POWERINT DER-60

Design Example Report
Title
8.75 W Power Supply using TNY268P
Specification
Input: 90 – 265VAC
Output: 3.5V / 2.5A (4A peak)
Application
Adapter
Author
Power Integrations Applications Department
Document
Number
DER-60
Date
May 27, 2005
Revision
1.0
Summary and Features
•
•
•
•
•
•
Low cost, low parts count.
No Y1 Safety capacitor to pass EN55022B.
No load input power < 300mw @ 265VAC.
Meet CEC requirement with 3.3V2.5A/ 1.8M 18AWG output cable.
Meet LPS < 17.5W with full range input.
OTP, OVP latch function.
The products and applications illustrated herein (including circuits external to the products and transformer
construction) may be covered by one or more U.S. and foreign patents or potentially by pending U.S. and foreign
patent applications assigned to Power Integrations. A complete list of Power Integrations’ patents may be found at
www.powerint.com.
Power Integrations
5245 Hellyer Avenue, San Jose, CA 95138 USA.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
DER-60
Adapter – TNY268
May 27, 2005
Table Of Contents
1
2
3
4
Introduction................................................................................................................. 3
Power Supply Specification ........................................................................................ 4
Schematic................................................................................................................... 5
Circuit Description ...................................................................................................... 6
4.1
Input Rectification and EMI Filtering.................................................................... 6
4.2
TOPSwitch Primary ............................................................................................. 6
4.3
Output Rectification ............................................................................................. 6
4.4
Output Feedback................................................................................................. 6
4.5
OTP, OVP and LPS Protection Circuit ................................................................ 7
5 PCB Layout ................................................................................................................ 8
6 Bill Of Materials .......................................................................................................... 9
7 Transformer Specification......................................................................................... 10
7.1
Electrical Diagram ............................................................................................. 10
7.2
Electrical Specifications..................................................................................... 10
7.3
Materials............................................................................................................ 10
7.4
Transformer Build Diagram ............................................................................... 11
7.5
Transformer Construction.................................................................................. 11
8 Transformer Spreadsheets....................................................................................... 12
9 Performance Data .................................................................................................... 15
9.1
Efficiency........................................................................................................... 15
9.2
No-load Input Power.......................................................................................... 16
9.3
Regulation ......................................................................................................... 17
9.3.1
Load ........................................................................................................... 17
9.3.2
Line ............................................................................................................ 17
10
Waveforms............................................................................................................ 18
10.1 Drain Voltage and Current, Normal Operation .................................................. 18
10.2 Output Voltage Start-up Profile ......................................................................... 19
10.3 Max Output Power (LPS) Testing (Specification Po < 17.5w) ........................... 19
10.4 Load Transient Response ................................................................................. 20
10.5 Output Ripple Measurements............................................................................ 21
10.5.1 Ripple Measurement Technique ................................................................ 21
10.5.2 Measurement Results ................................................................................ 22
11
Conducted EMI ..................................................................................................... 23
12
Revision History.................................................................................................... 24
Important Note:
Although this board is designed to satisfy safety isolation requirements, the engineering
prototype has not been agency approved. Therefore, all testing should be performed
using an isolation transformer to provide the AC input to the prototype board.
Design Reports contain a power supply design specification, schematic, bill of materials,
and transformer documentation. Performance data and typical operation characteristics
are included. Typically only a single prototype has been built.
Page 2 of 25
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
DER-60
Adapter – TNY268
May 27, 2005
1 Introduction
This document is an engineering report describing an adapter power supply utilizing a
TNY268P. This power supply is intended as a general purpose evaluation platform for
TNY268P.
The document contains the power supply specification, schematic, bill of materials,
transformer documentation, printed circuit layout, and performance data.
(Component side)
(Solder side)
Figure 1 – Populated Circuit Board Photograph
Page 3 of 25
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
DER-60
Adapter – TNY268
May 27, 2005
2 Power Supply Specification
Description
Input
Voltage
Frequency
No-load Input Power (240 VAC)
Output
Output Voltage 1
Output Ripple Voltage 1
Output Current 1
Total Output Power
Continuous Output Power
Peak Output Power
Efficiency
CEC Efficiency (115VAC and
230VAC)
Environmental
Symbol
Min
Typ
Max
Units
Comment
VIN
fLINE
85
47
265
64
0.3
VAC
Hz
W
2 Wire – no P.E.
50/60
VOUT1
VRIPPLE1
IOUT1
3.3
3.7
400
2.5
V
mV
A
8.75
14
W
W
%
Measured at POUT (8.75 W), 25 oC
%
Avg. Eff. At 25%, 50%, 75% and
100% load
POUT
POUT_PEAK
η
Avg. η
Conducted EMI
Page 4 of 25
70
68.6
± 5%
20 MHz bandwidth
Meets CISPR22B / EN55022B
Designed to meet IEC950, UL1950
Class II
Safety
Ambient Temperature
3.5
300
TAMB
0
40
o
C
Free convection, sea level
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
DER-60
Adapter – TNY268
May 27, 2005
3 Schematic
Figure 2 – Schematic
Page 5 of 25
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
DER-60
Adapter – TNY268
May 27, 2005
4 Circuit Description
A Flyback converter is used to obtain 3.5V 2.5A output from 90-265 VAC input. The bias
winding, which also serves as core cancellation winding to reduce EMI noise, provides
current to the BP pin of TNY268P, to reduce the No-Load Input Power consumption by
about 0.1 W.
4.1 Input Rectification and EMI Filtering
Fuse F1 protects the charger against any fault condition, and input current exceeds 1A.
Diodes D1, D2, D3, and D4 form Full-bridge rectifier, and rectify the AC voltage into DC
voltage and charge the capacitors C1 and C2. L1, L2, C1, and C2 form π – filter and
attenuate EMI noise. Here, C1 and C2 act as both storage capacitors and part of EMI
filter, which reduces the total cost.
4.2
TOPSwitch Primary
This design uses RCD (C3, D5, R4, and R3) clamping across primary winding to limit the
drain voltage below 700V, when the Mosfet inside U1 turns OFF. The capacitor C4
connected to BP (by-pass) pin of U1 stores energy and provide power for the internal
circuit of U1 and also to turn ON the U1’s Mosfet, during power-up and steady state
operation. C11, D11, and R19 form bias supply components, which provide power to the
BP pin during steady state operation. This will reduce the No-load input power
consumption. R45 limits the current flowing to BP pin, and it is tuned to reduce the Noload input power to minimum. The opto-coupler transistor pulls down enable (EN) pin of
U1. TinySwitch-II keeps on switching as long as the pull down current < 250 µA. U1 will
stop switching if the pull down current exceeds 250 µA.
4.3
Output Rectification
When U1 Mosfet is turned ON, current flows through transformer primary and stores
energy. When U1 is ON, output diode D20 is OFF. When the U1 Mosfet is OFF, D20 is
forward biased, and the stored energy is transferred to the secondary and stores in C22,
C23 and C25. The snubber C21 and R20 across secondary winding will improve EMI.
4.4 Output Feedback
Resistors R30, R31 divide down the supply output voltage and apply it to the reference
pin of error amplifier U22. Shunt regulator U22 drives optocoupler U20 through resistor
R28 to provide feedback information to the U1 EN pin. Capacitor C27 drives the
optocoupler during supply startup to reduce output voltage overshoot. C26 plays a role in
compensating of the power supply feedback loop.
Page 6 of 25
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
DER-60
Adapter – TNY268
May 27, 2005
4.5 OTP, OVP and LPS Protection Circuit
Q1, Q3, R11 and R21 from a SCR to pull BP pin act as a latch circuit. R8 is a thermal
resistor of a NTC type. R8 and R9 from an OTP’s trigger circuit of the SCR. The SCR
will be triggered when temperature raise to OTP setting point.
D21, R27, R44, U23 and R1 form an OVP trigger circuit of the SCR.
voltage raise to let D21 conducted, it will trigger the SCR for protection.
When output
R33, C36, D24 and R36 form a LPS trigger circuit of the SCR. R33 and C36 set at about
300ms delay time for peak 4A output current testing. (The peak current testing is
4A/200ms/ 1A/us and 0.25A/ 1800ms/ 1A/us, and then the output voltage can’t be less
than 3V.) If the output load is increased, the bias voltage will be increased too. When
the bias voltage increased to LPS setting point, it will let D24 conducted to trigger the
SCR for protection.
Page 7 of 25
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
DER-60
Adapter – TNY268
May 27, 2005
5 PCB Layout
Figure 3 – Printed Circuit Layout
Page 8 of 25
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
DER-60
Adapter – TNY268
May 27, 2005
6 Bill Of Materials
Item
Quantity
1
1
C1
Reference
10UF/400V
Description
2
1
C2
22UF/400V
3
1
C3
2200pF/1KV
4
4
C4,C8,C11,C26
100n
5
1
C14
0.01U/250VAC
6
1
C21
2.2nF/100V
7
2
C22,C24
1000uF/6.3V
8
1
C27
1U/16V
Part NO.
9
1
C36
22U/50V
10
5
D1,D2,D3,D4,D11
1A / 1000V
1N4007
11
1
D5
1A / 1000V
1N4007GP
12
1
D20
10A / 40V
MBR1040
13
1
D21
3V3/0.5W
14
1
D24
30V/0.5W
16
1
F1
FUSE 250V / 1A
17
1
J1
AC INLET
AC INLET
18
1
L1
CHOKE 2mH
DR CORE
19
1
L2
CHOKE 1mH
DR CORE
20
1
Q1
PNP Transistor
2SA1015(PNP)
2SC1815(NPN)
21
1
Q3
NPN Transistor
22
3
R1,R27,R28
47R / 0805
23
1
R3
200R / 0.5W
24
1
R4
68K / 0.5W
25
2
R6,R7
1K / 1206
26
2
R8,R19
100K / 0805
27
2
R9,R11
10K / 0805
28
1
R12
2K7 / 0805
29
1
R20
5R1/ 0.5W
30
1
R29
1K / 0805
31
1
R30
4K32,1%
32
1
R31
10K,1%
33
1
R33
4K7 / 0805
34
1
R36
820R / 0805
35
1
R44
470R / 0805
36
1
T1
Transformer
EI22
37
1
U1
Tiny switch
TNY268P
38
2
U20,U23
Photo coupler
LTV817B
39
1
U22
TL431
Page 9 of 25
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
DER-60
Adapter – TNY268
May 27, 2005
7 Transformer Specification
7.1
Electrical Diagram
T1
EI22
7 10
3 3
N2 0.25mm *1 / 60T / 2L
N4 0.45mm *5 / 3T / 1L
Triple Insulated wire
10 7
Floating
7
N3 0.45mm *5 / 3T / 1L
ting
7
5 5
88
N1 0.25mm *2 / 15T / 1L
99
Figure 4 – Transformer Electrical Diagram
7.2
Electrical Specifications
Electrical Strength
Primary Inductance
Resonant Frequency
Primary Leakage Inductance
7.3
1 second, 60 Hz, from Pins 1-5 to Pins 6-10
Pins 7-10, all other windings open, measured at
100 kHz, 0.4 VRMS
Pins 7-10, all other windings open
Pin 7-10 with Pin 3-5 shorted, measured at
100 kHz, 0.4 VRMS
3000 VAC
1.18mH, -/+10%
1MHz (Min.)
30 µH (Max.)
Materials
Item
[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]
Description
Core: PC40 EI22
Bobbin: EI 22, 10 Pin
Magnet Wire: 0.25mm heavy Nyleaze
Magnet Wire: 0.45mm heavy Nyleaze
Triple Insulated Wire: 0.55mm
Tape: 3M 1298 Polyester Film (yellow) 15mm, 0.26m Thick.
Tape: 3M 1298 Polyester Film (yellow) 10mm, 0.25mm Thick.
Varnish
Page 10 of 25
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
DER-60
7.4
Adapter – TNY268
May 27, 2005
Transformer Build Diagram
Tape 3L
PIN5
L4 0.55mm * 3 * 1L 3Ts
Triple Insulated wire *PIN3
Secondary
NC
L3 0.45mm * 5 * 1L 3Ts
*PIN7
Primary
Tape 3L
Tape 1L
Primary
Tape 1L
Primary
Tape 1L
PIN7
L2 0.25mm * 1 * 2L 60Ts
*PIN10
PIN9
Primary
L1 0.25mm * 2 * 1L 15Ts
*PIN8
B0BBIN
Figure 5 – Transformer Build Diagram
7.5
Transformer Construction
Primary Layer
Start at Pin 8. Wind 15 turns of item [3] from right to left. Finish at Pin 9.
Insulation
1Layer of tape [6] for insulation
Primary Layer
Start at Pin 10. Wind 60 turns / 2Layers of item [3]. Wind 1’st layer from left to
right; and add 1 layer of tape [6] for insulation; and then wind 2’nd layer from
right to left. Finish at Pin 7.
Insulation
1Layer of tape [6] for insulation
Primary Layer
Start at Pin 7. Wind 5–filar 3 turns of item [4] from right to left. Finish at NC.
Insulation
3Layers of tape [6] for insulation.
Secondary Winding
Start at Pin 3 Wind tri-filar 3 turns of item [5] from left to right. Finish at Pin 5.
Insulation
3Layers of tape [6 for insulation.
Final Assembly
Assemble and secure core halves. Put 3 Layers of item [7]. Impregnate
uniformly with dip varnish [8]and bake.
Page 11 of 25
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
DER-60
Adapter – TNY268
May 27, 2005
8 Transformer Spreadsheets
Power Supply Input
Var
Value
VACMIN
VACMAX
FL
TC
Z
85
265
50
2.51
0.58
Output 1
(main)
Description
Units
Volts
Volts
Hertz
mSeconds
Min Input AC Voltage
Max Input AC Voltage
Line Frequency
Diode Conduction Time
Loss Allocation Factor
Power Supply Outputs
Var
Value
VOx
IOx
Device Variables
Var
Value
Device
PO
VDRAIN
VDS
FSNOM
FSMIN
FSMAX
TNY268P
10.5
563
3.18
132000
120000
144000
KRPKDP
0.47
ILIMITMIN
ILIMITMAX
IRMS
DMAX
0.51
0.59
0.29
0.50
Output 1
(main)
3.50
3.00
Output 1
(main)
Units
Volts
Amps
Units
Watts
Volts
Volts
Hertz
Hertz
Hertz
Amps
Amps
Amps
Description
Output Voltage
Output Current
Description
PI Device Name
Total Output Power
Maximum Drain Voltage
Drain to Source Voltage
TinySwitch-II Switching Frequency
Minimum Switching Frequency
Maximum Switching Frequency
Continuous/Discontinuous Operating Ratio
Warning! KRP/KDP is too low
Tip: Increase size of TinySwitch-II device,
increase efficiency (N), increase reflected
output voltage (VOR), increase minimum
input voltage (VACMIN) or consider device
family with larger power capability.
Current Limit Minimum
Current Limit Maximum
Primary RMS Current
Maximum Duty Cycle
Power Supply Components Selection
Output 1
(main)
Units
Description
33.0
85.0
374.8
uFarads
Volts
Volts
Input Capacitance
Minimum DC Input Voltage
Maximum DC Input Voltage
VCLO
200
Volts
Clamp Zener Voltage
PZ
RLS1
2.0
2.0
Watts
MOhms
Primary Zener Clamp Loss
Line sense resistor
Var
Value
CIN
VMIN
VMAX
Power Supply Output Parameters
Page 12 of 25
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
DER-60
Adapter – TNY268
Output 1
(main)
Units
VDx
0.50
Volts
PIVSx
22
Volts
ISPx
ISRMSx
IRIPPLEx
9.88
5.44
4.54
Amps
Amps
Amps
Var
Value
May 27, 2005
Description
Output Winding Diode Forward Voltage
Drop
Output Rectifier Maximum Peak Inverse
Voltage
Peak Secondary Current
Secondary RMS Current
Output Capacitor RMS Ripple Current
Transformer Construction Parameters
Var
Value
Core/Bobbin
Core Manuf.
Bobbin Manuf
LPmin
NP
OD Actual
Primary Current Density
VOR
BW
M
L
AE
ALG
BM
BAC
LG
LL
LSEC
EI22
Generic
Generic
1207
60.0
0.23
7
80.00
8.45
0.0
2.00
42.00
335
291
59
0.14
24.1
20
Output 1
(main)
Units
Description
mm^2
nH/T^2
milliTesla
milliTesla
mm
uHenries
nHenries
Core Type
Core Manufacturer
Bobbin Manufacturer
Minimum Primary Inductance
Primary Number of Turns
Primary Actual Wire Diameter
Primary Winding Current Density
Reflected Output Voltage
Bobbin Winding Width
Safety Margin Width
Primary Number of Layers
Core Cross Sectional Area
Gapped Core Effective Inductance
Maximum Flux Density
AC Flux Density for Core Loss
Gap Length
Primary Leakage Inductance
Secondary Trace Inductance
Units
Description
uHenries
mm
A/mm^2
Volts
mm
mm
Secondary Parameters
Var
NSx
Rounded Down NSx
Rounded Down Vox
Value
Output 1
(main)
3.0
Volts
Rounded Up NSx
Rounded Up Vox
Page 13 of 25
Volts
Secondary Number of Turns
Rounded to Integer Secondary Number of
Turns
Volts
Rounded to Next Integer Secondary
Number of Turns
Auxiliary Output Voltage for Rounded up to
Next Integer Secondary Number of Turns
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
DER-60
ODS Actual Range
Page 14 of 25
Adapter – TNY268
0.91 1.45
mm
May 27, 2005
Secondary Actual Wire Diameter Range
Comment: Secondary wire size is greater
than recommended maximum (0.4 mm)
Tip: Consider a parallel winding technique
(bifilar, trifilar) for >1.5 A outputs, increase
size of transformer (larger BW), reduce
margin (M).
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
DER-60
Adapter – TNY268
May 27, 2005
9 Performance Data
All measurements performed at room temperature, 60 Hz input frequency.
9.1 Efficiency
9.1.1 Efficiency vs. input voltage at full load.
Efficiency vs input voltage
Efficiency (%)
85
80
75
70
65
90
115
140
165
190
215
240
265
Input Voltage (Vdc)
Figure 6 – Efficiency vs. Input Voltage, Room Temperature, 60 Hz.
9.1.2 Efficiency vs. output current at 115VAC / 230VAC
Efficiency (%)
Efficiency vs Output Current
230VAC
115VAC
76
76
75
75
74
74
73
73
72
72
71
71
70
70
69
69
Avg Eff
68
115VAC : 72.44%
230VAC : 69.38%
67
66
65
68
67
66
65
25
50
75
100
Output Current (%)
Figure 7 – Efficiency vs. Input Voltage, Room Temperature, 60 Hz.
Page 15 of 25
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
DER-60
Adapter – TNY268
May 27, 2005
9.2 No-load Input Power
9.2.1 Input voltage vs. standby input power
Input voltage vs. Standby Input power
300
Input Power (mW)
250
200
150
100
50
0
90
115
140
165
190
215
240
265
AC Input Voltage (VAC)
Figure 8 – Zero Load Input Power vs. Input Line Voltage, Room Temperature, 60 Hz.
9.2.2 Input voltage vs. Input power (Po: 0.5W)
Input voltage vs Input power (Po: 0.5W)
1.2
Input Power (W)
1
0.8
0.6
0.4
0.2
0
90
115
140
165
190
215
240
265
AC Input Voltage (VAC)
Figure 9 – Input Line Voltage vs. Input Power (Po: 0.5w), Room Temperature, 60 Hz.
Page 16 of 25
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
DER-60
9.3
Adapter – TNY268
May 27, 2005
Regulation
9.3.1 Load
Io (A)
0
0.4
0.8
1.2
1.6
2
2.5
90V
3.594
3.56
3.525
3.49
3.457
3.423
3.38
265V
3.594
3.56
3.527
3.49
3.457
3.422
3.38
Vin (AC)
Figure 10 – Load Regulation, Room Temperature
9.3.2 Line
Vin (ac)
90
115
140
165
190
215
240
3.5V / 0A
3.59
3.59
3.59
3.59
3.59
3.59
3.59
3.5V / 2.5A
3.37
3.37
3.37
3.37
3.37
3.37
3.37
Vo (dc)
Figure 11 – Line Regulation, Room Temperature, Full Load
Page 17 of 25
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
DER-60
Adapter – TNY268
May 27, 2005
10 Waveforms
10.1 Drain Voltage and Current, Normal Operation
Figure 12– 90 VAC, Full Load.
Lower: VDRAIN, 100 V/ div, 20 µs / div
Figure 13 – 265 VAC, Full Load
Lower: VDRAIN, 200 V / div,10 µs / div
Figure 14 – 90 VAC, Full Load.
Lower: IDRAIN, 200ma/ div, 10 µs / div
Figure 15 – 265 VAC, Full Load
Lower: IDRAIN, 200ma/ div, 10 µs / div
Page 18 of 25
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
DER-60
Adapter – TNY268
May 27, 2005
10.2 Output Voltage Start-up Profile
Figure16 – Start-up Profile, 90VAC No Load
1 V/ div, 2 ms / div.
Figure 17 – Start-up Profile, 265 VAC No Load
1V/ div, 2 ms / div.
Figure 18 – Start-up Profile, 90VAC Full Load
1 V/ div, 2 ms / div.
Figure 19 – Start-up Profile, 265 VAC Full Load
1V/ div, 2 ms / div.
10.3 Max Output Power (LPS) Testing (Specification Po < 17.5w)
Vin
Po < 17.5W
90VAC
12.5W
264VAC
13.0W
Page 19 of 25
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
DER-60
Adapter – TNY268
May 27, 2005
10.4 Load Transient Response
Peak Load Transient Response, its Test Condition: 4A 200ms with 0.25A 2000ms,
slew rate 1A/us
Figure 20 – 90 VAC, 3.5V output;
1V/ Div; 500ms/ Div.
Figure 21 – 90 VAC, 3.5V output;
1V/ Div; 500ms/ Div.
Dynamic Load Response, its Test Condition: Test Condition: 2.5A 50ms with 0.25A
50ms, slew rate 1A/us
Figure 22 – 3.5V output; 1V/ Div; 20ms/ Div
Page 20 of 25
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
DER-60
Adapter – TNY268
May 27, 2005
10.5 Output Ripple Measurements
10.5.1 Ripple Measurement Technique
For DC output ripple measurements, a modified oscilloscope test probe must be utilized
in order to reduce spurious signals due to pickup. Details of the probe modification are
provided in Figure 23 and Figure 24.
The 5125BA probe adapter is affixed with two capacitors tied in parallel across the probe
tip. The capacitors include one (1) 0.1 µF/50 V ceramic type and one (1) 1.0 µF/50 V
aluminum electrolytic. The aluminum electrolytic type capacitor is polarized, so
proper polarity across DC outputs must be maintained (see below).
Probe Ground
Probe Tip
Figure 23 – Oscilloscope Probe Prepared for Ripple Measurement. (End Cap and Ground Lead Removed)
Figure 24 – Oscilloscope Probe with Probe Master 5125BA BNC Adapter. (Modified with wires for probe
ground for ripple measurement, and two parallel decoupling capacitors added)
Page 21 of 25
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
DER-60
Adapter – TNY268
May 27, 2005
10.5.2 Measurement Results
Figure 25 – 3.5V Ripple, 90 VAC, Full Load.
50us/ div, 200 mV / div
Page 22 of 25
Figure 26 – 3.5V Ripple, 265 VAC, Full Load.
50us/ div, 200 mV / div
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
DER-60
Adapter – TNY268
May 27, 2005
11 Conducted EMI
Figure 27 – EMI Result: 115VAC, 60Hz, 3.5V 2.6A load, and EN55022 B Limits.
Figure 28 – EMI Result: 230VAC, 60Hz, 3.5V 2.6A load, and EN55022 B Limits.
Page 23 of 25
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
DER-60
Adapter – TNY268
May 27, 2005
12 Revision History
Date
5-27-05
Page 24 of 25
Author
RS
Revision
1.0
Description & changes
Initial Release
Reviewed
KM / VC
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
DER-60
Adapter – TNY268
May 27, 2005
For the latest updates, visit our Web site: www.powerint.com
Power Integrations may make changes to its products at any time. Power Integrations has no liability arising from your
use of any information, device or circuit described herein nor does it convey any license under its patent rights or the
rights of others. POWER INTEGRATIONS MAKES NO WARRANTIES HEREIN AND SPECIFICALLY DISCLAIMS
ALL WARRANTIES INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF THIRD PARTY RIGHTS.
PATENT INFORMATION
The products and applications illustrated herein (including circuits external to the products and transformer
construction) may be covered by one or more U.S. and foreign patents or potentially by pending U.S. and foreign
patent applications assigned to Power Integrations. A complete list of Power Integrations’ patents may be found at
www.powerint.com.
The PI Logo, TOPSwitch, TinySwitch, LinkSwitch, and EcoSmart are registered trademarks of Power
Integrations. PI Expert and DPA-Switch are trademarks of Power Integrations.
© Copyright 2004, Power Integrations.
Power Integrations Worldwide Sales Support Locations
WORLD HEADQUARTERS
5245 Hellyer Avenue,
San Jose, CA 95138, USA
Main:
+1-408-414-9200
Customer Service:
Phone: +1-408-414-9665
Fax:
+1-408-414-9765
e-mail:
[email protected]
GERMANY
Rueckertstrasse 3,
D-80336, Munich, Germany
Phone: +49-895-527-3910
Fax:
+49-895-527-3920
e-mail: [email protected]
JAPAN
Keihin-Tatemono 1st Bldg.
12-20 Shin-Yokohama,
2-Chome,
Kohoku-ku, Yokohama-shi,
Kanagawa 222-0033, Japan
Phone: +81-45-471-1021
Fax:
+81-45-471-3717
e-mail:
[email protected]
TAIWAN
17F-3, No. 510,
Chung Hsiao E. Rd., Sec. 5,
Taipei, Taiwan 110, R.O.C.
Phone: +886-2-2727-1221
Fax:
+886-2-2727-1223
e-mail:
[email protected]
CHINA (SHANGHAI)
Rm 807, Pacheer,
Commercial Centre,
555 Nanjing West Road,
Shanghai, 200041, China
Phone: +86-21-6215-5548
Fax:
+86-21-6215-2468
e-mail:
[email protected]
INDIA (TECHNICAL SUPPORT)
Innovatech
261/A, Ground Floor
7th Main, 17th Cross,
Sadashivanagar
Bangalore, India, 560080
Phone: +91-80-5113-8020
Fax:
+91-80-5113-8023
e-mail: [email protected]
KOREA
8th Floor, DongSung Bldg.
17-8 Yoido-dong,
Youngdeungpo-gu,
Seoul, 150-874, Korea
Phone: +82-2-782-2840
Fax:
+82-2-782-4427
e-mail:
[email protected]
UK (EUROPE & AFRICA
HEADQUARTERS)
1st Floor, St. James’s House
East Street
Farnham, Surrey GU9 7TJ
United Kingdom
Phone: +44-1252-730-140
Fax:
+44-1252-727-689
e-mail: [email protected]
CHINA (SHENZHEN)
Rm# 1705, Bao Hua Bldg.
1016 Hua Qiang Bei Lu,
Shenzhen, Guangdong,
518031, China
Phone: +86-755-8367-5143
Fax:
+86-755-8377-9610
e-mail:
[email protected]
ITALY
Via Vittorio Veneto 12, Bresso,
Milano,
20091, Italy
Phone: +39-028-928-6001
Fax: +39-028-928-6009
e-mail: [email protected]
SINGAPORE
51 Newton Road,
#15-08/10 Goldhill Plaza,
Singapore, 308900
Phone: +65-6358-2160
Fax:
+65-6358-2015
e-mail:
[email protected]
m
APPLICATIONS HOTLINE
World Wide +1-408-414-9660
APPLICATIONS FAX
World Wide +1-408-414-9760
ER or EPR template – Rev 3.6 – Single sided
Page 25 of 25
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com