CYPRESS CY7C1347G

CY7C1347G
4-Mbit (128 K × 36) Pipelined Sync SRAM
4-Mbit (128 K × 36) Pipelined Sync SRAM
Features
Functional Description
■
Fully registered inputs and outputs for pipelined operation
■
128 K × 36 common I/O architecture
■
3.3 V core power supply (VDD)
■
2.5- / 3.3-V I/O power supply (VDDQ)
■
Fast clock to output times: 2.6 ns (for 250 MHz device)
■
User selectable burst counter supporting Intel Pentium
interleaved or linear burst sequences
■
Separate processor and controller address strobes
■
Synchronous self timed writes
■
Asynchronous output enable
■
Offered in Pb-free 100-pin TQFP, Pb-free and non Pb-free
119-ball BGA package, and 165-ball FBGA package
■
“ZZ” sleep mode option and stop clock option
■
Available in Industrial and commercial temperature ranges
The CY7C1347G[1] is a 3.3 V, 128 K × 36 synchronous pipelined
SRAM designed to support zero-wait-state secondary cache
with minimal glue logic. CY7C1347G I/O pins can operate at
either the 2.5 V or the 3.3 V level. The I/O pins are 3.3 V tolerant
when VDDQ = 2.5 V. All synchronous inputs pass through input
registers controlled by the rising edge of the clock. All data
outputs pass through output registers controlled by the rising
edge of the clock. Maximum access delay from the clock rise is
2.6 ns (250 MHz device). CY7C1347G supports either the
interleaved burst sequence used by the Intel Pentium processor
or a linear burst sequence used by processors such as the
PowerPC. The burst sequence is selected through the MODE
pin. Accesses can be initiated by asserting either the address
strobe from processor (ADSP) or the address strobe from
controller (ADSC) at clock rise. Address advancement through
the burst sequence is controlled by the ADV input. A 2-bit on-chip
wraparound burst counter captures the first address in a burst
sequence and automatically increments the address for the rest
of the burst access.
Byte write operations are qualified with the four Byte Write Select
(BW[A:D]) inputs. A global write enable (GW) overrides all byte
write inputs and writes data to all four bytes. All writes are
conducted with on-chip synchronous self timed write circuitry.
Three synchronous chip Selects (CE1, CE2, CE3) and an
asynchronous output enable (OE) provide for easy bank
selection and output tristate control. To provide proper data
during depth expansion, OE is masked during the first clock of a
read cycle when emerging from a deselected state.
Selection Guide
Description
250 MHz
200 MHz
166 MHz
133 MHz
Unit
Maximum access time
2.6
2.8
3.5
4.0
ns
Maximum operating current
325
265
240
225
mA
Maximum CMOS standby current
40
40
40
40
mA
Note
1. For best practice recommendations, refer to the Cypress application note, SRAM System Guidelines – AN1064.
Cypress Semiconductor Corporation
Document #: 38-05516 Rev. *I
•
198 Champion Court
•
San Jose, CA 95134-1709
•
408-943-2600
Revised March 29, 2011
[+] Feedback
CY7C1347G
Logic Block Diagram
A0, A1, A
ADDRESS
REGISTER
2
A [1:0]
MODE
ADV
CLK
Q1
BURST
COUNTER
CLR AND
LOGIC
ADSC
Q0
ADSP
BW D
DQ D ,DQP D
BYTE
WRITE REGISTER
DQ D ,DQPD
BYTE
WRITE DRIVER
BW C
DQ C ,DQP C
BYTE
WRITE REGISTER
DQ C ,DQP C
BYTE
WRITE DRIVER
DQ B ,DQP B
BYTE
WRITE REGISTER
DQ B ,DQP B
BYTE
WRITE DRIVER
BW B
BW A
BWE
ZZ
ENABLE
REGISTER
SENSE
AMPS
OUTPUT
REGISTERS
OUTPUT
BUFFERS
E
DQs
DQP A
DQP B
DQP C
DQP D
DQ A ,DQP A
BYTE
WRITE DRIVER
DQ A ,DQP A
BYTE
WRITE REGISTER
GW
CE 1
CE 2
CE 3
OE
MEMORY
ARRAY
PIPELINED
ENABLE
INPUT
REGISTERS
SLEEP
CONTROL
Document #: 38-05516 Rev. *I
Page 2 of 24
[+] Feedback
CY7C1347G
Contents
Pin Configurations ........................................................... 4
Pin Definitions .................................................................. 6
Functional Overview ........................................................ 7
Single Read Accesses ................................................ 7
Single Write Accesses Initiated by ADSP ................... 7
Single Write Accesses Initiated by ADSC ................... 7
Burst Sequences ......................................................... 8
Sleep Mode ................................................................. 8
Interleaved Burst Sequence ............................................ 8
Linear Burst Sequence .................................................... 8
ZZ Mode Electrical Characteristics ................................. 8
Truth Table ........................................................................ 8
Partial Truth Table for Read/Write ................................ 10
Maximum Ratings ........................................................... 11
Operating Range ............................................................. 11
Document #: 38-05516 Rev. *I
Neutron Soft Error Immunity ......................................... 11
Electrical Characteristics ............................................... 11
Capacitance .................................................................... 13
Thermal Resistance ........................................................ 13
Switching Characteristics .............................................. 14
Switching Waveforms .................................................... 15
Ordering Information ...................................................... 19
Ordering Code Definitions ......................................... 19
Package Diagrams .......................................................... 20
Acronyms ........................................................................ 22
Document History Page ................................................. 23
Sales, Solutions, and Legal Information ...................... 24
Worldwide Sales and Design Support ....................... 24
Products .................................................................... 24
PSoC Solutions ......................................................... 24
Page 3 of 24
[+] Feedback
CY7C1347G
Pin Configurations
BYTE C
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
CY7C1347G
80
79
78
77
76
75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
60
59
58
57
56
55
54
53
52
51
DQPB
DQB
DQB
VDDQ
VSSQ
DQB
DQB
DQB
DQB
VSSQ
VDDQ
DQB
DQB
VSS
NC
VDD
ZZ
DQA
DQA
VDDQ
VSSQ
DQA
DQA
DQA
DQA
VSSQ
VDDQ
DQA
DQA
DQPA
BYTE B
BYTE A
MODE
A
A
A
A
A1
A0
NC/72M
NC/36M
VSS
VDD
NC/18M
NC/9M
A
A
A
A
A
A
A
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
BYTE D
DQPC
DQC
DQC
VDDQ
VSSQ
DQC
DQC
DQC
DQC
VSSQ
VDDQ
DQC
DQC
NC
VDD
NC
VSS
DQD
DQD
VDDQ
VSSQ
DQD
DQD
DQD
DQD
VSSQ
VDDQ
DQD
DQD
DQPD
100
99
98
97
96
95
94
93
92
91
90
89
88
87
86
85
84
83
82
81
A
A
CE1
CE2
BWD
BWC
BWB
BWA
CE3
VDD
VSS
CLK
GW
BWE
OE
ADSC
ADSP
ADV
A
A
Figure 1. 100-pin TQFP Pinout
Document #: 38-05516 Rev. *I
Page 4 of 24
[+] Feedback
CY7C1347G
Pin Configurations (continued)
Figure 2. 119-ball BGA Pinout
1
2
3
4
5
6
7
A
VDDQ
A
A
ADSP
A
A
VDDQ
B
C
NC/288 M
NC/144 M
CE2
A
A
A
ADSC
VDD
A
A
CE3
A
NC/576 M
NC/1G
D
DQC
DQPC
VSS
NC
VSS
DQPB
DQB
E
F
DQC
VDDQ
DQC
DQC
VSS
VSS
CE1
DQB
DQB
DQB
VDDQ
G
H
J
DQC
DQC
VDDQ
DQC
DQC
VDD
BWC
VSS
NC
OE
ADV
GW
VDD
VSS
VSS
BWB
VSS
NC
DQB
DQB
VDD
DQB
DQB
VDDQ
K
DQD
DQD
VSS
CLK
VSS
DQA
DQA
L
DQD
DQD
BWD
NC
BWA
DQA
DQA
M
N
VDDQ
DQD
DQD
DQD
VSS
VSS
BWE
A1
VSS
VSS
DQA
DQA
VDDQ
DQA
P
DQD
DQPD
VSS
A0
VSS
DQPA
DQA
R
T
NC
NC
A
NC/72M
MODE
A
VDD
A
NC
A
A
NC/36M
NC
ZZ
U
VDDQ
NC
NC
NC
NC
NC
VDDQ
Figure 3. 165-ball FBGA Pinout
1
2
3
4
5
6
7
8
9
10
11
A
B
C
D
E
F
G
H
J
K
L
M
N
P
NC/288 M
A
CE1
BWC
BWB
CE3
BWE
ADSC
ADV
A
NC
NC/144 M
A
CE2
BWD
BWA
CLK
GW
OE
ADSP
A
NC/576 M
DQPC
DQC
NC
DQC
VDDQ
VDDQ
VSS
VDD
VSS
VSS
VSS
VSS
VSS
VSS
VDD
VDDQ
NC/1G
DQB
DQPB
DQB
R
VSS
VDDQ
DQC
DQC
VDDQ
VDD
VSS
VSS
VSS
VDD
VDDQ
DQB
DQB
DQC
DQC
VDDQ
VDD
VSS
VSS
VSS
VDD
VDDQ
DQB
DQB
DQC
NC
DQD
DQC
VSS
DQD
VDDQ
NC
VDDQ
VDD
VDD
VDD
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VDD
VDD
VDD
VDDQ
NC
VDDQ
DQB
NC
DQA
DQB
ZZ
DQA
DQD
DQD
VDDQ
VDD
VSS
VSS
VSS
VDD
VDDQ
DQA
DQA
DQD
DQD
VDDQ
VDD
VSS
VSS
VSS
VDD
VDDQ
DQA
DQA
DQD
DQPD
DQD
NC
VDDQ
VDDQ
VDD
VSS
VSS
NC
VSS
NC/18M
VSS
VSS
VDD
VSS
VDDQ
VDDQ
DQA
NC
DQA
DQPA
NC
NC/72 M
A
A
NC
A1
NC
A
A
A
NC/9 M
MODE
NC/36 M
A
A
NC
A0
NC
A
A
A
A
Document #: 38-05516 Rev. *I
Page 5 of 24
[+] Feedback
CY7C1347G
Pin Definitions
Name
I/O
Description
A0,A1,A
InputSynchronous
Address Inputs Used to Select One of the 128 K Address Locations. Sampled at the rising
edge of the CLK if ADSP or ADSC is active LOW, and CE1, CE2, and CE3 are sampled active.
A[1:0] feeds the 2-bit counter.
BWA, BWB,
BWC, BWD
InputSynchronous
Byte Write Select Inputs, Active LOW. Qualified with BWE to conduct byte writes to the SRAM.
Sampled on the rising edge of CLK.
GW
InputSynchronous
Global Write Enable Input, Active LOW. When asserted LOW on the rising edge of CLK, a
global write is conducted (ALL bytes are written, regardless of the values on BW[A:D] and BWE).
BWE
InputSynchronous
Byte Write Enable Input, Active LOW. Sampled on the rising edge of CLK. This signal must be
asserted LOW to conduct a byte write.
CLK
Input-Clock
Clock Input. Used to capture all synchronous inputs to the device. Also used to increment the
burst counter when ADV is asserted LOW, during a burst operation.
CE1
InputSynchronous
Chip Enable 1 Input, Active LOW. Sampled on the rising edge of CLK. Used in conjunction with
CE2 and CE3 to select or deselect the device. ADSP is ignored if CE1 is HIGH. CE1 is sampled
only when a new external address is loaded.
CE2
InputSynchronous
Chip Enable 2 Input, Active HIGH. Sampled on the rising edge of CLK. Used in conjunction with
CE1 and CE3 to select or deselect the device. CE2 is sampled only when a new external address
is loaded.
CE3
InputSynchronous
Chip Enable 3 Input, Active LOW. Sampled on the rising edge of CLK. Used in conjunction with
CE1 and CE2 to select or deselect the device. CE3 is sampled only when a new external address
is loaded.
OE
InputAsynchronous
Output Enable, Asynchronous Input, Active LOW. Controls the direction of the I/O pins. When
LOW, the I/O pins behave as outputs. When deasserted HIGH, I/O pins are tristated, and act as
input data pins. OE is masked during the first clock of a read cycle when emerging from a
deselected state.
ADV
InputSynchronous
Advance Input Signal, Sampled on the Rising Edge of CLK. When asserted, it automatically
increments the address in a burst cycle.
ADSP
InputSynchronous
Address Strobe from Processor, Sampled on the Rising Edge of CLK. When asserted LOW,
addresses presented to the device are captured in the address registers. A[1:0] are also loaded
into the burst counter. When ADSP and ADSC are both asserted, only ADSP is recognized. ASDP
is ignored when CE1 is deasserted HIGH.
ADSC
InputSynchronous
Address Strobe from Controller, Sampled on the Rising Edge of CLK. When asserted LOW,
addresses presented to the device are captured in the address registers. A[1:0] are also loaded
into the burst counter. When ADSP and ADSC are both asserted, only ADSP is recognized.
ZZ
InputAsynchronous
ZZ “Sleep” Input. This active HIGH input places the device in a non-time-critical “sleep” condition
with data integrity preserved. During normal operation, this pin must be LOW or left floating. ZZ
pin has an internal pull-down.
DQA, DQB,
DQC, DQD,
DQPA, DQPB,
DQPC, DQPD
I/OSynchronous
Bidirectional Data I/O Lines. As inputs, they feed into an on-chip data register that is triggered
by the rising edge of CLK. As outputs, they deliver the data contained in the memory location
specified by the addresses presented during the previous clock rise of the read cycle. The
direction of the pins is controlled by OE. When OE is asserted LOW, the pins behave as outputs.
When HIGH, DQs and DQPs are placed in a tristate condition.
VDD
Power Supply
Power Supply Inputs to the Core of the Device.
VSS
Ground
VDDQ
VSSQ
MODE
Ground for the Core of the Device.
I/O Power Supply Power Supply for the I/O circuitry.
I/O Ground
InputStatic
Document #: 38-05516 Rev. *I
Ground for the I/O circuitry.
Selects Burst Order. When tied to GND selects linear burst sequence. When tied to VDDQ or left
floating selects interleaved burst sequence. This is a strap pin and must remain static during
device operation. Mode pin has an internal pull-up.
Page 6 of 24
[+] Feedback
CY7C1347G
Pin Definitions (continued)
Name
NC, NC/9M,
NC/18M,
NC/36M,
NC/72M,
NC/144M,
NC/288M,
NC/576M,
NC/1G
I/O
Description
–
No Connects. Not internally connected to the die. NC/9M, NC/18M, NC/36M, NC/72M, NC/144M,
NC/288M, NC/576M, and NC/1G are address expansion pins that are not internally connected
to the die.
Functional Overview
All synchronous inputs pass through input registers controlled by
the rising edge of the clock. All data outputs pass through output
registers controlled by the rising edge of the clock. Maximum
access delay from the clock rise (tCO) is 2.6 ns (250 MHz device).
The CY7C1347G supports secondary cache in systems using
either a linear or interleaved burst sequence. The linear burst
sequence is suited for processors that use a linear burst
sequence. The burst order is user selectable, and is determined
by sampling the MODE input. Accesses can be initiated with
either the Address Strobe from Processor (ADSP) or the Address
Strobe from Controller (ADSC). Address advancement through
the burst sequence is controlled by the ADV input. A two-bit
on-chip wraparound burst counter captures the first address in a
burst sequence and automatically increments the address for the
rest of the burst access.
Byte write operations are qualified with the Byte Write Enable
(BWE) and Byte Write Select (BW[A:D]) inputs. A Global Write
Enable (GW) overrides all byte write inputs and writes data to all
four bytes. All writes are simplified with on-chip synchronous self
timed write circuitry.
Three synchronous Chip Selects (CE1, CE2, CE3) and an
asynchronous Output Enable (OE) provide for easy bank
selection and output tristate control. ADSP is ignored if CE1 is
HIGH.
Single Read Accesses
This access is initiated when the following conditions are
satisfied at clock rise: (1) ADSP or ADSC is asserted LOW, (2)
CE1, CE2, CE3 are all asserted active, and (3) the write signals
(GW, BWE) are all deasserted HIGH. ADSP is ignored if CE1 is
HIGH. The address presented to the address inputs (A[16:0]) is
stored into the address advancement logic and the Address
Register while being presented to the memory core. The
corresponding data is allowed to propagate to the input of the
Output Registers. At the rising edge of the next clock the data is
allowed to propagate through the Output Register and onto the
data bus within 2.6 ns (250 MHz device) if OE is active LOW. The
only exception occurs when the SRAM is emerging from a
deselected state to a selected state, its outputs are always
tristated during the first cycle of the access. After the first cycle
of the access, the outputs are controlled by the OE signal.
Consecutive single read cycles are supported. After the SRAM
is deselected at clock rise by the chip select and either ADSP or
ADSC signals, its output tristates immediately.
Document #: 38-05516 Rev. *I
Single Write Accesses Initiated by ADSP
This access is initiated when both of the following conditions are
satisfied at clock rise: (1) ADSP is asserted LOW, and (2) CE1,
CE2, CE3 are all asserted active. The address presented to
A[16:0] is loaded into the Address Register and the address
advancement logic while being delivered to the RAM core. The
write signals (GW, BWE, and BW[A:D]) and ADV inputs are
ignored during this first cycle.
ADSP-triggered write accesses require two clock cycles to
complete. If GW is asserted LOW on the second clock rise, the
data presented to the DQs and DQPs inputs is written into the
corresponding address location in the RAM core. If GW is HIGH,
then the write operation is controlled by BWE and BW[A:D]
signals. The CY7C1347G provides byte write capability that is
described in Partial Truth Table for Read/Write on page 10.
Asserting the Byte Write Enable input (BWE) with the selected
Byte Write (BW[A:D]) input selectively writes to only the desired
bytes.
Bytes not selected during a byte write operation remain
unaltered. A synchronous self timed write mechanism is
provided to simplify the write operations.
Because the CY7C1347G is a common I/O device, the Output
Enable (OE) must be deasserted HIGH before presenting data
to the DQs and DQPs inputs. Doing so tristates the output
drivers. As a safety precaution, DQs and DQPs are automatically
tristated whenever a write cycle is detected, regardless of the
state of OE.
Single Write Accesses Initiated by ADSC
ADSC write accesses are initiated when the following conditions
are satisfied: (1) ADSC is asserted LOW, (2) ADSP is deasserted
HIGH, (3) CE1, CE2, CE3 are all asserted active, and (4) the
appropriate combination of the write inputs (GW, BWE, and
BW[A:D]) are asserted active to conduct a write to the desired
byte(s). ADSC-triggered write accesses require a single clock
cycle to complete. The address presented to A[16:0] is loaded into
the address register and the address advancement logic while
being delivered to the RAM core. The ADV input is ignored
during this cycle. If a global write is conducted, the data
presented to the DQs and DQPs is written into the corresponding
address location in the RAM core. If a byte write is conducted,
only the selected bytes are written. Bytes not selected during a
byte write operation remain unaltered. A synchronous self timed
write mechanism has been provided to simplify the write
operations.
Because the CY7C1347G is a common I/O device, the Output
Enable (OE) must be deasserted HIGH before presenting data
to the DQs and DQPs inputs. Doing so tristates the output
Page 7 of 24
[+] Feedback
CY7C1347G
drivers. As a safety precaution, DQs and DQPs are automatically
tristated whenever a write cycle is detected, regardless of the
state of OE.
Interleaved Burst Sequence
First
Address
Burst Sequences
The CY7C1347G provides a two-bit wraparound counter, fed by
A[1:0], that implements either an interleaved or linear burst
sequence. The interleaved burst sequence is designed
specifically to support Intel Pentium applications. The linear
burst sequence is designed to support processors that follow a
linear burst sequence. The burst sequence is user-selectable
through the MODE input.
Asserting ADV LOW at clock rise automatically increments the
burst counter to the next address in the burst sequence. Both
read and write burst operations are supported.
Third
Address
Fourth
Address
A[1:0]
A[1:0]
A[1:0]
A[1:0]
00
01
10
11
01
00
11
10
10
11
00
01
11
10
01
00
Linear Burst Sequence
First
Address
Sleep Mode
The ZZ input pin is an asynchronous input. Asserting ZZ places
the SRAM in a power conservation “sleep” mode. Two clock
cycles are required to enter into or exit from this “sleep” mode.
While in this mode, data integrity is guaranteed. Accesses
pending when entering the “sleep” mode are not considered valid
nor is the completion of the operation guaranteed. The device
must be deselected before entering the “sleep” mode. CE1, CE2,
CE3, ADSP, and ADSC must remain inactive for the duration of
tZZREC after the ZZ input returns LOW.
Second
Address
Second
Address
Third
Address
Fourth
Address
A[1:0]
A[1:0]
A[1:0]
A[1:0]
00
01
10
11
01
10
11
00
10
11
00
01
11
00
01
10
ZZ Mode Electrical Characteristics
Parameter
Description
Test Conditions
Min
Max
Unit
IDDZZ
Snooze mode standby current
ZZ > VDD 0.2 V
–
40
mA
tZZS
Device operation to ZZ
ZZ > VDD  0.2 V
–
2tCYC
ns
tZZREC
ZZ recovery time
ZZ < 0.2 V
2tCYC
–
ns
tZZI
ZZ Active to snooze current
This parameter is sampled
–
2tCYC
ns
tRZZI
ZZ Inactive to exit snooze current
This parameter is sampled
0
–
ns
Truth Table
The truth table for part number CY7C1347G follow. [2, 3, 4, 5, 6]
Add.
Used
CE1
CE2
CE3
ZZ
Deselect cycle, power-down
None
H
X
X
L
X
L
X
X
X
L-H Tristate
Deselect cycle, power-down
None
L
L
X
L
L
X
X
X
X
L-H Tristate
Deselect cycle, power-down
None
L
X
H
L
L
X
X
X
X
L-H Tristate
Deselect cycle, power-down
None
L
L
X
L
H
L
X
X
X
L-H Tristate
Deselect cycle, power-down
None
L
X
H
L
H
L
X
X
X
L-H Tristate
Next Cycle
ADSP ADSC ADV WRITE
OE
CLK
DQ
Notes
2. X = “Do not Care.” H = Logic HIGH, L = Logic LOW.
3. WRITE = L when any one or more Byte Write Enable signals (BWA, BWB, BWC, BWD) and BWE = L or GW = L. WRITE = H when all Byte Write Enable signals
(BWA, BWB, BWC, BWD), BWE, GW = H.
4. The DQ pins are controlled by the current cycle and the OE signal. OE is asynchronous and is not sampled with the clock.
5. The SRAM always initiates a read cycle when ADSP is asserted, regardless of the state of GW, BWE, or BW[A:D]. Writes may occur only on subsequent clocks
after the ADSP or with the assertion of ADSC. As a result, OE must be driven HIGH before the start of the write cycle to allow the outputs to tristate. OE is a do
not care for the remainder of the write cycle.
6. OE is asynchronous and is not sampled with the clock rise. It is masked internally during write cycles. During a read cycle all data bits are tristate when OE is
inactive or when the device is deselected, and all data bits behave as output when OE is active (LOW).
Document #: 38-05516 Rev. *I
Page 8 of 24
[+] Feedback
CY7C1347G
Truth Table (continued)
The truth table for part number CY7C1347G follow. [2, 3, 4, 5, 6]
Next Cycle
Snooze mode, power-down
Add.
Used
CE1
CE2
CE3
ZZ
None
X
X
X
H
ADSP ADSC ADV WRITE
X
X
X
X
OE
CLK
X
X
DQ
Tristate
Read Cycle, Begin Burst
External
L
H
L
L
L
X
X
X
L
L-H Q
Read Cycle, Begin Burst
External
L
H
L
L
L
X
X
X
H
L-H Tristate
Write Cycle, Begin Burst
External
L
H
L
L
H
L
X
L
X
L-H D
Read Cycle, Begin Burst
External
L
H
L
L
H
L
X
H
L
L-H Q
Read Cycle, Begin Burst
External
L
H
L
L
H
L
X
H
H
L-H Tristate
Read Cycle, Continue Burst
Next
X
X
X
L
H
H
L
H
H
L-H Tristate
Read Cycle, Continue Burst
Next
X
X
X
L
H
H
L
H
L
L-H Q
Read Cycle, Continue Burst
Next
H
X
X
L
X
H
L
H
L
L-H Q
Read Cycle, Continue Burst
Next
H
X
X
L
X
H
L
H
H
L-H Tristate
Write cycle, continue burst
Next
X
X
X
L
H
H
L
L
X
L-H D
Write cycle, continue burst
Next
H
X
X
L
X
H
L
L
X
L-H D
Read cycle, suspend burst
Current
X
X
X
L
H
H
H
H
L
L-H Q
Read cycle, suspend burst
Current
X
X
X
L
H
H
H
H
H
L-H Tristate
Read cycle, suspend burst
Current
H
X
X
L
X
H
H
H
L
L-H Q
Read cycle, suspend burst
Current
H
X
X
L
X
H
H
H
H
L-H Tristate
Write cycle, suspend burst
Current
X
X
X
L
H
H
H
L
X
L-H D
Write cycle, suspend burst
Current
H
X
X
L
X
H
H
L
X
L-H D
Document #: 38-05516 Rev. *I
Page 9 of 24
[+] Feedback
CY7C1347G
Partial Truth Table for Read/Write
The partial truth table for read/write for part number CY7C1347G follow. [7, 8]
Function
GW
BWE
BWD
BWC
BWB
BWA
Read
H
H
X
X
X
X
Read
H
L
H
H
H
H
Write byte A – DQA
H
L
H
H
H
L
Write byte B – DQB
H
L
H
H
L
H
Write bytes B, A
H
L
H
H
L
L
Write byte C – DQC
H
L
H
L
H
H
Write bytes C, A
H
L
H
L
H
L
Write bytes C, B
H
L
H
L
L
H
Write bytes C, B, A
H
L
H
L
L
L
Write byte D – DQD
H
L
L
H
H
H
Write bytes D, A
H
L
L
H
H
L
Write bytes D, B
H
L
L
H
L
H
Write bytes D, B, A
H
L
L
H
L
L
Write bytes D, C
H
L
L
L
H
H
Write bytes D, C, A
H
L
L
L
H
L
Write bytes D, C, B
H
L
L
L
L
H
Write all bytes
H
L
L
L
L
L
Write all bytes
L
X
X
X
X
X
Notes
7. X = “Do not Care.” H = Logic HIGH, L = Logic LOW.
8. This table is only a partial listing of the byte write combinations. Any combination of BWx is valid. Appropriate write is based on which byte write is active.
Document #: 38-05516 Rev. *I
Page 10 of 24
[+] Feedback
CY7C1347G
Maximum Ratings
Exceeding maximum ratings may shorten the useful life of the
device. User guidelines are not tested.
Neutron Soft Error Immunity
Test
Conditions
Typ
Max*
Unit
Logical
single-bit
upsets
25 °C
361
394
FIT/
Mb
LMBU
Logical
multi-bit
upsets
25 °C
0
0.01
FIT/
Mb
SEL
Single event
latch-up
85 °C
0
0.1
FIT/
Dev
Storage temperature 65 C to +150 C
Parameter
Description
Ambient temperature with
power applied55 C to +125 C
LSBU
Supply voltage on VDD relative to GND  0.5 V to +4.6 V
Supply voltage on VDDQ relative to GND0.5 V to +VDD
DC voltage applied to outputs
in high Z State  0.5 V to VDD + 0.5 V
DC input voltage  0.5 V to VDD + 0.5 V
Current into outputs (LOW) ......................................... 20 mA
Static discharge voltage.......................................... > 2001 V
(MIL-STD-883, Method 3015)
* No LMBU or SEL events occurred during testing; this column represents a
statistical 2, 95% confidence limit calculation. For more details refer to
Application Note, Accelerated Neutron SER Testing and Calculation of
Terrestrial Failure Rates – AN54908.
Latch-up Current.................................................... > 200 mA
Operating Range
Ambient
Temperature
Range
Commercial
0 °C to +70 °C
Industrial
–40 °C to +85 °C
VDD
VDDQ
3.3 V5% / 2.5 V 
+ 10%
5% to VDD
Electrical Characteristics
Over the Operating Range[9, 10]
Parameter
Description
Test Conditions
Min
Max
Unit
VDD
Power supply voltage
3.135
3.6
V
VDDQ
I/O supply voltage
2.375
VDD
V
VOH
Output HIGH voltage
For 3.3 V I/O, IOH = –4.0 mA
2.4
–
V
For 2.5 V I/O, IOH = –1.0 mA
2.0
–
V
For 3.3 V I/O, IOL = 8.0 mA
–
0.4
V
For 2.5 V I/O, IOL = 1.0 mA
–
0.4
V
VOL
VIH
VIL
IX
Output LOW voltage
Input HIGH
voltage[9]
Input LOW voltage
[9]
Input leakage current
except ZZ and MODE
Input current of MODE
Input current of ZZ
IOZ
Output leakage current
For 3.3 V I/O
2.0
VDD + 0.3 V
V
For 2.5 V I/O
1.7
VDD + 0.3 V
V
For 3.3 V I/O
–0.3
0.8
V
For 2.5 V I/O
–0.3
0.7
V
GND < VI < VDDQ
5
5
A
Input = VSS
30
–
A
Input = VDD
–
5
A
Input = VSS
5
–
A
Input = VDD
–
30
A
GND  VI  VDDQ, output disabled
5
5
A
Notes
9. Overshoot: VIH(AC) < VDD +1.5 V (pulse width less than tCYC/2). Undershoot: VIL(AC) > –2 V (pulse width less than tCYC/2).
10. tpower-up: assumes a linear ramp from 0V to VDD(min) within 200 ms. During this time VIH < VDD and VDDQ < VDD.
Document #: 38-05516 Rev. *I
Page 11 of 24
[+] Feedback
CY7C1347G
Electrical Characteristics (continued)
Over the Operating Range[9, 10]
Parameter
IDD
ISB1
Description
VDD operating supply
current
Test Conditions
VDD = Max., IOUT = 0 mA,
f = fMAX = 1/tCYC
Min
Max
Unit
4 ns cycle, 250 MHz
–
325
mA
5 ns cycle, 200 MHz
–
265
mA
6 ns cycle, 166 MHz
–
240
mA
7.5 ns cycle, 133 MHz
–
225
mA
4 ns cycle, 250 MHz
–
120
mA
5 ns cycle, 200 MHz
–
110
mA
6 ns cycle, 166 MHz
–
100
mA
Automatic CE
power-down
current—TTL inputs
Max. VDD, device deselected,
VIN > VIH or VIN < VIL
f = fMAX = 1/tCYC
–
90
mA
ISB2
Automatic CE
power-down
current—CMOS inputs
All speeds
Max. VDD, device deselected,
VIN < 0.3 V or VIN > VDDQ – 0.3 V,
f=0
–
40
mA
ISB3
Automatic CE
power-down
current—CMOS inputs
Max. VDD, device deselected, or 4 ns cycle, 250 MHz
VIN < 0.3 V or VIN > VDDQ – 0.3 V 5 ns cycle, 200 MHz
f = fMAX = 1/tCYC
6 ns cycle, 166 MHz
–
105
mA
–
95
mA
–
85
mA
–
75
mA
–
45
mA
7.5 ns cycle, 133 MHz
7.5 ns cycle, 133 MHz
ISB4
Automatic CE
power-down
current—TTL inputs
Document #: 38-05516 Rev. *I
Max. VDD, device deselected,
VIN  VIH or VIN  VIL, f = 0
Page 12 of 24
[+] Feedback
CY7C1347G
Capacitance
Tested initially and after any design or process changes that may affect these parameters.
Parameter
Description
100-pin TQFP 119-ball BGA 165-ball FBGA Unit
Max
Max
Max
Test Conditions
CIN
Input capacitance
CCLK
Clock input capacitance
CIO
I/O capacitance
TA = 25 C, f = 1 MHz,
VDD = 3.3 V.
VDDQ = 3.3 V
5
5
5
pF
5
5
5
pF
5
7
7
pF
Thermal Resistance
Tested initially and after any design or process changes that may affect these parameters.
Parameter
Description
100-pin TQFP 119-ball BGA 165-ball FBGA Unit
Package
Package
Package
Test Conditions
JA
Thermal resistance
(junction to ambient)
JC
Thermal resistance
(junction to case)
Test conditions follow standard
test methods and procedures for
measuring thermal impedance,
per EIA/JESD51.
30.32
34.1
20.3
C/W
6.85
14.0
4.6
C/W
Figure 4. AC Test Loads and Waveforms
3.3 V I/O Test Load
R = 317 
3.3 V
OUTPUT
OUTPUT
RL = 50 
Z0 = 50 
All input pulses
VDDQ
GND
5 pF
R = 351 
10%
90%
10%
90%
 1 ns
 1 ns
VT = 1.5 V
Including
JIG and
scope
(a)
(c)
(b)
2.5 V I/O Test Load
R = 1667 
2.5 V
OUTPUT
OUTPUT
RL = 50 
Z0 = 50 
VT = 1.25 V
(a)
Document #: 38-05516 Rev. *I
All input pulses
VDDQ
GND
5 pF
Including
JIG and
scope
R = 1538 
(b)
10%
90%
10%
90%
 1 ns
 1 ns
(c)
Page 13 of 24
[+] Feedback
CY7C1347G
Switching Characteristics
Over the Operating Range[11, 12]
Parameter
tPOWER
Description
VDD(Typical) to the first Access[13]
–250
–200
–166
–133
Unit
Min
Max
Min
Max
Min
Max
Min
Max
1
–
1
–
1
–
1
–
ms
4.0
–
5.0
–
6.0
–
7.5
–
ns
Clock
tCYC
Clock cycle time
tCH
Clock HIGH
1.7
–
2.0
–
2.5
–
3.0
–
ns
tCL
Clock LOW
1.7
–
2.0
–
2.5
–
3.0
–
ns
Output Times
tCO
Data output valid after CLK rise
–
2.6
–
2.8
–
3.5
–
4.0
ns
tDOH
Data output hold after CLK rise
1.0
–
1.0
–
1.5
–
1.5
–
ns
0
–
0
–
0
–
0
–
ns
tCLZ
Clock to low
tCHZ
Clock to high Z[14, 15, 16]
–
2.6
–
2.8
–
3.5
–
4.0
ns
tOEV
OE LOW to output valid
–
2.6
–
2.8
–
3.5
–
4.5
ns
tOELZ
OE LOW to output low Z[14, 15, 16]
0
–
0
–
0
–
0
–
ns
tOEHZ
OE HIGH to output high Z[14, 15, 16]
–
2.6
–
2.8
–
3.5
–
4.0
ns
Z[14, 15, 16]
Setup Times
tAS
Address setup before CLK rise
1.2
–
1.2
–
1.5
–
1.5
–
ns
tADS
ADSC, ADSP setup before CLK rise
1.2
–
1.2
–
1.5
–
1.5
–
ns
tADVS
ADV setup before CLK rise
1.2
–
1.2
–
1.5
–
1.5
–
ns
tWES
GW, BWE, BWX setup before CLK rise
1.2
–
1.2
–
1.5
–
1.5
–
ns
tDS
Data input setup before CLK rise
1.2
–
1.2
–
1.5
–
1.5
–
ns
tCES
Chip enable setup before CLK rise
1.2
–
1.2
–
1.5
–
1.5
–
ns
Hold Times
tAH
Address hold after CLK rise
0.3
–
0.5
–
0.5
–
0.5
–
ns
tADH
ADSP, ADSC hold after CLK rise
0.3
–
0.5
–
0.5
–
0.5
–
ns
tADVH
ADV hold after CLK Rise
0.3
–
0.5
–
0.5
–
0.5
–
ns
tWEH
GW, BWE, BWX hold after CLK rise
0.3
–
0.5
–
0.5
–
0.5
–
ns
tDH
Data input hold after CLK rise
0.3
–
0.5
–
0.5
–
0.5
–
ns
tCEH
Chip enable hold after CLK rise
0.3
–
0.5
–
0.5
–
0.5
–
ns
Notes
11. Timing references level is 1.5 V when VDDQ = 3.3 V and is 1.25 V when VDDQ = 2.5 V on all datasheets.
12. Test conditions shown in (a) of Figure 4 on page 13 unless otherwise noted.
13. This part has an internal voltage regulator; tPOWER is the time that the power must be supplied above VDD(min) initially before a read or write operation can be initiated.
14. tCHZ, tCLZ, tOELZ, and tOEHZ are specified with AC test conditions shown in part (b) of Figure 4 on page 13. Transition is measured ±200 mV from steady-state voltage.
15. At any voltage and temperature, tOEHZ is less than tOELZ and tCHZ is less than tCLZ to eliminate bus contention between SRAMs when sharing the same data bus.
These specifications do not imply a bus contention condition, but reflect parameters guaranteed over worst case user conditions. Device is designed to achieve
High Z before Low Z under the same system conditions.
16. This parameter is sampled and not 100% tested.
Document #: 38-05516 Rev. *I
Page 14 of 24
[+] Feedback
CY7C1347G
Switching Waveforms
Figure 5. Read Cycle Timing[17]
t CYC
CLK
t
t
CH
t
CL
t
ADH
ADS
ADSP
t ADS
tADH
ADSC
t AS
ADDRESS
tAH
A1
A2
t WES
A3
Burst continued with
new base address
tWEH
GW, BWE,
BW [A:D]
t CES
Deselect
cycle
tCEH
CE
t ADVS
tADVH
ADV
ADV
suspends
burst.
OE
t OEHZ
t CLZ
Data Out (Q)
High-Z
Q(A1)
t OEV
t CO
t OELZ
t DOH
Q(A2)
t CHZ
Q(A2 + 1)
Q(A2 + 2)
Q(A2 + 3)
Q(A2)
Q(A2 + 1)
t CO
Single READ
BURST READ
DON’T CARE
Burst wraps around
to its initial state
UNDEFINED
Note
17. In this diagram, when CE is LOW, CE1 is LOW, CE2 is HIGH, and CE3 is LOW. When CE is HIGH, CE1 is HIGH, CE2 is LOW, or CE3 is HIGH.
Document #: 38-05516 Rev. *I
Page 15 of 24
[+] Feedback
CY7C1347G
Switching Waveforms
(continued)
Figure 6. Write Cycle Timing[18, 19]
t CYC
CLK
tCH
t ADS
tCL
tADH
ADSP
t ADS
ADSC extends burst
tADH
t ADS
tADH
ADSC
t AS
tAH
A1
ADDRESS
A2
A3
Byte write signals are
ignored for first cycle when
ADSP initiates burst
t WES tWEH
BWE,
BW[A :B]
t WES tWEH
GW
t CES
tCEH
CE
t
t
ADVS ADVH
ADV
ADV suspends burst
OE
t DS
Data In (D)
High-Z
t
OEHZ
tDH
D(A1)
D(A2)
D(A2 + 1)
D(A2 + 1)
D(A2 + 2)
D(A2 + 3)
D(A3)
D(A3 + 1)
D(A3 + 2)
Data Out (Q)
BURST READ
Single WRITE
BURST WRITE
DON’T CARE
Extended BURST WRITE
UNDEFINED
Notes
18. In this diagram, when CE is LOW, CE1 is LOW, CE2 is HIGH, and CE3 is LOW. When CE is HIGH, CE1 is HIGH, CE2 is LOW, or CE3 is HIGH.
19. Full width write can be initiated by either GW LOW, or by GW HIGH, BWE LOW, and BWx LOW.
Document #: 38-05516 Rev. *I
Page 16 of 24
[+] Feedback
CY7C1347G
Switching Waveforms
(continued)
Figure 7. Read/Write Cycle Timing[20, 21, 22]
tCYC
CLK
tCL
tCH
t ADS
tADH
ADSP
ADSC
t AS
ADDRESS
A1
tAH
A2
A3
A4
t WES
tWEH
t DS
tDH
A5
A6
BWE,
BW[A:D]
t CES
tCEH
CE
ADV
OE
tCO
t OELZ
Data In (D)
High-Z
tCLZ
Data Out (Q)
High-Z
Q(A1)
Back-to-Back READs
tOEHZ
D(A5)
D(A3)
Q(A2)
Q(A4)
Single WRITE
Q(A4+1)
Q(A4+2)
Q(A4+3)
BURST READ
DON’T CARE
D(A6)
Back-to-Back
WRITEs
UNDEFINED
Notes
20. In this diagram, when CE is LOW, CE1 is LOW, CE2 is HIGH, and CE3 is LOW. When CE is HIGH, CE1 is HIGH, CE2 is LOW, or CE3 is HIGH.
21. The data bus (Q) remains in High Z following a write cycle, unless a new read access is initiated by ADSP or ADSC.
22. GW is HIGH.
Document #: 38-05516 Rev. *I
Page 17 of 24
[+] Feedback
CY7C1347G
Switching Waveforms
(continued)
Figure 8. ZZ Mode Timing[23, 24]
CLK
t
ZZ
I
t
t
ZZ
ZZREC
ZZI
SUPPLY
I
DDZZ
t RZZI
A LL INPUTS
DESELECT or READ Only
(except ZZ)
Outputs (Q)
High-Z
DON’T CARE
Notes
23. Device must be deselected when entering ZZ mode. See Truth Table on page 8 for all possible signal conditions to deselect the device.
24. DQs are in High Z when exiting ZZ sleep mode.
Document #: 38-05516 Rev. *I
Page 18 of 24
[+] Feedback
CY7C1347G
Ordering Information
The table below contains only the parts that are currently available. If you don’t see what you are looking for, please contact your local
sales representative. For more information, visit the Cypress website at www.cypress.com and refer to the product summary page at
http://www.cypress.com/products
Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives and distributors. To find the office
closest to you, visit us at http://www.cypress.com/go/datasheet/offices
Speed
(MHz)
133
Ordering Code
Package
Diagram
Package Type
Operating
Range
CY7C1347G-133AXC
51-85050 100-pin Thin Quad Flat Pack (14 × 20 × 1.4 mm) Pb-free
CY7C1347G-133BGXC
51-85115 119-ball Ball Grid Array (14 × 22 × 2.4 mm) Pb-free
Commercial
166
CY7C1347G-166AXC
51-85050 100-pin Thin Quad Flat Pack (14 × 20 × 1.4 mm) Pb-free
Commercial
200
CY7C1347G-200AXC
51-85050 100-pin Thin Quad Flat Pack (14 × 20 × 1.4 mm) Pb-free
Commercial
250
CY7C1347G-250AXC
51-85050 100-pin Thin Quad Flat Pack (14 × 20 × 1.4 mm) Pb-free
Commercial
Ordering Code Definitions
CY 7C 1347
G - XXX XXX C
Temperature range:
C = Commercial
Package Type:
AX = 100-pin TQFP (Pb-free)
BGX = 119-ball BGA (Pb-free)
Speed Grade: XXX = 133 MHz or 166 MHz or 200 MHz or 250 MHz
Process Technology  90 nm
1347 = SCD, 128 K × 36 (4 Mb)
Marketing Code: 7C = SRAMs
Company ID: CY = Cypress
Document #: 38-05516 Rev. *I
Page 19 of 24
[+] Feedback
CY7C1347G
Package Diagrams
Figure 9. 100-pin TQFP (14 × 20 × 1.4 mm)
51-85050 *D
Document #: 38-05516 Rev. *I
Page 20 of 24
[+] Feedback
CY7C1347G
Package Diagrams (continued)
Figure 10. 119-ball BGA (14 × 22 × 2.4 mm)
51-85115 *C
Document #: 38-05516 Rev. *I
Page 21 of 24
[+] Feedback
CY7C1347G
Package Diagrams (continued)
Figure 11. 165-ball FBGA (13 × 15 × 1.4 mm)
51-85180 *C
Acronyms
Acronym
Description
DDR
double data rate
FBGA
fine-pitch ball grid array
HSTL
high-speed transceiver logic
JEDEC
joint electron device engineering council
JTAG
joint test action group
ODT
on-die termination
PLL
phase-locked loop
QDR
quad data rate
TAP
test access port
TCK
test clock
TDO
test data out
TDI
test data in
TMS
test mode select
Document #: 38-05516 Rev. *I
Page 22 of 24
[+] Feedback
CY7C1347G
Document History Page
Document Title: CY7C1347G 4-Mbit (128 K × 36) Pipelined Sync SRAM
Document Number: 38-05516
Revision
ECN
Orig. of
Change
Submission Description of Change
Date
**
224364
RKF
See ECN
New datasheet
*A
276690
VBL
See ECN
Changed TQFP package in Ordering Information section to Pb-Free TQFP
Added comment of BG and BZ Pb-Free package availability
*B
333625
SYT
See ECN
Removed 225 MHz and 100 MHz speed grades
Modified Address Expansion balls in the pinouts for 100 TQFP Package as per
JEDEC standards and updated the Pin Definitions accordingly
Modified VOL, VOH test conditions
Replaced TBDs for JA and JC to their respective values on the Thermal Resistance table
Changed the package name for 100 TQFP from A100RA to A101
Removed comment on the availability of BG Pb-Free package
Updated the Ordering Information by shading and unshading MPNs as per
availability
*C
419256
RXU
See ECN
Converted from Preliminary to Final.
Changed address of Cypress Semiconductor Corporation on Page #1 from “3901
North First Street” to “198 Champion Court”
Swapped typo CE2 and CE3 in the Truth Table column heading on Page #6
Modified test condition from VIH < VDD to VIH VDD.
Modified test condition from VDDQ < VDD to VDDQ < VDD
Modified “Input Load” to “Input Leakage Current except ZZ and MODE” in the
Electrical Characteristics Table.
Replaced Package Name column with Package Diagram in the Ordering
Information table.
Replaced Package Diagram of 51-85050 from *A to *B
Replaced Package Diagram of 51-85180 from ** to *A
Updated the Ordering Information.
*D
480124
VKN
See ECN
Added the Maximum Rating for Supply Voltage on VDDQ Relative to GND.
Updated the Ordering Information table.
*E
1078184
VKN
See ECN
Corrected write timing diagram on page 12
*F
2633279 NXR/AESA
01/15/09
Updated Ordering Information and data sheet template.
*G
2756998
VKN
08/28/09
Included Soft Error Immunity Data
Modified Ordering Information table by including parts that are available and
modified the disclaimer for the Ordering information.
Updated Package Diagram for spec 51-85180.
*H
2998771
NJY
08/02/10
Template update.
Updated package diagrams to latest revision.
51-85050 – *B to *C
51-85115 – *B to *C
51-85180 – *B to *C
*I
3208774
NJY
03/29/2011
Document #: 38-05516 Rev. *I
Updated Ordering Information and added Ordering Code Definitions.
Updated Package Diagrams.
Page 23 of 24
[+] Feedback
CY7C1347G
Sales, Solutions, and Legal Information
Worldwide Sales and Design Support
Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find the office
closest to you, visit us at Cypress Locations.
Products
Automotive
Clocks & Buffers
Interface
Lighting & Power Control
PSoC Solutions
cypress.com/go/automotive
cypress.com/go/clocks
psoc.cypress.com/solutions
cypress.com/go/interface
PSoC 1 | PSoC 3 | PSoC 5
cypress.com/go/powerpsoc
cypress.com/go/plc
Memory
Optical & Image Sensing
PSoC
Touch Sensing
USB Controllers
Wireless/RF
cypress.com/go/memory
cypress.com/go/image
cypress.com/go/psoc
cypress.com/go/touch
cypress.com/go/USB
cypress.com/go/wireless
© Cypress Semiconductor Corporation, 2004-2011. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of
any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for
medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as
critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems
application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.
Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign),
United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of,
and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress
integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without
the express written permission of Cypress.
Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not
assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where
a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress’ product in a life-support systems application implies that the manufacturer
assumes all risk of such use and in doing so indemnifies Cypress against all charges.
Use may be limited by and subject to the applicable Cypress software license agreement.
Document #: 38-05516 Rev. *I
Revised March 29, 2011
Page 24 of 24
All products and company names mentioned in this document may be the trademarks of their respective holders.
[+] Feedback