADIN_L[1] / D15 1 L1_CADOUT_H[0] / NC_A3 NC_A211 NC_C201 L1_CADIN_H[3] / B22 NC_B22 A22 L1_CADIN_L[15] / NC_E13 1 NC_A221 L1_CADIN_H[2] / L1_CADIN_L[0] / L1_CADIN_L[14] / NC_D15 1 L1_CADIN_H[0] / E15 1 1 NC_C15 L0_REF1 L1_CADIN_L[13] / D5 1 L1_CADOUT_H[11] / E5 NC_E51 D17 L1_CADOUT_H[12] / E7 NC_E71 27 AMD Functional Data Sheet, 940 Pin Package Table 5. Pin List by Name (Continued) L1_CADOUT_H[13] / D9 1 NC_D9 E9 1 NC_E9 D11 1 A4 L1_CADOUT_L[14] / E10 1 L1_CADOUT_L[15] / C11 L1_CLKIN_H[0] / C18 C4 NC_C41 A6 NC_A61 C6 NC_C61 L1_CLKIN_H[1] / E18 C8 NC_C81 L1_CLKIN_L[0] / B18 A10 NC_A101 L1_CADOUT_L[6] / L1_CLKIN_L[1] / E17 C10 L1_CADOUT_L[7] / L1_CLKOUT_H[0] / A7 A12 NC_A12 L1_CADOUT_L[8] / C3 1 NC_C3 L1_CADOUT_L[9] / E4 NC_E4 C5 A8 E6 L1_CLKOUT_L[1] / C7 1 L2_CADIN_H[7] / L2_CADIN_H[8] / L2_CADIN_H[9] / L2_CADIN_H[10] / L2_CADIN_H[11] / NC_AJ6 L1_CTLIN_H[0] / A14 1 AJ11 AG3 AJ4 AG5 L1_CTLIN_L[0] / A13 1 B12 L2_CADIN_H[13] / C12 AG9 1 L2_CADIN_H[14] / NC_AJ10 L1_CTLOUT_L[0] / AJ8 1 NC_AG9 L1_CTLOUT_H[0] / AJ6 1 L2_CADIN_H[12] / NC_AJ8 NC_C121 E8 AL9 NC_AG51 NC_B12 NC_E61 L1_CADOUT_L[12] / D7 1 NC_C5 L1_CADOUT_L[11] / L1_CLKOUT_L[0] / NC_A13 1 L2_CADIN_H[6] / NC_AJ41 NC_A14 1 L1_CADOUT_L[10] / L1_CLKOUT_H[1]/ NC_C7 AJ9 NC_AG31 NC_A81 1 L2_CADIN_H[5] / NC_AJ111 NC_D71 NC_C101 AL7 NC_AL91 NC_A71 L1_CADOUT_L[5] / L2_CADIN_H[4] / NC_AJ91 NC_E171 L1_CADOUT_L[4] / AL5 1 NC_AL7 NC_B181 L1_CADOUT_L[3] / L2_CADIN_H[3] / 1 NC_E181 L1_CADOUT_L[2] / AJ5 1 NC_AL5 NC_C18 L1_CADOUT_L[1] / L2_CADIN_H[2] / NC_AJ5 1 NC_A4 AL3 NC_AL3 NC_C11 1 L2_CADIN_H[1] / 1 1 NC_D11 L1_CADOUT_L[0] / C9 1 NC_E10 L1_CADOUT_H[15] / 28 L1_CADOUT_L[13] / NC_C9 L1_CADOUT_H[14] / NC_E81 31412 Rev 3.05 June 2004 AJ10 1 L2_CADIN_H[15] / AG11 NC_AG111 L2_CADIN_H[0] / NC_AJ31 AJ3 L2_CADIN_L[0] / AK3 NC_AK31 Pin Designations Chapter 5 AMD Functional Data Sheet, 940 Pin Package 31412 Rev 3.05 June 2004 Table 5. Pin List by Name (Continued) L2_CADIN_L[1] / NC_AL4 NC_AK5 AK5 1 AL6 AL8 AK19 AK17 NC_AK17 AK9 L2_CADOUT_H[5] / AL10 NC_AL101 L2_CADIN_L[7] / AL16 AK11 L2_CADOUT_H[7] / AK15 AG4 L2_CADOUT_H[8] / AL14 AH4 NC_AH41 L2_CADOUT_H[9] / AH22 AG6 NC_AG61 L2_CADOUT_H[10] / AG22 AH6 1 L2_CADOUT_H[11] / AH20 AG20 NC_AG20 AH8 1 L2_CADOUT_H[12] / AG18 NC_AG18 AG10 1 L2_CADIN_L[14] / NC_AL221 L2_CADOUT_H[14] / AG16 NC_AG16 AG12 L2_CADOUT_H[15] / L2_CADOUT_L[0] / NC_AL211 Pin Designations L2_CADOUT_L[10] / L2_CADOUT_L[11] / AL13 AJ22 AG21 AJ20 AH14 AG19 1 L2_CADOUT_L[12] / AG17 1 L2_CADOUT_L[13] / AJ16 1 L2_CADOUT_L[14] / NC_AG15 NC_AH141 AL22 L2_CADOUT_L[9] / NC_AJ16 1 NC_AG121 L2_CADOUT_H[0] / AH16 NC_AH16 AH10 L2_CADOUT_L[8] / NC_AG17 1 1 L2_CADIN_L[15] / L2_CADOUT_H[13] / L2_CADOUT_L[7] / NC_AG19 1 L2_CADIN_L[13] / AJ15 NC_AJ201 1 L2_CADIN_L[12] / L2_CADOUT_L[6] / NC_AG211 NC_AH201 L2_CADIN_L[11] / AL15 NC_AJ221 NC_AG221 L2_CADIN_L[10] / L2_CADOUT_L[5] / NC_AL131 NC_AH221 L2_CADIN_L[9] / AJ17 1 NC_AJ151 NC_AL141 NC_AG41 AJ19 NC_AL151 NC_AK151 NC_AK111 L2_CADIN_L[8] / L2_CADOUT_H[6] / AL19 1 L2_CADOUT_L[4] / NC_AJ17 NC_AL161 L2_CADIN_L[6] / L2_CADOUT_L[3] / NC_AJ19 1 NC_AK91 Chapter 5 L2_CADOUT_H[4] / L2_CADOUT_L[2] / NC_AL19 NC_AK19 L2_CADIN_L[5] / NC_AH10 L2_CADOUT_H[3] / AJ21 1 1 1 1 NC_AG10 AL20 NC_AL20 L2_CADIN_L[4] / NC_AH8 L2_CADOUT_H[2] / L2_CADOUT_L[1] / NC_AJ21 1 1 NC_AH6 AK21 NC_AK21 L2_CADIN_L[3] / NC_AL8 L2_CADOUT_H[1] / 1 L2_CADIN_L[2] / NC_AL6 AL4 1 AG15 1 L2_CADOUT_L[15] / AJ14 NC_AJ141 AL21 L2_CLKIN_H[0] / AJ7 NC_AJ71 29 AMD Functional Data Sheet, 940 Pin Package Table 5. 31412 Rev 3.05 June 2004 Pin List by Name (Continued) L2_CLKIN_H[1] / AG7 MEMADD[8] L23 MEMCHECK[11] T27 AK7 MEMADD[9] K23 MEMCHECK[12] P25 AG8 MEMADD[10] V24 MEMCHECK[13] P24 AL18 MEMADD[11] J25 MEMCHECK[14] T29 AH18 MEMADD[12] J24 MEMCHECK[15] U28 AL17 MEMADD[13] AE23 MEMCKE_LO H25 AJ18 MEMBANK[0] W23 MEMCKE_UP H24 AL11 MEMBANK[1] W25 MEMCLK_LO_H[0] U25 AL12 MEMCAS_L AA25 MEMCLK_LO_H[1] Y23 AK13 MEMCHECK[0] R31 MEMCLK_LO_H[2] AD21 AJ13 MEMCHECK[1] R29 MEMCLK_LO_H[3] H23 LDTSTOP_L J6 MEMCHECK[2] U30 MEMCLK_LO_L[0] U24 MEMADD[0] V25 MEMCHECK[3] V31 MEMCLK_LO_L[1] AA23 MEMADD[1] T25 MEMCHECK[4] P30 MEMCLK_LO_L[2] AD20 MEMADD[2] P23 MEMCHECK[5] R30 MEMCLK_LO_L[3] J23 MEMADD[3] N23 MEMCHECK[6] U29 MEMCLK_UP_H[0] R23 MEMADD[4] N25 MEMCHECK[7] V30 MEMCLK_UP_H[1] L24 MEMADD[5] M24 MEMCHECK[8] R24 MEMCLK_UP_H[2] AE21 MEMADD[6] M25 MEMCHECK[9] R25 MEMCLK_UP_H[3] G20 MEMADD[7] K25 MEMCHECK[10] R26 MEMCLK_UP_L[0] T23 1 NC_AG7 L2_CLKIN_L[0] / 1 NC_AK7 L2_CLKIN_L[1] / 1 NC_AG8 L2_CLKOUT_H[0] / 1 NC_AL18 L2_CLKOUT_H[1] / NC_AH181 L2_CLKOUT_L[0]/ NC_AL171 L2_CLKOUT_L[1] / NC_AJ181 L2_CTLIN_H[0] / NC_AL111 L2_CTLIN_L[0] / NC_AL121 L2_CTLOUT_H[0] / NC_AK131 L2_CTLOUT_L[0] / 1 NC_AJ13 30 Pin Designations Chapter 5 AMD Functional Data Sheet, 940 Pin Package 31412 Rev 3.05 June 2004 Table 5. Pin List by Name (Continued) MEMCLK_UP_L[1] L25 MEMDATA[17] F31 MEMDATA[45] AD31 MEMCLK_UP_L[2] AE20 MEMDATA[18] H31 MEMDATA[46] AF30 MEMCLK_UP_L[3] G21 MEMDATA[19] J31 MEMDATA[47] AG31 MEMCS_L[0] AA24 MEMDATA[20] F29 MEMDATA[48] AG30 MEMCS_L[1] AB25 MEMDATA[21] G31 MEMDATA[49] AH31 MEMCS_L[2] AC25 MEMDATA[22] J29 MEMDATA[50] AK28 MEMCS_L[3] AC24 MEMDATA[23] J30 MEMDATA[51] AL28 MEMCS_L[4] AD25 MEMDATA[24] K31 MEMDATA[52] AG29 MEMCS_L[5] AD24 MEMDATA[25] L31 MEMDATA[53] AJ31 MEMCS_L[6] AE25 MEMDATA[26] N31 MEMDATA[54] AK30 MEMCS_L[7] AD23 MEMDATA[27] P29 MEMDATA[55] AJ28 MEMDATA[0] B24 MEMDATA[28] L29 MEMDATA[56] AL27 MEMDATA[1] A25 MEMDATA[29] L30 MEMDATA[57] AL26 MEMDATA[2] A27 MEMDATA[30] M31 MEMDATA[58] AK24 MEMDATA[3] A28 MEMDATA[31] P31 MEMDATA[59] AL24 MEMDATA[4] A24 MEMDATA[32] V29 MEMDATA[60] AJ27 MEMDATA[5] C24 MEMDATA[33] Y30 MEMDATA[61] AK27 MEMDATA[6] A26 MEMDATA[34] AA30 MEMDATA[62] AK25 MEMDATA[7] B27 MEMDATA[35] AC31 MEMDATA[63] AJ24 MEMDATA[8] B28 MEMDATA[36] W31 MEMDATA[64] G23 MEMDATA[9] A29 MEMDATA[37] Y31 MEMDATA[65] E24 MEMDATA[10] E30 MEMDATA[38] AA29 MEMDATA[66] F25 MEMDATA[11] E31 MEMDATA[39] AB31 MEMDATA[67] E26 MEMDATA[12] C28 MEMDATA[40] AC29 MEMDATA[68] F23 MEMDATA[13] B30 MEMDATA[41] AD30 MEMDATA[69] D24 MEMDATA[14] C31 MEMDATA[42] AF31 MEMDATA[70] E25 MEMDATA[15] D31 MEMDATA[43] AF29 MEMDATA[71] C26 MEMDATA[16] F30 MEMDATA[44] AC30 MEMDATA[72] C27 Chapter 5 Pin Designations 31 AMD Functional Data Sheet, 940 Pin Package Table 5. 31412 Rev 3.05 June 2004 Pin List by Name (Continued) MEMDATA[73] E27 MEMDATA[101] V28 MEMDQS[1] C29 MEMDATA[74] F28 MEMDATA[102] Y28 MEMDQS[2] H29 MEMDATA[75] G27 MEMDATA[103] Y27 MEMDQS[3] M29 MEMDATA[76] D27 MEMDATA[104] AA27 MEMDQS[4] Y29 MEMDATA[77] D29 MEMDATA[105] AB29 MEMDQS[5] AE31 MEMDATA[78] F26 MEMDATA[106] AC27 MEMDQS[6] AL29 MEMDATA[79] F27 MEMDATA[107] AD28 MEMDQS[7] AL25 MEMDATA[80] H26 MEMDATA[108] AA28 MEMDQS[8] T31 MEMDATA[81] H27 MEMDATA[109] AA26 MEMDQS[9] B25 MEMDATA[82] J28 MEMDATA[110] AC26 MEMDQS[10] C30 MEMDATA[83] L26 MEMDATA[111] AD27 MEMDQS[11] H30 MEMDATA[84] G29 MEMDATA[112] AD26 MEMDQS[12] M30 MEMDATA[85] H28 MEMDATA[113] AE27 MEMDQS[13] AA31 MEMDATA[86] K27 MEMDATA[114] AH29 MEMDQS[14] AD29 MEMDATA[87] K29 MEMDATA[115] AJ29 MEMDQS[15] AJ30 MEMDATA[88] L27 MEMDATA[116] AE29 MEMDQS[16] AJ25 MEMDATA[89] M27 MEMDATA[117] AF28 MEMDQS[17] U31 MEMDATA[90] P26 MEMDATA[118] AF26 MEMDQS[18] D25 MEMDATA[91] P27 MEMDATA[119] AG27 MEMDQS[19] E28 MEMDATA[92] L28 MEMDATA[120] AJ26 MEMDQS[20] J26 MEMDATA[93] M26 MEMDATA[121] AF25 MEMDQS[21] M28 MEMDATA[94] N29 MEMDATA[122] AH24 MEMDQS[22] V26 MEMDATA[95] P28 MEMDATA[123] AF23 MEMDQS[23] AC28 MEMDATA[96] U27 MEMDATA[124] AH27 MEMDQS[24] AG28 MEMDATA[97] V27 MEMDATA[125] AG26 MEMDQS[25] AF24 MEMDATA[98] W27 MEMDATA[126] AH25 MEMDQS[26] R28 MEMDATA[99] Y26 MEMDATA[127] AG24 MEMDQS[27] F24 MEMDATA[100] U26 MEMDQS[0] C25 MEMDQS[28] E29 32 Pin Designations Chapter 5 AMD Functional Data Sheet, 940 Pin Package 31412 Rev 3.05 June 2004 Table 5. Pin List by Name (Continued) MEMDQS[29] J27 NC_AG14 AG14 NC_V5 V5 MEMDQS[30] N27 NC_AH12 AH12 NC_W6 W6 MEMDQS[31] W29 NC_AH2 AH2 PRESENCE_DET / VSS2 AK2 MEMDQS[32] AB27 NC_AJ12 AJ12 PWROK F12 MEMDQS[33] AF27 NC_AJ2 AJ2 RESET_L G12 MEMDQS[34] AG25 NC_C13 C13 TCK AE7 MEMDQS[35] R27 NC_D13 D13 TDI AF7 MEMRAS_L Y25 NC_E11 E11 TDO AE8 MEMRESET_L G25 NC_E12 E12 THERMDA AJ1 MEMVREF0 F22 NC_F7 F7 THERMDC AH1 MEMVREF1 AF22 NC_G14 G14 THERMTRIP_L AE15 MEMWE_L Y24 NC_G6 G6 TMS AE6 MEMZN AF17 NC_H12 H12 TRST_L AD7 MEMZP AE16 NC_H13 H13 VDD AA4 NC_AA6 AA6 NC_H14 H14 VDD AA9 NC_AC6 AC6 NC_H7 H7 VDD AA11 NC_AE10 AE10 NC_H9 H9 VDD AA13 NC_AE11 AE11 NC_K8 K8 VDD AA15 NC_AE12 AE12 NC_L8 L8 VDD AA17 NC_AE13 AE13 NC_M23 M23 VDD AB6 NC_AE14 AE14 NC_N6 N6 VDD AB8 NC_AE9 AE9 NC_R6 R6 VDD AB12 NC_AF11 AF11 NC_T3 T3 VDD AB18 NC_AF13 AF13 NC_T4 T4 VDD AC13 NC_AF15 AF15 NC_T7 T7 VDD AD2 NC_AF9 AF9 NC_U5 U5 VDD AD12 NC_AG1 AG1 NC_U6 U6 VDD AD14 NC_AG13 AG13 NC_V23 V23 VDD AD16 Chapter 5 Pin Designations 33 AMD Functional Data Sheet, 940 Pin Package Table 5. 31412 Rev 3.05 June 2004 Pin List by Name (Continued) VDD AE4 VDD F19 VDD P10 VDD AF6 VDD G7 VDD P12 VDD AF10 VDD H2 VDD P14 VDD AF14 VDD J4 VDD P16 VDD AH5 VDD J13 VDD P18 VDD AH9 VDD K6 VDD P20 VDD AH13 VDD K12 VDD R9 VDD AH17 VDD K18 VDD R11 VDD AH21 VDD L9 VDD R13 VDD AK4 VDD L11 VDD R15 VDD AK8 VDD L13 VDD R17 VDD AK12 VDD L15 VDD R19 VDD AK16 VDD L17 VDD T2 VDD AK20 VDD M2 VDD T8 VDD B5 VDD M10 VDD T10 VDD B9 VDD M12 VDD T12 VDD B13 VDD M14 VDD T14 VDD B17 VDD M16 VDD T16 VDD B21 VDD M18 VDD T18 VDD D4 VDD M20 VDD T20 VDD D8 VDD N4 VDD U4 VDD D12 VDD N9 VDD U9 VDD D16 VDD N11 VDD U11 VDD D20 VDD N13 VDD U13 VDD F6 VDD N15 VDD U15 VDD F11 VDD N17 VDD U17 VDD F15 VDD N19 VDD U19 VDD F18 VDD P6 VDD V6 34 Pin Designations Chapter 5 AMD Functional Data Sheet, 940 Pin Package 31412 Rev 3.05 June 2004 Table 5. Pin List by Name (Continued) VDD V10 VDDIO G26 VDDIO AA21 VDD V12 VDDIO G28 VDDIO AB20 VDD V14 VDDIO H22 VDDIO AB22 VDD V16 VDDIO J21 VDDIO AB26 VDD V18 VDDIO K20 VDDIO AB28 VDD V20 VDDIO K22 VDDIO AC21 VDD W9 VDDIO K26 VDDIO AD22 VDD W11 VDDIO K28 VDDIO AE26 VDD W13 VDDIO L19 VDDIO AE28 VDD W15 VDDIO L21 VDDIO AG23 VDD W17 VDDIO M22 VDDIO AH26 VDD W19 VDDIO N21 VDDIO AH28 VDD Y2 VDDIO N26 VDDIO AJ23 VDD Y10 VDDIO N28 VDDIO AL23 VDD Y12 VDDIO P22 VDDIO_SENSE AF20 VDD Y14 VDDIO R21 VDDIOFB_H AB23 VDD Y16 VDDIO T22 VDDIOFB_L AC23 VDD Y18 VDDIO T26 VID[0] G11 VDD Y20 VDDIO T28 VID[1] H11 VDDA1 / VDDA C1 VDDIO U21 VID[2] G10 VDDA2 / VDDA D2 VDDIO U23 VID[3] F9 VDDA3 / VDDA C2 VDDIO V22 VID[4] G9 VDDIO A23 VDDIO W21 VLDT_0 / VLDT3 M8 VDDIO C23 VDDIO W26 VLDT_0 / VLDT3 N7 VDDIO D26 VDDIO W28 VLDT_0 / VLDT3 P8 VDDIO D28 VDDIO Y22 VLDT_0 / VLDT3 R7 VDDIO E23 VDDIO AA19 VLDT_0 / VLDT3 U7 Chapter 5 Pin Designations 35 AMD Functional Data Sheet, 940 Pin Package Table 5. 31412 Rev 3.05 June 2004 Pin List by Name (Continued) VLDT_0 / VLDT3 V8 VSS AA16 VSS AD15 VLDT_0 / VLDT3 W7 VSS AA18 VSS AD17 VLDT_0 / VLDT3 Y8 VSS AA20 VSS AE17 VLDT_0 / VLDT3 AA7 VSS AA22 VSS AE22 VLDT_1 / VLDT3 H8 VSS AB2 VSS AE24 VLDT_1 / VLDT3 H10 VSS AB7 VSS AE30 VLDT_1 / VLDT3 J9 VSS AB9 VSS AF2 VLDT_1 / VLDT3 J11 VSS AB11 VSS AF8 VLDT_1 / VLDT3 J15 VSS AB13 VSS AF12 VLDT_1 / VLDT3 J16 VSS AB15 VSS AF16 VLDT_1 / VLDT3 K10 VSS AB17 VSS AF21 VLDT_1 / VLDT3 K14 VSS AB19 VSS AG2 VLDT_1 / VLDT3 K16 VSS AB21 VSS AH3 VLDT_2 / VLDT3 AB10 VSS AB24 VSS AH7 VLDT_2 / VLDT3 AB14 VSS AB30 VSS AH11 VLDT_2 / VLDT3 AB16 VSS AC4 VSS AH15 VLDT_2 / VLDT3 AC9 VSS AC10 VSS AH19 VLDT_2 / VLDT3 AC11 VSS AC12 VSS AH23 VLDT_2 / VLDT3 AC15 VSS AC14 VSS AH30 VLDT_2 / VLDT3 AC16 VSS AC17 VSS AK6 VLDT_2 / VLDT3 AD8 VSS AC20 VSS AK10 VLDT_2 / VLDT3 AD10 VSS AC22 VSS AK14 VSS AA8 VSS AD6 VSS AK18 VSS AA10 VSS AD9 VSS AK22 VSS AA12 VSS AD11 VSS AK23 VSS AA14 VSS AD13 VSS AK26 36 Pin Designations Chapter 5 AMD Functional Data Sheet, 940 Pin Package 31412 Rev 3.05 June 2004 Table 5. Pin List by Name (Continued) VSS AK29 VSS G15 VSS L12 VSS B3 VSS G17 VSS L14 VSS B7 VSS G22 VSS L16 VSS B11 VSS G24 VSS L18 VSS B15 VSS G30 VSS L20 VSS B19 VSS H6 VSS L22 VSS B23 VSS H15 VSS M6 VSS B26 VSS F10 VSS M7 VSS B29 VSS J8 VSS M9 VSS D6 VSS J10 VSS M11 VSS D10 VSS J12 VSS M13 VSS D14 VSS J14 VSS M15 VSS D18 VSS J17 VSS M17 VSS D22 VSS J18 VSS M19 VSS D23 VSS J20 VSS M21 VSS D30 VSS J22 VSS N8 VSS E2 VSS K2 VSS N10 VSS F1 VSS K9 VSS N12 VSS F2 VSS K11 VSS N14 VSS F5 VSS K13 VSS N16 VSS F8 VSS K15 VSS N18 VSS F10 VSS K17 VSS N20 VSS F13 VSS K19 VSS N22 VSS F14 VSS K21 VSS N24 VSS F16 VSS K24 VSS N30 VSS F17 VSS K30 VSS P2 VSS G4 VSS L4 VSS P7 VSS G13 VSS L10 VSS P9 Chapter 5 Pin Designations 37 AMD Functional Data Sheet, 940 Pin Package Table 5. 31412 Rev 3.05 June 2004 Pin List by Name VSS P11 VSS U8 VSS W20 VSS P13 VSS U10 VSS W22 VSS P15 VSS U12 VSS W24 VSS P17 VSS U14 VSS W30 VSS P19 VSS U16 VSS Y6 VSS P21 VSS U18 VSS Y7 VSS R4 VSS U20 VSS Y9 VSS R8 VSS U22 VSS Y11 VSS R10 VSS V2 VSS Y13 VSS R12 VSS V7 VSS Y15 VSS R14 VSS V9 VSS Y17 VSS R16 VSS V11 VSS Y19 VSS R18 VSS V13 VSS Y21 VSS R20 VSS V15 VTT AF18 VSS R22 VSS V17 VTT F20 VSS T6 VSS V19 VTT F21 VSS T9 VSS V21 VTT G19 VSS T11 VSS W4 VTT H19 VSS T13 VSS W8 VTT J19 VSS T15 VSS W10 VTT AC18 VSS T17 VSS W12 VTT AC19 VSS T19 VSS W14 VTT AE18 VSS T21 VSS W16 VTT AE19 VSS T24 VSS W18 VTT_SENSE AF19 VSS T30 Notes: 1. Links 1 and 2 are available on Server/Workstation products only. No connect (NC_*) names apply to Desktop products. 38 Pin Designations Chapter 5 31412 Rev 3.05 June 2004 AMD Functional Data Sheet, 940 Pin Package 2. PRESENCE_DET is used for Server/Workstation products only. This pin should be connected to VSS for Desktop products. See the AMD Athlon™ 64 FX and AMD Opteron™ Processor Motherboard Design Guide, order# 25180, for connection details. 3. VLDT is referenced as a unified plane for Desktop products. Chapter 5 Pin Designations 39 AMD Functional Data Sheet, 940 Pin Package 40 Pin Designations 31412 Rev 3.05 June 2004 Chapter 5 AMD Functional Data Sheet, 940 Pin Package 31412 Rev 3.05 June 2004 6 Pin Descriptions Table 6 describes the terms used in the pin description tables found in this chapter. The pins are organized within the following functional groups: • HyperTransport™ technology interface • DDR SDRAM memory interface • Miscellaneous pins, including clock, JTAG, and debug pins All pins are described in the tables beginning on page 42. Table 6. Pin Description Table Definitions Pin Types Applicable Section in Electrical Chapter I-HT Input, HyperTransport™ technology, Differential “HyperTransport™ Technology Interface” on page 50 O-HT Output, HyperTransport™ technology, Differential “HyperTransport™ Technology Interface” on page 50 B-IOS Bidirectional, VDDIO1 Single-Ended “DDR SDRAM and Miscellaneous Pins” on page 53 I-IOS Input, VDDIO1, Single-Ended “DDR SDRAM and Miscellaneous Pins” on page 53 I-IOD Input, VDDIO1, Differential “Clock Pins” on page 65 O-IOD Output, VDDIO1, Differential “Clock Pins” on page 65 O-IOS Output, VDDIO1, Single-Ended “DDR SDRAM and Miscellaneous Pins” on page 53 Output, VDDIO1, Open Drain “DDR SDRAM and Miscellaneous Pins” on page 53 A Analog “Power Supplies” on page 75 S Supply Voltage “Power Supplies” on page 75 Voltage Reference “DDR SDRAM and Miscellaneous Pins” on page 53 O-IO-OD VREF Notes: 1. Refer to Table 36, “Combined AC and DC Operating Conditions for Power Supplies,” on page 75 for VDDIO voltage specifications. Chapter 6 Pin Descriptions 41 AMD Functional Data Sheet, 940 Pin Package 6.1 HyperTransport™ Technology Pins Table 7. HyperTransport™ Technology Pin Descriptions Signal Name Type Description L0_CLKIN_H/L[1:0] I-HT Link 0 Clock Input L0_CTLIN_H/L[0] I-HT Link 0 Control Input L0_CADIN_H/L[15:0] I-HT Link 0 Command/Address/Data Input L0_CLKOUT_H/L[1:0] O-HT Link 0 Clock Outputs L0_CTLOUT_H/L[0] O-HT Link 0 Control Output L0_CADOUT_H/L[15:0] O-HT Link 0 Command/Address/Data Outputs L1_CLKIN_H/L[1:0]2 I-HT Link 1 Clock Input L1_CTLIN_H/L[0]2 I-HT Link 1 Control Input L1_CADIN_H/L[15:0]2 I-HT Link 1 Command/Address/Data Input L1_CLKOUT_H/L[1:0]2 O-HT Link 1 Clock Outputs L1_CTLOUT_H/L[0]2 O-HT Link 1 Control Output L1_CADOUT_H/L[15:0]2 O-HT Link 1 Command/Address/Data Outputs L2_CLKIN_H/L[1:0]2 I-HT Link 2 Clock Input L2_CTLIN_H/L[0]2 I-HT Link 2 Control Input L2_CADIN[15:0]2 I-HT Link 2 Command/Address/Data Input L2_CLKOUT_H/L[1:0]2 O-HT Link 2 Clock Outputs L2_CTLOUT_H/L[0]2 O-HT Link 2 Control Output L2_CADOUT_H/L[15:0]2 O-HT Link 2 Command/Address/Data Outputs L0_REF1 A Compensation Resistor to VLDT1 L0_REF0 A Compensation Resistor to VSS1 31412 Rev 3.05 June 2004 Notes: 1. These pins are used in an alternating fashion to compensate RTT by internal comparison to 3/4 VLDT and 1/4 VLDT and compensate RON by comparison to each other around 1/2 VLDT. For proper resistor value, see the AMD Athlon™ 64 FX and AMD Opteron™ Processor Motherboard Design Guide, order# 25180. 2. Link 1 and Link 2 are available only on Server products. 42 Pin Descriptions Chapter 6 AMD Functional Data Sheet, 940 Pin Package 31412 Rev 3.05 June 2004 6.2 DDR SDRAM Memory Interface Pins Table 8. DDR SDRAM Memory Interface Pin Descriptions Signal Name Type Description MEMCLK_UP_H/L[3] O-IOD DRAM Clock connected to DIMM3 for the upper half of the data bus MEMCLK_UP_H/L[2] O-IOD DRAM Clock connected to DIMM2 for the upper half of the data bus MEMCLK_UP_H/L[1] O-IOD DRAM Clock connected to DIMM1 for the upper half of the data bus MEMCLK_UP_H/L[0] O-IOD DRAM Clock connected to DIMM0 for the upper half of the data bus MEMCLK_LO_H/L[3] O-IOD DRAM Clock connected to DIMM3 for the lower half of the data bus MEMCLK_LO_H/L[2] O-IOD DRAM Clock connected to DIMM2 for the lower half of the data bus MEMCLK_LO_H/L[1] O-IOD DRAM Clock connected to DIMM1 for the lower half of the data bus MEMCLK_LO_H/L[0] O-IOD DRAM Clock connected to DIMM0 for the lower half of the data bus MEMCKE_UP O-IOS DRAM Clock Enable MEMCKE_LO O-IOS DRAM Clock Enable MEMDQS[35:0] B-IOS DRAM Data Strobe synchronous with MEMCHECK[15:12] for x4 DIMMs. MEMDQS[34:27] B-IOS DRAM Data Strobe synchronous with the high-order nibbles of MEMDATA[127:64] for x4 DIMMs MEMDQS[26] B-IOS DRAM data strobe synchronous with MEMCHECK[11:8] for x4 DIMMs and MEMCHECK[15:8] for x8/x16 DIMMs. MEMDQS[25:18] B-IOS DRAM Data Strobe synchronous with the low-order nibbles of MEMDATA[127:64] for x4 DIMMs and all nibbles for x8/x16 DIMMs MEMDQS[17] B-IOS DRAM Data Strobe synchronous with MEMCHECK[7:4] for x4 DIMMs MEMDQS[16:9] B-IOS DRAM Data Strobe synchronous with high-order nibbles of MEMDATA[63:0] for x4 DIMMs MEMDQS[8] B-IOS DRAM Data Strobe synchronous with MEMCHECK[3:0] for x4 DIMMs and MEMCHECK[7:0] for x8/x16 DIMMs MEMDQS[7:0] B-IOS DRAM Data Strobe synchronous with low-order nibbles of MEMDATA[127:64] for x4 DIMMs and all nibbles for x8/x16 DIMMs MEMDATA[127:0] B-IOS DRAM Interface Data Bus MEMCHECK[15:0] B-IOS DRAM Interface ECC Check Bits MEMCS_L[7:0] O-IOS DRAM Chip Selects1 MEMRAS_L O-IOS DRAM Row Address Select MEMCAS_L O-IOS DRAM Column Address Select Chapter 6 Pin Descriptions 43 AMD Functional Data Sheet, 940 Pin Package Table 8. 31412 Rev 3.05 June 2004 DDR SDRAM Memory Interface Pin Descriptions (Continued) Signal Name Type Description MEMWE_L O-IOS DRAM Write Enable MEMADD[13:0] O-IOS DRAM Column/Row Address MEMBANK[1:0] O-IOS DRAM Bank Address MEMRESET_L O-IOS DRAM Reset pin for Suspend-to-RAM power management mode. This pin is required for registered DIMMs only. MEMVREF VREF DRAM Interface Voltage Reference1 MEMZP A Compensation Resistor tied to VSS1 MEMZN A Compensation Resistor tied to VDDIO1 Notes: 1. For connection details and proper resistor values, see the AMD Athlon™ 64 FX and AMD Opteron™ Processor Motherboard Design Guide, order# 25180. 44 Pin Descriptions Chapter 6 AMD Functional Data Sheet, 940 Pin Package 31412 Rev 3.05 June 2004 6.3 Miscellaneous Pins Table 9. Clock Pin Descriptions Signal Name Type Description CLKIN_H/L I-IOD 200-MHz PLL Reference Clock FBCLKOUT_H/L O-IOD Core Clock PLL 200-MHz Feedback Clock Table 10. Miscellaneous Pin Descriptions Signal Name Type Description RESET_L I-IOS System Reset PWROK I-IOS Indicates that voltages and clocks have reached specified operation LDTSTOP_L I-IOS HyperTransport™ Technology Stop Control Input. Used for power management and for changing HyperTransport™ link width and frequency. VID[4:0] O-IOS Voltage ID to the regulator THERMDA A Anode (+) of the thermal diode THERMDC A Cathode (–) of the thermal diode THERMTRIP_L O-IO-OD Thermal Sensor Trip output, asserted at nominal temperature of 125oC. COREFB_H/L A Differential feedback for VDD Power Supply VDDIOFB_H/L A Differential feedback for VDDIO Power Supply CORE_SENSE A VDD voltage monitor pin VDDA S Filtered PLL Supply Voltage VTT_SENSE A VTT voltage monitor pin VDDIO_SENSE A VDDIO voltage monitor pin VDD S Core power supply VDDIO S DDR SDRAM I/O ring power supply VLDT_01 VLDT_11 VLDT_21 S HyperTransport™ I/O ring power supply VTT S VTT regulator voltage Chapter 6 Pin Descriptions 45 AMD Functional Data Sheet, 940 Pin Package 31412 Rev 3.05 June 2004 Table 10. Miscellaneous Pin Descriptions (Continued) Signal Name Type Description PRESENCE_DET2 S This pin can be connected to VSS or used for detection of the processor in multiprocessor configurations. When used as a presence detection bit it should be pulled up and sensed via the circuitry that is used to detect installed processors on the motherboard. This pin is connected to VSS internally. VSS S Ground Notes: 1. VLDT is referenced as a unified plane for Desktop products. 2. PRESENCE_DET is used for Server/Workstation products only. This pin should be connected to VSS for Desktop products. See the AMD Athlon™ 64 FX and AMD Opteron™ Processor Motherboard Design Guide, order# 25180, for connection details. Table 11. VID[4:0] Encoding VID[4:0] VDD VID[4:0] VDD VID[4:0] VDD VID[4:0] VDD 0x00000 1.550 V 0x01000 1.350 V 0x10000 1.150 V 0x11000 0.950 V 0x00001 1.525 V 0x01001 1.325 V 0x10001 1.125 V 0x11001 0.925 V 0x00010 1.500 V 0x01010 1.300 V 0x10010 1.100 V 0x11010 0.900 V 0x00011 1.475 V 0x01011 1.275 V 0x10011 1.075 V 0x11011 0.875 V 0x00100 1.450 V 0x01100 1.250 V 0x10100 1.050 V 0x11100 0.850 V 0x00101 1.425 V 0x01101 1.225 V 0x10101 1.025 V 0x11101 0.825 V 0x00110 1.400 V 0x01110 1.200 V 0x10110 1.000 V 0x11110 0.800 V 0x00111 1.375 V 0x01111 1.175 V 0x10111 0.975 V 0x11111 Off Table 12. JTAG Pin Descriptions Signal Name Type Description TCK I-IOS JTAG Clock TMS I-IOS JTAG Mode Select TRST_L I-IOS JTAG Reset TDI I-IOS JTAG Data Input TDO O-IOS JTAG Data Output 46 Pin Descriptions Chapter 6 AMD Functional Data Sheet, 940 Pin Package 31412 Rev 3.05 June 2004 Table 13. Debug Pin Descriptions Signal Name Type Description DBREQ_L I-IOS Debug Request DBRDY O-IOS Debug Ready Chapter 6 Pin Descriptions 47 AMD Functional Data Sheet, 940 Pin Package 6.4 31412 Rev 3.05 June 2004 Pin States at Reset The default pin states are listed below. These are listed for all output and bidirectional pins in the power-on reset state (reset) as well as the ACPI S1 and S3 power management states. Table 14. Reset Pin State Reset State S1 State S3 State L*_CLKOUT* T Z Z Tristated in S1 only if programmed to do so. L*_CTLOUT* 0 Z Z Tristated in S1 only if programmed to do so. L*_CADOUT* 1 Z Z Tristated in S1 only if programmed to do so. MEMCLK* Z Z Z MEMDQS* Z Z Z MEMCKE* 0 0 0 MEMDATA* Z Z Z MEMCHECK* Z Z Z MEMCS_L* 1 Z Z MEMRAS_L 1 Z Z MEMCAS_L 1 Z Z MEMWE_L 1 Z Z MEMADD* 0 Z Z MEMBANK* 0 Z Z MEMRESET_L 0 0 0 MEMZN 1 1 1 MEMZP 0 0 0 FBCLKOUT* T T Z TDO X X Z DBRDY 0 0 Z VID[4:0] X X X THERMTRIP_L Z X Z Pin Name Comments In S3, MEMCKE* is forced to a logic Low. In S3, MEMRESET_L is forced to logic 0. For differential inputs, “0” and “1” refer to the high-end differential output. Low-end differential outputs are inverted. Definitions of pin states: X: Either logic 1 or 0, Z: Tristated, T: Toggling between 0 and 1 48 Pin Descriptions Chapter 6 AMD Functional Data Sheet, 940 Pin Package 31412 Rev 3.05 June 2004 7 Electrical Data 7.1 Absolute Maximum Ratings Stresses greater than those listed in Table 15 may cause permanent damage to the device and motherboard. Systems using this device must be designed to ensure that these parameters are not violated. Violation of these ratings will void the product warranty. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Table 15. Absolute Maximum Ratings Characteristic Range Storage Temperature –55oC to 85oC VLDT supply voltage relative to VSS –0.3 V to 1.5 V VDD supply voltage relative to VSS –0.3 V to 1.65 V VTT supply voltage relative to VSS –0.3 V to 1.65 V VDDIO supply voltage relative to VSS –1 V to 2.9 V VDDA supply voltage relative to VSS –0.3 V to 3.0 V MEMVREF input voltage relative to VSS –1 V to 2.9 V Input voltage relative to VSS for HyperTransport™ technology interface –0.3 V to 1.5 V Differential input voltage for HyperTransport™ technology interface –1.5 V to 1.5 V Input voltage relative to VSS for DDR SDRAM memory interface and Miscellaneous pins –1 V to 2.9V Refer to AMD Opteron™ Processor Power and Thermal Data Sheet, order# 30417, for maximum case temperature specifications. Chapter 7 Electrical Data 49 AMD Functional Data Sheet, 940 Pin Package 31412 Rev 3.05 June 2004 7.2 HyperTransport™ Technology Interface 7.2.1 Operating Conditions Table 16. DC Operating Conditions for HyperTransport™ Technology Interface Symbol Parameter Unit Min Typ Max Notes VOD Output Differential Voltage mV 495 600 715 1, 2 VOCM Output Common Mode Voltage mV 495 600 715 1, 2 VID Input Differential Voltage mV 200 600 1000 1, 2 VICM Input Common Mode Voltage mV 440 600 780 1, 2 DeltaVOD Change in VOD from 0 to 1 State mV –15 0 15 1 DeltaVOCM Change in VOCM from 0 to 1 State mV –15 0 15 1 DeltaVID Change in VID from 0 to 1 State mV –15 0 15 1 DeltaVICM Change in VICM from 0 to 1 State mV –15 0 15 1 Il Input Leakage Current mA –1 1 IOZ Output Tristate Leakage Current mA –1 1 RON Output Driver Impedance ohm 45 50 55 DeltaRON Change in RON Driving 0=>1 or % –2.5 0 2.5 ohm 90 100 110 1=>0 RTT Input Differential Impedance Notes: 1. Measured by comparing each signal voltage with respect to ground. 2. Measured at <100 MHz, considered slow enough to attain both 0 and 1 logic state voltage levels without AC transients on signals and supplies. 50 Electrical Data Chapter 7 AMD Functional Data Sheet, 940 Pin Package 31412 Rev 3.05 June 2004 Table 17. AC Operating Conditions for HyperTransport™ Technology Interface Symbol Parameter Unit Min VOD Output Differential Voltage mV VOCM Output Common Mode Voltage VID Typ Max Notes 400 820 1 mV 440 780 1 Input Differential Voltage mV 300 900 1 VICM Input Common Mode Voltage mV 385 845 1 DeltaVOD Change in VOD from 0 to 1 State mV –75 75 1 DeltaVOCM Change in VOCM from 0 to 1 State mV –50 50 1 DeltaVID Change in VID from 0 to 1 State mV –125 125 1 DeltaVICM Change in VICM from 0 to 1 State mV –100 100 1 TRISE Input Rising Edge Rate V/ns 1 4 1, 2 TFALL Input Falling Edge Rate V/ns 1 4 1, 2 CIN Input Pad Capacitance pF 2 COUT Output Pad Capacitance pF 3 CDELTA CIN Pad Capacitance Range Across Group pF 0.5 TCADV Output CAD Valid pS 166 459 TPHERR Accumulated Phase Error, CLKIN_H/L to L*_CLKOUT_H/L[1:0] pS 0 5000 TSU Device Setup Time pS 110 3, 4 THLD Device Hold Time pS 110 3, 4 RTT Input Differential Impedance ohm 90 100 110 RON Output Impedance ohm 45 50 55 DeltaRON Change in RON Driving 0=>1 or 1=>0 % –2.5 3 2.5 Notes: 1. Measured by comparing each signal voltage with respect to ground. 2. Measured in a differential fashion relative to the complement signal. 3. Measured from crossing points of differential pairs. 4. Input setup and hold times are measured from the crossing point of CAD versus the crossing point of CLK, effectively including the edge time to achieve VID min AC. Chapter 7 Electrical Data 51 AMD Functional Data Sheet, 940 Pin Package 7.2.2 31412 Rev 3.05 June 2004 Reference Information Table 18. Internal Termination for HyperTransport™ Technology Interface Pin Internal Termination Value Tolerance L*_CADIN* Differential RTT 100 ohm (PVT-compensated) ±10% L*_CTLIN* Differential RTT 100 ohm (PVT-compensated) ±10% L*_CLKIN* Differential RTT 100 ohm (PVT-compensated) ±10% 52 Electrical Data Chapter 7 31412 Rev 3.05 June 2004 7.3 AMD Functional Data Sheet, 940 Pin Package DDR SDRAM and Miscellaneous Pins This section includes electrical specifications for all DDR SDRAM pins described in “DDR SDRAM Memory Interface Pins” on page 43, and the THERMTRIP_L, RESET_L, LDTSTOP_L, PWROK, VID[4:0], TCK, TMS, TRST_L, TDI, TDO, DBREQ_L, and DBRDY pins described in “Miscellaneous Pins” on page 45. Chapter 7 Electrical Data 53 AMD Functional Data Sheet, 940 Pin Package 7.3.1 31412 Rev 3.05 June 2004 Operating Conditions Table 19. DC Operating Conditions Symbol Vref Parameters Reference voltage (for I/O), MEMVREF pin Unit Min Typ Max Notes V 0.49*VDDIO_dc Min 0.5*VDDIO_dc 0.51*VDDIO_dc Max 1, 12 Il Input leakage current Any input: 0 < VIN < VDDIO V (All other pins not under test = 0V) mA -1 1 Ioz Output leakage current Any output: 0 < VOUT < VDDIO V mA -1 1 VIH Input high voltage (logic 1) V Vref + 0.15 - - 2 VIL Input low voltage (logic 0) V - - Vref - 0.15 2 Output high voltage (logic 1) (for VID[4:0]) V 2.0 Output high voltage (logic 1) (for all other pins) V 1.8 VOL Output low voltage (logic 0) V IOH Output levels -Output high current (VOUT= VDDIO/2) mA -25 -28 -33 3 IOL Output levels - Output low current (VOUT=VDDIO/2) mA 25 28 32 3 VOD Differential output voltage (for CK & CK) V 1.2 1.3 1.4 4 mV -100 - 100 5 V 1.1 1.25 1.4 6 mV -100 - 100 7 VOH ∆ VOD Change in VOD magnitude VOCM Output common mode voltage (for CK & CK) ∆ VOCM Change in VOCM magnitude 0.65 Notes: The notes for Table 19 through Table 22 appear on page 56. 54 Electrical Data Chapter 7 AMD Functional Data Sheet, 940 Pin Package 31412 Rev 3.05 June 2004 Table 20. AC Operating Conditions Symbol Parameters Unit Min Vref Reference voltage (for I/O), MEMVREF pin V Vref(DC) 2% VIH Input high voltage (logic 1) V Vref + 0.35 VIL Input low voltage (logic 0) V VOD Differential output voltage (for CK & CK) V ∆ VOD Change in VOD magnitude VOCM Output common mode voltage (for CK & CK) ∆ VOCM Change in VOCM magnitude Typ Max Notes Vref(DC) + 2% 1 - 2 - Vref - 0.35 2 1.0 1.3 1.6 4 mV -150 - 150 5 V 0.9 1.25 1.6 6 mV -200 - 200 7 Unit Min Typ Max Notes Table 21. Input Capacitance Symbol Parameters Cin Input capacitance (DQ & DQS) pF 3.0 3.5 4.0 ∆C Delta Input capacitance pF - - 0.4 8 Table 22. Slew Rate of DDR SDRAM Signals Symbol Parameters Unit Min Typ Max Notes SOUT Output slew rate (pullup and pulldown) V/ns 2 3 4 9 0.75 1 1.25 10 4 11 SOUT_Rat io Sin Chapter 7 Output slew rate ratio between pullup and pulldown Input slew rate V/ns 0.5 Electrical Data 55 AMD Functional Data Sheet, 940 Pin Package 31412 Rev 3.05 June 2004 Table 23. Slew Rate of RESET_L, LDTSTOP_L, and PWROK Symbol Sin Parameters Input slew rate Unit Min V/ns 0.01 Typ Max Notes 13 1. Vref is expected to be equal to 0.5*VDDIO and to track variations in the DC level of the same. Peak to peak noise on Vref may not exceed + 2% of the DC value. 2. The AC values indicate the voltage levels at which the receiver must meet its timing specifications. The DC values indicate the voltage levels at which the final logic state of the receiver is unambiguously defined. The receiver effectively switches to the new logic state when receiver input crosses the AC level. The new logic state is maintained as long as the input stays beyond the DC threshold. 3. With compensation the granularity between NMOS current and PMOS current cannot exceed 3mA. The range is 6mA due to 10% variation. 4. VOD is the differential output voltage or the voltage difference between true and complement under DC or AC conditions. 5. ∆ VOD is the change in magnitude between the differential output voltage while driving a logic 0 and while driving a logic 1. 6. VOCM is the output common mode voltage defined as the average of the true voltage magnitude and the complement voltage magnitude relative to ground under DC or AC conditions. 7. ∆ VOCM is the change in magnitude between the output common mode voltage while driving a logic 0 and while driving a logic 1. 8. ∆ C means the difference in capacitance between any MEMDATA/MEMDQS pin to any other MEMDATA/MEMDQS pin. 9. Pullup and pulldown slew rate is measured into RTT (50 Ohms) to VTT as shown in Figure 4. The slew rate is measured between Vref + 300 mV. It is designed for any pattern of data, including all outputs switching and only one output switching. 10. The ratio of pullup slew rate to pulldown slew rate is specified for the same temperature and voltage, over the entire temperature and voltage range. For a given output, it represents the maximum difference between pullup and pulldown drivers due to process variation. 11. The slew rate is measured at the CPU pin between Vref + 150 mV. Minimum and maximum input slew rate specification is set based on DRAM output slew rate specification. 12. VDDIO_dc is defined in Table 36 on page 75. 13. The slew rate is measured at the CPU pin between Vref + 150 mV. Minimum input slew rate specification is based on HyperTransport™ input minimum slew rate specification for single-ended signals. 56 Electrical Data Chapter 7 AMD Functional Data Sheet, 940 Pin Package 31412 Rev 3.05 June 2004 VTT RTT Driver 0 pF Figure 4. Slew Rate Measurement Example Table 24. Package Routing Skew Routing Measurement Chapter 7 Skew (ps) Any MEMCLK clock pair to any other MEMCLK clock pair + 100 Any MEMCLK pair to any MEMDQS pair + 100 Any MEMDQS pair to any MEMDATA associated within pair + 75 Any MEMCLK pair to any MEMADD/CMD + 100 Pad skew + 250 Electrical Data 57 AMD Functional Data Sheet, 940 Pin Package 7.3.2 31412 Rev 3.05 June 2004 AC Operating Characteristics Table 25. Electrical AC Timing Characteristics for DDR SDRAM Signals Symbol 5. 6. 7. 8. 58 Unit Min Typ Max Notes 15 tCK MEMCLK cycle time ps 5000 - 10000 tCH MEMCLK high pulse width ps 0.45*tCK - 0.55*tCK tCL MEMCLK low pulse width ps 0.45*tCK - 0.55*tCK MEMCLK output skew ps -350 - 350 1,2,3 tDQSH MEMDQS high pulse width ps 0.45*tCK - 0.55*tCK 1 tDQSL MEMDQS low pulse width ps 0.45*tCK - 0.55*tCK 1 tDQS MEMCLK to MEMDQS ps -350 - 350 1,4,5 tDSS MEMDQS falling edge to MEMCLK rising edge ps 0.45*tCK 350 - - 1,6,7 tDSH MEMCLK rising edge to MEMDQS falling edge ps 0.45*tCK 350 - - 1,6,7 tDQSQV MEMDQS to MEMDATA shift (when data becomes valid) ps -{0.5* tDQSHmax [638]} - -{0.5* tDQSHmin + [638]} 1,8,9 tDQSQIV MEMDQS to MEMDATA shift (when data becomes invalid) ps {0.5*tDQSHmin - [638]} - {0.5* tDQSHmax + [638]} 1,8,9 t2 MEMADD/CMD to MEMCLK (Registered DIMM environment MEMADD/CMD are launched 1/2 clock early) ps - 350 - 350 1,10,11 t3 MEMDATA edge arrival relative to MEMDQS ps -{tCK/4 [350+0.2* (tCK/4)]} - tCK/4 [350+0.2* (tCK/4)] 12,13,14 tCKS 1. 2. 3. 4. Parameters Write cycle timing parameter The skew consists of pad output skew (+ 250ps) and package routing skew between any two clock pairs (+ 100ps). tCKS Timing Parameter, refer to Figure 5 on page 60. The timing consists of pad output skew (+ 250ps) and package routing skew between any MEMCLK to any MEMDQS (+ 100ps). tDQS Timing parameter, refer to Figure 6 on page 60. The skew consists of pad output skew (+ 250ps) and package routing skew between any MEMCLK to any MEMDQS (+ 100ps). Minimum DQS pulse width is 45% of MEMCLK. tDSS, tDSH timing parameters, refer to Figure 7 on page 61. During write, DQ signals are driven quarter clock earlier such that DQS is placed in the center of data eye window. The skew consists of pad output skew (+ 250ps), package routing skew between any DQS signals and it’s associated DQ signals (+ 75ps) and maximum clock granularity (+ 312.5 ps). Electrical Data Chapter 7 31412 Rev 3.05 June 2004 AMD Functional Data Sheet, 940 Pin Package 9. tDQSQV and tDQSQIV timing parameters apply only within DQS and its associated DQ signals. Refer to Figure 8 on page 62. 10. The skew consists of pad output skew (+ 250 ps) and package routing skew (+ 100 ps) between any MEMCLK pair to any MEMADD/CMD signal. Maximum clock granularity skew is 312.5 ps. 11. t2 Timing parameter, applies to registered DIMM Environment Only - MEMADD/CMD signals are launched 1/2 clock cycle early. The granularity term does not apply here. Refer to Figure 9 on page 63. 12. Read cycle timing parameter. 13. The PDL placement uncertainty is 20%. Package skew between DQS and its associated DQs is 75ps. The sum of setup/hold time & receiver uncertainty is 275ps. 14. t3 timing parameter, refer to Figure 10 on page 64. 15. The slow operation of 10ns cycle time is specifically included for functional test purpose only. All electrical characterization will be performed at full speed however all functional tests will be performed at 10ns cycle time. Chapter 7 Electrical Data 59 AMD Functional Data Sheet, 940 Pin Package 31412 Rev 3.05 June 2004 tCK CK CK tCKS Max CK CK tCKS Min CK CK Figure 5. MEMCLK Output Skew tCK CK CK DQS tDQS Max DQS tDQS Min Figure 6. MEMDQS Timing Parameter 60 Electrical Data Chapter 7 AMD Functional Data Sheet, 940 Pin Package 31412 Rev 3.05 June 2004 t tCK CK CK tDSS Min DQS DQS tDSH Min Figure 7. DSS/tDSH Timing Parameters Chapter 7 Electrical Data 61 AMD Functional Data Sheet, 940 Pin Package 31412 Rev 3.05 June 2004 tCK CK CK DQS Ideal 90o Phase Shift - tDQSQV Typical DQs tDQSQV Min - Latest time Data can become valid DQs DQs tDQSQV Max - Earliest time Data can become valid Ideal 90o Phase Shift - tDQSQIV Typical DQs tDQSQIV Max - Latest time Data can become Invalid DQs DQs tDQSQIV Min - Earliest time Data can become In-valid Figure 8. tDQSQV/tDQSQIV Timing Parameters 62 Electrical Data Chapter 7 AMD Functional Data Sheet, 940 Pin Package 31412 Rev 3.05 June 2004 tCK CK CK tCK/2 tCK/2 ADDR/CMD t2 =0 (Ideal timing) t2 max ADDR/CMD t2 max = 350 ADDR/CMD t2 min = -350 t2 min Figure 9. MEMADD/CMD to MEMCLK Timing Parameter (Registered DIMMs) Chapter 7 Electrical Data 63 AMD Functional Data Sheet, 940 Pin Package 31412 Rev 3.05 June 2004 DQS DQs Perfect Edge Aligned t3 = 0 ps t3 Max DQs Late arrival from strobe t3 Max t3 Min DQs Early arrival from strobe t3 Min setup Package + PDL + Receiver uncertainty Figure 10.MEMDQS Edge Arrival Relative to DQs 64 Electrical Data Chapter 7 AMD Functional Data Sheet, 940 Pin Package 31412 Rev 3.05 June 2004 7.4 Clock Pins 7.4.1 Operating Conditions Table 26. DC Operating Conditions for CLKIN_H/L and FBCLKOUT_H/L Pins Symbol Parameters Unit Min Typ VID Differential Input Voltage mV 300 2400 DeltaVID Change in VID Magnitude mV –50 50 VICM Input Common Mode Voltage mV VTT–100 DeltaVICM Change in VICM Magnitude mV –50 VOD Differential Output Voltage V 1.2 DeltaVOD Change in VOD Magnitude mV –50 VOCM Output Common Mode Voltage V 1.1 DeltaVOCM Change in VOCM Magnitude mV –50 VTT Max Notes VTT+100 50 1.3 1.25 1.4 1 50 2 1.4 3 50 4 Notes: 1. VOD is the differential output voltage or the voltage difference between true and complement under DC or AC conditions. 2. DeltaVOD is the change in magnitude between the differential output voltage while driving logic 0 and while driving logic 1. 3. VOCM is the output common mode voltage defined as the average of the true voltage magnitude and the complement voltage relative to ground under DC or AC conditions. 4. DeltaVOCM is the change in magnitude between the output common mode voltage while driving logic 0 and while driving logic 1 under DC or AC conditions. Chapter 7 Electrical Data 65 AMD Functional Data Sheet, 940 Pin Package 31412 Rev 3.05 June 2004 Table 27. AC Operating Conditions for CLKIN_H/L and FBCLKOUT_H/L Pins Symbol Parameter Unit Min F (PLL mode, VDDA=2.5 V) Input Frequency Range (SSC) MHz TJC Jitter, Cycle-to-Cycle DC Input Duty Cycle (CLKIN_H/L) VBIAS Typ Max Notes 198.8 200 6 pS 0 200 7 % 30 70 Input BIAS Voltage Node mV VTT VID Differential Input Voltage mV 400 2300 DeltaVID Change in VID Magnitude mV –150 150 VICM Input Common Mode Voltage mV VBIAS–200 VBIAS+200 DeltaVICM Change in VICM Magnitude mV –200 200 VOD Differential Output Voltage V 1.2 DeltaVOD Change in VOD Magnitude mV –100 VOCM Output Common Mode Voltage V 1.1 DeltaVOCM Change in VOCM Magnitude mV IF Input Falling Edge Rate IR Input Rising Edge Rate CIN Input Capacitance VTT 1.3 VTT 1.4 1 100 2 1.4 3 –100 100 4 V/ns 1.2 10 5 V/ns 1.2 10 5 pF 0 5 1.25 Notes: 1. VOD is the differential output voltage or the voltage difference between true and complement under DC or AC conditions. 2. Delta VOD is the change in magnitude between the differential output voltage while driving logic 0 and while driving logic 1. 3. VOCM is the output common mode voltage defined as the average of the true voltage magnitude and the complement voltage relative to ground under DC or AC conditions. 4. Delta VOCM is the change in magnitude between the output common mode voltage while driving logic 0 and while driving logic 1 under DC or AC conditions. 5. Measured differentially through the range of VICM – 400 mV to VICM + 400 mV. 6. Spread spectrum clocking is limited to –0.5% downspread under normal operation. 7. Measured at the differential crossing point. Maximum difference of cycle time between two adjacent cycles. 66 Electrical Data Chapter 7 31412 Rev 3.05 June 2004 7.5 AMD Functional Data Sheet, 940 Pin Package Power-Up Signal Sequencing Figure 12 on page 70 illustrates the signal sequencing requirements during a cold reset (power-up conditions). The HyperTransport™ link reset sequencing is defined in the HyperTransport™ I/O Link Specification. The following list describes the power-up signal sequencing illustrated in Figure 12. Note that the numbered items correspond to the numbers in Figure 12. 1. RESET_L must be asserted a minimum of 1ms prior to the assertion of PWROK, as defined in the HyperTransport™ I/O Link Specification. The TMS pin must be asserted a minimum of 10ns before PWROK assertion and must be held in the High state a minimum of 10ns after the assertion of PWROK. 2. CLKIN_H/L must be within specification at the time the VDD power supply begins to ramp. 3. PWROK remains deasserted at least 1ms after CLKIN_H/L is stable and voltages to the processor are within specification. The processor determines if there are devices attached to its HyperTransport™ links 10µs after the assertion of PWROK. 4. After PWROK assertion, the VID[4:0] signals change from the metal mask VID[4:0]* to the value programmed during device manufacturing. The PLL begins locking to the frequency programmed during device manufacturing 160µs after PWROK is asserted. 5. LDTSTOP_L must be deasserted a minimum of 1µs before the deassertion of RESET_L, as defined by the HyperTransport™ I/O Link Specification. 6. The RESET_L signal remains asserted a minimum of 1mS after PWROK assertion, as defined in the HyperTransport™ I/O Link Specification. The clocks from the transmitters of all HyperTransport™ technology devices must be stable before RESET_L is deasserted. 7. The MEMCLK_LO_H/L[3:0] and MEMCLK_UP_H/L[3:0] signals are stable after BIOS sets the Memory Clock Ratio Valid (MCR) bit in the processor’s DRAM Config Upper register. The MEMCLK* period is defined by the MEMCLK[2:0] field in the DRAM Config Upper register. 8. MEMRESET_L is deasserted after BIOS sets the Dram_Init bit in the DRAM Config Lower register. This allows time for the PLL on registered DIMMs to stabilize before the deassertion of the DIMM’s reset signal. The delay between these events depends on the silicon revision and the DRAM operating speed as described in Figure 11 and Table 29 on page 68. 9. The MEMCKE_LO/UP signals are asserted following the deassertion of MEMRESET_L. The delay between these events depends on the silicon revision and the DRAM operating speed as described in Figure 11 and Table 29 on page 68. Note that the MEMCKE_LO/UP delay from MEMRESET_L is different when exiting self-refresh as listed in Table 30 on page 69. * The metal mask VID[4:0] is the value driven on the VID[4:0] lines prior to PWROK assertion. Refer to Table 28 for metal mask VID[4:0] values. Chapter 7 Electrical Data 67 AMD Functional Data Sheet, 940 Pin Package 31412 Rev 3.05 June 2004 Table 28. Metal Mask VID[4:0] Values Processor Revision1 VID[4:0]2 B3 0Eh C0 0Eh CG 0Eh Notes: 1.Refer to the AMD Opteron™ Processor Power and Thermal Data Sheet, order# 30417, for silicon revision determination. 2.Refer to the BIOS and Kernel Developer’s Guide for the AMD Athlon™ 64 and AMD Opteron™ Processors, order# 26094, for information on translating VID[4:0] encodings to voltage levels. Figure 11. MEMRESET_L and MEMCKE_LO/UP Sequencing Dram_Init (BIOS) MEMRESET_L MEMCKE_LO/UP B A Table 29. MEMRESET_L and MEMCKE_LO/UP Initialization Timing Silicon Revision Rev B Rev C 68 DRAM Speed Timing Parameter A Timing Parameter B DDR200 655µS 120nS DDR266 492.8µS 90.2nS DDR333 394.8µS 72.3nS DDR200 163.8µS 491.5µS DDR266 123.2µS 369.6µS DDR333 98.7µS 296.1µS DDR400 81.9µS 245.8µS Electrical Data Chapter 7 AMD Functional Data Sheet, 940 Pin Package 31412 Rev 3.05 June 2004 Table 30. MEMCKE_LO/UP Delay from MEMRESET_L During Exit from Self-Refresh Silicon Revision Rev B Rev C Note: DRAM Speed Registered DIMMs DDR200 120nS DDR266 90.2nS DDR333 72.2nS DDR200 10.24µS DDR266 7.6µS DDR333 6.1µS DDR400 5.1µS Refer to the AMD Opteron™ Processor Power and Thermal Data Sheet, order# 30417, for silicon revision determination. Chapter 7 Electrical Data 69 AMD Functional Data Sheet, 940 Pin Package 31412 Rev 3.05 June 2004 VDD 3 PWROK 4 VID[4:0] (Metal Mask VID[4:0]) 6 1 RESET_L L0_CLKIN_H/L[1:0] 5 LDTSTOP_L 8 MEMRESET_L 2 CLKIN_H/L 7 VALID MEMCLK* 9 MEMCKE* TMS Figure 12.Power-Up Signal Sequencing 70 Electrical Data Chapter 7 AMD Functional Data Sheet, 940 Pin Package 31412 Rev 3.05 June 2004 7.6 Reference Information Table 31. Internal Termination for Miscellaneous Pins Interface Pin Type2 Internal Termination CLKIN_H/L I-IOD None1 FBCLKOUT_H/L O-IOD 80-ohm differential termination RESET_L I-IOS None PWROK I-IOS None VID[4:0] O-IOS None LDTSTOP_L I-IOS None THERMDA A None THERMDC A None O-IO-OD None A None THERMTRIP_L COREFB_H/L Value Tolerance ±50% TCK I-IOS Pullup to VDDIO3 533 ohms ±50% TMS I-IOS Pullup to VDDIO3 533 ohms ±50% TRST_L I-IOS Pullup to VDDIO3 533 ohms ±50% TDI I-IOS Pullup to VDDIO3 533 ohms ±50% TDO O-IOS Pullup to VDDIO 533 ohms ±50% DBREQ_L I-IOS Pullup to VDDIO3 533 ohms ±50% DBRDY O-IOS Pullup to VDDIO 533 ohms ±50% Notes: 1. CLKIN_H/L inputs have DC voltage BIAS generating circuits on the inputs. These consist of both a ~250-ohm pullup resistor to VTT on each input and a ~250-ohm series input resistor. 2. Refer to Table 6 on page 41 for definitions in pin Type column. 3. Systems that do not require use of these pins can rely on the internal termination to pull the signals to the proper inactive state. When these pins are used they must not be driven with open-drain outputs or additional termination is required. Chapter 7 Electrical Data 71 AMD Functional Data Sheet, 940 Pin Package 31412 Rev 3.05 June 2004 Table 32. External Required Circuits (Pins Not Normally Used in System) Pin External Circuit (Non-Operating)1 NC_G14 Tied to VDDIO_SUS through resistor NC_H14 Tied to VSS through resistor NC_AE14 Tied to VDDIO_RUN through resistor NC_AF13 Tied to VDDIO_RUN through resistor NC_AE10 Tied to VSS through resistor NC_AE11 Tied to VSS through resistor NC_AF11 Tied to VSS through resistor NC_AE13 Tied to VSS through resistor NC_AE12 Tied to VSS through resistor NC_T3 Tied to VSS through resistor NC_T4 Tied to VLDT through resistor Notes: 1. See the AMD Athlon™ 64 FX and AMD Opteron™ Processor Motherboard Design Guide, order# 25180, for proper resistor values. 2. Input pins of the same type may be pulled high or low through a shared resistor provided that VIL Max and VIH Min specifications are not exceeded for those pin types. 72 Electrical Data Chapter 7 AMD Functional Data Sheet, 940 Pin Package 31412 Rev 3.05 June 2004 7.7 Thermal Diode Specifications An on-die thermal diode is provided as a tool for thermal management. An external sensor is necessary to measure the temperature of the thermal diode. Thermal solutions should be not designed and validated using the thermal diode. Thermal solutions should be designed and validated against the case temperature specification per the methodology specified in AMD Athlon™ 64 and AMD Opteron™ Processors Thermal Design Guide, order# 26633. Table 33. Thermal Diode Specification Revision and Frequency Guide Rev/Freq < 2.2GHz >= 2.2GHz B3 Table 34 N/A C0 Table 34 Table 35 CG and later Table 35 Table 35 Note: Refer to the AMD Opteron™ Processor Power and Thermal Data Sheet, order# 30417 for silicon revision determination. Table 34. Thermal Diode Specifications (Revision and Frequency Dependent, see Table 33) Symbol Parameter I Sourcing Currents nf Ideality Factor TOffset Temperature Offset θj-c Thermal resistance (junction to case) Units Min µA Max Notes 5 500 1 1.008 1.096 2 0 32 3, 4, 5, 6 0.32 7 °C °C/W Typ Notes: 1. The sourcing current should always be used in forward bias. 2. Characterized at 95ºC with a forward bias current pair of 10 and 100 µA. The ideality factor limits correspond to the diode offset limits. 3. Temperature offset is unique for each processor. The diode offset value is found in the Thermtrip Status Register discussed in the BIOS and Kernel Developer’s Guide for the AMD Athlon™ 64 and AMD Opteron™ Processors, order# 26094. 4. This diode offset supports temperature sensors using two sourcing currents only. Other sourcing current implementations are not supported by AMD. 5. The temperature offset is set based on a sourcing current pair of 10 and 100 µA and an ideality factor of 1.008. The diode offset should be subtracted from the temperature sensor reading. If the temperature sensor has an ideality factor different from 1.008, an additional offset is needed. Contact your temperature sensor vendor about whether an additional offset is needed. 6. After correcting for the diode offset, the thermal diode has an accuracy of ±10°C. This accuracy is additive to the temperature sensor accuracy. Chapter 7 Electrical Data 73 AMD Functional Data Sheet, 940 Pin Package 31412 Rev 3.05 June 2004 7. The temperature specification for the processor is based on the case temperature. The thermal resistance from the junction to the case is provided as a reference for implementing fan-speed control using the thermal diode. Table 35. Thermal Diode Specifications (Revision and Frequency Dependent, see Table 33) Symbol Parameter Units Min I Sourcing Currents µA TOffset Temperature Offset °C Typ Max Notes 5 500 1 0 52 2, 3, 4, 5 Notes: 1. The sourcing current should always be used in forward bias. 2. The temperature offset is used to normalize the thermal diode measurement to reflect case temperature at the worst case conditions for a part. 3. This diode offset supports temperature sensors using two sourcing currents only. Single sourcing current implementations are not supported by AMD. 4. The temperature offset is unique for each processor and is programmed at the factory. The diode offset value is found in the Thermtrip Status Register described in the BIOS and Kernel Developer’s Guide for the AMD Athlon™ 64 and AMD Opteron™ Processors, order# 26094. 5. TOffset should be subtracted from the temperature sensor reading. If the temperature sensor has an ideality factor different from 1.008, a small correction to this offset is required. Contact your temperature sensor vendor to determine if additional correction is required. 74 Electrical Data Chapter 7 AMD Functional Data Sheet, 940 Pin Package 31412 Rev 3.05 June 2004 7.8 Power Supplies 7.8.1 Operating Conditions Table 36. Combined AC and DC Operating Conditions for Power Supplies Symbol Parameter Unit Min VID_VDD VID Requested VDD Supply Level V VDD_dc VDD Supply Voltage V VID_VDD –50 mV VDD_ac VDD Supply Voltage V VID_VDD –100 mV VDD_PON VDD Supply Voltage before PWROK assertion during power-on. V 1.15 VDDIO_dc VDDIO Supply Voltage for DDR333 and below V VDDIO_dc VDDIO Supply Voltage for DDR400 and below Typ Max See Note 11 VID_VDD Notes 6 VID_VDD +50 mV VID_VDD +100 mV 13 1.20 VDD_max 8 2.40 2.50 2.60 10 V 2.50 2.60 2.65 10, 12 VDDIO_ac VDDIO supply voltage V VDDIO_dc -150 mV VDDIO_dc +150 mV 9 VLDT VLDT Supply Voltage V 1.14 VTT_dc VTT Supply Voltage V VTT_ac VTT Supply Voltage V VTT_dc - 150 mV VDDA VDDA Supply Voltage V 2.40 IDD VDD Power Supply Current A See Note 11 IDDIO1 VDDIO Power Supply Current A 2.8 IDDIO2 VDDIO Power Supply Current in S3 State mA 850 ITT1 VTT Power Supply Current mA 200 ITT2 VTT Power Supply Current in S3 State mA 200 ILDT VLDT Power Supply Current A 1.5 IDDA VDDA Power Supply Current mA 33 IDDslew1 VDD Power Supply Current Change During Normal Operation A/µs .0583*fMHz 3, 7 IDDslew2 VDD Power Supply Current Change Upon Reset Exit A/µs 270 3 IDDslew3 VDD Power Supply Current Change Upon Stop Grant Entry A/µs Chapter 7 1.20 1.26 VDDIO_dc VDDIO_dc VDDIO_dc Min/2 - 50 mV Typ/2 Max/2 + 50 mV –270 Electrical Data VTT_dc + 150 mV 2.50 9 2.60 2.9 4 2, 5 1 3 75 AMD Functional Data Sheet, 940 Pin Package 31412 Rev 3.05 June 2004 Table 36. Combined AC and DC Operating Conditions for Power Supplies Symbol Parameter Unit IDDslew4 VDD Power Supply Current Change Upon Stop Grant Exit A/µs IDDslew5 VDD Power Supply Current Change Upon Non-reset Power Failure A/µs Min –4.25 Typ Max Notes 270 3 3 Notes: 1. ILDT is specified for three 16x16-bit HyperTransport™ links operating at 1.6 GT/s. 2. VTT must both sink and source current. 3. Current slew rates are controlled by ramping up or down the core frequency in steps during these sequences to control in-rush currents. 4. VDDIO current is consumed by I, O, I/O switching current and on-chip functions (PDL, DLL, level-shifters, etc.). 5. VTT current is consumed by I, O, I/O switching current and on-chip functions (PDL, DLL, level-shifters, etc.). 6. The processor drives a VID code corresponding to this voltage. 7. For example, the IDDslew1 calculation for a 1.2-GHz part is (.0583 x 1200) = 69.96 A/µs. 8. The processor’s VID[4:0] outputs select VID_PON nom before PWROK is asserted. Transients up to VDD_max are allowed. 9. VDDIO_ac and VTT_ac parameters are measured +/- 1ns of all data bus bits switching. 10. Systems designed to DDR400 power supply parameters will also operate correctly with DDR333 and below. 11. Refer to the AMD Opteron™ Processor Power and Thermal Data Sheet, order# 30417, for these specifications. 12. DDR400 (200MHz) supported by Rev C0 and later. Refer to the AMD Opteron™ Processor Power and Thermal Data Sheet, order# 30417 for silicon revision determination. 13. Transient duration below VDD_dc min is limited to < 5µs. Transient duration above VDD_dc max is limited to < 2% duty cycle. Test by probing differentially at COREFB_H and COREFB_L with 20MHz scope bandwidth limit. Test conditions are while running AMD’s MAXPOWER64 utility using AMD thermal approved production grade heat sinks in normal room ambient conditions. 7.8.2 Thermal Power Refer to AMD Opteron™ Processor Power and Thermal Data Sheet, order# 30417, for thermal power specifications. 7.8.3 Power Supply Relationships 7.8.3.1 Sequencing Relationships Power supply relationships during power-up, power-down, and entry and exit of any power management state must be controlled in order to avoid damage to the device and help ensure proper operation of the device. Figure 13 shows an example of how these relationships can be maintained by system power generation and distribution schemes. PWROK must be deasserted as VDD decays during power down. VTT and VDDIO are considered SUSPEND planes and are powered in the S0 (working) state and the S1 and S3 sleep states. VDDA, VDD, and VLDT are considered RUN planes and are powered in the S0 and S1 states only. All power supplies should be turned off during the S4 (SUSPEND to DISK) and S5 (SOFT-OFF) states. VDDIO (RUN) is a power rail used for pull-ups on 76 Electrical Data Chapter 7 AMD Functional Data Sheet, 940 Pin Package 31412 Rev 3.05 June 2004 some processor signals that connect to devices that are powered off during S3, such as THERMTRIP_L. Power Up S3 Entry S3 Exit Power Down VTT (SUS) VDDIO (SUS) VDDIO (RUN) VDDA (RUN) VDD (RUN) VLDT (RUN) Figure 13.Sequencing Relationships for Power Supplies Table 37. Sequencing Relationships for Power Supplies Power Supply Relationship Unit Max Notes VTT to VDDIO V VTT_dc Max 1, 2 VDDIO to VTT V VDDIO_dc Max - VTT_dc Typ 1, 3 VDDIO to VDD V VDDIO_dc Max 1, 4 VDDA to VDD V VDDA Max 1, 5 VDD to VLDT V VDD Max 1, 6 1. Sequencing relationships are measured from supply to supply and cover the DC voltage relationships between supplies that must be maintained under all operating conditions including power up, power down, power failure, and power state transitions in order to avoid device or system damage. These relationships can be maintained by propagation of PWRGD signals from one supply rail to the regulator enable of the next supply. The minimum requirements for a proper system implementation are that: — VDDIO ramps such that VDDIO/2 <= VTT. — VDD ramps such that VDDIO and VDDA are within spec before VDD is enabled. — VLDT ramps such that VDD is within spec before VLDT is enabled. 2. The VTT to VDDIO relationship allows for VTT to power-up before VDDIO. 3. The VDDIO to VTT relationship is critical to avoid overstress of the 2.5-V I/O structures that will occur when VDDIO exceeds VTT by 1.35 V during normal operation. VTT must track VDDIO/2 to maintain this specification. During power up and power down VDDIO may exceed VTT by up to 1.5V for no more than 100ms. Chapter 7 Electrical Data 77 AMD Functional Data Sheet, 940 Pin Package 31412 Rev 3.05 June 2004 4. The VDDIO to VDD relationship allows for VDDIO to power-up before VDD. 5. The VDDA to VDD relationship allows for VDDA to power-up before VDD. VDDA must power-up before VDD to ensure that internal clock sources are valid before being used and that clock source multiplexors are properly controlled. 6. The VDD to VLDT relationship allows for VDD to power-up before VLDT and specifically allows for VDD=VDD_max with VLDT=0 V. VDD must power-up before VLDT to help ensure that PWROK is properly passed from the pins into the VDD power domain such that the deasserted state can be seen in the VLDT power domain. 7.8.3.2 Sequencing Relationships: Signals to Power Supplies (Stress Conditions) Once the powerup sequence has been completed and PWROK can be asserted, the sequencing of input signals to the CPU and output signals from the CPU can begin. The requirements from signals to power supplies are summarized by type as follows. • VDDIO inputs and outputs are allowed to exceed VDDIO by 0.3V and are allowed to be 0.3V below VSS. • VDDIO inputs are allowed to exceed VTT by VTT_dc Max + 0.3V and are allowed to be 0.3V below VSS. • VLDT inputs and outputs are allowed to exceed VLDT by 0.3V and are allowed to be 0.3V below VSS. 7.8.3.3 Power Failures The power sequencing relationships defined in sections 7.8.3.1 and 7.8.3.2 must be guaranteed by the motherboard power supply subsystem in the event of a power failure. 7.8.3.4 Power States During system power state S3, the RUN supplies (VLDT, VDD, and VDDA) to the CPU are to be turned off. During this operating mode, all internal leakage paths between SUS supplies (VDDIO and VTT) and these powered off planes are disabled. During S0 and S1, all RUN and SUS planes are to be powered on. During S4 and S5, all supplies to the CPU are to be turned off. 7.8.3.5 Unused Links Because the processor has up to three independent HyperTransport™ links, some implementations will not connect one or more of these links. In this case, the VLDT of the link that is not connected to another device, should be connected to the VLDT of an operating link. Note that even if the link is not used, the VLDT for the link must be connected so that the internal link detection circuitry can successfully determine the connection status of the link. 78 Electrical Data Chapter 7 AMD Functional Data Sheet, 940 Pin Package 31412 Rev 3.05 June 2004 8 Package Specifications 8.1 Mechanical Loading for Lidded Parts Table 38 provides the mechanical loading specification for lidded parts. These specifications should not be exceeded during heat sink installation, system testing, or system shipment. Refer to the AMD Athlon™ 64 and AMD Opteron™ Processors Thermal Design Guide, order# 26633, for more information on properly designing a heat sink to meet these specifications. Table 38. Mechanical Loading for Lidded Parts Type Units Maximum Force Notes Static lbf 100 1, 2 Dynamic lbf 200 1, 3 Notes: 1.Load specified for coplanar, uniform contact to lid surface. 2.The static specification specifies the allowable range to be applied by the heat sink to the processor package. 3.The dynamic specification assumes a dynamic load that includes the static load and is applied at 50G for 11ms Chapter 8 Package Specifications 79 AMD Functional Data Sheet, 940 Pin Package 8.2 31412 Rev 3.05 June 2004 Package Diagram D 3 A D2 A1 CORNER D1 A1 CORNER 5 Øb1 (Nx Plcs) E E2 E1 e BOTTOM VIEW B LID A K NxØb 0.50 0.25 M M b1 ccc A1 L C SEE NOTES TOP VIEW A2 R 4 DETAIL K C A B C NOT TO SCALE SIDE VIEW AMD PACKAGE SYMBOL D/E GENERAL NOTES 1. All dimensions are specified in millimeters (mm). 2. Dimensioning and tolerancing per ASME-Y14.5M-1994. 3. This corner has a chamfer and a square on top of the package that identifies the pin A1 corner and can be used for handling and orientation purposes. 4. Pin tips should have radius. 5. Symbol "M" defines the pin matrix size and "N" is number of pins. VARIATIONS xUCG940 min. 39.80 max. 40.20 D1/E1 38.10 BSC D2/E2 37.4 A A1 A2 e 37.6 4.88 REF 1.556 1.796 3.05 3.35 1.27 BSC b 0.275 0.35 b1 0.81 1.06 L 2.03 M 2.29 31 N 940 R 0.30 MAX ccc 0.125 WT (gms) 45.17 REF Figure 14. Ceramic Micro Pin Grid Array Package: Top, Side, and Bottom Views 80 Package Specifications Chapter 8