ETC ATMEGA323(L)

Features
• High-performance, Low-power AVR® 8-bit Microcontroller
• Advanced RISC Architecture
•
•
•
•
•
•
•
– 130 Powerful Instructions – Most Single-clock Cycle Execution
– 32 x 8 General Purpose Working Registers
– Fully Static Operation
– Up to 8 MIPS Throughput at 8 MHz
– On-chip 2-cycle Multiplier
Non-volatile Program and Data Memories
– 32K Bytes of In-System Self-programmable Flash
Endurance: 1,000 Write/Erase Cycles
– Optional Boot Code Section with Independent Lock Bits
In-System Programming by On-chip Boot Program
– 1K Byte EEPROM
Endurance: 100,000 Write/Erase Cycles
– 2K Bytes Internal SRAM
– Programming Lock for Software Security
JTAG (IEEE Std. 1149.1 Compliant) Interface
– Extensive On-chip Debug Support
– Programming of Flash, EEPROM, Fuses, and Lock Bits through the JTAG Interface
– Boundary-Scan Capabilities According to the JTAG Standard
Peripheral Features
– Two 8-bit Timer/Counters with Separate Prescaler and Compare Mode
– One 16-bit Timer/Counter with Separate Prescaler, Compare Mode, and Capture
Mode
– Real Time Counter with Separate Oscillator
– Four PWM Channels
– 8-channel, 10-bit ADC
– Byte-oriented Two-wire Serial Interface
– Programmable Serial USART
– Master/Slave SPI Serial Interface
– Programmable Watchdog Timer with Separate On-chip Oscillator
– On-chip Analog Comparator
Special Microcontroller Features
– Power-on Reset and Programmable Brown-out Detection
– Internal Calibrated RC Oscillator
– External and Internal Interrupt Sources
– Six Sleep Modes: Idle, ADC Noise Reduction, Power-save, Power-down, Standby
and Extended Standby
I/O and Packages
– 32 Programmable I/O Lines
– 40-pin PDIP and 44-lead TQFP
Operating Voltages
– 2.7 - 5.5V (ATmega323L)
– 4.0 - 5.5V (ATmega323)
Speed Grades
– 0 - 4 MHz (ATmega323L)
– 0 - 8 MHz (ATmega323)
8-bit
Microcontroller
with 32K Bytes
of In-System
Programmable
Flash
ATmega323
ATmega323L
Summary
Not recommended
for new designs.
Use ATmega32.
1457GS–AVR–09/03
Note: This is a summary document. A complete document
is available on our Web site at www.atmel.com.
Pin Configurations
PDIP
(XCK/T0) PB0
(T1) PB1
(INT2/AIN0) PB2
(OC0/AIN1) PB3
(SS) PB4
(MOSI) PB5
(MISO) PB6
(SCK) PB7
RESET
VCC
GND
XTAL2
XTAL1
(RXD) PD0
(TXD) PD1
(INT0) PD2
(INT1) PD3
(OC1B) PD4
(OC1A) PD5
(ICP) PD6
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21
PA0 (ADC0)
PA1 (ADC1)
PA2 (ADC2)
PA3 (ADC3)
PA4 (ADC4)
PA5 (ADC5)
PA6 (ADC6)
PA7 (ADC7)
AREF
AGND
AVCC
PC7 (TOSC2)
PC6 (TOSC1)
PC5 (TDI)
PC4 (TDO)
PC3 (TMS)
PC2 (TCK)
PC1 (SDA)
PC0 (SCL)
PD7 (OC2)
44
43
42
41
40
39
38
37
36
35
34
PB4 (SS)
PB3 (AIN1/OC0)
PB2 ((AIN0/INT2)
PB1 (T1)
PB0 (XCK/T0)
GND
VCC
PA0 (ADC0)
PA1 (ADC1)
PA2 (ADC2)
PA3 (ADC3)
TQFP
33
32
31
30
29
28
27
26
25
24
23
1
2
3
4
5
6
7
8
9
10
11
PA4 (ADC4)
PA5 (ADC5)
PA6 (ADC6)
PA7 (ADC7)
AREF
AGND
AVCC
PC7 (TOSC2)
PC6 (TOSC1)
PC5 (TDI)
PC4 (TDO)
(INT1) PD3
(OC1B) PD4
(OC1A) PD5
(ICP) PD6
(OC2) PD7
VCC
GND
(SCL) PC0
(SDA) PC1
(TCK) PC2
(TMS) PC3
12
13
14
15
16
17
18
19
20
21
22
(MOSI) PB5
(MISO) PB6
(SCK) PB7
RESET
VCC
GND
XTAL2
XTAL1
(RXD) PD0
(TXD) PD1
(INT0) PD2
2
ATmega323(L)
1457GS–AVR–09/03
ATmega323(L)
Overview
The ATmega323 is a low-power CMOS 8-bit microcontroller based on the AVR
enhanced RISC architecture. By executing powerful instructions in a single clock cycle,
the ATmega323 achieves throughputs approaching 1 MIPS per MHz allowing the system designer to optimize power consumption versus processing speed.
Block Diagram
Figure 1. Block Diagram
PA0 - PA7
PC0 - PC7
PORTA DRIVERS
PORTC DRIVERS
VCC
GND
DATA DIR.
REG. PORTA
DATA REGISTER
PORTA
DATA REGISTER
PORTC
DATA DIR.
REG. PORTC
8-BIT DATA BUS
AVCC
ANALOG MUX
JTAG
INTERFACE
ADC
AGND
AREF
INTERNAL
REFERENCE
2-WIRE SERIAL
INTERFACE
OSCILLATOR
INTERNAL
OSCILLATOR
OSCILLATOR
TIMING AND
CONTROL
PROGRAM
COUNTER
STACK
POINTER
WATCHDOG
TIMER
PROGRAM
FLASH
SRAM
MCU CONTROL
REGISTER
INSTRUCTION
REGISTER
GENERAL
PURPOSE
REGISTERS
TIMER/
COUNTERS
X
Y
Z
INTERRUPT
UNIT
ALU
EEPROM
STATUS
REGISTER
INTERNAL
CALIBRATED
OSCILLATOR
SPI
USART
INSTRUCTION
DECODER
CONTROL
LINES
ANALOG
COMPARATOR
+
-
PROGRAMMING
LOGIC
DATA REGISTER
PORTB
DATA DIR.
REG. PORTB
DATA REGISTER
PORTD
XTAL1
XTAL2
RESET
DATA DIR.
REG. PORTD
PORTB DRIVERS
PORTD DRIVERS
PB0 - PB7
PD0 - PD7
3
1457GS–AVR–09/03
The AVR core combines a rich instruction set with 32 general purpose working registers.
All the 32 registers are directly connected to the Arithmetic Logic Unit (ALU), allowing
two independent registers to be accessed in one single instruction executed in one clock
cycle. The resulting architecture is more code efficient while achieving throughputs up to
ten times faster than conventional CISC microcontrollers.
The ATmega323 provides the following features: 32K bytes of In-System Programmable
Flash, 1K bytes EEPROM, 2K bytes SRAM, 32 general purpose I/O lines, 32 general
purpose working registers, a JTAG interface for Boundary-Scan, On-chip Debugging
support and programming, three flexible Timer/Counters with compare modes, internal
and external interrupts, a serial programmable USART, a byte oriented Two-wire Serial
Interface, an 8-channel, 10-bit ADC, a programmable Watchdog Timer with internal
Oscillator, an SPI serial port, and six software selectable power saving modes. The Idle
mode stops the CPU while allowing the SRAM, Timer/Counters, SPI port, and interrupt
system to continue functioning. The Power-down mode saves the register contents but
freezes the Oscillator, disabling all other chip functions until the next interrupt or Hardware Reset. In Power-save mode, the asynchronous timer continues to run, allowing the
user to maintain a timer base while the rest of the device is sleeping. The ADC Noise
Reduction mode stops the CPU and all I/O modules except asynchronous timer and
ADC, to minimize switching noise during ADC conversions. In Standby mode, the crystal/resonator Oscillator is running while the rest of the device is sleeping. This allows
very fast start-up combined with low-power consumption. In Extended Standby mode,
both the main Oscillator and the asynchronous timer continue to run.
The device is manufactured using Atmel’s high-density non-volatile memory technology.
The On-chip ISP Flash allows the Program memory to be re-programmed In-System
through an SPI serial interface, by a conventional non-volatile memory programmer, or
by an On-chip Boot Program running on the AVR core. The Boot Program can use any
interface to download the application program in the Application Flash memory. By combining an 8-bit RISC CPU with In-System Programmable Flash on a monolithic chip, the
Atmel ATmega323 is a powerful microcontroller that provides a highly flexible and cost
effective solution to many embedded control applications.
The ATmega323 AVR is supported with a full suite of program and system development
tools including: C compilers, macro assemblers, program debugger/simulators, In-Circuit Emulators, and evaluation kits.
Pin Descriptions
VCC
Digital supply voltage.
GND
Digital ground.
Port A (PA7..PA0)
Port A serves as the analog inputs to the A/D Converter.
Port A also serves as an 8-bit bi-directional I/O port, if the A/D Converter is not used.
Port pins can provide internal pull-up resistors (selected for each bit). The Port A output
buffers can sink 20 mA and can drive LED displays directly. When pins PA0 to PA7 are
used as inputs and are externally pulled low, they will source current if the internal pullup resistors are activated. The Port A pins are tri-stated when a reset condition
becomes active, even if the clock is not running.
4
ATmega323(L)
1457GS–AVR–09/03
ATmega323(L)
Port B (PB7..PB0)
Port B is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each
bit). The Port B output buffers can sink 20 mA. As inputs, Port B pins that are externally
pulled low will source current if the pull-up resistors are activated. The Port B pins are
tri-stated when a reset condition becomes active, even if the clock is not running.
Port B also serves the functions of various special features of the ATmega323 as listed
on page 139.
Port C (PC7..PC0)
Port C is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each
bit). The Port C output buffers can sink 20 mA. As inputs, Port C pins that are externally
pulled low will source current if the pull-up resistors are activated. The Port C pins are
tri-stated when a reset condition becomes active, even if the clock is not running.
Port C also serves the functions of the JTAG interface and other special features of the
ATmega323 as listed on page 146. If the JTAG interface is enabled, the pull-up resistors
on pins PC5 (TDI), PC3 (TMS) and PC2 (TCK) will be activated even if a Reset occurs.
Port D (PD7..PD0)
Port D is an 8-bit bidirectional I/O port with internal pull-up resistors (selected for each
bit). The Port D output buffers can sink 20 mA. As inputs, Port D pins that are externally
pulled low will source current if the pull-up resistors are activated. The Port D pins are
tri-stated when a reset condition becomes active, even if the clock is not running.
Port D also serves the functions of various special features of the ATmega323 as listed
on page 151.
RESET
Reset input. A low level on this pin for more than 500 ns will generate a Reset, even if
the clock is not running. Shorter pulses are not guaranteed to generate a Reset.
XTAL1
Input to the inverting Oscillator amplifier and input to the internal clock operating circuit.
XTAL2
Output from the inverting Oscillator amplifier.
AVCC
AVCC is the supply voltage pin for Port A and the A/D Converter. It should be externally
connected to VCC, even if the ADC is not used. If the ADC is used, it should be connected to VCC through a low-pass filter. See page 127 for details on operation of the
ADC.
AREF
AREF is the analog reference pin for the A/D Converter. For ADC operations, a voltage
in the range 2.56V to AVCC can be applied to this pin.
AGND
Analog ground. If the board has a separate analog ground plane, this pin should be connected to this ground plane. Otherwise, connect to GND.
5
1457GS–AVR–09/03
Register Summary
Address
Name
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
Page
$3F ($5F)
SREG
I
T
H
S
V
N
Z
C
page 21
$3E ($5E)
SPH
–
–
–
–
SP11
SP10
SP9
SP8
page 22
$3D ($5D)
SPL
SP7
SP6
SP5
SP4
SP3
SP2
SP1
SP0
page 22
$3C ($5C)
OCR0
$3B ($5B)
GICR
INT1
INT0
INT2
–
–
–
IVSEL
IVCE
$3A ($5A)
GIFR
INTF1
INTF0
INTF2
–
–
–
–
–
page 34
$39 ($59)
TIMSK
OCIE2
TOIE2
TICIE1
OCIE1A
OCIE1B
TOIE1
OCIE0
TOIE0
page 36
$38 ($58)
TIFR
OCF2
TOV2
ICF1
OCF1A
OCF1B
TOV1
OCF0
TOV0
page 36
$37 ($57)
SPMCR
–
ASB
–
ASRE
BLBSET
PGWRT
PGERS
SPMEN
page 183
page 47
page 33
$36 ($56)
TWCR
TWINT
TWEA
TWSTA
TWSTO
TWWC
TWEN
–
TWIE
page 104
$35 ($55)
MCUCR
SE
SM2
SM1
SM0
ISC11
ISC10
ISC01
ISC00
page 37
$34 ($54)
MCUCSR
JTD
ISC2
–
JTRF
WDRF
BORF
EXTRF
PORF
page 30
$33 ($53)
TCCR0
FOC0
PWM0
COM01
COM00
CTC0
CS02
CS01
CS00
page 47
$32 ($52)
$31 ($51)
TCNT0
Timer/Counter0 (8 Bits)
page 49
OSCCAL
Oscillator Calibration Register
page 41
OCRD
On-chip Debug Register
page 161
$30 ($50)
SFIOR
–
–
–
–
ACME
PUD
PSR2
PSR10
$2F ($4F)
TCCR1A
COM1A1
COM1A0
COM1B1
COM1B0
FOC1A
FOC1B
PWM11
PWM10
page 56
$2E ($4E)
TCCR1B
ICNC1
ICES1
–
–
CTC1
CS12
CS11
CS10
page 57
$2D ($4D)
TCNT1H
Timer/Counter1 – Counter Register High Byte
page 58
$2C ($4C)
TCNT1L
Timer/Counter1 – Counter Register Low Byte
page 58
$2B ($4B)
OCR1AH
Timer/Counter1 – Output Compare Register A High Byte
page 59
$2A ($4A)
OCR1AL
Timer/Counter1 – Output Compare Register A Low Byte
page 59
$29 ($49)
OCR1BH
Timer/Counter1 – Output Compare Register B High Byte
page 59
$28 ($48)
OCR1BL
Timer/Counter1 – Output Compare Register B Low Byte
page 59
$27 ($47)
ICR1H
Timer/Counter1 – Input Capture Register High Byte
page 60
$26 ($46)
ICR1L
Timer/Counter1 – Input Capture Register Low Byte
$25 ($45)
TCCR2
$24 ($44)
TCNT2
Timer/Counter2 (8 Bits)
page 49
$23 ($43)
OCR2
Timer/Counter2 Output Compare Register
page 49
FOC2
PWM2
COM21
COM20
CTC2
page 45
page 60
CS22
CS21
CS20
$22 ($42)
ASSR
–
–
–
–
AS2
TCN2UB
OCR2UB
TCR2UB
$21 ($41)
WDTCR
–
–
–
WDTOE
WDE
WDP2
WDP1
WDP0
UBRRH
URSEL
–
–
–
$20 ($40)
6
Timer/Counter0 Output Compare Register
UBRR[11:8]
page 47
page 52
page 64
page 98
UCSRC
URSEL
UMSEL
UPM1
UPM0
USBS
UCSZ1
UCSZ0
UCPOL
page 97
$1F ($3F)
EEARH
–
–
–
–
–
–
EEAR9
EEAR8
page 66
EEAR7
EEAR6
EEAR5
EEAR4
EEAR3
EEAR2
EEAR1
EEAR0
page 66
page 67
$1E ($3E)
EEARL
$1D ($3D)
EEDR
$1C ($3C)
EECR
–
–
–
–
EERIE
EEMWE
EEWE
EERE
$1B ($3B)
PORTA
PORTA7
PORTA6
PORTA5
PORTA4
PORTA3
PORTA2
PORTA1
PORTA0
page 137
$1A ($3A)
DDRA
DDA7
DDA6
DDA5
DDA4
DDA3
DDA2
DDA1
DDA0
page 137
EEPROM Data Register
page 66
$19 ($39)
PINA
PINA7
PINA6
PINA5
PINA4
PINA3
PINA2
PINA1
PINA0
page 137
$18 ($38)
PORTB
PORTB7
PORTB6
PORTB5
PORTB4
PORTB3
PORTB2
PORTB1
PORTB0
page 139
$17 ($37)
DDRB
DDB7
DDB6
DDB5
DDB4
DDB3
DDB2
DDB1
DDB0
page 139
$16 ($36)
PINB
PINB7
PINB6
PINB5
PINB4
PINB3
PINB2
PINB1
PINB0
page 139
$15 ($35)
PORTC
PORTC7
PORTC6
PORTC5
PORTC4
PORTC3
PORTC2
PORTC1
PORTC0
page 146
$14 ($34)
DDRC
DDC7
DDC6
DDC5
DDC4
DDC3
DDC2
DDC1
DDC0
page 146
page 146
$13 ($33)
PINC
PINC7
PINC6
PINC5
PINC4
PINC3
PINC2
PINC1
PINC0
$12 ($32)
PORTD
PORTD7
PORTD6
PORTD5
PORTD4
PORTD3
PORTD2
PORTD1
PORTD0
page 151
$11 ($31)
DDRD
DDD7
DDD6
DDD5
DDD4
DDD3
DDD2
DDD1
DDD0
page 151
PIND7
PIND6
PIND5
PIND4
PIND3
PIND2
PIND1
PIND0
page 151
$10 ($30)
PIND
$0F ($2F)
SPDR
$0E ($2E)
SPSR
SPIF
WCOL
–
–
–
–
–
SPI2X
page 72
$0D ($2D)
SPCR
SPIE
SPE
DORD
MSTR
CPOL
CPHA
SPR1
SPR0
page 71
$0C ($2C)
UDR
$0B ($2B)
UCSRA
RXC
TXC
UDRE
$0A ($2A)
UCSRB
RXCIE
TXCIE
UDRIE
$09 ($29)
UBRRL
$08 ($28)
ACSR
ACD
ACBG
ACO
ACI
ACIE
$07 ($27)
ADMUX
REFS1
REFS0
ADLAR
MUX4
MUX3
MUX2
MUX1
MUX0
page 132
$06 ($26)
ADCSR
ADEN
ADSC
ADFR
ADIF
ADIE
ADPS2
ADPS1
ADPS0
page 133
$05 ($25)
ADCH
ADC Data Register High Byte
page 134
$04 ($24)
ADCL
ADC Data Register Low Byte
page 134
$03 ($23)
TWDR
$02 ($22)
TWAR
SPI Data Register
page 73
USART I/O Data Register
page 94
FE
DOR
PE
U2X
MPCM
page 94
RXEN
TXEN
UCSZ2
RXB8
TXB8
page 96
ACIC
ACIS1
ACIS0
page 125
USART Baud Rate Register Low Byte
page 98
Two-wire Serial Interface Data Register
TWA6
TWA5
TWA4
TWA3
TWA2
page 106
TWA1
TWA0
TWGCE
page 107
ATmega323(L)
1457GS–AVR–09/03
ATmega323(L)
Address
Name
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
Page
$01 ($21)
TWSR
TWS7
TWS6
TWS5
TWS4
TWS3
–
–
–
page 106
$00 ($20)
TWBR
Notes:
Two-wire Serial Interface Bit Rate Register
page 104
1. When the OCDEN Fuse is unprogrammed, the OSCCAL Register is always accessed on this address. Refer to the debugger specific documentation for details on how to use the OCDR Register.
2. Refer to the USART description for details on how to access UBRRH and UCSRC.
3. For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved I/O Memory addresses
should never be written.
4. Some of the Status Flags are cleared by writing a logical one to them. Note that the CBI and SBI instructions will operate on
all bits in the I/O Register, writing a one back into any flag read as set, thus clearing the flag. The CBI and SBI instructions
work with registers $00 to $1F only.
7
1457GS–AVR–09/03
Instruction Set Summary
Mnemonics
Operands
Description
Operation
Flags
#Clocks
ARITHMETIC AND LOGIC INSTRUCTIONS
ADD
Rd, Rr
Add two Registers
Rd ← Rd + Rr
Z,C,N,V,H
1
ADC
Rd, Rr
Add with Carry two Registers
Rd ← Rd + Rr + C
Z,C,N,V,H
1
ADIW
Rdl,K
Add Immediate to Word
Rdh:Rdl ← Rdh:Rdl + K
Z,C,N,V,S
2
SUB
Rd, Rr
Subtract two Registers
Rd ← Rd - Rr
Z,C,N,V,H
1
SUBI
Rd, K
Subtract Constant from Register
Rd ← Rd - K
Z,C,N,V,H
1
SBC
Rd, Rr
Subtract with Carry two Registers
Rd ← Rd - Rr - C
Z,C,N,V,H
1
SBCI
Rd, K
Subtract with Carry Constant from Reg.
Rd ← Rd - K - C
Z,C,N,V,H
1
SBIW
Rdl,K
Subtract Immediate from Word
Rdh:Rdl ← Rdh:Rdl - K
Z,C,N,V,S
2
AND
Rd, Rr
Logical AND Registers
Rd ← Rd • Rr
Z,N,V
1
ANDI
Rd, K
Logical AND Register and Constant
Rd ← Rd • K
Z,N,V
1
OR
Rd, Rr
Logical OR Registers
Rd ← Rd v Rr
Z,N,V
1
ORI
Rd, K
Logical OR Register and Constant
Rd ← Rd v K
Z,N,V
1
EOR
Rd, Rr
Exclusive OR Registers
Rd ← Rd ⊕ Rr
Z,N,V
1
COM
Rd
One’s Complement
Rd ← $FF − Rd
Z,C,N,V
1
NEG
Rd
Two’s Complement
Rd ← $00 − Rd
Z,C,N,V,H
1
SBR
Rd,K
Set Bit(s) in Register
Rd ← Rd v K
Z,N,V
1
1
CBR
Rd,K
Clear Bit(s) in Register
Rd ← Rd • ($FF - K)
Z,N,V
INC
Rd
Increment
Rd ← Rd + 1
Z,N,V
1
DEC
Rd
Decrement
Rd ← Rd − 1
Z,N,V
1
TST
Rd
Test for Zero or Minus
Rd ← Rd • Rd
Z,N,V
1
CLR
Rd
Clear Register
Rd ← Rd ⊕ Rd
Z,N,V
1
SER
Rd
Set Register
Rd ← $FF
None
1
MUL
Rd, Rr
Multiply Unsigned
R1:R0 ← Rd x Rr
Z,C
2
2
MULS
Rd, Rr
Multiply Signed
R1:R0 ← Rd x Rr
Z,C
MULSU
Rd, Rr
Multiply Signed with Unsigned
R1:R0 ← Rd x Rr
Z,C
2
FMUL
Rd, Rr
Fractional Multiply Unsigned
R1:R0 ← (Rd x Rr) <<
Z,C
2
FMULS
Rd, Rr
Fractional Multiply Signed
Z,C
2
FMULSU
Rd, Rr
Fractional Multiply Signed with Unsigned
1
R1:R0 ← (Rd x Rr) << 1
R1:R0 ← (Rd x Rr) << 1
Z,C
2
Relative Jump
PC ← PC + k + 1
None
2
Indirect Jump to (Z)
PC ← Z
None
2
Direct Jump
PC ← k
None
3
BRANCH INSTRUCTIONS
RJMP
k
IJMP
JMP
k
RCALL
k
Relative Subroutine Call
PC ← PC + k + 1
None
3
Indirect Call to (Z)
PC ← Z
None
3
Direct Subroutine Call
PC ← k
None
4
RET
Subroutine Return
PC ← Stack
None
4
RETI
Interrupt Return
PC ← Stack
I
ICALL
CALL
k
4
CPSE
Rd,Rr
Compare, Skip if Equal
if (Rd = Rr) PC ← PC + 2 or 3
None
CP
Rd,Rr
Compare
Rd − Rr
Z, N,V,C,H
1
CPC
Rd,Rr
Compare with Carry
Rd − Rr − C
Z, N,V,C,H
1
CPI
Rd,K
Compare Register with Immediate
Rd − K
Z, N,V,C,H
SBRC
Rr, b
Skip if Bit in Register Cleared
if (Rr(b)=0) PC ← PC + 2 or 3
None
1/2/3
1
1/2/3
SBRS
Rr, b
Skip if Bit in Register is Set
if (Rr(b)=1) PC ← PC + 2 or 3
None
1/2/3
SBIC
P, b
Skip if Bit in I/O Register Cleared
if (P(b)=0) PC ← PC + 2 or 3
None
1/2/3
SBIS
P, b
Skip if Bit in I/O Register is Set
if (P(b)=1) PC ← PC + 2 or 3
None
1/2/3
BRBS
s, k
Branch if Status Flag Set
if (SREG(s) = 1) then PC←PC+k + 1
None
1/2
BRBC
s, k
Branch if Status Flag Cleared
if (SREG(s) = 0) then PC←PC+k + 1
None
1/2
BREQ
k
Branch if Equal
if (Z = 1) then PC ← PC + k + 1
None
1/2
BRNE
k
Branch if Not Equal
if (Z = 0) then PC ← PC + k + 1
None
1/2
BRCS
k
Branch if Carry Set
if (C = 1) then PC ← PC + k + 1
None
1/2
BRCC
k
Branch if Carry Cleared
if (C = 0) then PC ← PC + k + 1
None
1/2
BRSH
k
Branch if Same or Higher
if (C = 0) then PC ← PC + k + 1
None
1/2
BRLO
k
Branch if Lower
if (C = 1) then PC ← PC + k + 1
None
1/2
BRMI
k
Branch if Minus
if (N = 1) then PC ← PC + k + 1
None
1/2
BRPL
k
Branch if Plus
if (N = 0) then PC ← PC + k + 1
None
1/2
BRGE
k
Branch if Greater or Equal, Signed
if (N ⊕ V= 0) then PC ← PC + k + 1
None
1/2
BRLT
k
Branch if Less Than Zero, Signed
if (N ⊕ V= 1) then PC ← PC + k + 1
None
1/2
BRHS
k
Branch if Half Carry Flag Set
if (H = 1) then PC ← PC + k + 1
None
1/2
BRHC
k
Branch if Half Carry Flag Cleared
if (H = 0) then PC ← PC + k + 1
None
1/2
BRTS
k
Branch if T Flag Set
if (T = 1) then PC ← PC + k + 1
None
1/2
BRTC
k
Branch if T Flag Cleared
if (T = 0) then PC ← PC + k + 1
None
1/2
BRVS
k
Branch if Overflow Flag is Set
if (V = 1) then PC ← PC + k + 1
None
1/2
BRVC
k
Branch if Overflow Flag is Cleared
if (V = 0) then PC ← PC + k + 1
None
1/2
8
ATmega323(L)
1457GS–AVR–09/03
ATmega323(L)
Mnemonics
Operands
Description
Operation
Flags
BRIE
k
Branch if Interrupt Enabled
if ( I = 1) then PC ← PC + k + 1
None
#Clocks
1/2
BRID
k
Branch if Interrupt Disabled
if ( I = 0) then PC ← PC + k + 1
None
1/2
DATA TRANSFER INSTRUCTIONS
MOV
Rd, Rr
Move Between Registers
Rd ← Rr
None
1
MOVW
Rd, Rr
Copy Register Word
Rd+1:Rd ← Rr+1:Rr
None
1
LDI
Rd, K
Load Immediate
Rd ← K
None
1
LD
Rd, X
Load Indirect
Rd ← (X)
None
2
LD
Rd, X+
Load Indirect and Post-Inc.
Rd ← (X), X ← X + 1
None
2
LD
Rd, - X
Load Indirect and Pre-Dec.
X ← X - 1, Rd ← (X)
None
2
LD
Rd, Y
Load Indirect
Rd ← (Y)
None
2
LD
Rd, Y+
Load Indirect and Post-Inc.
Rd ← (Y), Y ← Y + 1
None
2
LD
Rd, - Y
Load Indirect and Pre-Dec.
Y ← Y - 1, Rd ← (Y)
None
2
LDD
Rd,Y+q
Load Indirect with Displacement
Rd ← (Y + q)
None
2
LD
Rd, Z
Load Indirect
Rd ← (Z)
None
2
LD
Rd, Z+
Load Indirect and Post-Inc.
Rd ← (Z), Z ← Z+1
None
2
LD
Rd, -Z
Load Indirect and Pre-Dec.
Z ← Z - 1, Rd ← (Z)
None
2
LDD
Rd, Z+q
Load Indirect with Displacement
Rd ← (Z + q)
None
2
LDS
Rd, k
Load Direct from SRAM
Rd ← (k)
None
2
ST
X, Rr
Store Indirect
(X) ← Rr
None
2
ST
X+, Rr
Store Indirect and Post-Inc.
(X) ← Rr, X ← X + 1
None
2
ST
- X, Rr
Store Indirect and Pre-Dec.
X ← X - 1, (X) ← Rr
None
2
ST
Y, Rr
Store Indirect
(Y) ← Rr
None
2
ST
Y+, Rr
Store Indirect and Post-Inc.
(Y) ← Rr, Y ← Y + 1
None
2
2
ST
- Y, Rr
Store Indirect and Pre-Dec.
Y ← Y - 1, (Y) ← Rr
None
STD
Y+q,Rr
Store Indirect with Displacement
(Y + q) ← Rr
None
2
ST
Z, Rr
Store Indirect
(Z) ← Rr
None
2
ST
Z+, Rr
Store Indirect and Post-Inc.
(Z) ← Rr, Z ← Z + 1
None
2
ST
-Z, Rr
Store Indirect and Pre-Dec.
Z ← Z - 1, (Z) ← Rr
None
2
STD
Z+q,Rr
Store Indirect with Displacement
(Z + q) ← Rr
None
2
STS
k, Rr
Store Direct to SRAM
(k) ← Rr
None
2
Load Program Memory
R0 ← (Z)
None
3
LPM
Rd, Z
Load Program Memory
Rd ← (Z)
None
3
LPM
Rd, Z+
Load Program Memory and Post-Inc
Rd ← (Z), Z ← Z+1
None
3
Store Program Memory
(Z) ← R1:R0
None
-
In Port
Rd ← P
None
1
LPM
SPM
IN
Rd, P
OUT
P, Rr
Out Port
P ← Rr
None
1
PUSH
Rr
Push Register on Stack
Stack ← Rr
None
2
POP
Rd
Pop Register from Stack
Rd ← Stack
None
2
BIT AND BIT-TEST INSTRUCTIONS
SBI
P,b
Set Bit in I/O Register
I/O(P,b) ← 1
None
2
CBI
P,b
Clear Bit in I/O Register
I/O(P,b) ← 0
None
2
LSL
Rd
Logical Shift Left
Rd(n+1) ← Rd(n), Rd(0) ← 0
Z,C,N,V
1
LSR
Rd
Logical Shift Right
Rd(n) ← Rd(n+1), Rd(7) ← 0
Z,C,N,V
1
ROL
Rd
Rotate Left Through Carry
Rd(0)←C,Rd(n+1)← Rd(n),C←Rd(7)
Z,C,N,V
1
ROR
Rd
Rotate Right Through Carry
Rd(7)←C,Rd(n)← Rd(n+1),C←Rd(0)
Z,C,N,V
1
ASR
Rd
Arithmetic Shift Right
Rd(n) ← Rd(n+1), n=0..6
Z,C,N,V
1
SWAP
Rd
Swap Nibbles
Rd(3..0)←Rd(7..4),Rd(7..4)←Rd(3..0)
None
1
BSET
s
Flag Set
SREG(s) ← 1
SREG(s)
1
BCLR
s
Flag Clear
SREG(s) ← 0
SREG(s)
1
BST
Rr, b
Bit Store from Register to T
T ← Rr(b)
T
1
BLD
Rd, b
Bit load from T to Register
Rd(b) ← T
None
1
SEC
Set Carry
C←1
C
1
CLC
Clear Carry
C←0
C
1
SEN
Set Negative Flag
N←1
N
1
CLN
Clear Negative Flag
N←0
N
1
SEZ
Set Zero Flag
Z←1
Z
1
CLZ
Clear Zero Flag
Z←0
Z
1
SEI
Global Interrupt Enable
I←1
I
1
CLI
Global Interrupt Disable
I← 0
I
1
SES
Set Signed Test Flag
S←1
S
1
CLS
Clear Signed Test Flag
S←0
S
1
SEV
Set Twos Complement Overflow.
V←1
V
1
CLV
Clear Twos Complement Overflow
V←0
V
1
SET
Set T in SREG
T←1
T
1
CLT
Clear T in SREG
T←0
T
1
SEH
Set Half Carry Flag in SREG
H←1
H
1
9
1457GS–AVR–09/03
Mnemonics
Description
Operation
Flags
CLH
Operands
Clear Half Carry Flag in SREG
H←0
H
#Clocks
1
NOP
No Operation
None
1
SLEEP
Sleep
(see specific descr. for Sleep function)
None
1
WDR
Watchdog Reset
(see specific descr. for WDR/timer)
None
1
BREAK
Break
For On-chip Debug Only
None
N/A
10
ATmega323(L)
1457GS–AVR–09/03
ATmega323(L)
Ordering Information
Speed (MHz)
Power Supply
4
2.7 - 5.5V
8
4.0 - 5.5V
Ordering Code
Package
Operation Range
ATmega323L-4AC
ATmega323L-4PC
44A
40P6
Commercial
(0°C to 70°C)
ATmega323L-4AI
ATmega323L-4PI
44A
40P6
Industrial
(-40°C to 85°C)
ATmega323-8AC
ATmega323-8PC
44A
40P6
Commercial
(0°C to 70°C)
ATmega323-8AI
ATmega323-8PI
44A
40P6
Industrial
(-40°C to 85°C)
Package Type
44A
44-lead, Thin (1.0 mm) Plastic Gull Wing Quad Flat Package (TQFP)
40P6
40-pin, 0.600” Wide, Plastic Dual Inline Package (PDIP)
11
1457GS–AVR–09/03
Packaging Information
44A
D
Marked Pin# 1 ID
E
SEATING PLANE
A1
TOP VIEW
A3
A
L
Pin #1 Corner
D2
SIDE VIEW
COMMON DIMENSIONS
(Unit of Measure = mm)
E2
SYMBOL
MIN
NOM
MAX
A
0.80
0.90
1.00
A1
–
0.02
0.05
A3
b
0.25 REF
0.18
D
b
e
D2
E2
5.00
L
0.30
5.20
5.40
7.00 BSC
5.00
e
Notes: 1. JEDEC Standard MO-220, Fig. 1 (SAW Singulation) VKKD-1.
0.23
7.00 BSC
E
BOTTOM VIEW
NOTE
5.20
5.40
0.50 BSC
0.35
0.55
0.75
01/15/03
R
12
TITLE
2325 Orchard Parkway
44M1, 44-pad, 7 x 7 x 1.0 mm Body, Lead Pitch 0.50 mm
San Jose, CA 95131
Micro Lead Frame Package (MLF)
DRAWING NO. REV.
44M1
C
ATmega323(L)
1457GS–AVR–09/03
ATmega323(L)
40P6
D
PIN
1
E1
A
SEATING PLANE
A1
L
B1
B
e
E
0º ~ 15º REF
C
eB
Notes:
COMMON DIMENSIONS
(Unit of Measure = mm)
1. This package conforms to JEDEC reference MS-011, Variation AC.
2. Dimensions D and E1 do not include mold Flash or Protrusion.
Mold Flash or Protrusion shall not exceed 0.25 mm (0.010").
SYMBOL
MIN
NOM
MAX
A
–
–
4.826
NOTE
A1
0.381
–
D
52.070
–
52.578 Note 2
E
15.240
–
15.875
E1
13.462
–
13.970 Note 2
B
0.356
–
0.559
B1
1.041
–
1.651
L
3.048
–
3.556
C
0.203
–
0.381
eB
15.494
–
17.526
e
–
2.540 TYP
09/28/01
R
2325 Orchard Parkway
San Jose, CA 95131
TITLE
40P6, 40-lead (0.600"/15.24 mm Wide) Plastic Dual
Inline Package (PDIP)
DRAWING NO. REV.
40P6
B
13
1457GS–AVR–09/03
Errata for ATmega323
Rev. B
•
•
•
•
•
•
•
Interrupts Abort TWI Power-down
TWI Master Does not Accept Spikes on Bus Lines
TWCR Write Operations Ignored when Immediately Repeated
PWM not Phase Correct
TWI is Speed Limited in Slave Mode
Problems with UBRR Settings
Missing OverRun Flag and Fake Frame Error in USART
7. Interrupts Abort TWI Power-down
TWI Power-down operation may wake up by other interrupts. If an interrupt (e.g.,
INT0) occurs during TWI Power-down address watch and wakes up the CPU, the
TWI aborts operation and returns to its idle state.
If the interrupt occurs in the middle of a Power-down Address Match (i.e., during
reading of a slave address), the received address will be lost and the Slave will not
return an ACN.
Problem Fix/Workaround
Ensure that the TWI Address Match is the only enabled interrupt when entering
Power-down.
The Master can handle this by resending the request if NACH is received.
6. TWI Master Does not Accept Spikes on Bus Lines
When the part operates as Master, and the bus is idle (SDA = 1; SCL = 1), generating a short spike on SDA (SDA = 0 for a short interval), no interrupt is generated,
and the status code is still $F8 (idle). But when the software initiates a new start
condition and clears TWINT, nothing happens on SDA or SCL, and TWINT is never
set again.
Problem Fix/Workaround
Either of the following:
1. Ensure no spikes occur on SDA or SCL lines.
2. Generate a valid START condition followed by a STOP condition on the bus.
This provokes a bus error reported as a TWI interrupt with status code $00.
3. In a Single-master system, the user should write the TWSTO bit immediately
before writing the TWSTA bit.
5. TWCR Write Operation Ignored when Immediately Repeated
Repeated write to TWCR must be delayed. If a write operation to TWCR is immediately followed by another write operation to TWCR, the first write operation may be
ignored.
Problem Fix/Workaround
Ensure at least one instruction (e.g., NOP) is executed between two writes to
TWCR.
4. PWM not Phase Correct
In phase-correct PWM mode, a change from OCRx = TOP to anything less than
TOP does not change the OCx output. This gives a phase error in the following
period.
Problem Fix/Workaround
Make sure this issue is not harmful to the application.
14
ATmega323(L)
1457GS–AVR–09/03
ATmega323(L)
3. TWI is Speed Limited in Slave Mode
When the Two-wire Serial Interface operates in Slave mode, frames may be undetected if the CPU frequency is less than 64 times the bus frequency.
Problem Fix/Workaround
Ensure that the CPU frequency is at least 64 times the TWI bus frequency.
2. Problems with UBRR Settings
The baud rate corresponding to the previous UBRR setting is used for the first transmitted/received bit when either UBRRH or UBRRL is written. This will disturb
communication if the UBRR is changed from a very high to a very low baud rate setting, as the internal baud rate counter will have to count down to zero before using
the new setting.
In addition, writing to UBRRL incorrectly clears the UBRRH setting.
Problem Fix/Workaround
UBRRH must be written after UBRRL because setting UBRRL clears UBRRH. By
doing an additional dummy write to UBRRH, the baud rate is set correctly. The following is an example on how to set UBRR. UBRRH is updated first for upward
compatibility with corrected devices.
ldi r17, HIGH(baud)
ldi r16, LOW(baud)
out UBRRH, r17
; Added for upward compatibility
out UBRRL, r16
; Set new UBRRL, UBRRH incorrectly cleared
out UBRRH, r17
; Set new UBRRH
out UBRRH, r17
; Loads the baud rate counter with new (correct) value
1. Missing OverRun Flag and Fake Frame Error in USART
When the USART has received three characters without any of them been read, the
USART FIFO is full. If the USART detects the start bit of a fourth character, the Data
OverRun (DOR) Flag will be set for the third character. However, if a read from the
USART Data Register is performed just after the start bit of the fourth byte is
received, a Frame Error is generated for character three. If the USART Data Register is read between the reception of the first data bit and the end of the fourth
character, the Data OverRun Flag of character three will be lost.
Problem Fix/Workaround
The user should design the application to never completely fill the USART FIFO. If
this is not possible, the user must use a high-level protocol to be able to detect if any
characters were lost and request a retransmission if this happens.
The following is not errata for ATmega323, all revisions. However, a proposal for solving
problems regarding the JTAG instruction IDCODE is presented below.
IDCODE masks data from TDI input
The public but optional JTAG instruction IDCODE is not implemented correctly
according to IEEE1149.1; a logic one is scanned into the shift register instead of the
TDI input while shifting the Device ID Register. Hence, captured data from the preceding devices in the boundary scan chain are lost and replaced by all-ones, and
data to succeeding devices are replaced by all-ones during Update-DR.
If ATmega323 is the only device in the scan chain, the problem is not visible.
15
1457GS–AVR–09/03
Problem Fix / Workaround
Select the Device ID Register of the ATmega323 (Either by issuing the IDCODE
instruction or by entering the Test-Logic-Reset state of the TAP controller) to read
out the contents of its Device ID Register and possibly data from succeeding
devices of the scan chain. Note that data to succeeding devices cannot be entered
during this scan, but data to preceding devices can. Issue the BYPASS instruction
to the ATmega323 to select its Bypass Register while reading the Device ID Registers of preceding devices of the boundary scan chain. Never read data from
succeeding devices in the boundary scan chain or upload data to the succeeding
devices while the Device ID Register is selected for the ATmega323. Note that the
IDCODE instruction is the default instruction selected by the Test-Logic-Reset state
of the TAP-controller.
Alternative Problem Fix / Workaround
If the Device IDs of all devices in the boundary scan chain must be captured simultaneously (for instance if blind interrogation is used), the boundary scan chain can
be connected in such way that the ATmega323 is the fist device in the chain.
Update-DR will still not work for the succeeding devices in the boundary scan chain
as long as IDCODE is present in the JTAG Instruction Register, but the Device ID
registered cannot be uploaded in any case.
16
ATmega323(L)
1457GS–AVR–09/03
ATmega323(L)
Datasheet Change
Log for ATmega323
This document contains a log on the changes made to the datasheet for ATmega323.
Changes from Rev.
1457F – 09/02 to Rev.
1457G – 09/03
1. Removed “Preliminary” from the .
2. Updated “The Test Access Port – TAP” on page 158 regarding JTAGEN.
3. Updated description for the JTD bit on page 30.
4. Added extra information regarding the JTAGEN interface to “Fuse Bits” on
page 187.
5. Updated some values in “Electrical Characteristics” on page 213.
5. Added a proposal for solving problems regarding the JTAG instruction
IDCODE in “Errata for ATmega323 Rev. B” on page 14.
Changes from Rev.
1457E – 11/01 to Rev.
1457F – 09/02
1. Added watermark: “Not recommended for new designs. Use ATmega32”.
2. Added “Errata for ATmega323 Rev. B” on page 14.
17
1457GS–AVR–09/03
Atmel Corporation
2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 487-2600
Regional Headquarters
Europe
Atmel Sarl
Route des Arsenaux 41
Case Postale 80
CH-1705 Fribourg
Switzerland
Tel: (41) 26-426-5555
Fax: (41) 26-426-5500
Asia
Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimshatsui
East Kowloon
Hong Kong
Tel: (852) 2721-9778
Fax: (852) 2722-1369
Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
Tel: (81) 3-3523-3551
Fax: (81) 3-3523-7581
Atmel Operations
Memory
2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 436-4314
RF/Automotive
Theresienstrasse 2
Postfach 3535
74025 Heilbronn, Germany
Tel: (49) 71-31-67-0
Fax: (49) 71-31-67-2340
Microcontrollers
2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 436-4314
La Chantrerie
BP 70602
44306 Nantes Cedex 3, France
Tel: (33) 2-40-18-18-18
Fax: (33) 2-40-18-19-60
ASIC/ASSP/Smart Cards
1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906, USA
Tel: 1(719) 576-3300
Fax: 1(719) 540-1759
Biometrics/Imaging/Hi-Rel MPU/
High Speed Converters/RF Datacom
Avenue de Rochepleine
BP 123
38521 Saint-Egreve Cedex, France
Tel: (33) 4-76-58-30-00
Fax: (33) 4-76-58-34-80
Zone Industrielle
13106 Rousset Cedex, France
Tel: (33) 4-42-53-60-00
Fax: (33) 4-42-53-60-01
1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906, USA
Tel: 1(719) 576-3300
Fax: 1(719) 540-1759
Scottish Enterprise Technology Park
Maxwell Building
East Kilbride G75 0QR, Scotland
Tel: (44) 1355-803-000
Fax: (44) 1355-242-743
Literature Requests
www.atmel.com/literature
Disclaimer: Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Company’s standard
warranty which is detailed in Atmel’s Terms and Conditions located on the Company’s web site. The Company assumes no responsibility for any
errors which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without notice, and
does not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of Atmel are
granted by the Company in connection with the sale of Atmel products, expressly or by implication. Atmel’s products are not authorized for use
as critical components in life support devices or systems.
© Atmel Corporation 2003. All rights reserved. Atmel ® and combinations thereof, AVR®, and AVR Studio ® are the registered trademarks of
Atmel Corporation or its subsidiaries. Microsoft ®, Windows®, Windows NT®, and Windows XP ® are the registered trademarks of Microsoft Corporation. Other terms and product names may be the trademarks of others
Printed on recycled paper.
1457GS–AVR–09/03