CYPRESS CY7C1372D

CY7C1370D
CY7C1372D
PRELIMINARY
18-Mbit (512K x 36/1M x 18) Pipelined
SRAM with NoBL™ Architecture
Features
Functional Description
• Pin-compatible and functionally equivalent to ZBT™
• Supports 250-MHz bus operations with zero wait states
— Available speed grades are 250, 225, 200, and
167 MHz
• Internally self-timed output buffer control to eliminate
the need to use asynchronous OE
• Fully registered (inputs and outputs) for pipelined
operation
• Byte Write capability
The CY7C1370D and CY7C1372D are 3.3V, 512K x 36 and
1 Mbit x 18 Synchronous pipelined burst SRAMs with No Bus
Latency™ (NoBL™) logic, respectively. They are designed to
support unlimited true back-to-back Read/Write operations
with no wait states. The CY7C1370D and CY7C1372D are
equipped with the advanced (NoBL) logic required to enable
consecutive Read/Write operations with data being transferred on every clock cycle. This feature dramatically improves
the throughput of data in systems that require frequent
Write/Read transitions. The CY7C1370D and CY7C1372D are
pin compatible and functionally equivalent to ZBT devices.
All synchronous inputs pass through input registers controlled
by the rising edge of the clock. All data outputs pass through
output registers controlled by the rising edge of the clock. The
clock input is qualified by the Clock Enable (CEN) signal,
which when deasserted suspends operation and extends the
previous clock cycle.
• Single 3.3V power supply
• 3.3V/2.5V I/O power supply
• Fast clock-to-output times
— 2.6 ns (for 250-MHz device)
— 2.8 ns (for 225-MHz device)
— 3.0 ns (for 200-MHz device)
— 3.4 ns (for 167-MHz device)
• Clock Enable (CEN) pin to suspend operation
• Synchronous self-timed writes
• Available in lead-Free 100 TQFP, 119 BGA, and 165 fBGA
packages
• IEEE 1149.1 JTAG Boundary Scan
Write operations are controlled by the Byte Write Selects
(BWa–BWd for CY7C1370D and BWa–BWb for CY7C1372D)
and a Write Enable (WE) input. All writes are conducted with
on-chip synchronous self-timed write circuitry.
Three synchronous Chip Enables (CE1, CE2, CE3) and an
asynchronous Output Enable (OE) provide for easy bank
selection and output three-state control. In order to avoid bus
contention, the output drivers are synchronously three-stated
during the data portion of a write sequence.
• Burst capability—linear or interleaved burst order
• “ZZ” Sleep Mode option and Stop Clock option
Logic Block Diagram-CY7C1370D (512K x 36)
A0, A1, A
ADDRESS
REGISTER 0
A1
A1'
D1
Q1
A0
A0'
BURST
D0
Q0
LOGIC
MODE
CLK
CEN
ADV/LD
C
C
WRITE ADDRESS
REGISTER 1
WRITE ADDRESS
REGISTER 2
S
E
N
S
E
ADV/LD
BWa
BWb
BWc
BWd
WRITE REGISTRY
AND DATA COHERENCY
CONTROL LOGIC
WRITE
DRIVERS
MEMORY
ARRAY
A
M
P
S
WE
O
U
T
P
U
T
R
E
G
I
S
T
E
R
S
E
INPUT
REGISTER 1
OE
CE1
CE2
CE3
ZZ
Cypress Semiconductor Corporation
Document #: 38-05555 Rev. *A
E
O
U
T
P
U
T
D
A
T
A
S
T
E
E
R
I
N
G
INPUT
REGISTER 0
B
U
F
F
E
R
S
DQs
DQPa
DQPb
DQPc
DQPd
E
E
READ LOGIC
SLEEP
CONTROL
•
3901 North First Street
•
San Jose, CA 95134
•
408-943-2600
Revised October 12, 2004
CY7C1370D
CY7C1372D
PRELIMINARY
Logic Block Diagram-CY7C1372D (1 Mbit x 18)
A0, A1, A
ADDRESS
REGISTER 0
A1
A1'
D1
Q1
A0
A0'
BURST
D0
Q0
LOGIC
MODE
CLK
CEN
ADV/LD
C
C
WRITE ADDRESS
REGISTER 1
WRITE ADDRESS
REGISTER 2
ADV/LD
BWa
WRITE REGISTRY
AND DATA COHERENCY
CONTROL LOGIC
WRITE
DRIVERS
MEMORY
ARRAY
BWb
WE
S
E
N
S
E
A
M
P
S
O
U
T
P
U
T
D
A
T
A
R
E
G
I
S
T
E
R
S
S
T
E
E
R
I
N
G
E
INPUT
REGISTER 1 E
OE
CE1
CE2
CE3
ZZ
O
U
T
P
U
T
B
U
F
F
E
R
S
DQs
DQPa
DQPb
E
INPUT
REGISTER 0 E
READ LOGIC
Sleep
Control
Selection Guide
CY7C1370D-250 CY7C1370D-225 CY7C1370D-200 CY7C1370D-167
CY7C1372D-250 CY7C1372D-225 CY7C1372D-200 CY7C1372D-167
Maximum Access Time
Maximum Operating Current
Maximum CMOS Standby Current
2.6
350
70
2.8
325
70
3.0
300
70
3.4
275
70
Unit
ns
mA
mA
Shaded areas contain advance information. Please contact your local Cypress sales representative for availability of these parts.
Document #: 38-05555 Rev. *A
Page 2 of 30
CY7C1370D
CY7C1372D
PRELIMINARY
Pin Configurations
100
99
98
97
96
95
94
93
92
91
90
89
88
87
86
85
84
83
82
81
NC
DQPb
NC
DQb
NC
DQb
VDDQ VDDQ
VSS
VSS
NC
DQb
DQb
NC
DQb
DQb
DQb
DQb
VSS
VSS
VDDQ
V
DDQ
CY7C1372D
(1M × 18)
80
79
78
77
76
75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
60
59
58
57
56
55
54
53
52
51
Document #: 38-05555 Rev. *A
A
NC
NC
VDDQ
VSS
NC
DQPa
DQa
DQa
VSS
VDDQ
DQa
DQa
VSS
NC
VDD
ZZ
DQa
DQa
VDDQ
VSS
DQa
DQa
NC
NC
VSS
VDDQ
NC
NC
NC
A
A
A
A
A
A
A
E(36)
E(72)
VSS
VDD
E(288)
E(144)
A
A
A
A
A
A
A
E(36)
E(72)
VSS
VDD
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
DQb
DQb
DQb
DQb
NC
VSS
VDD
NC
NC
VDD
VSS
ZZ
DQb
DQa
DQa
DQb
VDDQ VDDQ
VSS
VSS
DQa
DQb
DQa
DQb
DQa DQPb
NC
DQa
VSS
VSS
VDDQ VDDQ
NC
DQa
DQa
NC
DQPa
NC
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
MODE
A
A
A
A
A1
A0
CY7C1370D
(512K × 36)
E(288)
E(144)
DQc
DQc
NC
VDD
NC
VSS
DQd
DQd
VDDQ
VSS
DQd
DQd
DQd
DQd
VSS
VDDQ
DQd
DQd
DQPd
80
79
78
77
76
75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
60
59
58
57
56
55
54
53
52
51
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
VSS
DQc
DQc
DQc
DQc
VSS
VDDQ
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
MODE
A
A
A
A
A1
A0
DQPc
DQc
DQc
VDDQ
A
A
A
A
CE1
CE2
NC
NC
BWb
BWa
CE3
VDD
VSS
CLK
WE
CEN
OE
ADV/LD
A
A
A
A
100
99
98
97
96
95
94
93
92
91
90
89
88
87
86
85
84
83
82
81
A
A
CE1
CE2
BWd
BWc
BWb
BWa
CE3
VDD
VSS
CLK
WE
CEN
OE
ADV/LD
A
A
100-pin TQFP Packages
Page 3 of 30
CY7C1370D
CY7C1372D
PRELIMINARY
Pin Configurations (continued)
119-ball BGA Pinout
CY7C1370D (512K × 36) – BGA
1
2
3
4
5
6
7
A
VDDQ
A
A
A
A
A
VDDQ
B
C
D
E
F
G
H
J
K
L
M
N
P
NC
NC
DQc
CE2
A
DQPc
A
A
VSS
ADV/LD
VDD
NC
A
A
VSS
CE3
A
DQPb
NC
NC
DQb
DQc
DQc
VSS
CE1
VSS
DQb
DQb
VDDQ
DQc
VSS
DQb
VDDQ
DQc
BWb
DQb
DQb
DQc
VDDQ
DQc
VDD
BWc
VSS
NC
OE
A
VSS
DQc
WE
VDD
VSS
NC
DQb
VDD
DQb
VDDQ
DQd
DQd
DQd
DQd
CLK
NC
VSS
BWd
BWa
DQa
DQa
DQa
DQa
VDDQ
DQd
VSS
DQa
VDDQ
DQd
VSS
CEN
A1
VSS
DQd
VSS
DQa
DQa
DQd
DQPd
VSS
A0
VSS
DQPa
DQa
NC
A
MODE
VDD
NC
E(72)
A
A
NC
A
A
NC
E(36)
ZZ
VDDQ
TMS
TDI
TCK
TDO
NC
VDDQ
R
T
U
VSS
CY7C1372D (1M x 18) – BGA
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
U
Document #: 38-05555 Rev. *A
1
2
3
4
5
6
7
VDDQ
A
A
A
A
A
VDDQ
NC
CE2
A
A
NC
A
VSS
ADV/LD
VDD
NC
A
NC
DQb
A
VSS
CE3
A
DQPa
NC
NC
CE1
VSS
NC
DQa
OE
A
VSS
DQa
VDDQ
NC
VSS
NC
NC
DQa
VDD
DQa
NC
VDDQ
DQa
NC
DQb
VSS
VDDQ
NC
VSS
NC
DQb
VDDQ
DQb
NC
VDD
BWb
VSS
NC
WE
VDD
NC
NC
DQb
VSS
CLK
VSS
NC
DQb
NC
NC
NC
DQa
NC
VDDQ
DQb
VSS
NC
VDDQ
DQb
NC
VSS
CEN
A1
BWa
VSS
VSS
DQa
NC
NC
DQPb
VSS
A0
VSS
NC
DQa
NC
NC
A
MODE
VDD
NC
A
E(72)
A
A
E(36)
A
A
ZZ
VDDQ
TMS
TDI
TCK
TDO
NC
VDDQ
Page 4 of 30
CY7C1370D
CY7C1372D
PRELIMINARY
Pin Configurations (continued)
165-Ball fBGA Pinout
CY7C1370D (512K × 36) – fBGA
4
5
6
7
1
2
3
A
B
C
D
E
F
G
H
J
K
L
M
N
P
E(288)
A
CE1
BWc
BWb
CE3
BWd
VSS
VDD
BWa
VSS
R
NC
A
CE2
DQPc
DQc
NC
DQc
VDDQ
VDDQ
8
9
10
11
ADV/LD
A
A
NC
CLK
CEN
WE
OE
A
A
E(144)
VSS
VSS
VSS
VDD
VDDQ
VSS
VSS
VSS
VDDQ
NC
DQb
DQPb
DQb
DQc
DQc
VDDQ
VDD
VSS
VSS
VSS
VDD
VDDQ
DQb
DQb
DQc
DQc
VDDQ
VDD
VSS
VSS
VSS
VDD
VDDQ
DQb
DQb
DQc
NC
DQd
DQc
NC
DQd
VDDQ
NC
VDDQ
VDD
VDD
VDD
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VDD
VDD
VDD
VDDQ
NC
VDDQ
DQb
NC
DQa
DQb
ZZ
DQa
DQd
DQd
VDDQ
VDD
VSS
VSS
VSS
VDD
VDDQ
DQa
DQa
DQd
DQd
VDDQ
VDD
VSS
VSS
VSS
VDD
VDDQ
DQa
DQa
DQd
DQPd
DQd
NC
VDDQ
VDDQ
VDD
VSS
VSS
NC
VSS
NC
VSS
NC
VDD
VSS
VDDQ
VDDQ
DQa
NC
DQa
DQPa
NC
E(72)
A
A
TDI
A1
TDO
A
A
A
NC
MODE
E(36)
A
A
TMS
A0
TCK
A
A
A
A
8
9
10
11
A
A
A
CY7C1372D (1M × 18) – fBGA
1
2
3
4
5
6
A
B
C
D
E
F
G
H
J
K
L
M
N
P
E(288)
A
CE1
BWb
NC
CE3
7
CEN
ADV/LD
OE
VSS
R
NC
A
CE2
NC
BWa
CLK
NC
NC
NC
DQb
VDDQ
VDDQ
VSS
VDD
VSS
VSS
VSS
VSS
WE
VSS
VSS
A
A
E(144)
VDD
VDDQ
VDDQ
NC
NC
DQPa
DQa
NC
DQb
VDDQ
VDD
VSS
VSS
VSS
VDD
VDDQ
NC
DQa
NC
DQb
VDDQ
VDD
VSS
VSS
VSS
VDD
VDDQ
NC
DQa
NC
NC
DQb
DQb
NC
NC
VDDQ
NC
VDDQ
VDD
VDD
VDD
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VDD
VDD
VDD
VDDQ
NC
VDDQ
NC
NC
DQa
DQa
ZZ
NC
DQb
NC
VDDQ
VDD
VSS
VSS
VSS
VDD
VDDQ
DQa
NC
DQb
NC
VDDQ
VDD
VSS
VSS
VSS
VDD
VDDQ
DQa
NC
DQb
DQPb
NC
NC
VDDQ
VDDQ
VDD
VSS
VSS
NC
VSS
NC
VSS
NC
VDD
VSS
VDDQ
VDDQ
DQa
NC
NC
NC
NC
E(72)
A
A
TDI
A1
TDO
A
A
A
NC
MODE
E(36)
A
A
TMS
A0
TCK
A
A
A
A
Document #: 38-05555 Rev. *A
Page 5 of 30
PRELIMINARY
CY7C1370D
CY7C1372D
Pin Definitions
I/O Type
Pin Description
A0
A1
A
Pin Name
InputSynchronous
Address Inputs used to select one of the address locations. Sampled at the rising edge of
the CLK.
BWa
BWb
BWc
BWd
InputSynchronous
Byte Write Select Inputs, active LOW. Qualified with WE to conduct writes to the SRAM.
Sampled on the rising edge of CLK. BWa controls DQa and DQPa, BWb controls DQb and DQPb,
BWc controls DQc and DQPc, BWd controls DQd and DQPd.
WE
InputSynchronous
Write Enable Input, active LOW. Sampled on the rising edge of CLK if CEN is active LOW. This
signal must be asserted LOW to initiate a write sequence.
ADV/LD
InputSynchronous
Advance/Load Input used to advance the on-chip address counter or load a new address.
When HIGH (and CEN is asserted LOW) the internal burst counter is advanced. When LOW, a
new address can be loaded into the device for an access. After being deselected, ADV/LD should
be driven LOW in order to load a new address.
CLK
InputClock
Clock Input. Used to capture all synchronous inputs to the device. CLK is qualified with CEN.
CLK is only recognized if CEN is active LOW.
CE1
InputSynchronous
Chip Enable 1 Input, active LOW. Sampled on the rising edge of CLK. Used in conjunction with
CE2 and CE3 to select/deselect the device.
CE2
InputSynchronous
Chip Enable 2 Input, active HIGH. Sampled on the rising edge of CLK. Used in conjunction with
CE1 and CE3 to select/deselect the device.
CE3
InputSynchronous
Chip Enable 3 Input, active LOW. Sampled on the rising edge of CLK. Used in conjunction with
CE1 and CE2 to select/deselect the device.
OE
InputAsynchronous
Output Enable, active LOW. Combined with the synchronous logic block inside the device to
control the direction of the I/O pins. When LOW, the I/O pins are allowed to behave as outputs.
When deasserted HIGH, I/O pins are three-stated, and act as input data pins. OE is masked
during the data portion of a write sequence, during the first clock when emerging from a
deselected state and when the device has been deselected.
CEN
InputSynchronous
Clock Enable Input, active LOW. When asserted LOW the clock signal is recognized by the
SRAM. When deasserted HIGH the clock signal is masked. Since deasserting CEN does not
deselect the device, CEN can be used to extend the previous cycle when required.
DQS
I/OSynchronous
Bidirectional Data I/O lines. As inputs, they feed into an on-chip data register that is triggered
by the rising edge of CLK. As outputs, they deliver the data contained in the memory location
specified by A[17:0] during the previous clock rise of the read cycle. The direction of the pins is
controlled by OE and the internal control logic. When OE is asserted LOW, the pins can behave
as outputs. When HIGH, DQa–DQd are placed in a three-state condition. The outputs are
automatically three-stated during the data portion of a write sequence, during the first clock when
emerging from a deselected state, and when the device is deselected, regardless of the state of OE.
DQPX
I/OSynchronous
Bidirectional Data Parity I/O lines. Functionally, these signals are identical to DQs. During write
sequences, DQPa is controlled by BWa, DQPb is controlled by BWb, DQPc is controlled by BWc,
and DQPd is controlled by BWd.
MODE
Input Strap Pin
Mode Input. Selects the burst order of the device. Tied HIGH selects the interleaved burst order.
Pulled LOW selects the linear burst order. MODE should not change states during operation.
When left floating MODE will default HIGH, to an interleaved burst order.
TDO
JTAG serial output Serial data-out to the JTAG circuit. Delivers data on the negative edge of TCK.
Synchronous
TDI
JTAG serial input Serial data-In to the JTAG circuit. Sampled on the rising edge of TCK.
Synchronous
TMS
Test Mode Select This pin controls the Test Access Port state machine. Sampled on the rising edge of TCK.
Synchronous
TCK
JTAG-Clock
VDD
Power Supply
VDDQ
VSS
Clock input to the JTAG circuitry.
Power supply inputs to the core of the device.
I/O Power Supply Power supply for the I/O circuitry.
Ground
Document #: 38-05555 Rev. *A
Ground for the device. Should be connected to ground of the system.
Page 6 of 30
PRELIMINARY
CY7C1370D
CY7C1372D
Pin Definitions (continued)
Pin Name
I/O Type
NC
E(36,72,
144, 288)
–
–
ZZ
InputAsynchronous
Pin Description
No connects. This pin is not connected to the die.
These pins are not connected. They will be used for expansion to the 36M, 72M, 144M and
288M densities.
ZZ “sleep” Input. This active HIGH input places the device in a non-time critical “sleep” condition
with data integrity preserved. During normal operation, this pin can be connected to VSS or left
floating.
Introduction
Functional Overview
The CY7C1370D and CY7C1372D are synchronous-pipelined
Burst NoBL SRAMs designed specifically to eliminate wait
states during Write/Read transitions. All synchronous inputs
pass through input registers controlled by the rising edge of
the clock. The clock signal is qualified with the Clock Enable
input signal (CEN). If CEN is HIGH, the clock signal is not
recognized and all internal states are maintained. All
synchronous operations are qualified with CEN. All data
outputs pass through output registers controlled by the rising
edge of the clock. Maximum access delay from the clock rise
(tCO) is 2.6 ns (250-MHz device).
Accesses can be initiated by asserting all three Chip Enables
(CE1, CE2, CE3) active at the rising edge of the clock. If Clock
Enable (CEN) is active LOW and ADV/LD is asserted LOW,
the address presented to the device will be latched. The
access can either be a read or write operation, depending on
the status of the Write Enable (WE). BWX can be used to
conduct byte write operations.
Write operations are qualified by the Write Enable (WE). All
writes are simplified with on-chip synchronous self-timed write
circuitry.
Three synchronous Chip Enables (CE1, CE2, CE3) and an
asynchronous Output Enable (OE) simplify depth expansion.
All operations (Reads, Writes, and Deselects) are pipelined.
ADV/LD should be driven LOW once the device has been
deselected in order to load a new address for the next
operation.
Single Read Accesses
A read access is initiated when the following conditions are
satisfied at clock rise: (1) CEN is asserted LOW, (2) CE1, CE2,
and CE3 are ALL asserted active, (3) the Write Enable input
signal WE is deasserted HIGH, and (4) ADV/LD is asserted
LOW. The address presented to the address inputs is latched
into the Address Register and presented to the memory core
and control logic. The control logic determines that a read
access is in progress and allows the requested data to
propagate to the input of the output register. At the rising edge
of the next clock the requested data is allowed to propagate
through the output register and onto the data bus within 2.6 ns
(250-MHz device) provided OE is active LOW. After the first
clock of the read access the output buffers are controlled by
OE and the internal control logic. OE must be driven LOW in
order for the device to drive out the requested data. During the
second clock, a subsequent operation (Read/Write/Deselect)
can be initiated. Deselecting the device is also pipelined.
Therefore, when the SRAM is deselected at clock rise by one
of the chip enable signals, its output will three-state following
the next clock rise.
Document #: 38-05555 Rev. *A
Burst Read Accesses
The CY7C1370D and CY7C1372D have an on-chip burst
counter that allows the user the ability to supply a single
address and conduct up to four Reads without reasserting the
address inputs. ADV/LD must be driven LOW in order to load
a new address into the SRAM, as described in the Single Read
Access section above. The sequence of the burst counter is
determined by the MODE input signal. A LOW input on MODE
selects a linear burst mode, a HIGH selects an interleaved
burst sequence. Both burst counters use A0 and A1 in the
burst sequence, and will wrap-around when incremented sufficiently. A HIGH input on ADV/LD will increment the internal
burst counter regardless of the state of chip enables inputs or
WE. WE is latched at the beginning of a burst cycle. Therefore,
the type of access (Read or Write) is maintained throughout
the burst sequence.
Single Write Accesses
Write access are initiated when the following conditions are
satisfied at clock rise: (1) CEN is asserted LOW, (2) CE1, CE2,
and CE3 are ALL asserted active, and (3) the write signal WE
is asserted LOW. The address presented is loaded into the
Address Register. The write signals are latched into the
Control Logic block.
On the subsequent clock rise the data lines are automatically
three-stated regardless of the state of the OE input signal. This
allows the external logic to present the data on DQ and DQP
(DQa,b,c,d/DQPa,b,c,d for CY7C1370D and DQa,b/DQPa,b for
CY7C1372D). In addition, the address for the subsequent
access (Read/Write/Deselect) is latched into the Address
Register (provided the appropriate control signals are
asserted).
On the next clock rise the data presented to DQ and DQP
(DQa,b,c,d/DQPa,b,c,d for CY7C1370D & DQa,b/DQPa,b for
CY7C1372D) (or a subset for byte write operations, see Write
Cycle Description table for details) inputs is latched into the
device and the write is complete.
The data written during the write operation is controlled by BW
(BWa,b,c,d for CY7C1370D and BWa,b for CY7C1372D)
signals. The CY7C1370D/CY7C1372D provides byte write
capability that is described in the Write Cycle Description table.
Asserting the Write Enable input (WE) with the selected Byte
Write Select (BW) input will selectively write to only the desired
bytes. Bytes not selected during a byte write operation will
remain unaltered. A synchronous self-timed write mechanism
has been provided to simplify the write operations. Byte write
capability has been included in order to greatly simplify
Read/Modify/Write sequences, which can be reduced to
simple byte write operations.
Because the CY7C1370D and CY7C1372D are common I/O
devices, data should not be driven into the device while the
Page 7 of 30
CY7C1370D
CY7C1372D
PRELIMINARY
outputs are active. The Output Enable (OE) can be deasserted
HIGH before presenting data to the DQ and DQP
(DQa,b,c,d/DQPa,b,c,d for CY7C1370D and DQa,b/DQPa,b for
CY7C1372D) inputs. Doing so will three-state the output
drivers. As a safety precaution, DQ and DQP (DQa,b,c,d/
DQPa,b,c,d for CY7C1370D and DQa,b/DQPa,b for
CY7C1372D) are automatically three-stated during the data
portion of a write cycle, regardless of the state of OE.
Interleaved Burst Address Table
(MODE = Floating or VDD)
First
Address
Second
Address
Third
Address
Fourth
Address
A1,A0
A1,A0
A1,A0
A1,A0
Burst Write Accesses
00
01
10
11
The CY7C1370D/CY7C1372D has an on-chip burst counter
that allows the user the ability to supply a single address and
conduct up to four write operations without reasserting the
address inputs. ADV/LD must be driven LOW in order to load
the initial address, as described in the Single Write Access
section above. When ADV/LD is driven HIGH on the subsequent clock rise, the chip enables (CE1, CE2, and CE3) and
WE inputs are ignored and the burst counter is incremented.
The correct BW (BWa,b,c,d for CY7C1370D and BWa,b for
CY7C1372D) inputs must be driven in each cycle of the burst
write in order to write the correct bytes of data.
01
00
11
10
10
11
00
01
11
10
01
00
Linear Burst Address Table (MODE = GND)
First
Address
Second
Address
Third
Address
Fourth
Address
A1,A0
A1,A0
A1,A0
A1,A0
00
01
10
11
Sleep Mode
01
10
11
00
The ZZ input pin is an asynchronous input. Asserting ZZ
places the SRAM in a power conservation “sleep” mode. Two
clock cycles are required to enter into or exit from this “sleep”
mode. While in this mode, data integrity is guaranteed.
Accesses pending when entering the “sleep” mode are not
considered valid nor is the completion of the operation
guaranteed. The device must be deselected prior to entering
the “sleep” mode. CE1, CE2, and CE3, must remain inactive
for the duration of tZZREC after the ZZ input returns LOW.
10
11
00
01
11
00
01
10
ZZ Mode Electrical Characteristics
Parameter
Description
IDDZZ
Sleep mode standby current
Test Conditions
tZZS
Device operation to ZZ
ZZ > VDD − 0.2V
tZZREC
ZZ recovery time
ZZ < 0.2V
tZZI
ZZ active to sleep current
This parameter is sampled
tRZZI
ZZ Inactive to exit sleep current
This parameter is sampled
Document #: 38-05555 Rev. *A
Min.
ZZ > VDD − 0.2V
Max
Unit
80
mA
2tCYC
ns
2tCYC
ns
2tCYC
0
ns
ns
Page 8 of 30
CY7C1370D
CY7C1372D
PRELIMINARY
Truth Table[1, 2, 3, 4, 5, 6, 7]
Operation
Address
Used
CE
ZZ
ADV/LD
WE
BWx
OE
CEN
CLK
X
X
X
L
L-H
DQ
Deselect Cycle
None
H
L
L
Three-State
Continue Deselect Cycle
None
X
L
H
X
X
X
L
L-H
Three-State
Read Cycle (Begin Burst)
External
L
L
L
H
X
L
L
L-H
Data Out (Q)
Read Cycle (Continue Burst)
Next
X
L
H
X
X
L
L
L-H
Data Out (Q)
NOP/Dummy Read (Begin Burst)
External
L
L
L
H
X
H
L
L-H
Three-State
Dummy Read (Continue Burst)
Next
X
L
H
X
X
H
L
L-H
Three-State
Write Cycle (Begin Burst)
External
L
L
L
L
L
X
L
L-H
Data In (D)
Write Cycle (Continue Burst)
Next
X
L
H
X
L
X
L
L-H
Data In (D)
NOP/Write Abort (Begin Burst)
None
L
L
L
L
H
X
L
L-H
Three-State
Write Abort (Continue Burst)
Next
X
L
H
X
H
X
L
L-H
Three-State
Ignore Clock Edge (Stall)
Current
X
L
X
X
X
X
H
L-H
–
Sleep Mode
None
X
H
X
X
X
X
X
X
Three-State
Notes:
1. X = “Don't Care”, H = Logic HIGH, L = Logic LOW, CE stands for ALL Chip Enables active. BWx = L signifies at least one Byte Write Select is active, BWx = Valid
signifies that the desired byte write selects are asserted, see Write Cycle Description table for details.
2. Write is defined by WE and BWX. See Write Cycle Description table for details.
3. When a write cycle is detected, all I/Os are tri-stated, even during byte writes.
4. The DQ and DQP pins are controlled by the current cycle and the OE signal.
5. CEN = H inserts wait states.
6. Device will power-up deselected and the I/Os in a tri-state condition, regardless of OE.
7. OE is asynchronous and is not sampled with the clock rise. It is masked internally during write cycles.During a read cycle DQs and DQPX = Three-state when OE
is inactive or when the device is deselected, and DQs = data when OE is active.
8. Table only lists a partial listing of the byte write combinations. Any Combination of BWX is valid Appropriate write will be done based on which byte write is active.
Document #: 38-05555 Rev. *A
Page 9 of 30
CY7C1370D
CY7C1372D
PRELIMINARY
Partial Write Cycle Description[1, 2, 3, 8]
Function (CY7C1370D)
WE
BWd
BWc
BWb
BWa
Read
H
X
X
X
X
Write – No bytes written
L
H
H
H
H
Write Byte a – (DQa and DQPa)
L
H
H
H
L
Write Byte b – (DQb and DQPb)
L
H
H
L
H
Write Bytes b, a
L
H
H
L
L
Write Byte c – (DQc and DQPc)
L
H
L
H
H
Write Bytes c, a
L
H
L
H
L
Write Bytes c, b
L
H
L
L
H
Write Bytes c, b, a
L
H
L
L
L
Write Byte d – (DQd and DQPd)
L
L
H
H
H
Write Bytes d, a
L
L
H
H
L
Write Bytes d, b
L
L
H
L
H
Write Bytes d, b, a
L
L
H
L
L
Write Bytes d, c
L
L
L
H
H
Write Bytes d, c, a
L
L
L
H
L
Write Bytes d, c, b
L
L
L
L
H
Write All Bytes
L
L
L
L
L
WE
BWb
BWa
Read
H
x
x
Write – No Bytes Written
L
H
H
Function (CY7C1372D)
Write Byte a – (DQa and DQPa)
L
H
L
Write Byte b – (DQb and DQPb)
L
L
H
Write Both Bytes
L
L
L
IEEE 1149.1 Serial Boundary Scan (JTAG)
The CY7C1370D/CY7C1372D incorporates a serial boundary
scan test access port (TAP). This part is fully compliant with
1149.1. The TAP operates using JEDEC-standard 3.3V or
2.5V I/O logic levels.
The CY7C1370D/CY7C1372D contains a TAP controller,
instruction register, boundary scan register, bypass register,
and ID register.
Document #: 38-05555 Rev. *A
Disabling the JTAG Feature
It is possible to operate the SRAM without using the JTAG
feature. To disable the TAP controller, TCK must be tied
LOW(VSS) to prevent clocking of the device. TDI and TMS are
internally pulled up and may be unconnected. They may alternately be connected to VDD through a pull-up resistor. TDO
should be left unconnected. Upon power-up, the device will
come up in a reset state which will not interfere with the
operation of the device.
Page 10 of 30
CY7C1370D
CY7C1372D
PRELIMINARY
TAP Controller State Diagram
1
TAP Controller Block Diagram
0
TEST-LOGIC
RESET
Bypass Register
0
0
RUN-TEST/
IDLE
1
SELECT
DR-SCAN
1
SELECT
IR-SCAN
0
1
0
1
CAPTURE-DR
TDI
1
EXIT1-IR
0
Selection
Circuitry
TDO
Identification Register
SHIFT-IR
0
x . . . . . 2 1 0
1
EXIT1-DR
Instruction Register
31 30 29 . . . 2 1 0
0
0
1
Boundary Scan Register
1
0
PAUSE-DR
0
PAUSE-IR
1
0
1
EXIT2-DR
0
TCK
TMS
TAP CONTROLLER
EXIT2-IR
1
1
UPDATE-DR
1
2 1 0
Selection
Circuitry
CAPTURE-IR
0
SHIFT-DR
0
1
0
UPDATE-IR
1
0
Performing a TAP Reset
A Reset is performed by forcing TMS HIGH (VDD) for five rising
edges of TCK. This Reset does not affect the operation of the
SRAM and may be performed while the SRAM is operating.
The 0/1 next to each state represents the value of TMS at the
rising edge of TCK.
At power-up, the TAP is reset internally to ensure that TDO
comes up in a High-Z state.
Test Access Port (TAP)
TAP Registers
Test Clock (TCK)
The test clock is used only with the TAP controller. All inputs
are captured on the rising edge of TCK. All outputs are driven
from the falling edge of TCK.
Test Mode Select (TMS)
The TMS input is used to give commands to the TAP controller
and is sampled on the rising edge of TCK. It is allowable to
leave this ball unconnected if the TAP is not used. The ball is
pulled up internally, resulting in a logic HIGH level.
Test Data-In (TDI)
The TDI ball is used to serially input information into the
registers and can be connected to the input of any of the
registers. The register between TDI and TDO is chosen by the
instruction that is loaded into the TAP instruction register. TDI
is internally pulled up and can be unconnected if the TAP is
unused in an application. TDI is connected to the most significant bit (MSB) of any register. (See Tap Controller Block
Diagram.)
Test Data-Out (TDO)
The TDO output ball is used to serially clock data-out from the
registers. The output is active depending upon the current
state of the TAP state machine. The output changes on the
falling edge of TCK. TDO is connected to the least significant
bit (LSB) of any register. (See Tap Controller State Diagram.)
Registers are connected between the TDI and TDO balls and
allow data to be scanned into and out of the SRAM test
circuitry. Only one register can be selected at a time through
the instruction register. Data is serially loaded into the TDI ball
on the rising edge of TCK. Data is output on the TDO ball on
the falling edge of TCK.
Instruction Register
Three-bit instructions can be serially loaded into the instruction
register. This register is loaded when it is placed between the
TDI and TDO balls as shown in the Tap Controller Block
Diagram. Upon power-up, the instruction register is loaded
with the IDCODE instruction. It is also loaded with the IDCODE
instruction if the controller is placed in a reset state as
described in the previous section.
When the TAP controller is in the Capture-IR state, the two
least significant bits are loaded with a binary “01” pattern to
allow for fault isolation of the board-level serial test data path.
Bypass Register
To save time when serially shifting data through registers, it is
sometimes advantageous to skip certain chips. The bypassregister is a single-bit register that can be placed between the
TDI and TDO balls. This allows data to be shifted through the
SRAM with minimal delay. The bypass register is set LOW
(VSS) when the BYPASS instruction is executed.
Boundary Scan Register
The boundary scan register is connected to all the input and
bidirectional balls on the SRAM.
The boundary scan register is loaded with the contents of the
RAM I/O ring when the TAP controller is in the Capture-DR
state and is then placed between the TDI and TDO balls when
Document #: 38-05555 Rev. *A
Page 11 of 30
PRELIMINARY
the controller is moved to the Shift-DR state. The EXTEST,
SAMPLE/PRELOAD and SAMPLE Z instructions can be used
to capture the contents of the I/O ring.
The Boundary Scan Order tables show the order in which the
bits are connected. Each bit corresponds to one of the bumps
on the SRAM package. The MSB of the register is connected
to TDI and the LSB is connected to TDO.
Identification (ID) Register
The ID register is loaded with a vendor-specific, 32-bit code
during the Capture-DR state when the IDCODE command is
loaded in the instruction register. The IDCODE is hardwired
into the SRAM and can be shifted out when the TAP controller
is in the Shift-DR state. The ID register has a vendor code and
other information described in the Identification Register
Definitions table.
TAP Instruction Set
Overview
Eight different instructions are possible with the three-bit
instruction register. All combinations are listed in the
Instruction Codes table. Three of these instructions are listed
as RESERVED and should not be used. The other five instructions are described in detail below.
The TAP controller used in this SRAM is not fully compliant to
the 1149.1 convention because some of the mandatory 1149.1
instructions are not fully implemented.
The TAP controller cannot be used to load address data or
control signals into the SRAM and cannot preload the I/O
buffers. The SRAM does not implement the 1149.1 commands
EXTEST or INTEST or the PRELOAD portion of
SAMPLE/PRELOAD; rather, it performs a capture of the I/O
ring when these instructions are executed.
Instructions are loaded into the TAP controller during the
Shift-IR state when the instruction register is placed between
TDI and TDO. During this state, instructions are shifted
through the instruction register through the TDI and TDO balls.
To execute the instruction once it is shifted in, the TAP
controller needs to be moved into the Update-IR state.
EXTEST
EXTEST is a mandatory 1149.1 instruction which is to be
executed whenever the instruction register is loaded with all
0s. EXTEST is not implemented in this SRAM TAP controller,
and therefore this device is not compliant to 1149.1. The TAP
controller does recognize an all-0 instruction.
When an EXTEST instruction is loaded into the instruction
register, the SRAM responds as if a SAMPLE/PRELOAD
instruction has been loaded. There is one difference between
the two instructions. Unlike the SAMPLE/PRELOAD
instruction, EXTEST places the SRAM outputs in a High-Z
state.
IDCODE
The IDCODE instruction causes a vendor-specific, 32-bit code
to be loaded into the instruction register. It also places the
instruction register between the TDI and TDO balls and allows
Document #: 38-05555 Rev. *A
CY7C1370D
CY7C1372D
the IDCODE to be shifted out of the device when the TAP
controller enters the Shift-DR state.
The IDCODE instruction is loaded into the instruction register
upon power-up or whenever the TAP controller is given a test
logic reset state.
SAMPLE Z
The SAMPLE Z instruction causes the boundary scan register
to be connected between the TDI and TDO balls when the TAP
controller is in a Shift-DR state. It also places all SRAM outputs
into a High-Z state.
SAMPLE/PRELOAD
SAMPLE/PRELOAD is a 1149.1-mandatory instruction. When
the SAMPLE/PRELOAD instructions are loaded into the instruction register and the TAP controller is in the Capture-DR
state, a snapshot of data on the inputs and output pins is captured in the boundary scan register.
The user must be aware that the TAP controller clock can only
operate at a frequency up to 20 MHz, while the SRAM clock
operates more than an order of magnitude faster. Because
there is a large difference in the clock frequencies, it is possible that during the Capture-DR state, an input or output will
undergo a transition. The TAP may then try to capture a signal
while in transition (metastable state). This will not harm the
device, but there is no guarantee as to the value that will be
captured. Repeatable results may not be possible.
To guarantee that the boundary scan register will capture the
correct value of a signal, the SRAM signal must be stabilized
long enough to meet the TAP controller's capture set-up plus
hold times (tCS and tCH). The SRAM clock input might not be
captured correctly if there is no way in a design to stop (or
slow) the clock during a SAMPLE/PRELOAD instruction. If this
is an issue, it is still possible to capture all other signals and
simply ignore the value of the CK and CK captured in the
boundary scan register.
Once the data is captured, it is possible to shift out the data by
putting the TAP into the Shift-DR state. This places the boundary scan register between the TDI and TDO pins.
PRELOAD allows an initial data pattern to be placed at the
latched parallel outputs of the boundary scan register cells prior to the selection of another boundary scan test operation.
The shifting of data for the SAMPLE and PRELOAD phases
can occur concurrently when required—that is, while data
captured is shifted out, the preloaded data can be shifted in.
BYPASS
When the BYPASS instruction is loaded in the instruction
register and the TAP is placed in a Shift-DR state, the bypass
register is placed between the TDI and TDO balls. The
advantage of the BYPASS instruction is that it shortens the
boundary scan path when multiple devices are connected
together on a board.
Reserved
These instructions are not implemented but are reserved for
future use. Do not use these instructions.
Page 12 of 30
CY7C1370D
CY7C1372D
PRELIMINARY
TAP Timing
1
2
3
Test Clock
(TCK)
t TH
t TMSS
t TMSH
t TDIS
t TDIH
t
TL
4
5
6
t CYC
Test Mode Select
(TMS)
Test Data-In
(TDI)
t TDOV
t TDOX
Test Data-Out
(TDO)
DON’T CARE
UNDEFINED
TAP AC Switching Characteristics Over the Operating Range[9, 10]
Parameter
Description
Min.
Max.
Unit
20
MHz
Clock
tTCYC
TCK Clock Cycle Time
tTF
TCK Clock Frequency
tTH
TCK Clock HIGH time
25
ns
tTL
TCK Clock LOW time
25
ns
50
ns
Output Times
tTDOV
TCK Clock LOW to TDO Valid
tTDOX
TCK Clock LOW to TDO Invalid
5
ns
0
ns
Set-up Times
tTMSS
TMS Set-up to TCK Clock Rise
5
ns
tTDIS
TDI Set-up to TCK Clock Rise
5
ns
tCS
Capture Set-up to TCK Rise
5
Hold Times
tTMSH
TMS hold after TCK Clock Rise
5
ns
tTDIH
TDI Hold after Clock Rise
5
ns
tCH
Capture Hold after Clock Rise
5
ns
Notes:
9. tCS and tCH refer to the set-up and hold time requirements of latching data from the boundary scan register.
10. Test conditions are specified using the load in TAP AC test Conditions. tR/tF = 1 ns.
Document #: 38-05555 Rev. *A
Page 13 of 30
CY7C1370D
CY7C1372D
PRELIMINARY
3.3V TAP AC Test Conditions
2.5V TAP AC Test Conditions
Input pulse levels ............................................... .VSS to 3.3V
Input pulse levels................................................. VSS to 2.5V
Input rise and fall times ................................................... 1 ns
Input rise and fall time .....................................................1 ns
Input timing reference levels ...........................................1.5V
Input timing reference levels......................................... 1.25V
Output reference levels...................................................1.5V
Output reference levels ................................................ 1.25V
Test load termination supply voltage...............................1.5V
Test load termination supply voltage ............................ 1.25V
3.3V TAP AC Output Load Equivalent
2.5V TAP AC Output Load Equivalent
1.5V
1.25V
50Ω
50Ω
TDO
TDO
Z O= 50Ω
Z O= 50Ω
20pF
20pF
TAP DC Electrical Characteristics And Operating Conditions
(0°C < TA < +70°C; VDD = 3.3V ±0.165V unless otherwise noted)[11]
Parameter
VOH1
VOH2
VOL1
VOL2
Description
Output HIGH Voltage
Test Conditions
IOH = –4.0 mA, VDDQ = 3.3V
Min.
Unit
V
IOH = –1.0 mA, VDDQ = 2.5V
2.0
V
Output HIGH Voltage
IOH = –100 µA
VDDQ = 3.3V
2.9
V
VDDQ = 2.5V
2.1
Output LOW Voltage
IOL = 8.0 mA, VDDQ = 3.3V
0.4
V
IOL = 8.0 mA, VDDQ = 2.5V
0.4
V
Output LOW Voltage
IOL = 100 µA
0.2
V
0.2
V
Input HIGH Voltage
VDDQ = 3.3V
2.0
VDD + 0.3
V
VDDQ = 2.5V
1.7
VDD + 0.3
V
VDDQ = 3.3V
–0.5
0.7
V
VDDQ = 2.5V
–0.3
0.7
V
–5
5
µA
VDDQ = 3.3V
VDDQ = 2.5V
VIH
Max.
2.4
VIL
Input LOW Voltage
IX
Input Load Current
GND < VIN < VDDQ
V
Note:
11.All voltages referenced to VSS (GND).
Document #: 38-05555 Rev. *A
Page 14 of 30
CY7C1370D
CY7C1372D
PRELIMINARY
Identification Register Definitions
Instruction Field
CY7C1370D
Revision Number (31:29)
CY7C1372D
000
Cypress Device ID (28:12)[12]
01011001000100101
000
Description
Reserved for version number.
01011001000010101 Reserved for future use.
Cypress JEDEC ID (11:1)
00000110100
00000110100
ID Register Presence (0)
1
1
Allows unique identification of SRAM vendor.
Indicate the presence of an ID register.
Scan Register Sizes
Register Name
Instruction
Bit Size (x18)
Bit Size (x36)
3
3
Bypass
1
1
ID
32
32
Boundary Scan Order (119-ball BGA package)
85
85
Boundary Scan Order (165-ball fBGA package)
89
89
Identification Codes
Instruction
Code
Description
EXTEST
000
Captures I/O ring contents. Places the boundary scan register between TDI and TDO.
Forces all SRAM outputs to High-Z state.
IDCODE
001
Loads the ID register with the vendor ID code and places the register between TDI and TDO.
This operation does not affect SRAM operations.
SAMPLE Z
010
Captures I/O ring contents. Places the boundary scan register between TDI and TDO.
Forces all SRAM output drivers to a High-Z state.
RESERVED
011
Do Not Use: This instruction is reserved for future use.
SAMPLE/PRELOAD
100
Captures I/O ring contents. Places the boundary scan register between TDI and TDO.
Does not affect SRAM operation.
RESERVED
101
Do Not Use: This instruction is reserved for future use.
RESERVED
110
Do Not Use: This instruction is reserved for future use.
BYPASS
111
Places the bypass register between TDI and TDO. This operation does not affect SRAM operations.
Note:
12. Bit #24 is “1” in the Register Definitions for both 2.5v and 3.3v versions of this device.
Document #: 38-05555 Rev. *A
Page 15 of 30
CY7C1370D
CY7C1372D
PRELIMINARY
119-ball BGA Boundary Scan[13, 14]
CY7C1370D (1M x 36)
Bit#
CY7C1370D (1M x 36)
Ball ID
Bit#
Ball ID
Bit#
Ball ID
B6
73
2
H4
T4
37
38
D4
74
N2
P2
3
T5
39
B4
75
R3
1
4
T6
40
F4
76
T1
5
R5
41
M4
77
R1
6
L5
42
A5
78
T2
7
R6
43
K4
79
L3
8
U6
44
E4
80
R2
9
R7
45
G4
81
T3
10
T7
46
A4
82
L4
11
P6
47
G3
83
N4
12
N7
48
C3
84
P4
13
M6
49
B2
85
Internal
14
L7
50
B3
15
K6
51
A3
16
P7
52
C2
17
N6
53
A2
18
L6
54
B1
19
K7
55
C1
20
J5
56
D2
21
H6
57
E1
22
G7
58
F2
23
F6
59
G1
24
E7
60
H2
25
D7
61
D1
26
H7
62
E2
27
G6
63
G2
28
E6
64
H1
29
D6
65
J3
30
C7
66
2K
31
B7
67
L1
32
C6
68
M2
33
A6
69
N1
34
C5
70
P1
35
B5
71
K1
36
G5
72
L2
Notes:
13. Balls which are NC (No Connect) are pre-set LOW
14. Bit# 85 is pre-set HIGH
Document #: 38-05555 Rev. *A
Page 16 of 30
CY7C1370D
CY7C1372D
PRELIMINARY
119-ball BGA Boundary Scan Order[13, 14]
CY7C1372D (2M x 18)
Bit #
CY7C1372D (2M x 18)
Ball ID
Bit #
Ball ID
Bit #
Ball ID
B6
73
2
H4
T4
37
38
D4
74
N2
P2
3
T5
39
B4
75
R3
1
4
T6
40
F4
76
T1
5
R5
41
M4
77
R1
6
L5
42
A5
78
T2
7
R6
43
K4
79
L3
8
U6
44
E4
80
R2
9
R7
45
G4
81
T3
10
T7
46
A4
82
L4
11
P6
47
G3
83
N4
12
N7
48
C3
84
P4
13
M6
49
B2
85
Internal
14
L7
50
B3
15
K6
51
A3
16
P7
52
C2
17
N6
53
A2
18
L6
54
B1
19
K7
55
C1
20
J5
56
D2
21
H6
57
E1
22
G7
58
F2
23
F6
59
G1
24
E7
60
H2
25
D7
61
D1
26
H7
62
E2
27
G6
63
G2
28
E6
64
H1
29
D6
65
J3
30
C7
66
2K
31
B7
67
L1
32
C6
68
M2
33
A6
69
N1
34
C5
70
P1
35
B5
71
K1
36
G5
72
L2
Document #: 38-05555 Rev. *A
Page 17 of 30
CY7C1370D
CY7C1372D
PRELIMINARY
165-Ball fBGA Boundary Scan Order[13, 15]
CY7C1370D (1M x 36)
CY7C1370D (1M x 36)
Bit #
Ball ID
Bit #
Ball ID
Bit #
Ball ID
1
N6
37
A9
73
K2
2
N7
38
B9
74
L2
3
10N
39
C10
75
M2
4
P11
40
A8
76
N1
5
P8
41
B8
77
N2
6
R8
42
A7
78
P1
7
R9
43
B7
79
R1
8
P9
44
B6
80
R2
9
P10
45
A6
81
P3
10
R10
46
B5
82
R3
11
R11
47
A5
83
P2
12
H11
48
A4
84
R4
13
N11
49
B4
85
P4
14
M11
50
B3
86
N5
15
L11
51
A3
87
P6
16
K11
52
A2
88
R6
17
J11
53
B2
89
Internal
18
M10
54
C2
19
L10
55
B1
20
K10
56
A1
21
J10
57
C1
22
H9
58
D1
23
H10
59
E1
24
G11
60
F1
25
F11
61
G1
26
E11
62
D2
27
D11
63
E2
28
G10
64
F2
29
F10
65
G2
30
E10
66
H1
31
D10
67
H3
32
C11
68
J1
33
A11
69
K1
34
B11
70
L1
35
A10
71
M1
36
B10
72
J2
Note:
15. Bit# 89 is Pre-Set HIGH
Document #: 38-05555 Rev. *A
Page 18 of 30
CY7C1370D
CY7C1372D
PRELIMINARY
165-Ball fBGA Boundary Scan Order[13, 15]
CY7C1372D (2M x 18)
CY7C1372D (2M x 18)
Bit #
Ball ID
Bit #
Ball ID
Bit #
Ball ID
1
N6
37
A9
73
K2
2
N7
38
B9
74
L2
3
10N
39
C10
75
M2
4
P11
40
A8
76
N1
5
P8
41
B8
77
N2
6
R8
42
A7
78
P1
7
R9
43
B7
79
R1
8
P9
44
B6
80
R2
9
P10
45
A6
81
P3
10
R10
46
B5
82
R3
11
R11
47
A5
83
P2
12
H11
48
A4
84
R4
13
N11
49
B4
85
P4
14
M11
50
B3
86
N5
15
L11
51
A3
87
P6
16
K11
52
A2
88
R6
17
J11
53
B2
89
Internal
18
M10
54
C2
19
L10
55
B1
20
K10
56
A1
21
J10
57
C1
22
H9
58
D1
23
H10
59
E1
24
G11
60
F1
25
F11
61
G1
26
E11
62
D2
27
D11
63
E2
28
G10
64
F2
29
F10
65
G2
30
E10
66
H1
31
D10
67
H3
32
C11
68
J1
33
A11
69
K1
34
B11
70
L1
35
A10
71
M1
36
B10
72
J2
Document #: 38-05555 Rev. *A
Page 19 of 30
CY7C1370D
CY7C1372D
PRELIMINARY
Maximum Ratings
Current into Outputs (LOW)......................................... 20 mA
(Above which the useful life may be impaired. For user guidelines, not tested.)
Storage Temperature ................................. –65°C to +150°C
Ambient Temperature with
Power Applied............................................. –55°C to +125°C
Static Discharge Voltage.......................................... > 2001V
(per MIL-STD-883, Method 3015)
Latch-up Current.................................................... > 200 mA
Operating Range
Supply Voltage on VDD Relative to GND........ –0.5V to +4.6V
Range
DC to Outputs in Tri-State ................... –0.5V to VDDQ + 0.5V
Commercial
DC Input Voltage....................................–0.5V to VDD + 0.5V
Industrial
Electrical Characteristics Over the Operating Range
Parameter
Description
Ambient
Temperature
VDD
[16, 17]
Test Conditions
Min.
VDD
Power Supply Voltage
VDDQ
I/O Supply Voltage
VOH
Output HIGH Voltage
VDDQ = 3.3V, VDD = Min., IOH = –4.0 mA
2.4
VDDQ = 2.5V, VDD = Min., IOH = –1.0 mA
2.0
VOL
Output LOW Voltage
VDDQ = 3.3V, VDD = Min., IOL = 8.0 mA
VIH
Input HIGH Voltage[16]
VIL
Input LOW Voltage[16]
IX
Input Load Current
except ZZ and MODE
3.6
V
3.135
VDD
V
VDDQ = 2.5V
2.375
2.625
V
V
V
0.4
V
0.4
V
2.0
VDD + 0.3V
V
VDDQ = 2.5V
1.7
VDD + 0.3V
V
VDDQ = 3.3V
–0.3
0.8
V
VDDQ = 2.5V
–0.3
0.7
V
–5
5
µA
VDDQ = 3.3V
GND ≤ VI ≤ VDDQ
µA
–5
Input = VDD
30
Input = VSS
µA
µA
–30
5
µA
5
µA
4.0-ns cycle, 250 MHz
350
mA
4.4-ns cycle, 225 MHz
325
mA
5.0-ns cycle, 200 MHz
300
mA
6.0-ns cycle, 167 MHz
275
mA
Max. VDD, Device Deselected, 4.0-ns cycle, 250 MHz
VIN ≥ VIH or VIN ≤ VIL, f = fMAX = 4.4-ns cycle, 225 MHz
1/tCYC
5.0-ns cycle, 200 MHz
160
mA
TBD
mA
150
mA
6.0-ns cycle, 167 MHz
140
mA
Input = VDD
IOZ
Output Leakage Current GND ≤ VI ≤ VDDQ, Output Disabled
IDD
VDD Operating Supply
Automatic CE
Power-down
Current—TTL Inputs
Unit
3.135
Input Current of MODE Input = VSS
ISB1
Max.
VDDQ = 3.3V
VDDQ = 2.5V, VDD = Min., IOL = 1.0 mA
Input Current of ZZ
VDDQ
0°C to +70°C 3.3V–5%/+10% 2.5V –5% to
VDD
–40°C to +85°C
VDD = Max., IOUT = 0 mA,
f = fMAX = 1/tCYC
–5
ISB2
Automatic CE
Max. VDD, Device Deselected, All speed grades
Power-down
VIN ≤ 0.3V or VIN > VDDQ − 0.3V,
Current—CMOS Inputs f = 0
70
mA
ISB3
Automatic CE
Max. VDD, Device Deselected, 4.0-ns cycle, 250 MHz
Power-down
VIN ≤ 0.3V or VIN > VDDQ − 0.3V, 4.4-ns cycle, 225 MHz
Current—CMOS Inputs f = fMAX = 1/tCYC
5.0-ns cycle, 200 MHz
135
mA
TBD
mA
130
mA
6.0-ns cycle, 167 MHz
125
mA
Shaded areas contain advance information.
Notes:
16. Overshoot: VIH(AC) < VDD +1.5V (Pulse width less than tCYC/2), undershoot: VIL(AC)> –2V (Pulse width less than tCYC/2).
17. TPower-up: Assumes a linear ramp from 0V to VDD (min.) within 200 ms. During this time VIH < VDD and VDDQ < VDD.
Document #: 38-05555 Rev. *A
Page 20 of 30
CY7C1370D
CY7C1372D
PRELIMINARY
Electrical Characteristics Over the Operating Range (continued)[16, 17]
Parameter
ISB4
Description
Automatic CE
Power-down
Current—TTL Inputs
Test Conditions
Max. VDD, Device Deselected,
VIN ≥ VIH or VIN ≤ VIL, f = 0
Min.
Max.
Unit
80
mA
All speed grades
Capacitance[18]
Parameter
Description
CIN
Input Capacitance
CCLK
Clock Input Capacitance
CI/O
Input/Output Capacitance
Test Conditions
TQFP
Package
TA = 25°C, f = 1 MHz,
VDD = 3.3V.
VDDQ = 2.5V
BGA
Package
fBGA
Package
Unit
5
8
9
pF
5
8
9
pF
5
8
9
pF
TQFP
Package
BGA
Package
fBGA
Package
Unit
31
45
46
°C/W
6
7
3
°C/W
Thermal Resistance[18]
Parameter
Description
ΘJA
Thermal Resistance
(Junction to Ambient)
ΘJC
Thermal Resistance
(Junction to Case)
Test Conditions
Test conditions follow standard
test methods and procedures
for measuring thermal
impedance, per EIA / JESD51.
AC Test Loads and Waveforms
3.3V I/O Test Load
R = 317Ω
3.3V
OUTPUT
Z0 = 50Ω
ALL INPUT PULSES
VDDQ
OUTPUT
RL = 50Ω
10%
90%
10%
90%
GND
5 pF
R = 351Ω
≤ 1ns
≤ 1ns
VT = 1.5V
INCLUDING
JIG AND
SCOPE
(a)
(c)
(b)
2.5V I/O Test Load
R = 1667Ω
2.5V
OUTPUT
Z0 = 50Ω
10%
R = 1538Ω
VT = 1.25V
INCLUDING
JIG AND
SCOPE
90%
10%
90%
GND
5 pF
(a)
ALL INPUT PULSES
VDDQ
OUTPUT
RL = 50Ω
(b)
≤ 1ns
≤ 1ns
(c)
Note:
18. Tested initially and after any design or process change that may affect these parameters.
Document #: 38-05555 Rev. *A
Page 21 of 30
CY7C1370D
CY7C1372D
PRELIMINARY
Switching Characteristics Over the Operating Range [23, 24]
Parameter
tPower[19]
Description
VCC (typical) to the first access read or write
-250
-225
Min. Max.
Min. Max.
-200
-167
Min.
Max. Min. Max.
Unit
1
1
1
1
ms
4.0
4.4
5
6
ns
Clock
tCYC
Clock Cycle Time
FMAX
Maximum Operating Frequency
tCH
Clock HIGH
1.7
2.0
2.0
2.2
ns
tCL
Clock LOW
1.7
2.0
2.0
2.2
ns
250
225
200
167
MHz
Output Times
tCO
Data Output Valid After CLK Rise
2.6
2.8
3.0
3.4
ns
tEOV
OE LOW to Output Valid
2.6
2.8
3.0
3.4
ns
tDOH
Data Output Hold After CLK Rise
tCHZ
Clock to High-Z[20, 21, 22]
3.4
ns
tCLZ
Clock to Low-Z[20, 21, 22]
tEOHZ
OE HIGH to Output High-Z[20, 21, 22]
3.4
ns
tEOLZ
OE LOW to Output Low-Z[20, 21, 22]
1.0
1.0
2.6
1.0
1.3
2.8
1.0
2.6
1.3
3.0
1.3
2.8
ns
1.3
3.0
ns
0
0
0
0
ns
Set-up Times
tAS
Address Set-up Before CLK Rise
1.2
1.4
1.4
1.5
ns
tDS
Data Input Set-up Before CLK Rise
1.2
1.4
1.4
1.5
ns
tCENS
CEN Set-up Before CLK Rise
1.2
1.4
1.4
1.5
ns
tWES
WE, BWx Set-up Before CLK Rise
1.2
1.4
1.4
1.5
ns
tALS
ADV/LD Set-up Before CLK Rise
1.2
1.4
1.4
1.5
ns
tCES
Chip Select Set-up
1.2
1.4
1.4
1.5
ns
tAH
Address Hold After CLK Rise
0.3
0.4
0.4
0.5
ns
tDH
Data Input Hold After CLK Rise
0.3
0.4
0.4
0.5
ns
tCENH
CEN Hold After CLK Rise
0.3
0.4
0.4
0.5
ns
tWEH
WE, BWx Hold After CLK Rise
0.3
0.4
0.4
0.5
ns
tALH
ADV/LD Hold after CLK Rise
0.3
0.4
0.4
0.5
ns
Hold Times
tCEH
Chip Select Hold After CLK Rise
0.3
0.4
0.4
0.5
ns
Shaded areas contain advance information.
Notes:
19. This part has a voltage regulator internally; tPower is the time power needs to be supplied above VDD minimum initially, before a Read or Write operation can be
initiated.
20. tCHZ, tCLZ, tEOLZ, and tEOHZ are specified with AC test conditions shown in (b) of AC Test Loads. Transition is measured ± 200 mV from steady-state voltage.
21. At any given voltage and temperature, tEOHZ is less than tEOLZ and tCHZ is less than tCLZ to eliminate bus contention between SRAMs when sharing the same
data bus. These specifications do not imply a bus contention condition, but reflect parameters guaranteed over worst case user conditions. Device is designed
to achieve High-Z prior to Low-Z under the same system conditions.
22. This parameter is sampled and not 100% tested.
23. Timing reference is 1.5V when VDDQ = 3.3V and is 1.25V when VDDQ = 2.5V.
24. Test conditions shown in (a) of AC Test Loads unless otherwise noted.
Document #: 38-05555 Rev. *A
Page 22 of 30
CY7C1370D
CY7C1372D
PRELIMINARY
Switching Waveforms
Read/Write/Timing[25, 26, 27]
1
2
3
t CYC
4
5
6
A3
A4
7
8
9
A5
A6
A7
10
CLK
tCENS
tCENH
tCH
tCL
CEN
tCES
tCEH
CE
ADV/LD
WE
BWx
A1
ADDRESS
A2
tCO
tAS
tDS
tAH
Data
tDH
D(A1)
tCLZ
D(A2)
D(A2+1)
tDOH
Q(A3)
tOEV
Q(A4)
tCHZ
Q(A4+1)
D(A5)
Q(A6)
In-Out (DQ)
tOEHZ
tDOH
tOELZ
OE
WRITE
D(A1)
WRITE
D(A2)
BURST
WRITE
D(A2+1)
READ
Q(A3)
READ
Q(A4)
DON’T CARE
BURST
READ
Q(A4+1)
WRITE
D(A5)
READ
Q(A6)
WRITE
D(A7)
DESELECT
UNDEFINED
Notes:
25. For this waveform ZZ is tied LOW.
26. When CE is LOW, CE1 is LOW, CE2 is HIGH and CE3 is LOW. When CE is HIGH,CE1 is HIGH or CE2 is LOW or CE3 is HIGH.
27. Order of the Burst sequence is determined by the status of the MODE (0 = Linear, 1 = Interleaved).Burst operations are optional.
Document #: 38-05555 Rev. *A
Page 23 of 30
CY7C1370D
CY7C1372D
PRELIMINARY
Switching Waveforms (continued)
NOP,STALL and DESELECT Cycles[25, 26, 28]
1
2
3
4
5
A3
A4
6
7
8
9
10
CLK
CEN
CE
ADV/LD
WE
BWx
A1
ADDRESS
A2
A5
tCHZ
D(A1)
Data
Q(A2)
D(A4)
Q(A3)
Q(A5)
In-Out (DQ)
WRITE
D(A1)
READ
Q(A2)
STALL
READ
Q(A3)
WRITE
D(A4)
STALL
DON’T CARE
ZZ Mode
NOP
READ
Q(A5)
DESELECT
CONTINUE
DESELECT
UNDEFINED
Timing[29, 30]
CLK
t ZZ
ZZ
I
t ZZREC
t ZZI
SUPPLY
I DDZZ
t RZZI
ALL INPUTS
(except ZZ)
Outputs (Q)
DESELECT or READ Only
High-Z
DON’T CARE
Notes:
28. The Ignore Clock Edge or Stall cycle (Clock 3) illustrated CEN being used to create a pause. A write is not performed during this cycle
29. Device must be deselected when entering ZZ mode. See cycle description table for all possible signal conditions to deselect the device.
30. I/Os are in High-Z when exiting ZZ sleep mode.
Document #: 38-05555 Rev. *A
Page 24 of 30
PRELIMINARY
CY7C1370D
CY7C1372D
Ordering Information
Speed
(MHz)
250
Ordering Code
CY7C1370D-250AXC
Package
Name
Package Type
Operating
Range
A100RA
Lead-Free 100-lead Thin Quad Flat Pack (14 x 20 x 1.4 mm)
Commercial
CY7C1372D-250AXC
CY7C1370D-250BGC
BG119
119-ball Ball Grid Array (14 x 22 x 2.4 mm)
CY7C1372D-250BGC
CY7C1370D-250BZC
BB165D
165-ball Fine Pitch Ball Grid Array (13 x 15 x 1.4 mm)
A100RA
Lead-Free 100-lead Thin Quad Flat Pack (14 x 20 x 1.4 mm)
CY7C1372D-250BZC
225
CY7C1370D-225AXC
CY7C1372D-225AXC
CY7C1370D-225BGC
BG119
119-ball Ball Grid Array (14 x 22 x 2.4 mm)
CY7C1372D-225BGC
CY7C1370D-225BZC
BB165D
165-ball Fine Pitch Ball Grid Array (13 x 15 x 1.4 mm)
A100RA
Lead-Free 100-lead Thin Quad Flat Pack (14 x 20 x 1.4 mm)
CY7C1372D-225BZC
200
CY7C1370D-200AXC
CY7C1372D-200AXC
CY7C1370D-200BGC
BG119
119-ball Ball Grid Array (14 x 22 x 2.4 mm)
CY7C1372D-200BGC
CY7C1370D-200BZC
BB165D
165-ball Fine Pitch Ball Grid Array (13 x 15 x 1.4 mm)
A100RA
Lead-Free 100-lead Thin Quad Flat Pack (14 x 20 x 1.4 mm)
CY7C1372D-200BZC
167
CY7C1370D-167AXC
CY7C1372D-167AXC
CY7C1370D-167BGC
BG119
119-ball Ball Grid Array (14 x 22 x 2.4 mm)
CY7C1372D-167BGC
CY7C1370D-167BZC
BB165D
165-ball Fine Pitch Ball Grid Array (13 x 15 x 1.4 mm)
CY7C1372D-167BZC
Document #: 38-05555 Rev. *A
Page 25 of 30
PRELIMINARY
CY7C1370D
CY7C1372D
Ordering Information (continued)
Speed
(MHz)
250
Ordering Code
CY7C1370D-250AXI
Package
Name
Package Type
Operating
Range
A100RA
Lead-Free 100-lead Thin Quad Flat Pack (14 x 20 x 1.4 mm)
Industrial
CY7C1372D-250AXI
CY7C1370D-250BGI
BG119
119-ball Ball Grid Array (14 x 22 x 2.4 mm)
CY7C1372D-250BGI
CY7C1370D-250BZI
BB165D
165-ball Fine Pitch Ball Grid Array (13 x 15 x 1.4 mm)
A100RA
Lead-Free 100-lead Thin Quad Flat Pack (14 x 20 x 1.4 mm)
CY7C1372D-250BZI
225
CY7C1370D-225AXI
CY7C1372D-225AXI
CY7C1370D-225BGI
BG119
119-ball Ball Grid Array (14 x 22 x 2.4 mm)
CY7C1372D-225BGI
CY7C1370D-225BZI
BB165D
165-ball Fine Pitch Ball Grid Array (13 x 15 x 1.4 mm)
A100RA
Lead-Free 100-lead Thin Quad Flat Pack (14 x 20 x 1.4 mm)
CY7C1372D-225BZI
200
CY7C1370D-200AXI
CY7C1372D-200AXI
CY7C1370D-200BGI
BG119
119-ball Ball Grid Array (14 x 22 x 2.4 mm)
CY7C1372D-200BGI
CY7C1370D-200BZI
BB165D
165-ball Fine Pitch Ball Grid Array (13 x 15 x 1.4 mm)
A100RA
Lead-Free 100-lead Thin Quad Flat Pack (14 x 20 x 1.4 mm)
CY7C1372D-200BZI
167
CY7C1370D-167AXI
CY7C1372D-167AXI
CY7C1370D-167BGI
BG119
119-ball Ball Grid Array (14 x 22 x 2.4 mm)
CY7C1372D-167BGI
CY7C1370D-167BZI
BB165D
165-ball Fine Pitch Ball Grid Array (13 x 15 x 1.4 mm)
CY7C1372D-167BZI
Shaded areas contain advance information. Please contact your local Cypress sales representative for availability of these parts. Lead-free BG and BZ packages
(Ordering Code: BGX, BZX) will be available in 2005.
Document #: 38-05555 Rev. *A
Page 26 of 30
CY7C1370D
CY7C1372D
PRELIMINARY
Package Diagrams
100-Pin Thin Plastic Quad Flatpack (14 x 20 x 1.4 mm) A101
16.00±0.20
DIMENSIONS ARE IN MILLIMETERS.
14.00±0.10
1.40±0.05
100
81
80
1
20.00±0.10
22.00±0.20
0.30±0.08
0.65
TYP.
30
12°±1°
(8X)
SEE DETAIL
A
51
31
50
0.20 MAX.
1.60 MAX.
0° MIN.
STAND-OFF
0.05 MIN.
0.15 MAX.
0.25
0.10
R 0.08 MIN.
0.20 MAX.
SEATING PLANE
GAUGE PLANE
0°-7°
R 0.08 MIN.
0.20 MAX.
51-85050-*A
0.60±0.15
0.20 MIN.
1.00 REF.
DETAIL
Document #: 38-05555 Rev. *A
A
Page 27 of 30
PRELIMINARY
CY7C1370D
CY7C1372D
Package Diagrams (continued)
119-Lead PBGA (14 x 22 x 2.4 mm) BG119
51-85115-*B
Document #: 38-05555 Rev. *A
Page 28 of 30
CY7C1370D
CY7C1372D
PRELIMINARY
Package Diagrams (continued)
165 FBGA 13 x 15 x 1.40 MM BB165D
51-85180-**
ZBT is a trademark of Integrated Device Technology. NoBL and No Bus Latency are trademarks of Cypress Semiconductor
Corporation. All products and company names mentioned in this document may be the trademarks of their respective holders.
Document #: 38-05555 Rev. *A
Page 29 of 30
© Cypress Semiconductor Corporation, 2004. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use
of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be
used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its
products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress
products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.
CY7C1370D
CY7C1372D
PRELIMINARY
Document History Page
Document Title: CY7C1370D/CY7C1372D 18-Mbit (512K x 36/1M x 18) Pipelined SRAM with NoBL™ Architecture
Document Number: 38-05555
REV.
ECN No.
Issue Date
Orig. of
Change
**
254509
See ECN
RKF
New data sheet
*A
276690
See ECN
VBL
Changed TQFP pkg to Lead-free TQFP in Ordering Information section
Added comment of Lead-free BG and BZ packages availability
Document #: 38-05555 Rev. *A
Description of Change
Page 30 of 30