Design Example Report Title 8.75 W Power Supply using TNY268P Specification Input: 90 – 265VAC Output: 3.5V / 2.5A (4A peak) Application Adapter Author Power Integrations Applications Department Document Number DER-60 Date May 27, 2005 Revision 1.0 Summary and Features • • • • • • Low cost, low parts count. No Y1 Safety capacitor to pass EN55022B. No load input power < 300mw @ 265VAC. Meet CEC requirement with 3.3V2.5A/ 1.8M 18AWG output cable. Meet LPS < 17.5W with full range input. OTP, OVP latch function. The products and applications illustrated herein (including circuits external to the products and transformer construction) may be covered by one or more U.S. and foreign patents or potentially by pending U.S. and foreign patent applications assigned to Power Integrations. A complete list of Power Integrations’ patents may be found at www.powerint.com. Power Integrations 5245 Hellyer Avenue, San Jose, CA 95138 USA. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com DER-60 Adapter – TNY268 May 27, 2005 Table Of Contents 1 2 3 4 Introduction................................................................................................................. 3 Power Supply Specification ........................................................................................ 4 Schematic................................................................................................................... 5 Circuit Description ...................................................................................................... 6 4.1 Input Rectification and EMI Filtering.................................................................... 6 4.2 TOPSwitch Primary ............................................................................................. 6 4.3 Output Rectification ............................................................................................. 6 4.4 Output Feedback................................................................................................. 6 4.5 OTP, OVP and LPS Protection Circuit ................................................................ 7 5 PCB Layout ................................................................................................................ 8 6 Bill Of Materials .......................................................................................................... 9 7 Transformer Specification......................................................................................... 10 7.1 Electrical Diagram ............................................................................................. 10 7.2 Electrical Specifications..................................................................................... 10 7.3 Materials............................................................................................................ 10 7.4 Transformer Build Diagram ............................................................................... 11 7.5 Transformer Construction.................................................................................. 11 8 Transformer Spreadsheets....................................................................................... 12 9 Performance Data .................................................................................................... 15 9.1 Efficiency........................................................................................................... 15 9.2 No-load Input Power.......................................................................................... 16 9.3 Regulation ......................................................................................................... 17 9.3.1 Load ........................................................................................................... 17 9.3.2 Line ............................................................................................................ 17 10 Waveforms............................................................................................................ 18 10.1 Drain Voltage and Current, Normal Operation .................................................. 18 10.2 Output Voltage Start-up Profile ......................................................................... 19 10.3 Max Output Power (LPS) Testing (Specification Po < 17.5w) ........................... 19 10.4 Load Transient Response ................................................................................. 20 10.5 Output Ripple Measurements............................................................................ 21 10.5.1 Ripple Measurement Technique ................................................................ 21 10.5.2 Measurement Results ................................................................................ 22 11 Conducted EMI ..................................................................................................... 23 12 Revision History.................................................................................................... 24 Important Note: Although this board is designed to satisfy safety isolation requirements, the engineering prototype has not been agency approved. Therefore, all testing should be performed using an isolation transformer to provide the AC input to the prototype board. Design Reports contain a power supply design specification, schematic, bill of materials, and transformer documentation. Performance data and typical operation characteristics are included. Typically only a single prototype has been built. Page 2 of 25 Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com DER-60 Adapter – TNY268 May 27, 2005 1 Introduction This document is an engineering report describing an adapter power supply utilizing a TNY268P. This power supply is intended as a general purpose evaluation platform for TNY268P. The document contains the power supply specification, schematic, bill of materials, transformer documentation, printed circuit layout, and performance data. (Component side) (Solder side) Figure 1 – Populated Circuit Board Photograph Page 3 of 25 Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com DER-60 Adapter – TNY268 May 27, 2005 2 Power Supply Specification Description Input Voltage Frequency No-load Input Power (240 VAC) Output Output Voltage 1 Output Ripple Voltage 1 Output Current 1 Total Output Power Continuous Output Power Peak Output Power Efficiency CEC Efficiency (115VAC and 230VAC) Environmental Symbol Min Typ Max Units Comment VIN fLINE 85 47 265 64 0.3 VAC Hz W 2 Wire – no P.E. 50/60 VOUT1 VRIPPLE1 IOUT1 3.3 3.7 400 2.5 V mV A 8.75 14 W W % Measured at POUT (8.75 W), 25 oC % Avg. Eff. At 25%, 50%, 75% and 100% load POUT POUT_PEAK η Avg. η Conducted EMI Page 4 of 25 70 68.6 ± 5% 20 MHz bandwidth Meets CISPR22B / EN55022B Designed to meet IEC950, UL1950 Class II Safety Ambient Temperature 3.5 300 TAMB 0 40 o C Free convection, sea level Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com DER-60 Adapter – TNY268 May 27, 2005 3 Schematic Figure 2 – Schematic Page 5 of 25 Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com DER-60 Adapter – TNY268 May 27, 2005 4 Circuit Description A Flyback converter is used to obtain 3.5V 2.5A output from 90-265 VAC input. The bias winding, which also serves as core cancellation winding to reduce EMI noise, provides current to the BP pin of TNY268P, to reduce the No-Load Input Power consumption by about 0.1 W. 4.1 Input Rectification and EMI Filtering Fuse F1 protects the charger against any fault condition, and input current exceeds 1A. Diodes D1, D2, D3, and D4 form Full-bridge rectifier, and rectify the AC voltage into DC voltage and charge the capacitors C1 and C2. L1, L2, C1, and C2 form π – filter and attenuate EMI noise. Here, C1 and C2 act as both storage capacitors and part of EMI filter, which reduces the total cost. 4.2 TOPSwitch Primary This design uses RCD (C3, D5, R4, and R3) clamping across primary winding to limit the drain voltage below 700V, when the Mosfet inside U1 turns OFF. The capacitor C4 connected to BP (by-pass) pin of U1 stores energy and provide power for the internal circuit of U1 and also to turn ON the U1’s Mosfet, during power-up and steady state operation. C11, D11, and R19 form bias supply components, which provide power to the BP pin during steady state operation. This will reduce the No-load input power consumption. R45 limits the current flowing to BP pin, and it is tuned to reduce the Noload input power to minimum. The opto-coupler transistor pulls down enable (EN) pin of U1. TinySwitch-II keeps on switching as long as the pull down current < 250 µA. U1 will stop switching if the pull down current exceeds 250 µA. 4.3 Output Rectification When U1 Mosfet is turned ON, current flows through transformer primary and stores energy. When U1 is ON, output diode D20 is OFF. When the U1 Mosfet is OFF, D20 is forward biased, and the stored energy is transferred to the secondary and stores in C22, C23 and C25. The snubber C21 and R20 across secondary winding will improve EMI. 4.4 Output Feedback Resistors R30, R31 divide down the supply output voltage and apply it to the reference pin of error amplifier U22. Shunt regulator U22 drives optocoupler U20 through resistor R28 to provide feedback information to the U1 EN pin. Capacitor C27 drives the optocoupler during supply startup to reduce output voltage overshoot. C26 plays a role in compensating of the power supply feedback loop. Page 6 of 25 Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com DER-60 Adapter – TNY268 May 27, 2005 4.5 OTP, OVP and LPS Protection Circuit Q1, Q3, R11 and R21 from a SCR to pull BP pin act as a latch circuit. R8 is a thermal resistor of a NTC type. R8 and R9 from an OTP’s trigger circuit of the SCR. The SCR will be triggered when temperature raise to OTP setting point. D21, R27, R44, U23 and R1 form an OVP trigger circuit of the SCR. voltage raise to let D21 conducted, it will trigger the SCR for protection. When output R33, C36, D24 and R36 form a LPS trigger circuit of the SCR. R33 and C36 set at about 300ms delay time for peak 4A output current testing. (The peak current testing is 4A/200ms/ 1A/us and 0.25A/ 1800ms/ 1A/us, and then the output voltage can’t be less than 3V.) If the output load is increased, the bias voltage will be increased too. When the bias voltage increased to LPS setting point, it will let D24 conducted to trigger the SCR for protection. Page 7 of 25 Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com DER-60 Adapter – TNY268 May 27, 2005 5 PCB Layout Figure 3 – Printed Circuit Layout Page 8 of 25 Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com DER-60 Adapter – TNY268 May 27, 2005 6 Bill Of Materials Item Quantity 1 1 C1 Reference 10UF/400V Description 2 1 C2 22UF/400V 3 1 C3 2200pF/1KV 4 4 C4,C8,C11,C26 100n 5 1 C14 0.01U/250VAC 6 1 C21 2.2nF/100V 7 2 C22,C24 1000uF/6.3V 8 1 C27 1U/16V Part NO. 9 1 C36 22U/50V 10 5 D1,D2,D3,D4,D11 1A / 1000V 1N4007 11 1 D5 1A / 1000V 1N4007GP 12 1 D20 10A / 40V MBR1040 13 1 D21 3V3/0.5W 14 1 D24 30V/0.5W 16 1 F1 FUSE 250V / 1A 17 1 J1 AC INLET AC INLET 18 1 L1 CHOKE 2mH DR CORE 19 1 L2 CHOKE 1mH DR CORE 20 1 Q1 PNP Transistor 2SA1015(PNP) 2SC1815(NPN) 21 1 Q3 NPN Transistor 22 3 R1,R27,R28 47R / 0805 23 1 R3 200R / 0.5W 24 1 R4 68K / 0.5W 25 2 R6,R7 1K / 1206 26 2 R8,R19 100K / 0805 27 2 R9,R11 10K / 0805 28 1 R12 2K7 / 0805 29 1 R20 5R1/ 0.5W 30 1 R29 1K / 0805 31 1 R30 4K32,1% 32 1 R31 10K,1% 33 1 R33 4K7 / 0805 34 1 R36 820R / 0805 35 1 R44 470R / 0805 36 1 T1 Transformer EI22 37 1 U1 Tiny switch TNY268P 38 2 U20,U23 Photo coupler LTV817B 39 1 U22 TL431 Page 9 of 25 Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com DER-60 Adapter – TNY268 May 27, 2005 7 Transformer Specification 7.1 Electrical Diagram T1 EI22 7 10 3 3 N2 0.25mm *1 / 60T / 2L N4 0.45mm *5 / 3T / 1L Triple Insulated wire 10 7 Floating 7 N3 0.45mm *5 / 3T / 1L ting 7 5 5 88 N1 0.25mm *2 / 15T / 1L 99 Figure 4 – Transformer Electrical Diagram 7.2 Electrical Specifications Electrical Strength Primary Inductance Resonant Frequency Primary Leakage Inductance 7.3 1 second, 60 Hz, from Pins 1-5 to Pins 6-10 Pins 7-10, all other windings open, measured at 100 kHz, 0.4 VRMS Pins 7-10, all other windings open Pin 7-10 with Pin 3-5 shorted, measured at 100 kHz, 0.4 VRMS 3000 VAC 1.18mH, -/+10% 1MHz (Min.) 30 µH (Max.) Materials Item [1] [2] [3] [4] [5] [6] [7] [8] Description Core: PC40 EI22 Bobbin: EI 22, 10 Pin Magnet Wire: 0.25mm heavy Nyleaze Magnet Wire: 0.45mm heavy Nyleaze Triple Insulated Wire: 0.55mm Tape: 3M 1298 Polyester Film (yellow) 15mm, 0.26m Thick. Tape: 3M 1298 Polyester Film (yellow) 10mm, 0.25mm Thick. Varnish Page 10 of 25 Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com DER-60 7.4 Adapter – TNY268 May 27, 2005 Transformer Build Diagram Tape 3L PIN5 L4 0.55mm * 3 * 1L 3Ts Triple Insulated wire *PIN3 Secondary NC L3 0.45mm * 5 * 1L 3Ts *PIN7 Primary Tape 3L Tape 1L Primary Tape 1L Primary Tape 1L PIN7 L2 0.25mm * 1 * 2L 60Ts *PIN10 PIN9 Primary L1 0.25mm * 2 * 1L 15Ts *PIN8 B0BBIN Figure 5 – Transformer Build Diagram 7.5 Transformer Construction Primary Layer Start at Pin 8. Wind 15 turns of item [3] from right to left. Finish at Pin 9. Insulation 1Layer of tape [6] for insulation Primary Layer Start at Pin 10. Wind 60 turns / 2Layers of item [3]. Wind 1’st layer from left to right; and add 1 layer of tape [6] for insulation; and then wind 2’nd layer from right to left. Finish at Pin 7. Insulation 1Layer of tape [6] for insulation Primary Layer Start at Pin 7. Wind 5–filar 3 turns of item [4] from right to left. Finish at NC. Insulation 3Layers of tape [6] for insulation. Secondary Winding Start at Pin 3 Wind tri-filar 3 turns of item [5] from left to right. Finish at Pin 5. Insulation 3Layers of tape [6 for insulation. Final Assembly Assemble and secure core halves. Put 3 Layers of item [7]. Impregnate uniformly with dip varnish [8]and bake. Page 11 of 25 Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com DER-60 Adapter – TNY268 May 27, 2005 8 Transformer Spreadsheets Power Supply Input Var Value VACMIN VACMAX FL TC Z 85 265 50 2.51 0.58 Output 1 (main) Description Units Volts Volts Hertz mSeconds Min Input AC Voltage Max Input AC Voltage Line Frequency Diode Conduction Time Loss Allocation Factor Power Supply Outputs Var Value VOx IOx Device Variables Var Value Device PO VDRAIN VDS FSNOM FSMIN FSMAX TNY268P 10.5 563 3.18 132000 120000 144000 KRPKDP 0.47 ILIMITMIN ILIMITMAX IRMS DMAX 0.51 0.59 0.29 0.50 Output 1 (main) 3.50 3.00 Output 1 (main) Units Volts Amps Units Watts Volts Volts Hertz Hertz Hertz Amps Amps Amps Description Output Voltage Output Current Description PI Device Name Total Output Power Maximum Drain Voltage Drain to Source Voltage TinySwitch-II Switching Frequency Minimum Switching Frequency Maximum Switching Frequency Continuous/Discontinuous Operating Ratio Warning! KRP/KDP is too low Tip: Increase size of TinySwitch-II device, increase efficiency (N), increase reflected output voltage (VOR), increase minimum input voltage (VACMIN) or consider device family with larger power capability. Current Limit Minimum Current Limit Maximum Primary RMS Current Maximum Duty Cycle Power Supply Components Selection Output 1 (main) Units Description 33.0 85.0 374.8 uFarads Volts Volts Input Capacitance Minimum DC Input Voltage Maximum DC Input Voltage VCLO 200 Volts Clamp Zener Voltage PZ RLS1 2.0 2.0 Watts MOhms Primary Zener Clamp Loss Line sense resistor Var Value CIN VMIN VMAX Power Supply Output Parameters Page 12 of 25 Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com DER-60 Adapter – TNY268 Output 1 (main) Units VDx 0.50 Volts PIVSx 22 Volts ISPx ISRMSx IRIPPLEx 9.88 5.44 4.54 Amps Amps Amps Var Value May 27, 2005 Description Output Winding Diode Forward Voltage Drop Output Rectifier Maximum Peak Inverse Voltage Peak Secondary Current Secondary RMS Current Output Capacitor RMS Ripple Current Transformer Construction Parameters Var Value Core/Bobbin Core Manuf. Bobbin Manuf LPmin NP OD Actual Primary Current Density VOR BW M L AE ALG BM BAC LG LL LSEC EI22 Generic Generic 1207 60.0 0.23 7 80.00 8.45 0.0 2.00 42.00 335 291 59 0.14 24.1 20 Output 1 (main) Units Description mm^2 nH/T^2 milliTesla milliTesla mm uHenries nHenries Core Type Core Manufacturer Bobbin Manufacturer Minimum Primary Inductance Primary Number of Turns Primary Actual Wire Diameter Primary Winding Current Density Reflected Output Voltage Bobbin Winding Width Safety Margin Width Primary Number of Layers Core Cross Sectional Area Gapped Core Effective Inductance Maximum Flux Density AC Flux Density for Core Loss Gap Length Primary Leakage Inductance Secondary Trace Inductance Units Description uHenries mm A/mm^2 Volts mm mm Secondary Parameters Var NSx Rounded Down NSx Rounded Down Vox Value Output 1 (main) 3.0 Volts Rounded Up NSx Rounded Up Vox Page 13 of 25 Volts Secondary Number of Turns Rounded to Integer Secondary Number of Turns Volts Rounded to Next Integer Secondary Number of Turns Auxiliary Output Voltage for Rounded up to Next Integer Secondary Number of Turns Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com DER-60 ODS Actual Range Page 14 of 25 Adapter – TNY268 0.91 1.45 mm May 27, 2005 Secondary Actual Wire Diameter Range Comment: Secondary wire size is greater than recommended maximum (0.4 mm) Tip: Consider a parallel winding technique (bifilar, trifilar) for >1.5 A outputs, increase size of transformer (larger BW), reduce margin (M). Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com DER-60 Adapter – TNY268 May 27, 2005 9 Performance Data All measurements performed at room temperature, 60 Hz input frequency. 9.1 Efficiency 9.1.1 Efficiency vs. input voltage at full load. Efficiency vs input voltage Efficiency (%) 85 80 75 70 65 90 115 140 165 190 215 240 265 Input Voltage (Vdc) Figure 6 – Efficiency vs. Input Voltage, Room Temperature, 60 Hz. 9.1.2 Efficiency vs. output current at 115VAC / 230VAC Efficiency (%) Efficiency vs Output Current 230VAC 115VAC 76 76 75 75 74 74 73 73 72 72 71 71 70 70 69 69 Avg Eff 68 115VAC : 72.44% 230VAC : 69.38% 67 66 65 68 67 66 65 25 50 75 100 Output Current (%) Figure 7 – Efficiency vs. Input Voltage, Room Temperature, 60 Hz. Page 15 of 25 Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com DER-60 Adapter – TNY268 May 27, 2005 9.2 No-load Input Power 9.2.1 Input voltage vs. standby input power Input voltage vs. Standby Input power 300 Input Power (mW) 250 200 150 100 50 0 90 115 140 165 190 215 240 265 AC Input Voltage (VAC) Figure 8 – Zero Load Input Power vs. Input Line Voltage, Room Temperature, 60 Hz. 9.2.2 Input voltage vs. Input power (Po: 0.5W) Input voltage vs Input power (Po: 0.5W) 1.2 Input Power (W) 1 0.8 0.6 0.4 0.2 0 90 115 140 165 190 215 240 265 AC Input Voltage (VAC) Figure 9 – Input Line Voltage vs. Input Power (Po: 0.5w), Room Temperature, 60 Hz. Page 16 of 25 Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com DER-60 9.3 Adapter – TNY268 May 27, 2005 Regulation 9.3.1 Load Io (A) 0 0.4 0.8 1.2 1.6 2 2.5 90V 3.594 3.56 3.525 3.49 3.457 3.423 3.38 265V 3.594 3.56 3.527 3.49 3.457 3.422 3.38 Vin (AC) Figure 10 – Load Regulation, Room Temperature 9.3.2 Line Vin (ac) 90 115 140 165 190 215 240 3.5V / 0A 3.59 3.59 3.59 3.59 3.59 3.59 3.59 3.5V / 2.5A 3.37 3.37 3.37 3.37 3.37 3.37 3.37 Vo (dc) Figure 11 – Line Regulation, Room Temperature, Full Load Page 17 of 25 Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com DER-60 Adapter – TNY268 May 27, 2005 10 Waveforms 10.1 Drain Voltage and Current, Normal Operation Figure 12– 90 VAC, Full Load. Lower: VDRAIN, 100 V/ div, 20 µs / div Figure 13 – 265 VAC, Full Load Lower: VDRAIN, 200 V / div,10 µs / div Figure 14 – 90 VAC, Full Load. Lower: IDRAIN, 200ma/ div, 10 µs / div Figure 15 – 265 VAC, Full Load Lower: IDRAIN, 200ma/ div, 10 µs / div Page 18 of 25 Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com DER-60 Adapter – TNY268 May 27, 2005 10.2 Output Voltage Start-up Profile Figure16 – Start-up Profile, 90VAC No Load 1 V/ div, 2 ms / div. Figure 17 – Start-up Profile, 265 VAC No Load 1V/ div, 2 ms / div. Figure 18 – Start-up Profile, 90VAC Full Load 1 V/ div, 2 ms / div. Figure 19 – Start-up Profile, 265 VAC Full Load 1V/ div, 2 ms / div. 10.3 Max Output Power (LPS) Testing (Specification Po < 17.5w) Vin Po < 17.5W 90VAC 12.5W 264VAC 13.0W Page 19 of 25 Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com DER-60 Adapter – TNY268 May 27, 2005 10.4 Load Transient Response Peak Load Transient Response, its Test Condition: 4A 200ms with 0.25A 2000ms, slew rate 1A/us Figure 20 – 90 VAC, 3.5V output; 1V/ Div; 500ms/ Div. Figure 21 – 90 VAC, 3.5V output; 1V/ Div; 500ms/ Div. Dynamic Load Response, its Test Condition: Test Condition: 2.5A 50ms with 0.25A 50ms, slew rate 1A/us Figure 22 – 3.5V output; 1V/ Div; 20ms/ Div Page 20 of 25 Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com DER-60 Adapter – TNY268 May 27, 2005 10.5 Output Ripple Measurements 10.5.1 Ripple Measurement Technique For DC output ripple measurements, a modified oscilloscope test probe must be utilized in order to reduce spurious signals due to pickup. Details of the probe modification are provided in Figure 23 and Figure 24. The 5125BA probe adapter is affixed with two capacitors tied in parallel across the probe tip. The capacitors include one (1) 0.1 µF/50 V ceramic type and one (1) 1.0 µF/50 V aluminum electrolytic. The aluminum electrolytic type capacitor is polarized, so proper polarity across DC outputs must be maintained (see below). Probe Ground Probe Tip Figure 23 – Oscilloscope Probe Prepared for Ripple Measurement. (End Cap and Ground Lead Removed) Figure 24 – Oscilloscope Probe with Probe Master 5125BA BNC Adapter. (Modified with wires for probe ground for ripple measurement, and two parallel decoupling capacitors added) Page 21 of 25 Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com DER-60 Adapter – TNY268 May 27, 2005 10.5.2 Measurement Results Figure 25 – 3.5V Ripple, 90 VAC, Full Load. 50us/ div, 200 mV / div Page 22 of 25 Figure 26 – 3.5V Ripple, 265 VAC, Full Load. 50us/ div, 200 mV / div Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com DER-60 Adapter – TNY268 May 27, 2005 11 Conducted EMI Figure 27 – EMI Result: 115VAC, 60Hz, 3.5V 2.6A load, and EN55022 B Limits. Figure 28 – EMI Result: 230VAC, 60Hz, 3.5V 2.6A load, and EN55022 B Limits. Page 23 of 25 Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com DER-60 Adapter – TNY268 May 27, 2005 12 Revision History Date 5-27-05 Page 24 of 25 Author RS Revision 1.0 Description & changes Initial Release Reviewed KM / VC Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com DER-60 Adapter – TNY268 May 27, 2005 For the latest updates, visit our Web site: www.powerint.com Power Integrations may make changes to its products at any time. Power Integrations has no liability arising from your use of any information, device or circuit described herein nor does it convey any license under its patent rights or the rights of others. POWER INTEGRATIONS MAKES NO WARRANTIES HEREIN AND SPECIFICALLY DISCLAIMS ALL WARRANTIES INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF THIRD PARTY RIGHTS. PATENT INFORMATION The products and applications illustrated herein (including circuits external to the products and transformer construction) may be covered by one or more U.S. and foreign patents or potentially by pending U.S. and foreign patent applications assigned to Power Integrations. A complete list of Power Integrations’ patents may be found at www.powerint.com. The PI Logo, TOPSwitch, TinySwitch, LinkSwitch, and EcoSmart are registered trademarks of Power Integrations. PI Expert and DPA-Switch are trademarks of Power Integrations. © Copyright 2004, Power Integrations. Power Integrations Worldwide Sales Support Locations WORLD HEADQUARTERS 5245 Hellyer Avenue, San Jose, CA 95138, USA Main: +1-408-414-9200 Customer Service: Phone: +1-408-414-9665 Fax: +1-408-414-9765 e-mail: [email protected] GERMANY Rueckertstrasse 3, D-80336, Munich, Germany Phone: +49-895-527-3910 Fax: +49-895-527-3920 e-mail: [email protected] JAPAN Keihin-Tatemono 1st Bldg. 12-20 Shin-Yokohama, 2-Chome, Kohoku-ku, Yokohama-shi, Kanagawa 222-0033, Japan Phone: +81-45-471-1021 Fax: +81-45-471-3717 e-mail: [email protected] TAIWAN 17F-3, No. 510, Chung Hsiao E. Rd., Sec. 5, Taipei, Taiwan 110, R.O.C. Phone: +886-2-2727-1221 Fax: +886-2-2727-1223 e-mail: [email protected] CHINA (SHANGHAI) Rm 807, Pacheer, Commercial Centre, 555 Nanjing West Road, Shanghai, 200041, China Phone: +86-21-6215-5548 Fax: +86-21-6215-2468 e-mail: [email protected] INDIA (TECHNICAL SUPPORT) Innovatech 261/A, Ground Floor 7th Main, 17th Cross, Sadashivanagar Bangalore, India, 560080 Phone: +91-80-5113-8020 Fax: +91-80-5113-8023 e-mail: [email protected] KOREA 8th Floor, DongSung Bldg. 17-8 Yoido-dong, Youngdeungpo-gu, Seoul, 150-874, Korea Phone: +82-2-782-2840 Fax: +82-2-782-4427 e-mail: [email protected] UK (EUROPE & AFRICA HEADQUARTERS) 1st Floor, St. James’s House East Street Farnham, Surrey GU9 7TJ United Kingdom Phone: +44-1252-730-140 Fax: +44-1252-727-689 e-mail: [email protected] CHINA (SHENZHEN) Rm# 1705, Bao Hua Bldg. 1016 Hua Qiang Bei Lu, Shenzhen, Guangdong, 518031, China Phone: +86-755-8367-5143 Fax: +86-755-8377-9610 e-mail: [email protected] ITALY Via Vittorio Veneto 12, Bresso, Milano, 20091, Italy Phone: +39-028-928-6001 Fax: +39-028-928-6009 e-mail: [email protected] SINGAPORE 51 Newton Road, #15-08/10 Goldhill Plaza, Singapore, 308900 Phone: +65-6358-2160 Fax: +65-6358-2015 e-mail: [email protected] m APPLICATIONS HOTLINE World Wide +1-408-414-9660 APPLICATIONS FAX World Wide +1-408-414-9760 ER or EPR template – Rev 3.6 – Single sided Page 25 of 25 Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com