MAXIM MAX2051ETP+

19-4582; Rev 0; 4/09
SiGe, High-Linearity, 850MHz to 1550MHz
Up/Downconversion Mixer with LO Buffer
♦ 7.4dB Typical Conversion Loss
♦ 7.8dB Typical Noise Figure
♦ +24dBm Typical Input 1dB Compression Point
♦ +35dBm Typical Input IP3
♦ 88dBc Typical 2RF-LO Rejection at PRF = -14dBm
♦ Integrated LO Buffer
♦ Integrated RF and LO Baluns for Single-Ended
Inputs
♦ Low LO Drive (0dBm Nominal)
♦ External Current-Setting Resistor Provides Option
for Operating Device in Reduced-Power/
Reduced-Performance Mode
Ordering Information
TEMP RANGE
PIN-PACKAGE
MAX2051ETP+
PART
-40°C to +85°C
20 Thin QFN-EP*
MAX2051ETP+T
-40°C to +85°C
20 Thin QFN-EP*
+Denotes a lead(Pb)-free/RoHS-compliant package.
*EP = Exposed pad.
T = Tape and reel.
Pin Configuration/
Functional Block Diagram
Microwave and Fixed Broadband Wireless
Access
Microwave Links
TOP VIEW
Military Systems
+
Predistortion Receivers
Private Mobile Radios
Integrated Digital Enhanced Network (iDEN)
Base Stations
WiMAX™ Base Stations and Customer Premise
Equipment
Wireless Local Loop
20
19
IF+
Cable Modem Termination Systems
♦ DOCSIS 3.0 and Euro DOCSIS Compatible
IF-
Video-on-Demand and DOCSIS-Compatible
Edge QAM Modulation
♦ 50MHz to 1000MHz IF Frequency Range
GND
Applications
♦ 1200MHz to 2250MHz LO Frequency Range
GND
In addition to offering excellent linearity and noise performance, the MAX2051 also yields a high level of component integration. The device integrates baluns in the
RF and LO ports, which allow for a single-ended RF
input and a single-ended LO input. The MAX2051
requires a typical LO drive of 0dBm and a supply current guaranteed to below 130mA.
The MAX2051 is available in a compact 5mm x 5mm,
20-pin thin QFN package with an exposed pad.
Electrical performance is guaranteed over the extended
temperature range, from TC = -40°C to +85°C.
♦ 850MHz to 1550MHz RF Frequency Range
GND
The MAX2051 high-linearity, up/downconversion mixer
provides +35dBm input IP3, 7.8dB noise figure (NF), and
7.4dB conversion loss for 850MHz to 1550MHz wireless
infrastructure and multicarrier cable head-end downstream video, video-on-demand (VOD), and cable
modem termination systems (CMTS) applications. The
MAX2051 also provides excellent suppression of spurious intermodulation products (> 77dBc at an RF level of
-14dBm), making it an ideal downconverter for DOCSIS®
3.0 and Euro DOCSIS cable head-end systems. With an
LO circuit tuned to support frequencies ranging from
1200MHz to 2250MHz, the MAX2051 is ideal for highside LO injection applications over an IF frequency
range of 50MHz to 1000MHz.
Features
18
17
16
EP*
VCC
RF
1
15
GND
2
14 GND
GND
3
13 GND
GND
4
12
LO
GND
5
11
GND
8
9
10
VCC
GND
GND
7
LOBIAS
DOCSIS and CableLabs are registered trademarks of Cable
Television Laboratories, Inc. (CableLabs®).
iDEN is a registered trademark of Motorola, Inc.
WiMAX is a trademark of WiMAX Forum.
6
VCC
MAX2051
TQFN
*EXPOSED PAD. CONNECT EP TO GND.
________________________________________________________________ Maxim Integrated Products
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642,
or visit Maxim’s website at www.maxim-ic.com.
1
MAX2051
General Description
MAX2051
SiGe, High-Linearity, 850MHz to 1550MHz
Up/Downconversion Mixer with LO Buffer
ABSOLUTE MAXIMUM RATINGS
VCC to GND ...........................................................-0.3V to +5.5V
RF, LO to GND.........................................................-0.3V to 0.3V
IF+, IF-, LOBIAS to GND ............................-0.3V to (VCC + 0.3V)
RF, LO Input Power ........................................................+20dBm
RF, LO Current (RF and LO is DC shorted to GND
through balun).................................................................50mA
Continuous Power Dissipation (Note 1) ........................2100mW
θJA (Notes 2, 3)..............................................................+33°C/W
θJC (Note 3)........................................................................8°C/W
Operating Case Temperature Range
(Note 4) ...................................................TC = -40°C to +85°C
Junction Temperature ......................................................+150°C
Storage Temperature Range .............................-65°C to +150°C
Lead Temperature (soldering, 10s) .................................+300°C
Note 1: Based on junction temperature TJ = TC + (θJC x VCC x ICC). This formula can be used when the temperature of the exposed
pad is known while the device is soldered down to a PCB. See the Applications Information section for details. The junction
temperature must not exceed +150°C.
Note 2: Junction temperature TJ = TA + (θJA x VCC x ICC). This formula can be used when the ambient temperature of the PCB is
known. The junction temperature must not exceed +150°C.
Note 3: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a fourlayer board. For detailed information on package thermal considerations, refer to www.maxim-ic.com/thermal-tutorial.
Note 4: TC is the temperature on the exposed pad of the package. TA is the ambient temperature of the device and PCB.
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to
absolute maximum rating conditions for extended periods may affect device reliability.
DC ELECTRICAL CHARACTERISTICS
(Typical Application Circuit, VCC = +4.75V to +5.25V, no input AC signals. TC = -40°C to +85°C, unless otherwise noted. Typical values are at VCC = +5.0V, TC = +25°C, unless otherwise noted.)
PARAMETER
SYMBOL
Supply Voltage
VCC
Supply Current
ICC
CONDITIONS
MIN
4.75
Total supply current
TYP
MAX
UNITS
5
5.25
V
105
130
mA
TYP
MAX
UNITS
RECOMMENDED AC OPERATING CONDITIONS
PARAMETER
SYMBOL
CONDITIONS
MIN
RF Frequency
fRF
(Notes 5, 6)
850
1550
MHz
LO Frequency
fLO
(Note 5)
1200
2250
MHz
IF Frequency
fIF
Meeting RF and LO frequency ranges; IF
matching components affect the IF
frequency range (Note 5)
50
1000
MHz
-3
+9
dBm
LO Drive Level
2
PLO
_______________________________________________________________________________________
SiGe, High-Linearity, 850MHz to 1550MHz
Up/Downconversion Mixer with LO Buffer
(Typical Application Circuit, VCC = +4.75V to +5.25V, RF and LO ports are driven from 50Ω sources, PLO = -3dBm to +3dBm,
PRF = 0dBm, fRF = 1000MHz to 1250MHz, fLO = 1200MHz to 2250MHz, fIF = 50MHz to 1000MHz, fRF < fLO, TC = -40°C to +85°C.
Typical values are at VCC = +5.0V, PRF = 0dBm, PLO = 0dBm, fRF =1200MHz, fLO = 1700MHz, fIF = 500MHz, TC =+25°C, unless otherwise noted.) (Note 7)
PARAMETER
SYMBOL
CONDITIONS
MIN
TYP
MAX
UNITS
9
dB
Conversion Power Loss
LC
fRF = 1200MHz, fLO = 1700MHz,
fIF = 500MHz, TC = +25°C (Notes 8, 9)
7.4
Conversion Power Loss
Temperature Coefficient
TCL
TC = -40°C to +85°C
0.01
dB/°C
Conversion Power Loss Variation
vs. Frequency
ΔLC
fLO = 1200MHz to 2250MHz
± 0.5
dB
Noise Figure
NFSSB
Input 1dB Compression Point
IP1dB
Third-Order Input Intercept Point
IIP3
Single sideband
dBm
33
35
dBm
PRF =
-14dBm
73
88
PRF =
-10dBm
69
84
PRF =
0dBm
59
74
PRF =
-14dBm
74
78
PRF =
-10dBm
70
74
PRF =
0dBm
60
64
PRF =
-14dBm
68
79
PRF =
-10dBm
64
75
PRF =
0dBm
54
65
PRF =
-14dBm
71.5
77.4
PRF =
-10dBm
67.5
73.4
PRF =
0dBm
57.5
63.4
2x1
dBc
Single tone, fRF =1200MHz,
fIF = 857.5MHz to 1000MHz,
fLO = 2057.5MHz to 2200MHz,
PLO = +3dBm, resultant
fSPUR = 342.5MHz to 200MHz
(Notes 8, 9, 10)
Single tone, fRF =1200MHz,
fIF = 97.5MHz to 430MHz,
fLO = 1297.5MHz to 1630MHz,
PLO = +3dBm, resultant
fSPUR = 195MHz to 860MHz
(Notes 8, 9, 10)
2LO-2RF Spurious Rejection
dB
24
VCC = +5.0V,
fRF1 = 1200MHz,
fRF2 = 1201MHz,
PRF = 0dBm tone,
fLO = 1562MHz, PLO = 0dBm, TC = +25°C,
fIF = 362MHz (Notes 8, 9)
Single tone, fRF =1200MHz,
fIF = 192.5MHz to 857.5MHz,
fLO = 1392.5MHz to 2057.5MHz,
PLO = +3dBm, resultant
fSPUR = 1007.5MHz to 342.5MHz
(Notes 8, 9, 10)
2RF-LO Spurious Rejection
7.8
dBc
2X2
Single tone, fRF =1200MHz,
fIF = 430MHz to 525MHz,
fLO = 1630MHz to 1725MHz,
PLO = +3dBm, resultant
fSPUR = 860MHz to 1050MHz
(Notes 8, 9, 10)
_______________________________________________________________________________________
3
MAX2051
AC ELECTRICAL CHARACTERISTICS (DOWNCONVERTER OPERATION)
MAX2051
SiGe, High-Linearity, 850MHz to 1550MHz
Up/Downconversion Mixer with LO Buffer
AC ELECTRICAL CHARACTERISTICS (DOWNCONVERTER OPERATION) (continued)
(Typical Application Circuit, VCC = +4.75V to +5.25V, RF and LO ports are driven from 50Ω sources, PLO = -3dBm to +3dBm,
PRF = 0dBm, fRF = 1000MHz to 1250MHz, fLO = 1200MHz to 2250MHz, fIF = 50MHz to 1000MHz, fRF < fLO, TC = -40°C to +85°C.
Typical values are at VCC = +5.0V, PRF = 0dBm, PLO = 0dBm, fRF =1200MHz, fLO = 1700MHz, fIF = 500MHz, TC =+25°C, unless otherwise noted.) (Note 7)
PARAMETER
3LO-3RF Spurious Rejection
SYMBOL
3x3
LO Leakage at RF Port
CONDITIONS
Single tone, fRF = 1200MHz,
50MHz < fIF < 1000MHz,
1250MHz < fLO < 2200MHz
(Notes 8, 9)
MIN
TYP
PRF =
-14dBm
87.5
101
PRF =
-10dBm
79.5
93
PRF = 0dBm
59.5
PLO = +3dBm (Notes 6, 8)
LO Leakage at IF Port
PLO = +3dBm (Notes 8, 9)
RF-to-IF Isolation
fRF = 1200MHz, PLO = +3dBm (Notes 8, 9)
RF Input Impedance
LO Input Impedance
IF Output Impedance
IF Output Return Loss
4
ZIF
73
-33.5
-27.5
dBm
-26.3
-22.9
dBm
dB
Ω
12
dB
50
Ω
RF and IF terminated with a matched
impedance (Note 11)
11
dB
Nominal differential impedance at the IC’s
IF outputs
50
Ω
RF terminated into 50Ω, LO driven by 50Ω
source, IF transformed to 50Ω single-ended
using external components shown in the
Typical Application Circuit
15
dB
ZLO
LO Input Return Loss
dBc
50
LO on and IF terminated with a matched
impedance
RF Input Return Loss
UNITS
51
ZRF
24
MAX
_______________________________________________________________________________________
SiGe, High-Linearity, 850MHz to 1550MHz
Up/Downconversion Mixer with LO Buffer
(Typical Application Circuit, RF and LO ports are driven from 50Ω sources, fRF < fLO. Typical values are at VCC = +5.0V, PIF = 0dBm,
PLO = 0dBm, fRF = 1250MHz, fLO = 1600MHz fIF = 350MHz, TC =+25°C, unless otherwise noted.) (Note 7)
PARAMETER
SYMBOL
Conversion Power Loss
LC
Third-Order Input Intercept
Point
IIP3
CONDITIONS
MIN
TYP
MAX
UNITS
7.5
dB
33.4
dBm
LO-2IF Spurious Rejection
61
dBc
LO+2IF Spurious Rejection
63.3
dBc
LO-3IF Spurious Rejection
78
dBc
LO+3IF Spurious Rejection
79
dBc
LO Leakage at RF Port
fIF1 = 350MHz, fIF2 = 351MHz, PIF = 0dBm/tone
-35.7
dBm
IF Leakage at RF Port
-52
dBm
RF Return Loss
12.3
dB
18
dB
IF Input Return Loss
PLO = +3dBm
fLO = 1200MHz
Operation outside this range is possible, but with degraded performance of some parameters. See the Typical Operating
Characteristics section.
Note 6: Not production tested.
Note 7: All values reflect losses of external components, including a 0.6dB loss at fIF = 350MHz and a 0.8dB loss at
fIF = 1000MHz due to the 1:1 transformer. Output measurements were taken at IF outputs of the Typical Application Circuit.
Note 8: Guaranteed by design and characterization.
Note 9: 100% production tested for functionality.
Note 10: Additional improvements (of up to 4dB to 6dB) in spurious responses can be made by increasing the LO drive to +6dBm.
Note 11: The LO return loss can be improved by tuning C9 to offset any parasitics within the specific application circuit. Typical
range of C9 is 10pF to 50pF.
Note 5:
_______________________________________________________________________________________
5
MAX2051
AC ELECTRICAL CHARACTERISTICS (UPCONVERTER OPERATION)
Typical Operating Characteristics
(Typical Application Circuit, Downconversion mode, VCC = +5.0V, PLO = 0dBm, PRF = 0dBm, fRF = 1200MHz, LO is high-side
injected, TC =+25°C, unless otherwise noted.)
CONVERSION LOSS vs. IF FREQUENCY
(DOWNCONVERSION MODE)
8
7
TC = -40°C
8
7
PLO = -3dBm, 0dBm, +3dBm
240
430
620
810
MAX2051 toc03
VCC = 4.75V, 5.0V, 5.25V
240
430
620
810
1000
50
240
430
620
810
IF FREQUENCY (MHz)
IF FREQUENCY (MHz)
IF FREQUENCY (MHz)
IIP3 vs. IF FREQUENCY
(DOWNCONVERSION MODE)
IIP3 vs. IF FREQUENCY
(DOWNCONVERSION MODE)
IIP3 vs. IF FREQUENCY
(DOWNCONVERSION MODE)
37
MAX2051 toc04
37
PRF = 0dBm/TONE
36
TC = +25°C, +85°C
PRF = 0dBm/TONE
36
35
37
33
32
TC = -40°C
31
30
240
430
620
810
34
PLO = -3dBm, 0dBm, +3dBm
33
34
VCC = 5.0V
33
32
32
31
31
VCC = 4.75V
30
30
1000
PRF = 0dBm/TONE
35
IIP3 (dBm)
IIP3 (dBm)
34
VCC = 5.25V
1000
36
35
50
7
5
50
1000
MAX2051 toc05
50
8
6
5
5
50
240
430
620
810
50
1000
240
430
620
810
1000
IF FREQUENCY (MHz)
IF FREQUENCY (MHz)
IF FREQUENCY (MHz)
2RF-LO RESPONSE vs. IF FREQUENCY
(DOWNCONVERSION MODE)
2RF-LO RESPONSE vs. IF FREQUENCY
(DOWNCONVERSION MODE)
2RF-LO RESPONSE vs. IF FREQUENCY
(DOWNCONVERSION MODE)
TC = -40°C
70
TC = +25°C
TC = +85°C
50
PRF = 0dBm
PLO = +3dBm
2RF-LO RESPONSE (dBc)
80
60
90
PLO = 0dBm
80
70
PLO = -3dBm
60
240
430
620
IF FREQUENCY (MHz)
810
1000
PRF = 0dBm
80
70
VCC = 4.75V, 5.0V, 5.25V
60
50
50
50
90
2RF-LO RESPONSE (dBc)
PRF = 0dBm
MAX2051 toc07
90
MAX2051 toc08
IIP3 (dBm)
9
6
6
6
MAX2051 toc02
9
MAX2051 toc06
TC = +25°C
10
CONVERSION LOSS (dB)
TC = +85°C
CONVERSION LOSS (dB)
9
CONVERSION LOSS (dB)
10
MAX2051 toc01
10
CONVERSION LOSS vs. IF FREQUENCY
(DOWNCONVERSION MODE)
MAX2051 toc09
CONVERSION LOSS vs. IF FREQUENCY
(DOWNCONVERSION MODE)
2RF-LO RESPONSE (dBc)
MAX2051
SiGe, High-Linearity, 850MHz to 1550MHz
Up/Downconversion Mixer with LO Buffer
50
240
430
620
IF FREQUENCY (MHz)
810
1000
50
240
430
620
IF FREQUENCY (MHz)
_______________________________________________________________________________________
810
1000
SiGe, High-Linearity, 850MHz to 1550MHz
Up/Downconversion Mixer with LO Buffer
TC = -40°C, +25°C, +85°C
65
55
75
PLO = +3dBm
65
55
PLO = -3dBm
45
240
430
620
55
240
430
620
810
1000
50
240
430
620
810
1000
IF FREQUENCY (MHz)
IF FREQUENCY (MHz)
3LO-3RF RESPONSE vs. IF FREQUENCY
(DOWNCONVERSION MODE)
3LO-3RF RESPONSE vs. IF FREQUENCY
(DOWNCONVERSION MODE)
3LO-3RF RESPONSE vs. IF FREQUENCY
(DOWNCONVERSION MODE)
TC = -40°C, +25°C, +85°C
55
45
85
MAX2051 toc14
PRF = 0dBm
3LO-3RF RESPONSE (dBc)
3LO-3RF RESPONSE (dBc)
75
65
85
MAX2051 toc13
PRF = 0dBm
75
65
PLO = -3dBm, 0dBm, +3dBm
55
45
50
240
430
620
810
1000
MAX2051 toc12
VCC = 4.75V, 5.0V, 5.25V
65
45
50
1000
75
IF FREQUENCY (MHz)
85
PRF = 0dBm
75
65
VCC = 4.75V, 5.0V, 5.25V
55
45
50
240
430
620
810
1000
50
240
430
620
810
1000
IF FREQUENCY (MHz)
IF FREQUENCY (MHz)
IF FREQUENCY (MHz)
LO LEAKAGE AT IF PORT vs. LO FREQUENCY
(DOWNCONVERSION MODE)
LO LEAKAGE AT IF PORT vs. LO FREQUENCY
(DOWNCONVERSION MODE)
LO LEAKAGE AT IF PORT vs. LO FREQUENCY
(DOWNCONVERSION MODE)
-30
-40
-50
1250
1440
1630
1820
LO FREQUENCY (MHz)
2010
2200
-20
-30
-40
-50
1250
1440
1630
1820
LO FREQUENCY (MHz)
2010
2200
MAX2051 toc18
PLO = -3dBm, 0dBm, +3dBm
-10
LO LEAKAGE AT IF PORT (dBm)
TC = -40°C, +25°C, +85°C
-10
LO LEAKAGE AT IF PORT (dBm)
-20
MAX2051 toc16
-10
MAX2051 toc17
3LO-3RF RESPONSE (dBc)
810
PRF = 0dBm
PLO = 0dBm
45
50
LO LEAKAGE AT IF PORT (dBm)
85
2LO-2RF RESPONSE (dBc)
75
PRF = 0dBm
2LO-2RF RESPONSE vs. IF FREQUENCY
(DOWNCONVERSION MODE)
MAX2051 toc11
85
MAX2051 toc10
PRF = 0dBm
2LO-2RF RESPONSE (dBc)
2LO-2RF RESPONSE (dBc)
85
2LO-2RF RESPONSE vs. IF FREQUENCY
(DOWNCONVERSION MODE)
MAX2051 toc15
2LO-2RF RESPONSE vs. IF FREQUENCY
(DOWNCONVERSION MODE)
VCC = 4.75V, 5.0V, 5.25V
-20
-30
-40
-50
1250
1440
1630
1820
2010
2200
LO FREQUENCY (MHz)
_______________________________________________________________________________________
7
MAX2051
Typical Operating Characteristics (continued)
(Typical Application Circuit, Downconversion mode, VCC = +5.0V, PLO = 0dBm, PRF = 0dBm, fRF = 1200MHz, LO is high-side
injected, TC =+25°C, unless otherwise noted.)
Typical Operating Characteristics (continued)
(Typical Application Circuit, Downconversion mode, VCC = +5.0V, PLO = 0dBm, PRF = 0dBm, fRF = 1200MHz, LO is high-side
injected, TC =+25°C, unless otherwise noted.)
50
TC = -40°C
40
TC = +25°C
30
1440
1630
1820
2010
70
60
50
PLO = -3dBm, 0dBm, +3dBm
50
40
VCC = 4.75V, 5.0V, 5.25V
30
20
1250
2200
60
1440
1630
1820
2010
20
1250
2200
1440
1630
1820
2010
2200
LO FREQUENCY (MHz)
LO FREQUENCY (MHz)
LO FREQUENCY (MHz)
LO LEAKAGE AT RF PORT vs. LO FREQUENCY
(DOWNCONVERSION MODE)
LO LEAKAGE AT RF PORT vs. LO FREQUENCY
(DOWNCONVERSION MODE)
LO LEAKAGE AT RF PORT vs. LO FREQUENCY
(DOWNCONVERSION MODE)
-35
TC = +25°C
-40
TC = +85°C
-45
-30
PLO = -3dBm, 0dBm, +3dBm
-35
-40
-45
-50
1250
1440
1630
1820
2010
-25
VCC = 4.75V, 5.0V, 5.25V
-30
-35
-40
-45
-50
1250
2200
MAX2051 toc24
-25
-20
LO LEAKAGE AT RF PORT (dBm)
TC = -40°C
-30
MAX2051 toc23
-25
-20
LO LEAKAGE AT RF PORT (dBm)
MAX2051 toc22
-20
1440
1630
1820
2010
-50
1250
2200
1440
1630
1820
2010
2200
LO FREQUENCY (MHz)
LO FREQUENCY (MHz)
LO FREQUENCY (MHz)
RF PORT RETURN LOSS vs. RF FREQUENCY
(DOWNCONVERSION MODE)
RF PORT RETURN LOSS vs. LO FREQUENCY
(DOWNCONVERSION MODE)
IF PORT RETURN LOSS vs. IF FREQUENCY
(DOWNCONVERSION MODE)
10
15
PLO = -3dBm, 0dBm, +3dBm
20
5
fRF = 1400MHz
fRF = 1300MHz
10
15
fRF = 1100MHz
fRF = 1200MHz
25
30
1000
0
MAX2051 toc27
fIF = 50MHz TO 1000MHz
5
IF PORT RETURN LOSS (dB)
5
0
RF PORT RETURN LOSS (dB)
fIF = 200MHz
MAX2051 toc25
0
VCC = 4.75V, 5.0V, 5.25V
10
15
20
25
1100
1200
1300
RF FREQUENCY (MHz)
8
fRF = 1200MHz
30
20
1250
LO LEAKAGE AT RF PORT (dBm)
MAX2051 toc20
70
40
80
RF-TO-IF ISOLATION (dB)
TC = +85°C
60
fRF = 1200MHz
MAX2051 toc26
RF-TO-IF ISOLATION (dB)
70
80
RF-TO-IF ISOLATION (dB)
fRF = 1200MHz
MAX2051 toc19
80
RF-TO-IF ISOLATION vs. LO FREQUENCY
(DOWNCONVERSION MODE)
RF-TO-IF ISOLATION vs. LO FREQUENCY
(DOWNCONVERSION MODE)
MAX2051 toc21
RF-TO-IF ISOLATION vs. LO FREQUENCY
(DOWNCONVERSION MODE)
RF PORT RETURN LOSS (dB)
MAX2051
SiGe, High-Linearity, 850MHz to 1550MHz
Up/Downconversion Mixer with LO Buffer
1400
1500
20
1100
30
1425
1750
2075
LO FREQUENCY (MHz)
2400
50
240
430
620
IF FREQUENCY (MHz)
_______________________________________________________________________________________
810
1000
SiGe, High-Linearity, 850MHz to 1550MHz
Up/Downconversion Mixer with LO Buffer
SUPPLY CURRENT vs. EXPOSED PAD
TEMPERATURE (TC)
(DOWNCONVERSION MODE)
PLO = -3dBm
10
PLO = +3dBm
VCC = 5.25V
1.0pF LSB, USB
110
100
90
10
35
60
50
85
250
650
850
IF FREQUENCY (MHz)
2RF-LO vs. IF FREQUENCY
(ALTERNATIVE VALUES OF C2)
2LO-2RF vs. IF FREQUENCY
(ALTERNATIVE VALUES OF C2)
3LO-3RF vs. IF FREQUENCY
(ALTERNATIVE VALUES OF C2)
-50
-55
2LO-2RF (dBc)
1.5pF
2.0pF
-75
fRF = 1200MHz
1.0pF, 1.5pF, 2.0pF
OPEN
2.0pF
-60
-65
OPEN
fRF = 1200MHz
OPEN
-60
-65
1.0pF
1.5pF
-70
-75
1.0pF
-85
-75
590
770
950
50
230
IF FREQUENCY (MHz)
410
590
770
230
-70
-75
-50
MAX2051 toc34
DOWNCONVERSION MODE
fRF = 1200MHz P = -3dBm
LO
PLO = 0dBm
PLO = +3dBm
-80
PLO = +6dBm
-85
PLO = +9dBm
410
590
770
950
IF FREQUENCY (MHz)
2LO-2RF vs. IF FREQUENCY
(VARIOUS LO DRIVE LEVELS)
-55
2LO-2RF (dBc)
2RF-LO (dBc)
-65
50
IF FREQUENCY (MHz)
2RF-LO vs. IF FREQUENCY
(VARIOUS LO DRIVE LEVELS)
-60
950
2.0pF
2.0pF
-80
DOWNCONVERSION MODE
fRF = 1200MHz
PLO = -3dBm
-60
PLO = 0dBm
PLO = +3dBm
-65
-70
PLO = +6dBm
PLO = +9dBm
-75
-90
MAX2051 toc35
410
1.0pF
1.5pF OPEN
1.5pF
-80
230
1050
PRF = 0dBm
DOWNCONVERSION MODE
-55
-70
OPEN
2.0pF
-50
3LO-3RF (dBc)
1.0pF
PRF = 0dBm
DOWNCONVERSION MODE
MAX2051 toc32
PRF = 0dBm
1.5pF
50
450
EXPOSED PAD TEMPERATURE (°C)
fRF = 1200MHz
OPEN
1.0pF
-70
OPEN LSB, USB
26
-15
-40
2500
2.0pF LSB, USB
LO FREQUENCY (MHz)
DOWNCONVERSION MODE
-65
2RF-LO (dBc)
2240
MAX2051 toc31
-60
1980
32
28
70
1720
34
30
VCC = 4.75V
80
1460
1.5pF LSB, USB
36
15
20
1200
DOWNCONVERSION MODE
fRF = 1200MHz
PRF = 0dBm/TONE
38
IIP3 (dBm)
PLO = 0dBm
VCC = 5.0V
MAX2051 toc30
120
5
40
MAX2051 toc33
MAX2051 toc28
130
SUPPLY CURRENT (mA)
LO PORT RETURN LOSS (dB)
0
IIP3 vs. IF FREQUENCY
(ALTERNATIVE VALUES OF C2)
MAX2051 toc29
LO PORT RETURN LOSS vs. LO FREQUENCY
(DOWNCONVERSION MODE)
-80
50
240
430
620
IF FREQUENCY (MHz)
810
1000
50
240
430
620
810
1000
IF FREQUENCY (MHz)
_______________________________________________________________________________________
9
MAX2051
Typical Operating Characteristics (continued)
(Typical Application Circuit, Downconversion mode, VCC = +5.0V, PLO = 0dBm, PRF = 0dBm, fRF = 1200MHz, LO is high-side
injected, TC =+25°C, unless otherwise noted.)
Typical Operating Characteristics (continued)
(Typical Application Circuit, Upconversion mode, VCC = +5.0V, PLO = 0dBm, PIF = 0dBm, fIF = 350MHz, LO is high-side injected,
TC =+25°C, unless otherwise noted.)
CONVERSION LOSS vs. RF FREQUENCY
(UPCONVERSION MODE)
8
7
TC = -40°C
6
8
7
PLO = -3dBm, 0dBm, +3dBm
6
990
1130
1270
1410
7
VCC = 4.75V, 5.0V, 5.25V
5
850
1550
990
1130
1270
1410
1550
850
990
1130
1270
1410
RF FREQUENCY (MHz)
RF FREQUENCY (MHz)
RF FREQUENCY (MHz)
INPUT IP3 vs. RF FREQUENCY
(UPCONVERSION MODE)
INPUT IP3 vs. RF FREQUENCY
(UPCONVERSION MODE)
INPUT IP3 vs. RF FREQUENCY
(UPCONVERSION MODE)
PIF = 0dBm/TONE
38
40
PIF = 0dBm/TONE
38
40
MAX2051 toc40
40
MAX2051 toc39
850
8
6
5
5
MAX2051 toc38
9
CONVERSION LOSS (dB)
9
CONVERSION LOSS (dB)
CONVERSION LOSS (dB)
TC = +25°C
10
MAX2051 toc37
TC = +85°C
9
10
MAX2051 toc36
10
CONVERSION LOSS vs. RF FREQUENCY
(UPCONVERSION MODE)
38
1550
PIF = 0dBm/TONE
VCC = 5.25V
VCC = 5.0V
MAX2051 toc41
CONVERSION LOSS vs. RF FREQUENCY
(UPCONVERSION MODE)
TC = +25°C
34
32
36
INPUT IP3 (dBm)
36
INPUT IP3 (dBm)
INPUT IP3 (dBm)
TC = -40°C
34
32
36
34
32
PLO = -3dBm, 0dBm, +3dBm
TC = +85°C
30
30
28
990
1130
1270
1410
1550
VCC = 4.75V
28
850
990
1130
1270
1410
1550
850
990
1130
1270
1410
1550
RF FREQUENCY (MHz)
RF FREQUENCY (MHz)
LO-2IF RESPONSE vs. RF FREQUENCY
(UPCONVERSION MODE)
LO-2IF RESPONSE vs. RF FREQUENCY
(UPCONVERSION MODE)
LO-2IF RESPONSE vs. RF FREQUENCY
(UPCONVERSION MODE)
60
TC = -40°C
PLO = 0dBm
70
PLO = +3dBm
60
PLO = -3dBm
50
50
850
990
1130
1270
RF FREQUENCY (MHz)
1410
1550
70
60
VCC = 4.75V, 5.0V, 5.25V
50
40
40
PIF = 0dBm
LO-2IF RESPONSE (dBc)
TC = +25°C
80
MAX2051 toc43
PIF = 0dBm
LO-2IF RESPONSE (dBc)
TC = +85°C
70
80
MAX2051 toc42
PIF = 0dBm
MAX2051 toc44
RF FREQUENCY (MHz)
80
10
30
28
850
LO-2IF RESPONSE (dBc)
MAX2051
SiGe, High-Linearity, 850MHz to 1550MHz
Up/Downconversion Mixer with LO Buffer
40
850
990
1130
1270
RF FREQUENCY (MHz)
1410
1550
850
990
1130
1270
RF FREQUENCY (MHz)
______________________________________________________________________________________
1410
1550
SiGe, High-Linearity, 850MHz to 1550MHz
Up/Downconversion Mixer with LO Buffer
TC = -40°C
50
850
990
1130
1270
1410
PLO = -3dBm
50
70
VCC = 5.25V
60
VCC = 4.75V, 5.0V
50
40
850
1550
990
1130
1270
1410
850
1550
990
1130
1270
1410
1550
RF FREQUENCY (MHz)
RF FREQUENCY (MHz)
RF FREQUENCY (MHz)
LO-3IF RESPONSE vs. RF FREQUENCY
(UPCONVERSION MODE)
LO-3IF RESPONSE vs. RF FREQUENCY
(UPCONVERSION MODE)
LO-3IF RESPONSE vs. RF FREQUENCY
(UPCONVERSION MODE)
80
TC = +85°C
90
PLO = -3dBm, 0dBm, +3dBm
80
70
60
60
850
990
1130
1270
1410
90
VCC = 4.75V, 5.0V, 5.25V
80
70
60
850
1550
MAX2051 toc50
PIF = 0dBm
LO-3IF RESPONSE (dBc)
TC = +25°C
TC = -40°C
PIF = 0dBm
LO-3IF RESPONSE (dBc)
90
100
MAX2051 toc49
PIF = 0dBm
70
100
MAX2051 toc48
100
990
1130
1270
1410
1550
850
990
1130
1270
1410
1550
RF FREQUENCY (MHz)
RF FREQUENCY (MHz)
LO+3IF RESPONSE vs. RF FREQUENCY
(UPCONVERSION MODE)
LO+3IF RESPONSE vs. RF FREQUENCY
(UPCONVERSION MODE)
LO+3IF RESPONSE vs. RF FREQUENCY
(UPCONVERSION MODE)
PIF = 0dBm
LO+3IF RESPONSE (dBc)
90
TC = +85°C
80
70
100
TC = +25°C
90
100
PIF = 0dBm
LO+3IF RESPONSE (dBc)
PIF = 0dBm
MAX2051 toc51
100
PLO = -3dBm, 0dBm, +3dBm
80
70
MAX2051 toc53
RF FREQUENCY (MHz)
MAX2051 toc52
LO-3IF RESPONSE (dBc)
60
40
40
LO+3IF RESPONSE (dBc)
PLO = 0dBm
PIF = 0dBm
LO+2IF RESPONSE (dBc)
TC = +25°C
PLO = +3dBm
70
MAX2051 toc47
PIF = 0dBm
LO+2IF RESPONSE (dBc)
LO+2IF RESPONSE (dBc)
TC = +85°C
70
80
MAX2051 toc46
PIF = 0dBm
60
80
MAX2051 toc45
80
LO+2IF RESPONSE vs. RF FREQUENCY
(UPCONVERSION MODE)
LO+2IF RESPONSE vs. RF FREQUENCY
(UPCONVERSION MODE)
LO+2IF RESPONSE vs. RF FREQUENCY
(UPCONVERSION MODE)
90
VCC = 4.75V, 5.0V, 5.25V
80
70
TC = -40°C
60
60
850
990
1130
1270
RF FREQUENCY (MHz)
1410
1550
60
850
990
1130
1270
RF FREQUENCY (MHz)
1410
1550
850
990
1130
1270
1410
1550
RF FREQUENCY (MHz)
______________________________________________________________________________________
11
MAX2051
Typical Operating Characteristics (continued)
(Typical Application Circuit, Upconversion mode, VCC = +5.0V, PLO = 0dBm, PIF = 0dBm, fIF = 350MHz, LO is high-side injected,
TC =+25°C, unless otherwise noted.)
Typical Operating Characteristics (continued)
(Typical Application Circuit, Upconversion mode, VCC = +5.0V, PLO = 0dBm, PIF = 0dBm, fIF = 350MHz, LO is high-side injected,
TC =+25°C, unless otherwise noted.)
-35
TC = +25°C
TC = +85°C
1340
1480
-40
1620
1760
-50
1200
1900
1340
LO FREQUENCY (MHz)
-50
-60
1480
1620
1480
1620
MAX2051 toc56
-50
1200
1900
1760
-50
-60
-70
1200
1900
1340
1480
1620
1340
fIF = 350MHz
1760
1900
-40
10
15
PLO = -3dBm, 0dBm, +3dBm
20
25
-60
-70
1200
1340
1480
fLO = 1200MHz
5
10
VCC = 4.75V, 5.0V, 5.25V
15
20
30
750
900
1050
1200
1350
RF FREQUENCY (MHz)
1500
1650
50
1900
-50
25
30
1760
VCC = 4.75V, 5.0V, 5.25V
1620
LO FREQUENCY (MHz)
0
IF PORT RETURN LOSS (dB)
5
1620
-30
IF PORT RETURN LOSS vs. IF FREQUENCY
(UPCONVERSION MODE)
MAX2051 toc60
0
1480
IF LEAKAGE AT RF PORT vs. LO FREQUENCY
(UPCONVERSION MODE)
LO FREQUENCY (MHz)
RF PORT RETURN LOSS vs. RF FREQUENCY
(UPCONVERSION MODE)
RF PORT RETURN LOSS (dB)
-40
LO FREQUENCY (MHz)
PLO = -3dBm, 0dBm, +3dBm
-40
LO FREQUENCY (MHz)
12
1760
-30
IF LEAKAGE AT RF PORT (dBm)
TC = -40°C, +25°C, +85°C
1340
-35
IF LEAKAGE AT RF PORT vs. LO FREQUENCY
(UPCONVERSION MODE)
MAX2051 toc57
-30
-70
1200
VCC = 4.75V, 5.0V, 5.25V
-30
LO FREQUENCY (MHz)
IF LEAKAGE AT RF PORT vs. LO FREQUENCY
(UPCONVERSION MODE)
-40
-25
-45
-45
IF LEAKAGE AT RF PORT (dBm)
-50
1200
-35
MAX2051 toc58
-45
PLO = -3dBm, 0dBm, +3dBm
-30
-20
MAX2051 toc59
-40
-25
LO LEAKAGE AT RF PORT vs. LO FREQUENCY
(UPCONVERSION MODE)
LO LEAKAGE AT RF PORT (dBm)
TC = -40°C
-30
MAX2051 toc55
-25
-20
LO LEAKAGE AT RF PORT (dBm)
MAX2051 toc54
LO LEAKAGE AT RF PORT (dBm)
-20
LO LEAKAGE AT RF PORT vs. LO FREQUENCY
(UPCONVERSION MODE)
MAX2051 toc61
LO LEAKAGE AT RF PORT vs. LO FREQUENCY
(UPCONVERSION MODE)
IF LEAKAGE AT RF PORT (dBm)
MAX2051
SiGe, High-Linearity, 850MHz to 1550MHz
Up/Downconversion Mixer with LO Buffer
140
230
320
410
500
IF FREQUENCY (MHz)
______________________________________________________________________________________
1760
1900
SiGe, High-Linearity, 850MHz to 1550MHz
Up/Downconversion Mixer with LO Buffer
LO RETURN LOSS vs. LO FREQUENCY
(UPCONVERSION MODE)
IF PORT RETURN LOSS vs. IF FREQUENCY
(UPCONVERSION MODE)
20
30
fLO = 1900MHz
50
140
230
320
410
IF FREQUENCY (MHz)
5
PLO = -3dBm
PLO = 0dBm
10
PLO = +3dBm
15
40
50
MAX2051 toc63
fLO = 1200MHz
MAX2051 toc62
fLO = 1500MHz
10
0
LO RETURN LOSS (dB)
IF PORT RETURN LOSS (dB)
0
500
20
1100
1250
1400
1550
1700
1850
2000
LO FREQUENCY (MHz)
Pin Description
PIN
NAME
FUNCTION
1
RF
Single-Ended 50Ω RF Input. Internally matched and DC shorted to GND through a balun. Requires
an input DC-blocking capacitor.
2–5, 9, 10, 11,
13, 14
GND
Ground. Internally connected to the exposed pad. Connect all ground pins and the exposed pad
(EP) together.
6, 8, 15
VCC
Power Supply. Bypass to GND with capacitors as close as possible to the pin (see the Typical
Application Circuit).
7
LOBIAS
LO Amplifier Bias Control. Output bias resistor for the LO buffer. Connect a 61.9Ω ±1% resistor
from LOBIAS to VCC to set the bias current for the main LO amplifier.
12
LO
16, 17
IF+, IF-
18, 19, 20
GND
—
EP
Local Oscillator Input. This input is internally matched to 50Ω. Requires an input DC-blocking
capacitor.
Differential IF Output
Ground. Not internally connected. Ground these pins or leave unconnected.
Exposed Pad. Internally connected to GND. Solder this exposed pad to a PCB pad that uses
multiple ground vias to provide heat transfer out of the device into the PCB ground planes. These
multiple ground vias are also required to achieve the noted RF performance.
______________________________________________________________________________________
13
MAX2051
Typical Operating Characteristics (continued)
(Typical Application Circuit, Upconversion mode, VCC = +5.0V, PLO = 0dBm, PIF = 0dBm, fIF = 350MHz, LO is high-side injected,
TC =+25°C, unless otherwise noted.)
MAX2051
SiGe, High-Linearity, 850MHz to 1550MHz
Up/Downconversion Mixer with LO Buffer
Detailed Description
The MAX2051 high-linearity up/downconversion mixer
provides +35dBm of IIP3, with a typical 7.8dB noise figure (NF) and 7.4dB conversion loss. The integrated
baluns and matching circuitry allow for 50Ω singleended interfaces to the RF and the LO ports. The integrated LO buffer provides a high drive level to the mixer
core, reducing the LO drive required at the MAX2051’s
input to a -3dBm to +3dBm range. The IF port incorporates a differential output, which is ideal for providing
enhanced 2RF-LO and 2LO-2RF performance. 2RF-LO
rejection is typically 88dB and 2LO-2RF rejection is typically 79dB at an RF drive level of -14dBm.
Specifications are guaranteed over broad frequency
ranges to allow for use in VOD, DOCSIS-compatible
Edge QAM modulation, and CMTS. The MAX2051 is
specified to operate over an RF input range of 850MHz
to 1550MHz, an LO range of 1200MHz to 2250MHz,
and an IF range of 50MHz to 1000MHz.
RF Port and Balun
The MAX2051 RF input provides a 50Ω match when combined with a series 47pF DC-blocking capacitor. This DCblocking capacitor is required because the input is
internally DC shorted to ground through the on-chip
balun. The RF port input return loss is typically 12dB over
the RF frequency range of 1000MHz to 1250MHz.
LO Inputs, Buffer, and Balun
The MAX2051 is optimized for high-side LO injection
applications with a 1200MHz to 2550MHz LO frequency
range. The LO input is internally matched to 50Ω,
requiring only a 47pF DC-blocking capacitor. A twostage internal LO buffer allows for a -3dBm to +3dBm
LO input power range. The on-chip low-loss balun,
along with an LO buffer, drives the double-balanced
mixer. All interfacing and matching components from
the LO inputs to the IF outputs are integrated on-chip.
High-Linearity Mixer
The core of the MAX2051 is a double-balanced, highperformance passive mixer. Exceptional linearity is provided by the large LO swing from the on-chip LO
buffer. IIP3, 2RF-LO rejection, and noise figure performance are typically +35dBm, 88dBc, and 7.8dB,
respectively.
Differential IF Output
The MAX2051 has an IF frequency range of 50MHz to
1000MHz. The device’s differential ports are ideal for
providing enhanced 2RF-LO performance. Singleended IF applications require a 1:1 (impedance ratio)
balun to transform the 50Ω differential IF impedance to
a 50Ω single-ended system.
Applications Information
Input and Output Matching
The RF and LO ports are designed to operate in a 50Ω
system. Use DC blocks at RF and LO inputs to isolate
the ports from external DC while providing some reactive tuning. The IF output impedance is 50Ω (differential). For evaluation, an external low-loss 1:1 balun
transforms this impedance to a 50Ω single-ended output (see the Typical Application Circuit).
Externally Adjustable Bias
Bias currents for the LO buffer is optimized by fine-tuning resistor R1. The value for R1, as listed in Table 1,
represents the nominal value, which yields the optimal
linearity/performance trade off. Use larger value resistors (up to 125Ω) to reduce power dissipation at the
expense of some performance loss. Use smaller value
resistors (down to 0Ω) to increase the linearity of the
device at the expense of more power. Contact the factory for details concerning recommended power reduction vs. performance trade-offs. If ±1% resistors are not
readily available, ±5% resistors can be substituted.
Table 1. Component Values
DESIGNATION
QTY
C1, C9
2
47pF microwave capacitors (0402)
Murata Electronics North America, Inc.
C2
1
1.3pF microwave capacitor (0402)
Murata Electronics North America, Inc.
14
DESCRIPTION
SUPPLIER
C3, C4
2
150pF microwave capacitors (0402)
Murata Electronics North America, Inc.
C5, C7, C10
3
100pF microwave capacitors (0402)
Murata Electronics North America, Inc.
C6, C8, C11
3
0.01µF microwave capacitors (0402)
Murata Electronics North America, Inc.
R1
1
61.9Ω ±1% resistor (0402)
Digi-Key Corp.
T1
1
1:1 transformer (50:50) MABACT0060
M/A-Com, Inc.
U1
1
MAX2051 IC (20 TQFN-EP)
Maxim Integrated Products, Inc.
______________________________________________________________________________________
SiGe, High-Linearity, 850MHz to 1550MHz
Up/Downconversion Mixer with LO Buffer
IIP3 linearity and spurious performance can be further
optimized by modifying the capacitive loading on the IF
ports. The default component value of 1.3pF for C2 (listed in Table 1) was chosen to provide the best overall
IIP3 linearity response over the entire 50MHz to
1000MHz band. Alternative capacitor values can be
chosen to improve the device’s 2RF-LO, 2LO-2RF, and
3LO-3RF spurious responses at the expense of overall
IIP3 performance. See the relevant curves in the
Typical Operating Characteristics section to evaluate
the IIP3 vs. spurious performance trade-offs.
Spurious Optimization by
Increased LO Drive Levels
The MAX2051’s 2RF-LO, 2LO-2RF, and 3LO-3RF spurious performance can also be improved by increasing
the LO drive level to the device. The Typical Application
Circuit calls for a nominal LO drive level of 0dBm.
However, enhancements in the device’s spurious performance are possible with increased drive levels
extending up to +9dBm. See the relevant curves in the
Typical Operating Characteristics section to evaluate
the spurious performance vs. LO drive level trade-offs.
Layout Considerations
A properly designed PCB is an essential part of any
RF/microwave circuit. Keep RF signal lines as short as
possible to reduce losses, radiation, and inductance.
The load impedance presented to the mixer must be
such that any capacitance from both IF- and IF+ to
ground is minimized. For the best performance, route
the ground pin traces directly to the exposed pad
under the package. The PCB exposed pad MUST be
connected to the ground plane of the PCB. It is suggested that multiple vias be used to connect this pad to
the lower level ground planes. This method provides a
good RF/thermal-conduction path for the device. Solder
the exposed pad on the bottom of the device package
to the PCB. The MAX2051 evaluation kit can be used as
a reference for board layout. Gerber files are available
upon request at www.maxim-ic.com.
Power-Supply Bypassing
Proper voltage supply bypassing is essential for highfrequency circuit stability. Bypass each VCC pin with
the capacitors shown in the Typical Application Circuit
and see Table 1 for descriptions.
Exposed Pad RF/Thermal Considerations
The exposed pad (EP) of the MAX2051’s 20-pin thin
QFN package provides a low thermal-resistance path
to the die. It is important that the PCB on which the
MAX2051 is mounted be designed to conduct heat
from the EP. In addition, provide the EP with a lowinductance path to electrical ground. The EP MUST be
soldered to a ground plane on the PCB, either directly
or through an array of plated via holes.
______________________________________________________________________________________
15
MAX2051
IIP3 and Spurious Optimization by
External IF Tuning
MAX2051
SiGe, High-Linearity, 850MHz to 1550MHz
Up/Downconversion Mixer with LO Buffer
Typical Application Circuit
T1
IF
C3
C4
+
20
19
18
C1
RF
IF+
IF-
GND
GND
GND
C2
17
16
VCC
EP*
RF
GND
GND
GND
GND
1
15
2
14
3
13
4
12
5
11
VCC
C10
GND
C11
GND
LO
C9
LO
GND
C5
VCC
R1
C6
10
GND
9
GND
8
VCC
7
LOBIAS
VCC
6
VCC
MAX2051
C7
C8
*EXPOSED PAD. CONNECT EP TO GND.
Chip Information
PROCESS: SiGe BiCMOS
Package Information
For the latest package outline information and land patterns, go
to www.maxim-ic.com/packages.
PACKAGE TYPE
PACKAGE CODE
DOCUMENT NO.
20 Thin QFN-EP
T2055+3
21-0140
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.
16 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600
© 2009 Maxim Integrated Products
Maxim is a registered trademark of Maxim Integrated Products, Inc.