MAXIM MAX2039ETP

J
/0 0
19-3468; Rev 0; 10/04
High-Linearity, 1700MHz to 2200MHz Upconversion/
Downconversion Mixer with LO Buffer/Switch
Features
The MAX2039 high-linearity passive upconverter or
downconverter mixer is designed to provide 7.3dB NF
and a 7.1dB conversion loss for an RF frequency range
of 1700MHz to 2200MHz to support UMTS/WCDMA,
DCS, and PCS base-station transmitter or receiver
applications. The IIP3 is typically +34.5dBm and
+33.5dBm for downconversion and upconversion operation, respectively. With an LO frequency range of
1500MHz to 2000MHz, this particular mixer is ideal for
low-side LO injection architectures. (For a pin-to-pincompatible mixer meant for high-side LO injection, contact the factory.)
♦ 1700MHz to 2200MHz RF Frequency Range
In addition to offering excellent linearity and noise performance, the MAX2039 also yields a high level of component integration. This device includes a
double-balanced passive mixer core, a dual-input LO
selectable switch, and an LO buffer. On-chip baluns
are also integrated to allow for a single-ended RF input
for downconversion (or RF output for upconversion),
and single-ended LO inputs. The MAX2039 requires a
nominal LO drive of 0dBm, and supply current is guaranteed to be below 135mA.
The MAX2039 is pin compatible with the MAX2031
815MHz to 995MHz mixer, making this family of passive
upconverters and downconverters ideal for applications
where a common PC board layout is used for both frequency bands.
The MAX2039 is available in a compact 20-pin thin
QFN package (5mm x 5mm) with an exposed paddle.
Electrical performance is guaranteed over the extended
-40°C to +85°C temperature range.
♦ Integrated LO Buffer
Applications
♦ 1500MHz to 2000MHz LO Frequency Range
♦ 1900MHz to 2400MHz LO Frequency Range
(Contact Factory)
♦ DC to 350MHz IF Frequency Range
♦ 7.1dB Conversion Loss
♦ +34.5dBm Input IP3 (Downconversion)
♦ +24.4dBm Input 1dB Compression Point
♦ 7.3dB Noise Figure
♦ Integrated RF and LO Baluns
♦ Low -3dBm to +3dBm LO Drive
♦ Built-In SPDT LO Switch with 45dB LO1 to LO2
Isolation and 50ns Switching Time
♦ Pin Compatible with the MAX2031 815MHz to
995MHz Mixer
♦ External Current-Setting Resistor Provides Option
for Operating Mixer in Reduced-Power/ReducedPerformance Mode
♦ Lead-Free Package Available
Ordering Information
TEMP RANGE PIN-PACKAGE
PKG
CODE
MAX2039ETP
20 Thin QFN-EP*
-40°C to +85°C (5mm x 5mm)
bulk
T2055-3
MAX2039ETP-T
20 Thin QFN-EP*
-40°C to +85°C (5mm x 5mm)
T/R
T2055-3
20 Thin QFN-EP*
(5mm x 5mm)
MAX2039ETP+D -40°C to +85°C
lead-free
bulk
T2055-3
20 Thin QFN-EP*
(5mm x 5mm)
MAX2039ETP+TD -40°C to +85°C
lead-free
T/R
T2055-3
PART
UMTS/WCDMA Base Stations
DCS1800/PCS1900 EDGE Base Stations
cdmaOneTM and cdma2000® Base Stations
PHS/PAS Base Stations
Predistortion Receivers
Fixed Broadband Wireless Access
Wireless Local Loop
Private Mobile Radio
Military Systems
Microwave Links
Digital and Spread-Spectrum Communication
Systems
cdmaOne is a trademark of CDMA Development Group.
* EP = Exposed paddle.
+ = Lead free.
D = Dry pack.
cdma2000 is a registered trademark of Telecommunications
Industry Association.
Pin Configuration and Typical Application Circuit appear at
end of data sheet.
________________________________________________________________ Maxim Integrated Products 1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.
MAX2039
General Description
MAX2039
High-Linearity, 1700MHz to 2200MHz Upconversion/
Downconversion Mixer with LO Buffer/Switch
ABSOLUTE MAXIMUM RATINGS
VCC to GND ...........................................................-0.3V to +5.5V
TAP, LOBIAS, LOSEL to GND ....................-0.3V to (VCC + 0.3V)
LO1, LO2, IF+, IF- to GND ....................................-0.3V to +0.3V
RF, IF, LO1, LO2 Input Power ........................................+15dBm
RF (RF is DC shorted to GND through a balun) .................50mA
Continuous Power Dissipation
20-Pin QFN-EP (derate 20mW/°C above TA = +70°C) ....2.2W
θJA .................................................................................+33°C/W
θJC ...................................................................................+8°C/W
Operating Temperature Range (Note A) ....TC = -40°C to +85°C
Junction Temperature ......................................................+150°C
Storage Temperature Range .............................-65°C to +165°C
Lead Temperature (soldering, 10s) .................................+300°C
Note A: TC is the temperature on the exposed paddle of the package.
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to
absolute maximum rating conditions for extended periods may affect device reliability.
DC ELECTRICAL CHARACTERISTICS
(MAX2039 Typical Application Circuit, VCC = +4.75V to +5.25V, TC = -40°C to +85°C, no RF signals applied, IF+ and IF- DC grounded through a transformer. Typical values are at VCC = +5V, TC = +25°C, unless otherwise noted.)
PARAMETER
SYMBOL
Supply Voltage
VCC
Supply Current
ICC
LO_SEL Input Logic Low
VIL
LO_SEL Input Logic High
VIH
CONDITIONS
MIN
TYP
MAX
4.75
5.00
5.25
V
104
135
mA
0.8
V
2
UNITS
V
AC ELECTRICAL CHARACTERISTICS (DOWNCONVERTER OPERATION)
(MAX2039 Typical Application Circuit, VCC = +4.75V to +5.25V, TC = -40°C to +85°C, RF and LO ports are driven from 50Ω sources,
PLO = -3dBm to +3dBm, PRF = 0dBm, fRF = 1700MHz to 2200MHz, fLO = 1500MHz to 2000MHz, fIF = 200MHz, fRF > fLO, unless otherwise noted. Typical values are at VCC = +5V, PRF = 0dBm, PLO = 0dBm, fRF = 1900MHz, fLO = 1700MHz, fIF = 200MHz, TC =
+25°C, unless otherwise noted.) (Notes 1, 2)
PARAMETER
RF Frequency Range
LO Frequency Range
SYMBOL
fRF
fLO
CONDITIONS
2000
(Contact factory)
1900
2400
External IF transformer dependent
PRF < +2dBm
Noise Figure
2
DC
TC = -40°C to +85°C
P1dB
(Note 4)
IIP3
Two tones:
fRF1 = 2000MHz,
fRF2 = 2001MHz,
PRF = +5dBm/tone,
fLO = 1800MHz,
PLO = 0dBm
TC = -40°C to +85°C
NF
MHz
2200
1500
fIF
Input IP3 Variation Over
Temperature
UNITS
1700
LC
Input Third-Order Intercept Point
MAX
(Note 3)
Conversion Loss
Input Compression Point
TYP
(Note 3)
IF Frequency Range
Loss Variation Over Temperature
MIN
Single sideband
31
350
MHz
MHz
7.1
dB
0.0075
dB/°C
24.4
dBm
34.5
dBm
±0.75
dB
7.3
dB
_______________________________________________________________________________________
High-Linearity, 1700MHz to 2200MHz Upconversion/
Downconversion Mixer with LO Buffer/Switch
(MAX2039 Typical Application Circuit, VCC = +4.75V to +5.25V, TC = -40°C to +85°C, RF and LO ports are driven from 50Ω sources,
PLO = -3dBm to +3dBm, PRF = 0dBm, fRF = 1700MHz to 2200MHz, fLO = 1500MHz to 2000MHz, fIF = 200MHz, fRF > fLO, unless otherwise noted. Typical values are at VCC = +5V, PRF = 0dBm, PLO = 0dBm, fRF = 1900MHz, fLO = 1700MHz, fIF = 200MHz, TC =
+25°C, unless otherwise noted.) (Notes 1, 2)
PARAMETER
SYMBOL
CONDITIONS
MIN
PRF = 5dBm, fRF = 2000MHz, fLO =
1810MHz, fblock = 2100MHz
(Note 5)
Noise Figure Under-Blocking
LO Drive
TYP
19
-3
2x2
73
3x3
3RF - 3LO,
PRF = 0dBm
72
UNITS
dB
+3
2RF - 2LO,
PRF = 0dBm
Spurious Response at IF
MAX
dBm
dBc
LO1 to LO2 Isolation
(Note 1)
LO2 selected, 1500MHz < fLO < 1700MHz
40
52
LO1 selected, 1500MHz < fLO < 1700MHz
40
45
Maximum LO Leakage at RF Port
PLO = +3dBm
-18
dBm
Maximum LO Leakage at IF Port
PLO = +3dBm
-27.5
dBm
35
dB
Minimum RF-to-IF Isolation
LO Switching Time
50% of LOSEL to IF settled to within 2°
RF Port Return Loss
LO Port Return Loss
IF Port Return Loss
dB
50
ns
18
dB
LO port selected, LO and IF terminated
16
LO port unselected, LO and IF terminated
26
LO driven at 0dBm, RF terminated into 50Ω
20
dB
dB
_______________________________________________________________________________________
3
MAX2039
AC ELECTRICAL CHARACTERISTICS (DOWNCONVERTER OPERATION) (continued)
MAX2039
High-Linearity, 1700MHz to 2200MHz Upconversion/
Downconversion Mixer with LO Buffer/Switch
AC ELECTRICAL CHARACTERISTICS (UPCONVERTER OPERATION)
(MAX2039 Typical Application Circuit, VCC = +4.75V to +5.25V, TC = -40°C to +85°C, PLO = -3dBm to +3dBm, PIF = 0dBm, fRF =
1700MHz to 2200MHz, fLO = 1500MHz to 2000MHz, fIF = 200MHz, fRF = fLO + fIF, unless otherwise noted. Typical values are at VCC
= +5V, PIF = 0dBm, PLO = 0dBm, fRF = 1900MHz, fLO = 1700MHz, fIF = 200MHz, TC = +25°C, unless otherwise noted.) (Note 2)
PARAMETER
Input Compression Point
Input Third-Order Intercept Point
LO ±2IF Spur
LO ±3IF Spur
Output Noise Floor
SYMBOL
CONDITIONS
P1dB
(Note 4)
IIP3
Two tones:
fIF1 = 200MHz,
fIF2 = 210MHz,
PIF = +5dBm/tone,
fLO = 1940MHz,
PLO = 0dBm
MIN
29.5
TYP
UNITS
24.4
dBm
33.5
dBm
LO - 2IF
67
LO + 2IF
63
LO - 3IF
72
LO + 3IF
76
POUT = 0dBm
MAX
-160
dBc
dBc
dBm/
Hz
Note 1: Guaranteed by design and characterization.
Note 2: All limits include external component losses. Output measurements taken at IF port for downconverter and RF port for
upconverter from the Typical Application Circuit.
Note 3: Operation outside this range is possible, but with degraded performance of some parameters.
Note 4: Compression point characterized. It is advisable not to continuously operate the mixer RF or IF input above +15dBm.
Note 5: Measured with external LO source noise filtered such that the noise floor is -174dBm/Hz. This specification reflects the
effects of all SNR degradations in the mixer, including the LO noise as defined in Maxim Application Note 2021.
4
_______________________________________________________________________________________
High-Linearity, 1700MHz to 2200MHz Upconversion/
Downconversion Mixer with LO Buffer/Switch
Downconverter Curves
TC = -35°C
7
PLO = -3dBm, 0dBm, +3dBm
6
1950
2100
2250
2400
1500
1650
RF FREQUENCY (MHz)
INPUT IP3 vs. RF FREQUENCY
1950
2100
2250
INPUT IP3 vs. RF FREQUENCY
INPUT IP3 (dBm)
33
TC = -35°C
31
PLO = -3dBm, 0dBm
37
TC = +85°C
35
33
PLO = +3dBm
31
33
25
2400
RF FREQUENCY (MHz)
1950
2100
2250
2400
TC = -35°C
PLO = -3dBm
7
PLO = 0dBm
6
5
1800
1950
2100
2250
2400
NOISE FIGURE vs. RF FREQUENCY
8
PLO = +3dBm
1650
RF FREQUENCY (MHz)
10
9
NOISE FIGURE (dB)
TC = +25°C
9
NOISE FIGURE (dB)
7
VCC = 5.0V
1500
NOISE FIGURE vs. RF FREQUENCY
8
6
1800
10
MAX2039 toc07
TC = +85°C
9
1650
RF FREQUENCY (MHz)
NOISE FIGURE vs. RF FREQUENCY
10
VCC = 4.75V
25
1500
MAX2039 toc08
2250
2400
31
27
2100
2250
35
27
1950
2100
VCC = 5.25V
27
1800
1950
37
29
25
1800
INPUT IP3 vs. RF FREQUENCY
29
1650
1650
39
29
1500
MAX2039 toc03
1500
2400
RF FREQUENCY (MHz)
39
MAX2039 toc04
TC = +25°C
37
INPUT IP3 (dBm)
1800
RF FREQUENCY (MHz)
39
35
6
MAX2039 toc09
1800
INPUT IP3 (dBm)
1650
MAX2039 toc05
1500
VCC = 4.75V, 5.0V, 5.25V
4
4
4
7
5
5
5
NOISE FIGURE (dB)
8
CONVERSION LOSS (dB)
TC = +25°C
6
8
CONVERSION LOSS (dB)
7
CONVERSION LOSS vs. RF FREQUENCY
9
MAX2039 toc02
MAX2039 toc01
TC = +85°C
8
CONVERSION LOSS (dB)
CONVERSION LOSS vs. RF FREQUENCY
9
MAX2039 toc06
CONVERSION LOSS vs. RF FREQUENCY
9
VCC = 5.25V
8
7
VCC = 4.75V
VCC = 5.0V
6
5
5
1700 1800 1900 2000 2100 2200 2300 2400
1700 1800 1900 2000 2100 2200 2300 2400
1700 1800 1900 2000 2100 2200 2300 2400
RF FREQUENCY (MHz)
RF FREQUENCY (MHz)
RF FREQUENCY (MHz)
_______________________________________________________________________________________
5
MAX2039
Typical Operating Characteristics
(MAX2039 Typical Application Circuit, VCC = +5.0V, PLO = 0dBm, PRF = 0dBm, fRF > fLO , fIF = 200MHz, R1 = 549Ω, unless otherwise noted.)
Typical Operating Characteristics (continued)
(MAX2039 Typical Application Circuit, VCC = +5.0V, PLO = 0dBm, PRF = 0dBm, fRF > fLO , fIF = 200MHz, R1 = 549Ω, unless otherwise noted.)
Downconverter Curves
55
50
65
60
55
PLO = -3dBm
50
45
1950
2100
2250
2400
1650
RF FREQUENCY (MHz)
70
65
TC = -35°C
55
1950
2100
2250
2400
1500
TC = +25°C
PRF = 0dBm
80
50
75
70
65
45
1950
2100
2250
PLO = -3dBm, 0dBm, +3dBm
60
55
2400
1650
1950
2100
2250
21
65
2400
1500
MAX2039 toc17
25
24
23
22
PLO = -3dBm, 0dBm, +3dBm
21
25
2400
VCC = 4.75V
21
18
RF FREQUENCY (MHz)
VCC = 5.0V
22
17
2400
2250
23
17
2250
2100
24
19
2100
1950
VCC = 5.25V
26
18
1950
1800
INPUT P1dB vs. RF FREQUENCY
18
1800
1650
27
20
1650
VCC = 4.75V
55
19
TC = -35°C
1500
VCC = 5.0V
60
20
19
MAX2039 toc12
70
RF FREQUENCY (MHz)
26
INPUT P1dB (dBm)
TC = +85°C
22
20
75
INPUT P1dB vs. RF FREQUENCY
24
23
1800
27
MAX2039 toc16
TC = +25°C
2400
45
1500
INPUT P1dB vs. RF FREQUENCY
25
VCC = 5.25V
RF FREQUENCY (MHz)
26
2250
50
RF FREQUENCY (MHz)
27
2100
PRF = 0dBm
80
INPUT P1dB (dBm)
1800
1950
3RF - 3LO RESPONSE vs. RF FREQUENCY
45
1650
1800
85
50
1500
1650
RF FREQUENCY (MHz)
3RF - 3LO RESPONSE vs. RF FREQUENCY
3RF - 3LO RESPONSE (dBc)
3RF - 3LO RESPONSE (dBc)
TC = +85°C
60
1800
85
MAX2039 toc13
PRF = 0dBm
80
75
VCC = 4.75V, 5.0V, 5.25V
55
RF FREQUENCY (MHz)
3RF - 3LO RESPONSE vs. RF FREQUENCY
85
60
45
1500
3RF - 3LO RESPONSE (dBc)
1800
MAX2039 toc14
1650
65
50
45
1500
6
PLO = 0dBm
70
MAX2039 toc15
TC = +85°C
60
70
PRF = 0dBm
75
MAX2039 toc18
65
PLO = +3dBm
2RF - 2LO RESPONSE vs. RF FREQUENCY
80
2RF - 2LO RESPONSE (dBc)
70
PRF = 0dBm
75
2RF - 2LO RESPONSE (dBc)
2RF - 2LO RESPONSE (dBc)
TC = -35°C
MAX2039 toc10
PRF = 0dBm
TC = +25°C
75
2RF - 2LO RESPONSE vs. RF FREQUENCY
80
MAX2039 toc11
2RF - 2LO RESPONSE vs. RF FREQUENCY
80
INPUT P1dB (dBm)
MAX2039
High-Linearity, 1700MHz to 2200MHz Upconversion/
Downconversion Mixer with LO Buffer/Switch
17
1500
1650
1800
1950
2100
RF FREQUENCY (MHz)
2250
2400
1500
1650
1800
1950
2100
RF FREQUENCY (MHz)
_______________________________________________________________________________________
2250
2400
High-Linearity, 1700MHz to 2200MHz Upconversion/
Downconversion Mixer with LO Buffer/Switch
Downconverter Curves
TC = +85°C
TC = +25°C
35
45
PLO = -3dBm
40
35
1450
1600
1750
1900
2050
2200
1450
LO FREQUENCY (MHz)
1750
1900
2050
1300
TC = -35°C
-25
-30
TC = +85°C
-15
PLO = +3dBm
-20
PLO = 0dBm
-25
-30
-35
-35
-40
-40
1900
2050
TC = +85°C
-20
TC = -35°C
-25
-30
1450
1600
1750
1900
LO FREQUENCY (MHz)
-30
VCC = 4.75V
-40
1600
1750
1900
2050
2200
1300
1450
2050
2200
1600
1750
1900
2050
2200
LO FREQUENCY (MHz)
LO LEAKAGE AT RF PORT vs. LO FREQUENCY
MAX2039 toc26
-15
-20
PLO = -3dBm, 0dBm, +3dBm
-25
-30
1300
VCC = 5.0V
-25
-45
1450
-10
LO LEAKAGE AT RF PORT (dBm)
MAX2039 toc25
TC = +25°C
-15
2200
VCC = 5.25V
-20
LO FREQUENCY (MHz)
LO LEAKAGE AT RF PORT vs. LO FREQUENCY
2050
-15
PLO = -3dBm
LO FREQUENCY (MHz)
-10
1900
-35
1300
2200
1750
LO LEAKAGE AT IF PORT vs. LO FREQUENCY
LO LEAKAGE AT RF PORT vs. LO FREQUENCY
-10
LO LEAKAGE AT RF PORT (dBm)
1750
1600
-10
-45
-45
1600
1450
LO FREQUENCY (MHz)
MAX2039 toc23
MAX2039 toc22
TC = +25°C
1450
VCC = 4.75V, 5.0V, 5.25V
40
2200
-10
LO LEAKAGE (dBm)
LO LEAKAGE (dBm)
-15
LO LEAKAGE AT RF PORT (dBm)
1600
LO LEAKAGE AT IF PORT vs. LO FREQUENCY
LO LEAKAGE AT IF PORT vs. LO FREQUENCY
1300
45
LO FREQUENCY (MHz)
-10
-20
50
35
1300
LO LEAKAGE (dBm)
1300
MAX2039 toc 21
MAX2039 toc 20
PLO = 0dBm, +3dBm
MAX2039 toc24
40
50
LO SWITCH ISOLATION vs. LO FREQUENCY
55
VCC = 5.25V
-15
MAX2039 toc27
45
LO SWITCH ISOLATION (dB)
MAX2039 toc 19
LO SWITCH ISOLATION (dB)
TC = -35°C
50
LO SWITCH ISOLATION vs. LO FREQUENCY
55
LO SWITCH ISOLATION (dB)
LO SWITCH ISOLATION vs. LO FREQUENCY
55
VCC = 5.0V
-20
VCC = 4.75V
-25
-30
1300
1450
1600
1750
1900
LO FREQUENCY (MHz)
2050
2200
1300
1450
1600
1750
1900
2050
2200
LO FREQUENCY (MHz)
_______________________________________________________________________________________
7
MAX2039
Typical Operating Characteristics (continued)
(MAX2039 Typical Application Circuit, VCC = +5.0V, PLO = 0dBm, PRF = 0dBm, fRF > fLO , fIF = 200MHz, R1 = 549Ω, unless otherwise noted.)
Typical Operating Characteristics (continued)
(MAX2039 Typical Application Circuit, VCC = +5.0V, PLO = 0dBm, PRF = 0dBm, fRF > fLO , fIF = 200MHz, R1 = 549Ω, unless otherwise noted.)
Downconverter Curves
TC = -35°C
TC = +25°C
40
35
30
25
PLO = -3dBm, 0dBm, +3dBm
25
20
1650
1800
1950
2100
2250
2400
30
VCC = 4.75V, 5.0V, 5.25V
20
1500
1650
1800
1950
2100
2250
2400
1500
1650
1800
1950
2100
2250
RF FREQUENCY (MHz)
RF FREQUENCY (MHz)
RF PORT RETURN LOSS
vs. RF FREQUENCY
IF PORT RETURN LOSS
vs. IF FREQUENCY
LO SELECTED RETURN LOSS
vs. LO FREQUENCY
15
20
PLO = -3dBm, 0dBm, +3dBm
30
15
20
25
30
VCC = 4.75V, 5.0V, 5.25V
35
40
35
1800
1950
2100
2250
50
100
RF FREQUENCY (MHz)
150
200
250
300
PLO = -3dBm
25
1300
1500
1700
1900
LO FREQUENCY (MHz)
SUPPLY CURRENT
vs. TEMPERATURE (TC)
130
MAX2039 toc34
PLO = -3dBm, 0dBm, +3dBm
30
40
VCC = 5.25V
120
SUPPLY CUIRRENT (mA)
10
PLO = 0dBm
30
IF FREQUENCY (MHz)
0
LO UNSELECTED RETURN LOSS (dB)
20
350
LO UNSELECTED RETURN LOSS
vs. LO FREQUENCY
20
15
40
50
2400
PLO = +3dBm
10
110
100
VCC = 5.0V
90
VCC = 4.75V
80
50
MAX2039 toc 35
1650
5
35
45
40
70
60
1300
1500
1700
1900
LO FREQUENCY (MHz)
2100
2400
MAX2039 toc33
10
0
LO SELECTED RETURN LOSS (dB)
5
IF PORT RETURN LOSS (dB)
10
MAX2039 toc32
0
MAX2039 toc31
5
1500
35
RF FREQUENCY (MHz)
0
25
40
25
20
1500
8
45
RF-TO-IF ISOLATION (dB)
35
30
45
RF-TO-IF ISOLATION (dB)
TC = +85°C
40
RF-TO-IF ISOLATION vs. RF FREQUENCY
50
MAX2039 toc29
MAX2039 toc28
45
RF-TO-IF ISOLATION (dB)
RF-TO-IF ISOLATION vs. RF FREQUENCY
50
MAX2039 toc30
RF-TO-IF ISOLATION vs. RF FREQUENCY
50
RF PORT RETURN LOSS (dB)
MAX2039
High-Linearity, 1700MHz to 2200MHz Upconversion/
Downconversion Mixer with LO Buffer/Switch
2300
-35
-15
5
25
45
65
TEMPERATURE (°C)
_______________________________________________________________________________________
85
2100
2300
High-Linearity, 1700MHz to 2200MHz Upconversion/
Downconversion Mixer with LO Buffer/Switch
Upconverter Curves
7
PLO = -3dBm, 0dBm, +3dBm
6
5
5
1500
1650
1800
1950
2100
2250
2400
1650
1800
2250
2400
1500
33
31
TC = +25°C
37
37
35
33
31
PLO = -3dBm, 0dBm, +3dBm
29
TC = -35°C
1950
2100
2250
1650
LO + 2IF REJECTION vs. RF FREQUENCY
TC = +25°C
75
70
65
TC = -35°C
55
1800
1950
2100
2250
TC = +85°C
50
PIF = 0dBm
2400
45
70
65
PLO = 0dBm
60
55
PLO = -3dBm
1800
1950
2100
RF FREQUENCY (MHz)
2250
2400
VCC = 4.75V
1500
1650
1800
1950
2100
2250
2400
85
PIF = 0dBm
80
75
70
65
60
VCC = 4.75V, 5.0V, 5.25V
55
50
45
45
1650
VCC = 5.0V
LO + 2IF REJECTION vs. RF FREQUENCY
PLO = +3dBm
75
50
1500
31
RF FREQUENCY (MHz)
80
LO + 2IF REJECTION (dBc)
80
60
33
LO + 2IF REJECTION vs. RF FREQUENCY
85
MAX2039 toc42
PIF = 0dBm
35
RF FREQUENCY (MHz)
RF FREQUENCY (MHz)
85
2400
25
1500
2400
LO + 2IF REJECTION (dBc)
1800
MAX2039 toc43
1650
2250
27
25
25
2100
VCC = 5.25V
29
27
27
1950
INPUT IP3 vs. RF FREQUENCY
INPUT IP3 (dBm)
35
1800
39
MAX2039 toc40
MAX2039 toc39
TC = +85°C
1500
1650
RF FREQUENCY (MHz)
39
INPUT IP3 (dBm)
INPUT IP3 (dBm)
2100
INPUT IP3 vs. RF FREQUENCY
INPUT IP3 vs. RF FREQUENCY
LO + 2IF REJECTION (dBc)
1950
RF FREQUENCY (MHz)
39
29
MAX2039 toc38
4
1500
RF FREQUENCY (MHz)
37
VCC = 4.75V, 5.0V, 5.25V
6
5
4
4
7
MAX2039 toc41
TC = -35°C
8
CONVERSION LOSS (dB)
TC = +25°C
6
8
CONVERSION LOSS (dB)
7
CONVERSION LOSS vs. RF FREQUENCY
9
MAX2039 toc37
MAX2039 toc36
TC = +85°C
8
CONVERSION LOSS (dB)
CONVERSION LOSS vs. RF FREQUENCY
9
MAX2039 toc44
CONVERSION LOSS vs. RF FREQUENCY
9
1500
1650
1800
1950
2100
RF FREQUENCY (MHz)
2250
2400
1500
1650
1800
1950
2100
2250
2400
RF FREQUENCY (MHz)
_______________________________________________________________________________________
9
MAX2039
Typical Operating Characteristics
(MAX2039 Typical Application Circuit, VCC = +5.0V, PLO = 0dBm, PIF = 0dBm, fRF = fLO+ fIF, fIF = 200MHz, R1 = 549Ω, unless otherwise noted.)
Typical Operating Characteristics (continued)
(MAX2039 Typical Application Circuit, VCC = +5.0V, PLO = 0dBm, PIF = 0dBm, fRF = fLO+ fIF, fIF = 200MHz, R1 = 549Ω, unless
otherwise noted.)
Upconverter Curves
LO - 2IF REJECTION vs. RF FREQUENCY
TC = +25°C
55
TC = -35°C
65
60
55
PLO = -3dBm
50
50
1800
1950
2100
2250
1650
LO + 3IF REJECTION vs. RF FREQUENCY
75
TC = +25°C
TC = -35°C
60
55
2100
2250
2400
1500
PIF = 0dBm
75
PLO = +3dBm
PLO = 0dBm
PLO = -3dBm
65
60
1950
2100
2250
2400
1650
1950
2100
2250
70
TC = +25°C
60
55
50
1800
1950
2100
RF FREQUENCY (MHz)
2250
2400
MAX2039 toc47
VCC = 5.0V
60
1650
PIF = 0dBm
80
75
70
65
1800
1950
2100
2250
2400
LO - 3IF REJECTION vs. RF FREQUENCY
PLO = -3dBm, 0dBm, +3dBm
60
90
PIF = 0dBm
85
VCC = 5.25V
80
75
70
65
VCC = 5.0V
VCC = 4.75V
60
55
50
50
1650
VCC = 4.75V
65
1500
2400
55
1500
70
RF FREQUENCY (MHz)
85
LO - 3IF REJECTION (dBc)
75
65
75
LO - 3IF REJECTION vs. RF FREQUENCY
TC = +85°C
TC = -35°C
1800
90
MAX2039 toc51
PIF = 0dBm
85
80
VCC = 5.25V
80
RF FREQUENCY (MHz)
LO - 3IF REJECTION vs. RF FREQUENCY
2400
50
1500
RF FREQUENCY (MHz)
90
2250
55
LO - 3IF REJECTION (dBc)
1800
2100
PIF = 0dBm
85
MAX2039 toc52
1650
1950
LO + 3IF REJECTION vs. RF FREQUENCY
80
70
1800
90
50
1500
1650
RF FREQUENCY (MHz)
55
50
10
1950
85
LO + 3IF REJECTION (dBc)
LO + 3IF REJECTION (dBc)
TC = +85°C
65
VCC = 4.75V, 5.0V, 5.25V
55
LO + 3IF REJECTION vs. RF FREQUENCY
80
70
1800
90
MAX2039 toc48
PIF = 0dBm
85
60
RF FREQUENCY (MHz)
RF FREQUENCY (MHz)
90
65
45
1500
2400
LO + 3IF REJECTION (dBc)
1650
MAX2039 toc49
1500
70
50
45
45
75
MAX2039 toc50
60
70
PIF = 0dBm
80
MAX2039 toc53
65
PLO = +3dBm
LO - 2IF REJECTION vs. RF FREQUENCY
85
LO - 2IF REJECTION (dBc)
TC = +85°C
70
PIF = 0dBm
PLO = 0dBm
75
LO - 2IF REJECTION (dBc)
LO - 2IF REJECTION (dBc)
MAX2039 toc45
PIF = 0dBm
75
80
MAX2039 toc46
LO - 2IF REJECTION vs. RF FREQUENCY
80
LO - 3IF REJECTION (dBc)
MAX2039
High-Linearity, 1700MHz to 2200MHz Upconversion/
Downconversion Mixer with LO Buffer/Switch
1500
1650
1800
1950
2100
RF FREQUENCY (MHz)
2250
2400
1500
1650
1800
1950
2100
RF FREQUENCY (MHz)
______________________________________________________________________________________
2250
2400
High-Linearity, 1700MHz to 2200MHz Upconversion/
Downconversion Mixer with LO Buffer/Switch
Upconverter Curves
LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
TC = -35°C
-25
-30
1600
1750
1900
2050
PLO = -3dBm, 0dBm, +3dBm
-25
-30
2200
1450
1600
1750
1900
2050
2200
1300
1450
TC = +25°C
1750
1900
2050
2200
IF LEAKAGE AT RF vs. RF FREQUENCY
-40
MAX2039 toc58
MAX2039 toc57
-60
1600
LO FREQUENCY (MHz)
-40
-50
IF LEAKAGE (dBm)
IF LEAKAGE (dBm)
-25
IF LEAKAGE AT RF vs. RF FREQUENCY
IF LEAKAGE AT RF vs. RF FREQUENCY
-50
VCC = 5.0V
VCC = 4.75V
LO FREQUENCY (MHz)
-40
TC = +85°C
-20
-30
1300
LO FREQUENCY (MHz)
-70
VCC = 5.25V
-15
-60
PLO = -3dBm, 0dBm, +3dBm
-70
MAX2039 toc59
1450
-20
-45
-50
IF LEAKAGE (dBm)
1300
-15
-10
LO LEAKAGE AT RF PORT (dBm)
-20
MAX2039 toc55
TC = +25°C, +85°C
-15
-10
LO LEAKAGE AT RF PORT (dBm)
MAX2039 toc54
LO LEAKAGE AT RF PORT (dBm)
-10
LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
MAX2039 toc56
LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
-55
VCC = 4.75V, 5.0V, 5.25V
-60
-65
-70
-75
-80
-80
-80
TC = -35°C
-85
-90
-90
1500
1650
1800
1950
2100
RF FREQUENCY (MHz)
2250
2400
-90
1500
1650
1800
1950
2100
RF FREQUENCY (MHz)
2250
2400
1500
1650
1800
1950
2100
2250
2400
RF FREQUENCY (MHz)
______________________________________________________________________________________
11
MAX2039
Typical Operating Characteristics (continued)
(MAX2039 Typical Application Circuit, VCC = +5.0V, PLO = 0dBm, PIF = 0dBm, fRF = fLO+ fIF, fIF = 200MHz, R1 = 549Ω, unless otherwise noted.)
MAX2039
High-Linearity, 1700MHz to 2200MHz Upconversion/
Downconversion Mixer with LO Buffer/Switch
Pin Description
PIN
NAME
1, 6, 8, 14
VCC
2
RF
Single-Ended 50Ω RF Input/Output. This port is internally matched and DC shorted to GND through a
balun.
3
TAP
Center Tap of the Internal RF Balun. Bypass to GND with capacitors close to the IC, as shown in the
Typical Application Circuit.
4, 5, 10, 12,
13, 16, 17,
20
GND
Ground
7
LOBIAS
9
LOSEL
11
LO1
15
LO2
18, 19
IF-, IF+
EP
GND
FUNCTION
Power-Supply Connection. Bypass each VCC pin to GND with capacitors as shown in the Typical
Application Circuit.
Bias Resistor for Internal LO Buffer. Connect a 549Ω 1% resistor from LOBIAS to the power supply.
Local Oscillator Select. Logic control input for selecting LO1 or LO2.
Local Oscillator Input 1. Drive LOSEL low to select LO1.
Local Oscillator Input 2. Drive LOSEL high to select LO2.
Differential IF Input/Outputs
Exposed Ground Paddle. Solder the exposed paddle to the ground plane using multiple vias.
Detailed Description
The MAX2039 can operate either as a downconverter
or an upconverter mixer that provides 7.1dB of conversion loss with a typical 7.3dB noise figure. IIP3 is
+33.5dBm for upconversion and +34.5dBm for downconversion. The integrated baluns and matching circuitry allow for 50Ω single-ended interfaces to the RF
port and two LO ports. The RF port can be used as an
input for downconversion or an output for upconversion. A single-pole, double-throw (SPDT) switch provides 50ns switching time between the two LO inputs
with 45dB of LO-to-LO isolation. Furthermore, the integrated LO buffer provides a high drive level to the
mixer core, reducing the LO drive required at the
MAX2039’s inputs to a range of -3dBm to +3dBm. The
IF port incorporates a differential output for downconversion, which is ideal for providing enhanced IIP2 performance. For upconversion, the IF port is a differential
input.
Specifications are guaranteed over broad frequency
ranges to allow for use in UMTS, cdma2000, and
2G/2.5G/3G DCS1800, and PCS1900 base stations.
The MAX2039 is specified to operate over an RF frequency range of 1700MHz to 2200MHz, an LO frequency range of 1500MHz to 2000MHz, and an IF frequency
range of DC to 350MHz. Operation beyond these
ranges is possible; see the Typical Operating
Characteristics for additional details.
12
This device can operate in high-side LO injection applications with an extended LO range, but performance
degrades as fLO continues to increase. See the Typical
Operating Characteristics for measurements taken with
fLO up to 2200MHz. For a device with better high-side
LO injection performance, contact the factory.
RF Port and Balun
For using the MAX2039 as a downconverter, the RF input
is internally matched to 50Ω, requiring no external matching components. A DC-blocking capacitor is required
since the input is internally DC shorted to ground through
the on-chip balun. The RF return loss is typically 18dB
over the entire 1700MHz to 2200MHz RF frequency
range. For upconverter operation, the RF port is a singleended output similarly matched to 50Ω.
LO Inputs, Buffer, and Balun
The MAX2039 can be used for either high-side or lowside injection applications with a 1500MHz to 2000MHz
LO frequency range. For a device with a 1900MHz to
2400MHz LO frequency range, contact the factory. As
an added feature, the MAX2039 includes an internal LO
SPDT switch that can be used for frequency-hopping
applications. The switch selects one of the two singleended LO ports, allowing the external oscillator to settle
on a particular frequency before it is switched in. LO
switching time is typically less than 50ns, which is more
than adequate for virtually all GSM applications.
______________________________________________________________________________________
High-Linearity, 1700MHz to 2200MHz Upconversion/
Downconversion Mixer with LO Buffer/Switch
High-Linearity Mixer
The core of the MAX2039 is a double-balanced, highperformance passive mixer. Exceptional linearity is provided by the large LO swing from the on-chip LO
buffer.
Differential IF
The MAX2039 mixer has an IF frequency range of DC to
350MHz. Note that these differential ports are ideal for
providing enhanced IIP2 performance. Single-ended IF
applications require a 1:1 balun to transform the 50Ω differential IF impedance to a 50Ω single-ended system.
After the balun, the IF return loss is better than 15dB.
The differential IF is used as an input port for upconverter operation. The user can use a differential IF amplifier
following the mixer but a DC block is required on both IF
pins. In this configuration, the IF+ and IF- pins need to
be returned to ground through a high resistance (about
1kΩ). This ground return can also be accomplished by
grounding the RF TAP (pin 3) and AC-coupling the IF+
and IF- ports (pins 19 and 18).
Applications Information
Input and Output Matching
The RF and LO inputs are internally matched to 50Ω. No
matching components are required. Return loss at the RF
port is typically 18dB over the entire input range
(1700MHz to 2200MHz) and return loss at the LO ports is
typically 16dB (1500MHz to 2000MHz). RF and LO inputs
require only DC-blocking capacitors for interfacing.
The IF output impedance is 50Ω (differential). For evaluation, an external low-loss 1:1 (impedance ratio) balun
Table 1. Component List Referring to the
Typical Application Circuit
COMPONENT
VALUE
C1
4pF
Microwave capacitor (0603)
DESCRIPTION
C4
10pF
Microwave capacitor (0603)
C2, C6, C7, C8,
C10, C12
22pF
Microwave capacitors (0603)
C3, C5, C9, C11
0.01µF
Microwave capacitors (0603)
R1
549Ω
T1
1:1 Balun
U1
MAX2039 Maxim IC
±1% resistor (0603)
IF balun with DC grounded
ports
transforms this impedance to a 50Ω single-ended output (see the Typical Application Circuit).
Bias Resistor
Bias current for the LO buffer is optimized by fine tuning resistor R1. If reduced current is required at the
expense of performance, contact the factory for details.
If the ±1% bias resistor values are not readily available,
substitute standard ±5% values.
Layout Considerations
A properly designed PC board is an essential part of
any RF/microwave circuit. Keep RF signal lines as short
as possible to reduce losses, radiation, and inductance. For the best performance, route the ground pin
traces directly to the exposed pad under the package.
The PC board exposed pad MUST be connected to the
ground plane of the PC board. It is suggested that multiple vias be used to connect this pad to the lower-level
ground planes. This method provides a good RF/thermal conduction path for the device. Solder the exposed
pad on the bottom of the device package to the PC
board. The MAX2039 Evaluation Kit can be used as a
reference for board layout. Gerber files are available
upon request at www.maxim-ic.com.
Power-Supply Bypassing
Proper voltage-supply bypassing is essential for highfrequency circuit stability. Bypass each VCC pin and
TAP with the capacitors shown in the Typical
Application Circuit; see Table 1. Place the TAP bypass
capacitor to ground within 100 mils of the TAP pin.
______________________________________________________________________________________
13
MAX2039
If frequency hopping is not employed, set the switch to
either of the LO inputs. The switch is controlled by a
digital input (LOSEL): logic high selects LO2, logic low
selects LO1. In order to avoid damage to the part, voltage MUST be applied to VCC before digital logic is
applied to LOSEL (see the Absolute Maximum Ratings).
LO1 and LO2 inputs are internally matched to 50Ω,
requiring only a 22pF DC-blocking capacitor.
A two-stage internal LO buffer allows a wide-input
power range for the LO drive. All guaranteed specifications are for an LO signal power from -3dBm to +3dBm.
The on-chip low-loss balun, along with an LO buffer,
drives the double-balanced mixer. All interfacing and
matching components from the LO inputs to the IF outputs are integrated on chip.
High-Linearity, 1700MHz to 2200MHz Upconversion/
Downconversion Mixer with LO Buffer/Switch
MAX2039
Typical Application Circuit
C3
3
5
IF
16
GND
4
GND
1
17
IF18
19
20
VCC
IF+
GND
T1
C2
VCC
C1
RF
RF
15
1
2
14
MAX2039
C12
LO2
INPUT
VCC
VCC
C11
C5
TAP
C4
LO2
GND
3
13
4
12
5
11
GND
GND
LO1
INPUT
10
LO1
GND
9
LOSEL
8
VCC
LOBIAS
VCC
6
7
C10
GND
R1
VCC
C6
C7
VCC
C9
LOSEL
INPUT
C8
Exposed Pad RF/Thermal Considerations
The EP of the MAX2039’s 20-pin thin QFN-EP package
provides a low thermal-resistance path to the die. It is
important that the PC board on which the MAX2039 is
mounted be designed to conduct heat from the EP. In
addition, provide the EP with a low-inductance path to
electrical ground. The EP MUST be soldered to a
ground plane on the PC board, either directly or
through an array of plated via holes.
14
Chip Information
TRANSISTOR COUNT: 1212
PROCESS: SiGe BiCMOS
______________________________________________________________________________________
High-Linearity, 1700MHz to 2200MHz Upconversion/
Downconversion Mixer with LO Buffer/Switch
GND
IF+
IF-
GND
GND
20
19
18
17
16
TOP VIEW
15
LO2
2
14
VCC
TAP
3
13
GND
GND
4
12
GND
GND
5
11
LO1
VCC
1
RF
MAX2039
Pin Configuration
8
9
VCC
LOSEL
GND 10
7
LOBIAS
VCC
6
MAX2039
______________________________________________________________________________________
15
Package Information
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,
go to www.maxim-ic.com/packages.)
D2
0.15 C A
D
b
C
L
0.10 M C A B
D2/2
D/2
k
0.15 C B
MARKING
QFN THIN.EPS
MAX2039
High-Linearity, 1700MHz to 2200MHz Upconversion/
Downconversion Mixer with LO Buffer/Switch
XXXXX
E/2
E2/2
C
L
(NE-1) X e
E
E2
k
L
DETAIL A
PIN # 1
I.D.
e
PIN # 1 I.D.
0.35x45∞
(ND-1) X e
DETAIL B
e
L1
L
C
L
C
L
L
L
e
e
0.10 C
A
C
0.08 C
A1 A3
PACKAGE OUTLINE,
16, 20, 28, 32L THIN QFN, 5x5x0.8mm
21-0140
-DRAWING NOT TO SCALE-
COMMON DIMENSIONS
A1
0.70 0.75 0.80 0.70 0.75 0.80 0.70 0.75 0.80 0.70 0.75 0.80
0
A3
b
D
E
L1
0
0.20 REF.
0.02 0.05
0
0.20 REF.
0.02 0.05
0
0.20 REF.
0.02 0.05
0.20 REF.
0.25 0.30 0.35 0.25 0.30 0.35 0.20 0.25 0.30 0.20 0.25 0.30
4.90 5.00 5.10 4.90 5.00 5.10 4.90 5.00 5.10 4.90 5.00 5.10
4.90 5.00 5.10 4.90 5.00 5.10 4.90 5.00 5.10 4.90 5.00 5.10
0.80 BSC.
e
k
L
0.02 0.05
0.65 BSC.
0.50 BSC.
0.50 BSC.
0.25 - 0.25 - 0.25 - 0.25
0.30 0.40 0.50 0.45 0.55 0.65 0.45 0.55 0.65 0.30 0.40 0.50
-
-
-
-
-
N
ND
NE
16
4
4
20
5
5
JEDEC
WHHB
WHHC
-
-
1
2
EXPOSED PAD VARIATIONS
PKG.
16L 5x5
20L 5x5
28L 5x5
32L 5x5
SYMBOL MIN. NOM. MAX. MIN. NOM. MAX. MIN. NOM. MAX. MIN. NOM. MAX.
A
F
-
-
-
28
7
7
WHHD-1
-
-
32
8
8
WHHD-2
NOTES:
1. DIMENSIONING & TOLERANCING CONFORM TO ASME Y14.5M-1994.
2. ALL DIMENSIONS ARE IN MILLIMETERS. ANGLES ARE IN DEGREES.
3. N IS THE TOTAL NUMBER OF TERMINALS.
D2
L
E2
PKG.
CODES
MIN.
NOM. MAX.
MIN.
NOM. MAX.
±0.15
T1655-1
T1655-2
T1655N-1
3.00
3.00
3.00
3.10 3.20 3.00
3.10 3.20 3.00
3.10 3.20 3.00
3.10 3.20
3.10 3.20
3.10 3.20
T2055-2
T2055-3
T2055-4
3.00
3.00
3.00
3.10 3.20 3.00
3.10 3.20 3.00
3.10 3.20 3.00
3.10
3.10
3.10
3.20
3.20
3.20
**
**
**
**
T2055-5
T2855-1
T2855-2
T2855-3
T2855-4
T2855-5
T2855-6
T2855-7
T2855-8
T2855N-1
T3255-2
T3255-3
T3255-4
T3255N-1
3.15
3.15
2.60
3.15
2.60
2.60
3.15
2.60
3.15
3.15
3.00
3.00
3.00
3.00
3.25
3.25
2.70
3.25
2.70
2.70
3.25
2.70
3.25
3.25
3.10
3.10
3.10
3.10
3.25
3.25
2.70
3.25
2.70
2.70
3.25
2.70
3.25
3.25
3.10
3.10
3.10
3.10
3.35
3.35
2.80
3.35
2.80
2.80
3.35
2.80
3.35
3.35
3.20
3.20
3.20
3.20
4. THE TERMINAL #1 IDENTIFIER AND TERMINAL NUMBERING CONVENTION SHALL
CONFORM TO JESD 95-1 SPP-012. DETAILS OF TERMINAL #1 IDENTIFIER ARE
OPTIONAL, BUT MUST BE LOCATED WITHIN THE ZONE INDICATED. THE TERMINAL #1
IDENTIFIER MAY BE EITHER A MOLD OR MARKED FEATURE.
3.35
3.35
2.80
3.35
2.80
2.80
3.35
2.80
3.35
3.35
3.20
3.20
3.20
3.20
3.15
3.15
2.60
3.15
2.60
2.60
3.15
2.60
3.15
3.15
3.00
3.00
3.00
3.00
**
**
0.40
DOWN
BONDS
ALLOWED
NO
YES
NO
NO
YES
NO
Y
**
NO
NO
YES
YES
NO
**
**
0.40
**
**
**
**
**
NO
YES
Y
N
NO
YES
NO
NO
**
**
**
**
** SEE COMMON DIMENSIONS TABLE
5. DIMENSION b APPLIES TO METALLIZED TERMINAL AND IS MEASURED BETWEEN 0.25 mm AND 0.30 mm
FROM TERMINAL TIP.
6. ND AND NE REFER TO THE NUMBER OF TERMINALS ON EACH D AND E SIDE RESPECTIVELY.
7. DEPOPULATION IS POSSIBLE IN A SYMMETRICAL FASHION.
8. COPLANARITY APPLIES TO THE EXPOSED HEAT SINK SLUG AS WELL AS THE TERMINALS.
9. DRAWING CONFORMS TO JEDEC MO220, EXCEPT EXPOSED PAD DIMENSION FOR T2855-1,
T2855-3 AND T2855-6.
10. WARPAGE SHALL NOT EXCEED 0.10 mm.
11. MARKING IS FOR PACKAGE ORIENTATION REFERENCE ONLY.
12. NUMBER OF LEADS SHOWN ARE FOR REFERENCE ONLY.
PACKAGE OUTLINE,
16, 20, 28, 32L THIN QFN, 5x5x0.8mm
21-0140
-DRAWING NOT TO SCALE-
F
2
2
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.
16 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600
© 2004 Maxim Integrated Products
Printed USA
is a registered trademark of Maxim Integrated Products.