ANPEC APA2718HAI-TRG

APA2178
100mW Stereo Cap-Free Headphone Driver
Features
•
•
•
•
•
•
•
•
•
•
•
•
General Description
No Output Capacitor Required
The APA2178 is a stereo, fixed gain, Cap-Free headphone
driver which is available in a WLCSP2x2-16 package.
Operating Voltage: 1.8V~4.5V
The APA2178 is a ground-reference output, and doesn’t
need the output capacitors for DC blocking. The advan-
Supply Current
– IDD=5mA at VDD=3.3V
tages of eliminating the output capacitor are saving the
cost, PCB’s space, and component height.
Low Shutdown Current
– IDD=1µA at VDD=3.3V
The built-in gain setting can minimize the external component counts and save the PCB space. High PSRR pro-
Meeting VISTA Requirements
Output Power
at 1% THD+N
– 70mW, at VDD=3.3V, RL = 16Ω
at 10% THD+N
– 100mW, at VDD=3.3V, RL = 16Ω
vides increased immunity to noise and RF rectification. In
addition to these features, a fast startup time and small
package size make the APA2178 an ideal choice for portable multimedia device.
Moreover, the APA2178 is also equipped other features.
For example, it is capable of driving 100mW at 3.3V into
Less External Components Required
High PSRR: 78dB at 217Hz
16Ω, at THD+N=10% and provides thermal and short circuit protection.
Short-Circuit and Thermal Protection
± 8KV ESD Performance
Applications
Surface-Mount Packaging
– WLCSP2x2-16
•
•
•
•
Lead Free and Green Devices Available
(RoHS Compliant)
Handsets
PDAs
Portable multimedia devices
Notebooks
Simplified Application Circuit
R-CH
Input
RIN
ROUT
L-CH
Input
Stereo
Headphone
LIN
APA2178
LOUT
Shutdown
Control
RSD
LSD
ANPEC reserves the right to make changes to improve reliability or manufacturability without notice, and
advise customers to obtain the latest version of relevant information to verify before placing orders.
Copyright  ANPEC Electronics Corp.
Rev. A.3 - Jul., 2009
1
www.anpec.com.tw
APA2178
Ordering and Marking Information
APA2178
Package Code
HA : WLCSP2x2-16
Operating Ambient Temperature Range
I : -40 to 85 oC
Handling Code
TR : Tape & Reel
Assembly Material
G : Halogen and Lead Free Device
Assembly Material
Handling Code
Temperature Range
Package Code
AP78
X
APA2178 HA :
X - Date Code
Note: ANPEC lead-free products contain molding compounds/die attach materials and 100% matte tin plate termination finish; which
are fully compliant with RoHS. ANPEC lead-free products meet or exceed the lead-free requirements of IPC/JEDEC J-STD-020C for
MSL classification at lead-free peak reflow temperature. ANPEC defines “Green” to mean lead-free (RoHS compliant) and halogen
free (Br or Cl does not exceed 900ppm by weight in homogeneous material and total of Br and Cl does not exceed 1500ppm by
weight).
Pin Configuration
CP+
(A4)
PGND
(B4)
CP(C4)
CVSS
(D4)
PVDD
(A3)
NC
(B3)
NC
(C3)
VSS
(D3)
GND
(A2)
LSD
(B2)
ROUT
(C2)
LOUT
(D2)
RIN
(A1)
RSD
(B1)
LIN
(C1)
VDD
(D1)
X
Date
Code
Marking
PIN A1
Copyright  ANPEC Electronics Corp.
Rev. A.3 - Jul., 2009
2
www.anpec.com.tw
APA2178
Absolute Maximum Ratings
(Note 1)
(Over operating free-air temperature range unless otherwise noted.)
Symbol
Parameter
Rating
Unit
VPVDD_VDD
PVDD to VDD Voltage
-0.3 to 0.3
V
VPGND_GND
PGND to GND Voltage
-0.3 to 0.3
V
PVDD, VDD
Supply Voltage (VDD and PVDD to GND and PGND)
-0.3 to 5.5
V
VRSD, VLSD
Input Voltage (RSD and LSD to GND)
GND-0.3 to VDD+0.3
V
VSS, CVSS
VSS and CVSS to GND and PGND Voltage
-5.5 to 0.3
V
VSS-0.3 to VDD+0.3
V
V
VROUT, VLOUT
ROUT and LOUT to GND Voltage
VCP+
CP+ to PGND Voltage
PGND-0.3 to PVDD+0.3
VCP-
CP- to PGND Voltage
PVSS-0.3 to PGND+0.3
TA
Operating Ambient Temperature Range
TJ
Maximum Junction Temperature
TSTG
TSDR
PD
Storage Temperature Range
Maximum Soldering Temperature Range, 10 Seconds
Power Dissipation
V
-40 to 85
ο
150
ο
-65 to +150
ο
260
ο
C
C
C
C
Internally Limited
W
Note 1: Absolute Maximum Ratings are those values beyond which the life of a device may be impaired. Exposure to absolute
maximum rating conditions for extended periods may affect device reliability.
Thermal Characteristics
Symbol
θJA
Parameter
Junction-to-Ambient Resistance in Free Air
Typical Value
Unit
(Note 2)
WLCSP2x2-16
160
o
C/W
Note 2: Please refer to “Thermal Pad Consideration”. 2 layered 5 in2 printed circuit boards with 2oz trace and copper through several
thermal vias. The thermal pad is soldered on the PCB.
Recommended Operating Conditions (Note 3)
Symbol
Parameter
VDD
Supply Voltage
VIH
High Level Threshold Voltage
VIL
Low Level Threshold Voltage
VICM
Common Mode Input Voltage
RSD, LSD
RSD, LSD
Range
Unit
1.8 ~ 4.5
V
0.6VDD ~ VDD
V
0 ~ 0.3VDD
~ VDD-0.5
V
V
TA
Ambient Temperature
-40 ~ 85
o
TJ
Junction Temperature
-40 ~ 125
o
RL
Headphone Resistance
14 ~
C
C
Ω
Note 3 : Refer to the typical application circuit.
Copyright  ANPEC Electronics Corp.
Rev. A.3 - Jul., 2009
3
www.anpec.com.tw
APA2178
Electrical Characteristics
Unless otherwise specified, these specifications apply over VDD=PVDD=3.3V, VPGND=VGND=0V, and CCPO=CCPF=1µF.
Typical values are at TA=25oC.
Symbol
Parameter
AP2178
Test Conditions
Unit
Min.
Typ.
Max.
1.8
-
4.5
V
VDD
Supply Voltage
IDD
Supply Current
-
5
10
mA
ISD
Shutdown Current
RSD =LSD= 0V
-
1
2
µA
Input Current
RSD, LSD
-
0.1
-
µA
440
520
580
kHz
6
7
9
Ω
Rising VDD Threshold
1.67
1.7
1.73
V
Falling VDD Threshold
1.57
1.6
1.63
V
-1.55
-1.5
-1.45
V/V
Ii
CHARGE PUMP
FOSC
Switching Frequency
Charge Pump Requirement
Req
Resistance
POWER-ON-RESET
AMPLIFIERS
AV
∆AV
Internal Voltage Gain
No Load
Gain Match
Ri
Input Resistance
SR
Slew Rate
VOS
Output Offset Voltage
Vn
Noise Output Voltage
VDD=1.8V to 4.5V, RL = 32Ω
-
1
-
%
12
14
16
kΩ
-
2.5
-
V/µs
-5
-
5
mV
-
15
-
µVrms
-
dB
-
pF
VDD=1.8V to 4.5V,Vrr=200mVrms
PSRR
Power Supply Rejection Ratio
fin= 217Hz
-
fin=1kHz
fin= 20kHz
CL
Tstart-up
OUTR, OUTL
78
75
55
-
400
Start-up Time
-
120
-
µs
ESD Protection
-
±8
-
kV
150
-
Maximum Capacitive Load
VDD=4.5V, TA=25°
C
THD+N = 1%, fin=1kHz
RL = 16Ω
PO
Output Power (Stereo, in Phase)
120
RL = 32Ω
145
mW
THD+N = 10%, fin=1kHz
215
RL = 16Ω
180
RL = 32Ω
-
205
fin = 1kHz
0.03
PO = 105mW, RL = 16Ω
THD+N
Total Harmonic Distortion Pulse
Noise
Copyright  ANPEC Electronics Corp.
Rev. A.3 - Jul., 2009
PO = 100mW, RL = 32Ω
-
0.02
VO = 2.2Vrms, RL = 300Ω
0.005
VO = 2.2Vrms, RL = 10kΩ
0.003
4
-
%
www.anpec.com.tw
APA2178
Electrical Characteristics (Cont.)
Unless otherwise specified, these specifications apply over VDD=PVDD=3.3V, VPGND=VGND=0V, and CCPO=CCPF=1µF.
Typical values are at TA=25oC.
Symbol
Parameter
Test Conditions
APA2178
Min.
Typ.
Max.
Unit
VDD=4.5V, TA=25°
C (CONT.)
fin = 1kHz
75
PO = 15mW, RL = 16Ω
Crosstalk
Channel Separation
PO = 15mW, RL = 32Ω
-
80
VO = 0.31Vrms, RL = 300Ω
95
VO = 0.31Vrms, RL = 10kΩ
100
-
dB
-
dB
With A-weighting Filter
S/N
Signal-to-Noise Ratio
PO = 100mW, RL = 32Ω
-
100
105
VO = 3.1Vrms, RL = 10kΩ
VDD=3.3V, TA=25°
C
THD+N = 1%, fin=1kHz
70
RL = 16Ω
PO
Output Power (Stereo, in Phase)
55
RL = 32Ω
-
70
mW
THD+N = 10%, fin=1kHz
100
RL = 16Ω
80
RL = 32Ω
-
100
fin = 1kHz
0.03
PO = 50mW, RL = 16Ω
THD+N
Total Harmonic Distortion Pulse
Noise
PO = 50mW, RL = 32Ω
-
0.02
VO = 1.6Vrms, RL = 300Ω
0.005
VO = 1.6Vrms, RL = 10kΩ
0.003
-
%
-
dB
-
dB
fin = 1kHz
75
PO = 7mW, RL = 16Ω
Crosstalk
Channel Separation
PO = 7mW, RL = 32Ω
-
85
VO = 0.23Vrms, RL = 300Ω
95
VO = 0.23Vrms, RL = 10kΩ
95
With A-weighting Filter
S/N
Signal-to-Noise Ratio
PO = 50mW, RL = 32Ω
-
95
100
VO = 2.3Vrms, RL = 10kΩ
VDD=1.8V, TA=25°
C
THD+N = 1%, fin=1kHz
PO
Output Power (Stereo, in Phase)
RL = 32Ω
10
13
15
20
THD+N = 10%, fin=1kHz
RL = 32Ω
mW
-
fin = 1kHz
THD+N
Total Harmonic Distortion Pulse
Noise
Copyright  ANPEC Electronics Corp.
Rev. A.3 - Jul., 2009
PO = 9mW, RL = 32Ω
-
0.03
VO = 0.85Vrms, RL = 300Ω
0.007
VO = 0.85Vrms, RL = 10kΩ
0.005
5
-
%
www.anpec.com.tw
APA2178
Electrical Characteristics (Cont.)
Unless otherwise specified, these specifications apply over VDD=PVDD=3.3V, VPGND=VGND=0V, and CCPO=CCPF=1µF.
Typical values are at TA=25oC.
Symbol
Parameter
Test Conditions
APA2178
Min.
Typ.
Max.
Unit
VDD=1.8V, TA=25°
C (CONT.)
fin = 1kHz
Crosstalk
Channel separation
PO = 1.3mW, RL = 32Ω
-
80
VO = 0.12Vrms, RL = 300Ω
85
VO = 0.12Vrms, RL = 10kΩ
90
-
dB
-
dB
With A-weighting Filter
S/N
Signal-to-Noise Ratio
PO = 9mW, RL = 32Ω
VO =1.2Vrms, RL = 10kΩ
Copyright  ANPEC Electronics Corp.
Rev. A.3 - Jul., 2009
6
-
95
95
www.anpec.com.tw
APA2178
Typical Operating Characteristics
THD+N vs. Output Voltage
10
THD+N vs. Output Power
10
VDD=4.5V
fin=1kHz
Cin=1µF
BW<80kHz
1
VDD=4.5V
RL=16Ω
Cin=1µF
BW<80kHz
RL=32Ω
0.1
RL=16Ω
0.01
0.001
THD+N (%)
THD+N (%)
1
fin=20kHz
0.1
fin=1kHz
RL=300Ω
0 500m
1
2
Output Voltage (V)
RL=10kΩ
3
4
0.01
fin=20Hz
1m
10m
THD+N vs. Output Power
10
THD+N vs. Frequency
Stereo,
180o out
of Phase
VDD=4.5V
RL=16Ω
Cin=1µF
PO=105mW
BW<22kHz
1
THD+N (%)
THD+N (%)
600m
10
VDD=4.5V
fin=1kHz
RL=16Ω
Cin=1µF
BW<80kHz
1
100m
Output Power (W)
Stereo, in
Phase
0.1
0.1
Left Channel
Mono
Right Channel
0.01
0.01
0
70m
140m
210m
280m
0.006
350m
20
100
Output Power (W)
Crosstalk vs. Frequency
-30
-40
-50
-60
50µ
VDD=4.5V
RL=16Ω
Cin=1µF
PO=15mW
BW<80kHz
-70
-80
-90
-100
Left to Right
Right to Left
10µ
-110
-120
20
100
10k 20k
Output Noise Voltage vs. Frequency
Output Noise Voltage (Vrms)
Crosstalk (dB)
+0
-10
-20
1k
Frequency (Hz)
1k
Frequency (Hz)
Copyright  ANPEC Electronics Corp.
Rev. A.3 - Jul., 2009
1µ
10k 20k
7
VDD=4.5V
RL=16Ω
Cin=1µF
A-Weighting
20
100
1k
Frequency (Hz)
10k 20k
www.anpec.com.tw
APA2178
Typical Operating Characteristics (Cont.)
THD+N vs. Output Power
THD+N vs. Output Power
10
10
VDD=4.5V
fin=1kHz
RL=32Ω
Cin=1µF
BW<80kHz
VDD=4.5V
RL=32Ω
Cin=1µF
BW<80kHz
1
THD+N (%)
THD+N (%)
1
fin=20kHz
0.1
Stereo, in
Phase
Stereo, 180o
out of Phase
0.1
Mono
fin=1kHz
0.01
fin=20Hz
1m
10m
100m
0.01
300m
0
70m
Output Power (W)
THD+N vs. Frequency
+0
-10
-20
Crosstalk (dB)
THD+N (%)
VDD=4.5V
RL=32Ω
Cin=1µF
1 PO=100mW
BW<22kHz
0.1
Left Channel
0.01
Right Channel
100
1k
Frequency (Hz)
VDD=4.5V
RL=32Ω
Cin=1µF
PO=15mW
BW<80kHz
-30
-40
-50
-60
-70
-80
-90
-100
-110
-120
20
10k 20k
Left to Right
Right to Left
20
50µ
1k
Frequency (Hz)
10k 20k
10
VDD=4.5V
RL=300Ω
Cin=1µF
BW<80kHz
1
THD+N (%)
Output Noise Voltage (Vrms)
100
THD+N vs. Output Voltage
Output Noise Voltage vs. Frequency
10µ
VDD=4.5V
RL=32Ω
Cin=1µF
A-Weighting
1µ
350m
Crosstalk vs. Frequency
10
0.001
140m 210m 280m
Output Power (W)
20
100
1k
Frequency (Hz)
Copyright  ANPEC Electronics Corp.
Rev. A.3 - Jul., 2009
0.1
fin=20kHz
0.01
0.001
10k 20k
fin=1kHz
fin=20Hz
0
800m
1.6
2.4
3.2
4
Output Voltage (V)
8
www.anpec.com.tw
APA2178
Typical Operating Characteristics (Cont.)
THD+N vs. Output Power
10
+0
-10
-20
Crosstalk (dB)
VDD=4.5V
RL=300Ω
Cin=1µF
VO=2.2Vrms
BW<22kHz
1
THD+N (%)
Crosstalk vs. Frequency
0.1
0.01
0.001
1k
Frequency (Hz)
Left to Right
Right to Left
-110
Right Channel
100
-30
-40
-50
-60
-70
-80
-90
-100
Left Channel
20
VDD=4.5V
RL=300Ω
Cin=1µF
VO=0.31Vrms
BW<80kHz
-120
10k 20k
20
100
10
THD+N (%)
20
0.1
fin=1kHz
0.01
VDD=4.5V
RL=300Ω
Cin=1µF
A-Weighting
0.001
fin=20Hz
1.6
2.4
Output Voltage (V)
THD+N vs. Frequency
Crosstalk vs. Frequency
1k
10k 20k
+0
-10
-20
VDD=4.5V
RL=10kΩ
Cin=1µF
VO=2.2Vrms
BW<22kHz
0.1
0.01
Left Channel
0.001
Right Channel
-30
-40
-50
-60
0
800m
20
100
1k
-70
-80
-90
-100
-120
10k 20k
Frequency (Hz)
Copyright  ANPEC Electronics Corp.
Rev. A.3 - Jul., 2009
9
3.2
4
VDD=4.5V
RL=10kΩ
Cin=1µF
VO=0.31Vrms
BW<80kHz
Left to Right
Right to Left
-110
0.0001
fin=20kHz
Frequency (Hz)
100
Crosstalk (dB)
Output Noise Voltage (Vrms)
10µ
1
THD+N (%)
VDD=4.5V
RL=10kΩ
Cin=1µF
BW<80kHz
1
10
10k 20k
THD+N vs. Output Voltage
Output Noise Voltage vs. Frequency
50µ
1µ
1k
Frequency (Hz)
20
100
1k
Frequency (Hz)
10k 20k
www.anpec.com.tw
APA2178
Typical Operating Characteristics (Cont.)
Output Noise Voltage vs. Frequency
THD+N vs. Output Voltage
10
VDD=3.3V
fin=1kHz
Cin=1µF
BW<80kHz
1
THD+N (%)
Output Noise Voltage (Vrms)
50µ
10µ
VDD=4.5V
RL=10kΩ
Cin=1µF
A-Weighting
1µ
20
100
RL=32Ω
0.1
RL=16Ω
0.01
1k
Frequency (Hz)
RL=300Ω
RL=10kΩ
0.001
10k 20k
0
500m
2
2.5
3
THD+N vs. Output Power
10
VDD=3.3V
RL=16Ω
Cin=1µF
BW<80kHz
VDD=3.3V
fin=1kHz
RL=16Ω
Cin=1µF
BW<80kHz
1
THD+N (%)
1
THD+N (%)
1.5
Output Voltage (V)
THD+N vs. Output Power
10
1
fin=20kHz
0.1
Stereo, in
Phase
Stereo, 180o
out of Phase
Mono
0.1
fin=1kHz
fin=20Hz
0.01
1m
10m
Output Power (W)
0.01
100m 300m
0
VDD=3.3V
RL=16Ω
Cin=1µF
PO=50mW
BW<22kHz
Crosstalk (dB)
THD+N (%)
1
0.1
0.01
Left Channel
0.001
80m
120m
Output Power (W)
160m
200m
Crosstalk vs. Frequency
THD+N vs. Frequency
10
40m
Right Channel
+0
-10 VDD=3.3V
RL=16Ω
-20
Cin=1µF
-30 P =7mW
O
-40 BW<80kHz
-50
-60
-70
-80
-90
-100
Left to Right
Right to Left
-110
0.0001
20
100
1k
-120
20
10k 20k
1k
10k 20k
Frequency (Hz)
Frequency (Hz)
Copyright  ANPEC Electronics Corp.
Rev. A.3 - Jul., 2009
100
10
www.anpec.com.tw
APA2178
Typical Operating Characteristics (Cont.)
Output Noise Voltage vs. Frequency
THD+N vs. Output Power
10
VDD=3.3V
RL=32Ω
Cin=1µF
BW<80kHz
1
THD+N (%)
Output Noise Voltage (Vrms)
50µ
10µ
20
100
0.1
fin=20Hz
VDD=3.3V
RL=16Ω
Cin=1µF
A-Weighting
1µ
fin=20kHz
1k
Frequency (Hz)
0.01
10k 20k
1m
1
THD+N (%)
THD+N (%)
Stereo, in
Phase
Stereo, 180o
out of Phase
0.1
100m 200m
THD+N vs. Frequency
10
VDD=3.3V
fin=1kHz
RL=32Ω
Cin=1µF
BW<80kHz
1
10m
Output Power (W)
THD+N vs. Output Power
10
fin=1kHz
Mono
VDD=3.3V
RL=32Ω
Cin=1µF
PO=50mW
BW<22kHz
0.1
Left Channel
0.01
Right Channel
0.01
0
40m
80m
120m
Output Power (W)
0.001
160m
Output Noise Voltage (Vrms)
Crosstalk (dB)
-50
-60
Left to Right
Right to Left
-110
20
100
1k
Frequency (Hz)
10k 20k
50µ
+0
VDD=3.3V
-10
RL=32Ω
-20 C =1µF
in
-30 PO=7mW
-40 BW<80kHz
-120
100
Output Noise Voltage vs. Frequency
Crosstalk vs. Frequency
-70
-80
-90
-100
20
1k
Frequency (Hz)
Copyright  ANPEC Electronics Corp.
Rev. A.3 - Jul., 2009
10k 20k
10µ
VDD=3.3V
RL=32Ω
Cin=1µF
1µ A-Weighting
20
100
1k
10k 20k
Frequency (Hz)
11
www.anpec.com.tw
APA2178
Typical Operating Characteristics (Cont.)
THD+N vs. Output Voltage
THD+N vs. Frequency
10
10
0.1
fin=20Hz
0.01
fin=20kHz
0
600m
1.2
1.8
0.1
0.01
fin=1kHz
0.001
VDD=3.3V
RL=300Ω
Cin=1µF
VO=1.6Vrms
BW<22kHz
1
THD+N (%)
THD+N (%)
VDD=3.3V
RL=300Ω
Cin=1µF
1 BW<80kHz
2.4
0.001
3
Left Channel
Right Channel
20
100
1k
Output Voltage (V)
Output Noise Voltage vs. Frequency
Crosstalk vs. Frequency
50µ
VDD=3.3V
RL=300Ω
Cin=1µF
VO=0.23Vrms
BW<80kHz
-30
-40
-50
-60
-70
-80
-90
-100
Output Noise Voltage (Vrms)
Crosstalk (dB)
+0
-10
-20
Left to Right
Right to Left
10µ
VDD=3.3V
RL=300Ω
Cin=1µF
A-Weighting
-110
-120
20
100
1k
Frequency (Hz)
1µ
10k 20k
20
1k
Frequency (Hz)
10k 20k
10
10
VDD=3.3V
RL=10kΩ
Cin=1µF
1 V =1.6Vrms
O
BW<22kHz
THD+N (%)
VDD=3.3V
RL=10kΩ
Cin=1µF
BW<80kHz
1
THD+N (%)
100
THD+N vs. Frequency
THD+N vs. Output Voltage
0.1
fin=20kHz
0.01
0.1
0.01
Left Channel
fin=1kHz
0.001
10k 20k
Frequency (Hz)
fin=20Hz
0
600m
1.2
1.8
2.4
20
Output Voltage (V)
Copyright  ANPEC Electronics Corp.
Rev. A.3 - Jul., 2009
Right Channel
0.0006
3
100
1k
10k 20k
Frequency (Hz)
12
www.anpec.com.tw
APA2178
Typical Operating Characteristics (Cont.)
Output Noise Voltage vs. Frequency
+0
VDD=3.3V
-10
R =10kΩ
-20 CL =1µF
in
-30 VO=0.23Vrms
-40 BW<80kHz
50µ
Output Noise Voltage (Vrms)
Crosstalk (dB)
Crosstalk vs. Frequency
-50
-60
-70
-80
-90
-100
Left to Right
Right to Left
-110
-120
20
100
1k
Frequency (Hz)
10k 20k
10µ
VDD=3.3V
RL=10kΩ
Cin=1µF
1µ A-Weighting
20
100
1k
Frequency (Hz)
THD+N vs. Output Power
THD+N vs. Output Voltage
10
VDD=1.8V
RL=32Ω
Cin=1µF
BW<80kHz
1
RL=300Ω
THD+N (%)
THD+N (%)
10
VDD=1.8V
fin=1kHz
Cin=1µF
BW<80kHz
1
0.1
RL=32Ω
fin=20kHz
0.1
fin=1kHz
0.01
fin=20Hz
RL=10kΩ
0.001
0
400m
800m
1.2
Output Voltage (V)
0.01
1.6
1m
10
60m
10
VDD=1.8V
fin=1kHz
RL=32Ω
Cin=1µF
1 BW<80kHz
1
THD+N (%)
Stereo, in
Phase
10m
Output Power (W)
THD+N vs. Frequency
THD+N vs. Output Power
THD+N (%)
10k 20k
Stereo, 180o
out of Phase
Mono
0.1
VDD=1.8V
RL=32Ω
Cin=1µF
PO=9mW
BW<22kHz
0.1
Left Channel
0.01
Right Channel
0.01
0
6m
12m
18m 24m
Output Power (W)
Copyright  ANPEC Electronics Corp.
Rev. A.3 - Jul., 2009
30m
0.001
36m
13
20
100
1k
Frequency (Hz)
10k 20k
www.anpec.com.tw
APA2178
Typical Operating Characteristics (Cont.)
Crosstalk vs. Frequency
50µ
VDD=1.8V
RL=32Ω
Cin=1µF
PO=1.3mW
BW<80kHz
-30
-40
-50
-60
-70
-80
-90
-100
Output Noise Voltage (Vrms)
Crosstalk (dB)
+0
-10
-20
Output Noise Voltage vs. Frequency
Left to Right
Right to Left
10µ
VDD=1.8V
RL=32Ω
Cin=1µF
A-Weighting
-110
-120
20
100
1k
1µ
10k 20k
20
100
1k
Frequency (Hz)
Frequency (Hz)
THD+N vs. Frequency
THD+N vs. Output Voltage
10
10
VDD=1.8V
RL=300Ω
Cin=1µF
VO=0.85Vrms
BW<22kHz
1
THD+N (%)
THD+N (%)
VDD=1.8V
RL=300Ω
Cin=1µF
1 BW<80kHz
fin=20kHz
0.1
fin=1kHz
0.01
0.1
0.01
Left Channel
fin=20Hz
0.001
0
300m
600m
0.9
Right Channel
1.2
0.001
1.5
20
100
Output Voltage (V)
-50
-60
Left to Right
Right to Left
10µ
-110
20
100
10k 20k
50µ
+0
VDD=1.8V
-10
RL=300Ω
-20 C =1µF
in
-30 VO=0.1Vrms
-40 BW<80kHz
-120
1k
Frequency (Hz)
Output Noise Voltage vs. Frequency
Output Noise Voltage (Vrms)
Crosstalk (dB)
Crosstalk vs. Frequency
-70
-80
-90
-100
10k 20k
1k
Frequency (Hz)
Copyright  ANPEC Electronics Corp.
Rev. A.3 - Jul., 2009
1µ
10k 20k
14
VDD=1.8V
RL=300Ω
Cin=1µF
A-Weighting
20
100
1k
Frequency (Hz)
10k 20k
www.anpec.com.tw
APA2178
Typical Operating Characteristics (Cont.)
THD+N vs. Output Voltage
THD+N vs. Frequency
10
10
VDD=1.8V
RL=10kΩ
Cin=1µF
VO=0.85Vrms
BW<22kHz
1
THD+N (%)
0.1
fin=20kHz
0.01
0.1
0.01
fin=1kHz
0.001
Left Channel
fin=20Hz
0
300m
600m
0.9
1.2
0.001
1.5
20
100
Output Voltage (V)
Crosstalk vs. Frequency
Output Noise Voltage vs. Frequency
VDD=1.8V
RL=10kΩ
Cin=1µF
VO=0.12Vrms
BW<80kHz
-30
-40
-50
-60
-70
-80
-90
-100
Left to Right
Right to Left
10µ
VDD=1.8V
RL=10kΩ
Cin=1µF
A-Weighting
-110
-120
20
100
1k
Frequency (Hz)
1µ
10k 20k
20
100
+250
+230
Gain
+3
+210
+2
Phase
+1
+0
10
100
VDD=3.3V
RL=10kΩ
+5 C =1µF
in
VO=0.23Vrms
+4 BW<80kHz
1k
10k
Frequency (Hz)
Copyright  ANPEC Electronics Corp.
Rev. A.3 - Jul., 2009
+190
Gain (dB)
Gain (dB)
+4
10k 20k
+6
Phase (Deg)
+5
+270
VDD=3.3V
RL=32Ω
Cin=1µF
PO=10mW
BW<80kHz
1k
Frequency (Hz)
Frequency Response
Frequency Response
+6
10k 20k
50µ
Output Noise Voltage (Vrms)
Crosstalk (dB)
+0
-10
-20
Right Channel
1k
Frequency (Hz)
+250
+230
Gain
+210
+3
+2
+170
+1
+150
200k
+0
15
+270
+190
Phase
Phase (Deg)
THD+N (%)
VDD=1.8V
RL=10kΩ
Cin=1µF
1 BW<80kHz
+170
10
100
1k
10k
Frequency (Hz)
200k
+150
www.anpec.com.tw
APA2178
Typical Operating Characteristics (Cont.)
Input Voltage vs. Output Voltage
2
Iutput Voltage (Vrms)
3
VDD=3.3V
RL=16Ω
fin=1kHz
Cin=1µF
Mono
1.5
Stereo, in Phase
1
500m
0
0
500m
1
1.5
Output Voltage (Vrms)
VDD=3.3V
RL=10kΩ
fin=1kHz
Cin=1µF
2.4
Iutput Voltage (Vrms)
2.5
Input Voltage vs. Output Voltage
2
-10
1.2
600m
0
0
2.5
-10
-20
-30
-30
-40
-40
-50
-60
-50
-60
Left Channel
-80
Right Channel
-90
20
100
Right Channel
-90
1k
Frequency (Hz)
-100
10k 20k
Supply Current vs. Supply Voltage
20
100
1k
Frequency (Hz)
10k 20k
Shutdown Current vs. Supply Voltage
2.0
6
No Load
RSD=LSD=GND
No Load
Shutdown Current (µA)
5
Supply Current (mA)
VDD=3.3V
RL=10kΩ
Cin=1µF
Vrr=200mVrms
-70
Left Channel
-80
-100
3
PSRR vs. Frequency
VDD=3.3V
RL=16Ω
Cin=1µF
Vrr=200mVrms
-70
600m
1.2
1.8
2.4
Output Voltage (Vrms)
+0
PSRR (dB)
PSRR (dB)
-20
Stereo, in Phase
1.8
PSRR vs. Frequency
+0
Mono
4
3
2
1
0
1.0
1.5
2.0
2.5 3.0
3.5
4.0
1.0
0.5
0.0
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
Supply Voltage (V)
4.5
Supply Voltage (V)
Copyright  ANPEC Electronics Corp.
Rev. A.3 - Jul., 2009
1.5
16
www.anpec.com.tw
APA2178
Typical Operating Characteristics (Cont.)
Power Dissipation vs. Output Power
Power Dissipation vs. Output Power
175
300
Power Dissipation (mW)
Power Dissipation (mW)
150
RL=16Ω
250
200
150
RL=32Ω
100
VDD=4.5V
fin=1kHz
Cin=1µF
Mono
50
0
0
50
RL=16Ω
125
100
75
RL=32Ω
50
VDD=3.3V
fin=1kHz
Cin=1µF
Mono
25
0
100 150 200 250 300 350 400
Output Power (mW)
0
Power Dissipation vs. Output Power
200
Mono
THD+N=10%
Mono
THD+N=1%
40
Output Power (mW)
Power Dissipation (mW)
50 75 100 125 150 175 200
Output Power (mW)
Output Power vs. Load Resistance
50
30
RL=32Ω
20
VDD=1.8V
fin=1kHz
Cin=1µF
Mono
10
0
0
10
20
30
40
Output Power (mW)
150
100
50
Stereo, in Phase
THD+N=1%
0
50
60
10
1000
vs. Supply Voltage
15
CCPF:Charge Pump flying capacitor
CCPO:Charge Pump output capacitor
CCPF=CCPO=2.2µF
80
CCPF=CCPO=1µF
Load Resistance (Ω)
12
CCPF=CCPO=0.68µF
60
9
6
3
0
1.8 2.1 2.4 2.7 3.0 3.3 3.6 3.9 4.2 4.5
1000
Load Resistance (Ω)
Copyright  ANPEC Electronics Corp.
Rev. A.3 - Jul., 2009
100
Load Resistance (Ω)
Charge Pump Output Resistance
Charge Pump Capacitance
CCPF=CCPO
=0.47µF
40 V =3.3V
DD
fin=1kHz
Cin=1µF
20
BW<80kHz
THD+N=10%
0 Stereo, in Phase
10
100
VDD=3.3V
fin=1kHz
Cin=1µF
BW<80kHz
Stereo, in Phase
THD+N=10%
Output Power vs. Load Resistance &
Output Power (mW)
25
Supply Voltage (V)
17
www.anpec.com.tw
APA2178
Typical Operating Characteristics (Cont.)
GSM Power Supply Rejection vs.
Frequency
+0
-50
Output Voltage (dBV)
-100
-150
+0
Supply Voltage (dBV)
GSM Power Supply Rejection vs. Time
1
VDD
VROUT
-50
2
-100
-150
0
400
800
1.2k
1.6k
2k
CH1: VDD, 500mV/Div, DC, V DD Offset=3.3V
CH2: VROUT, 20mV/Div, DC
TIME: 20ms/Div
Frequency (Hz)
Copyright  ANPEC Electronics Corp.
Rev. A.3 - Jul., 2009
18
www.anpec.com.tw
APA2178
Operating Waveforms
Output Transient at Turn On
Output Transient at Turn Off
VDD
VDD
1
1
VROUT
VROUT
2
2
CH1: VDD, 2V/Div, DC
CH2: VROUT, 20mV/Div, DC
TIME: 200ms/Div
CH1: VDD, 2V/Div, DC
CH2: VROUT, 20mV/Div, DC
TIME: 20ms/Div
Output Transient at Shutdown Release
Output Transient at Shutdown Active
RSD
RSD
1
1
VROUT
VROUT
2
2
CH1: RSD, 2V/Div, DC
CH2: VROUT, 20mV/Div, DC
TIME: 20ms/Div
Copyright  ANPEC Electronics Corp.
Rev. A.3 - Jul., 2009
CH1: RSD, 2V/Div, DC
CH2: VROUT, 20mV/Div, DC
TIME: 20ms/Div
19
www.anpec.com.tw
APA2178
Operating Waveforms (Cont.)
Shutdown Release
RSD
1
2
VROUT
CH1: VDD, 2V/Div, DC
CH2: VROUT, 1V/Div, DC
TIME: 200µs/Div
Copyright  ANPEC Electronics Corp.
Rev. A.3 - Jul., 2009
20
www.anpec.com.tw
APA2178
Pin Description
PIN
I/O/P
FUNCTION
NO.
MANE
A1
RIN
I
Right channel audio signal input pin.
A2
GND
P
Ground connection for circuitry.
A3
PVDD
P
Charge pump power supply voltage input pin.
A4
CP+
I/O
Charge pump flying capacitor positive connection.
Right channel shutdown mode control pin. A low-level voltage applied on this
pin shuts off the right channel headphone driver.
Left channel shutdown mode control pin. A low-level voltage applied on this
pin shuts off the left channel headphone driver.
B1
RSD
I
B2
LSD
I
B3,C3
NC
-
No Connection.
B4
PGND
P
Charge pump ground.
C1
LIN
I
Left channel audio signal input pin.
C2
ROUT
O
Right channel output for headphone.
C4
CP-
I/O
Charge pump flying capacitor negative connection.
D1
VDD
P
Supply voltage input pin.
D2
LOUT
O
Left channel output for headphone.
D3
VSS
P
Connect this pin to CVSS.
D4
CVSS
O
Charge pump output.
Block Diagram
RIN
ROUT
LIN
LOUT
GND
PVDD
CP+
RSD
LSD
Shutdown
Circuit
GND
Copyright  ANPEC Electronics Corp.
Rev. A.3 - Jul., 2009
PGND
Power and
Depop Circuit
VSS
VDD
21
Charge
Pump
CP-
CVSS
www.anpec.com.tw
APA2178
Typical Application Circuit
1 µF
R-Ch
Input
RIN
CiR
1 µF
L-CH
Input
ROUT
LIN
CiL
LOUT
PVDD
GND
Shutdown
Control
Headphone Jack
RSD
LSD
Shutdown
Circuit
GND PGND VDD
Power and
Depop Circuit
VSS
VDD
CS
1µF/X5R
Copyright  ANPEC Electronics Corp.
Rev. A.3 - Jul., 2009
22
Charge
Pump
VDD
CCPB
CP+
1
µF /X5R
CCPF
1µF/X5R
CP-
VSS CVSS
CCPO
1µF/X5R
www.anpec.com.tw
APA2178
Function Description
VDD
voltage PVDD to provide maximum device performance.
By switching the both RSD and LSD pins to low level, the
VDD/2
amplifier enters a low-consumption current circumstance,
with charge pump disabled, and very small IDD for the
GND
APA2178. The charge pump is enabled once either RSD
or LSD pin is pulled to high. In normal operating, the
VOUT
APA2178 RSD and LSD pins should be pulled to high
level to keep the IC out of the shutdown mode. The RSD
Conventional Headphone amplifier
and LSD pins should be tied to a definite voltage to avoid
unwanted mode changing.
VDD
VOUT
GND
VSS
Cap-free Headphone amplifier
Figure 1. Cap-free Operation
The APA2178 is a stereo, fixed gain, and cap-free headphone driver. The gain is set by internal resistors, input
resistors (R i), and feedback resistors (R f) with -1.5V/V
(See Typical Application Circuit).
The APA2178 headphone drivers use a charge pump to
invert the positive power supply (PVDD) to negative power
supply (CVSS), see figure 1. The headphone drivers operate at this bipolar power supply (VDD and VSS) and the outputs reference refers to the ground. This feature eliminates the output capacitors which are used in conventional single-ended headphone amplifiers. Compared
with the single power supply amplifiers, the power supply voltage is almost double.
Shutdown Function
In order to reduce power consumption, the APA2178 contains two shutdown signal input pins (LSD for left channel and RSD for right channel) to allow the respective
shutdown which turns off the bias current of the amplifier.
This shutdown feature turns the amplifier off when logic
low is placed on the RSD or LSD pin for the APA2178.
The trigger point between a logic high and a logic low
level is typically 0.6VDD and 0.3VDD. It is highly recommended to switch between the ground and the supply
Copyright  ANPEC Electronics Corp.
Rev. A.3 - Jul., 2009
23
www.anpec.com.tw
APA2178
Application Information
The value of Ci must be considered carefully because it
directly affects the low frequency performance of the circuit.
Charge Pump Flying Capacitor (CCPF)
The flying capacitor (CCPF) affects the load transient of the
Consider the example where Ri is 14kΩ and the specification that calls for a flat bass response down to 10Hz.
charge pump. If the capacitor’s value is too small, and
then this increases charge pump’s output resistance and
The equation is reconfigured as below:
degrades the performance of headphone amplifier.
Increasing the flying capacitor’s value improves the load
Ci =
transient of charge pump. It is recommend to use the low
E S R c e r am i c c apac i t o rs ( X5 R o r X7R t yp e i s
1
2πRifC
(2)
When input resistance variation is considered, the Ci is
recommended) above 1µF.
1µF. Therefore, a value in the range of 1µF to 2.2µF would
be chosen. A further consideration for this capacitor is the
Charge Pump Output Capacitor (CCPO)
leakage path from the input source through the input network (Ri + Rf, Ci) to the load.
The charge pump needs an output capacitor(CCPO) to filter the negative output current pulse flowing into CVSS
This leakage current creates a DC offset voltage at the
input to the amplifier that reduces useful headroom, es-
pin as well as reduces the output voltage ripple(CVSS).
The capacitor also sucks in surge current flowing from
pecially in high gain applications. For this reason, a lowleakage tantalum or ceramic capacitor is the best choice.
the VSS pin, the negative power input pin for the amplifiers.
The output ripple is determined by the capacitance, ESR,
When polarized capacitors are used, the negative side of
the capacitor should face the amplifiers’ inputs in most
and current ripple of the output capacitor. Increasing the
value of output capacitor and decreasing the ESR can
applications because the DC level of the amplifiers’ inputs are held at 0V. Please note that it is important to
reduce the voltage ripple. Using a low-ESR ceramic capacitor greater than 1µF is recommended. For reducing
confirm the capacitor polarity in the application.
the parasitic inductance and improving the noise
decoupling, place the capacitor near the CVSS and PGND
Power Supply Decoupling (CS)
pins as close as possible.
The APA2178 is a high-performance CMOS audio amplifier that requires adequate power supply decoupling to
Charge Pump Bypass Capacitor (CCPB)
The bypass capacitor(CCPB) connected with PVDD pin sup-
ensure the output total harmonic distortion (THD+N) as
low as possible. Power supply decoupling also prevents
plies the charge pump with surge current as well as reduces the voltage ripple on PVDD pin. Using a low-ESR
the oscillations being caused by long lead length between the amplifier and the speaker.
ceramic capacitor 1µF(typical) is recommended. For reducing the parasitic inductance and improving the noise
The optimum decoupling is achieved by using two different types of capacitor that target on different types of noise
on the power supply leads. For higher frequency
decoupling, place the capacitor near the PVDD and PGND
pins as close as possible.
transients, spikes, or digital hash on the line, a good low
equivalent-series- resistance (ESR) ceramic capacitor,
Input Capacitor (Ci)
typically 0.1µF, is placed as close as possible to the device VDD lead for the best performance. For filtering lower
In the typical application, an input capacitor (Ci) is required
to allow the amplifier to bias the input signal to the proper
DC level for optimum operation. In this case, Ci and the
frequency noise signals, a large aluminum electrolytic
capacitor of 10µF or greater placed near the audio power
input impedance Ri from a high-pass filter with the cutoff
frequency are determined in the following equation:
amplifier is recommended.
fC(highpass) =
1
2πRiCi
Copyright  ANPEC Electronics Corp.
Rev. A.3 - Jul., 2009
Thermal Consideration
Linear power amplifiers dissipate a significant amount
(1)
of heat in the package in normal operating condition. The
first consideration to calculate maximum ambient tem24
www.anpec.com.tw
APA2178
Application Information (Cont.)
16 x Φ0.275mm
Thermal Consideration (Cont.)
peratures is the numbers from the Power Dissipation vs.
Output Power graphs are per channel values, so the dissipation of the IC heat needs to be doubled for two-channel operation. Given θJA, the maximum allowable junction temperature (TJMax), the total internal dissipation (PD),
and the maximum ambient temperature can be calculated with the following equation. The maximum recommended junction temperature for the APA2178 is 150oC.
The internal dissipation figures are taken from the Power
Dissipation vs. Output Power graphs. The APA2178 is
designed with a thermal shutdown protection that turns
the device off when the junction temperature surpasses
0.5mm
150°C to prevent damaging the IC.
Layout Consideration
0.5mm
1. All components should be placed close to the APA2178.
Figure 2. WLCSP2x2-16 land pattern recommendation
For example, the input capacitor (CiR, CiL) should be
close to APA2178 input pins to avoid causing noise
coupling to APA2178 high impedance inputs; the
decoupling capacitor (C S ) should be placed by the
CCPF
APA2178 power pin to decouple the power rail noise.
2. The output traces should be short, wide (>50mil), and
CCPB
symmetric.
3. The input trace should be short and symmetric.
PIN A1
4. The power trace width should be greater than 50mil.
5. The input trace and output trace should be away from
output trace
CCPF and CCPB possible.
CiR
CiL
Figure 3. APA2178 Layout Suggestion
Copyright  ANPEC Electronics Corp.
Rev. A.3 - Jul., 2009
25
www.anpec.com.tw
APA2178
Package Information
E
WLCSP2x2-16
PIN 1
D
A1
e
e/2
b
A
e/2
S
Y
M
B
O
L
e
WLCSP2x2-16
MILLIMETERS
MIN.
INCHES
MAX.
A
MIN.
MAX.
0.625
0.025
A1
0.15
0.35
0.006
0.014
b
0.25
0.35
0.010
0.014
D
1.97
2.03
0.077
0.080
E
1.97
2.03
0.077
0.080
e
Copyright  ANPEC Electronics Corp.
Rev. A.3 - Jul., 2009
0.50 BSC
0.020 BSC
26
www.anpec.com.tw
APA2178
Carrier Tape & Reel Dimensions
P0
P2
P1
A
B0
W
F
E1
OD0
K0
A0
A
OD1 B
B
T
SECTION A-A
SECTION B-B
H
A
d
T1
Application
WLCSP2x2-16
A
H
T1
C
d
D
W
E1
F
178.0±2.00
50 MIN.
8.4+2.00
-0.00
13.0+0.50
-0.20
1.5 MIN.
20.2 MIN.
8.0±0.30
1.75±0.10
3.5±0.05
P0
P1
P2
D0
D1
T
A0
B0
K0
2.0±0.05
1.5+0.10
-0.00
1.5 MIN.
0.6+0.00
-0.40
2.20±0.20
2.20±0.20
0.90±0.20
4.0±0.10
4.0±0.10
(mm)
Devices Per Unit
Package Type
Unit
Quantity
WLCSP2x2-16
Tape & Reel
3000
Copyright  ANPEC Electronics Corp.
Rev. A.3 - Jul., 2009
27
www.anpec.com.tw
APA2178
Taping Direction Information
WLCSP2x2-16
USER DIRECTION OF FEED
Classification Profile
Copyright  ANPEC Electronics Corp.
Rev. A.3 - Jul., 2009
28
www.anpec.com.tw
APA2178
Classification Reflow Profiles
Profile Feature
Sn-Pb Eutectic Assembly
Pb-Free Assembly
100 °C
150 °C
60-120 seconds
150 °C
200 °C
60-120 seconds
3 °C/second max.
3°C/second max.
183 °C
60-150 seconds
217 °C
60-150 seconds
See Classification Temp in table 1
See Classification Temp in table 2
Time (tP)** within 5°C of the specified
classification temperature (Tc)
20** seconds
30** seconds
Average ramp-down rate (Tp to Tsmax)
6 °C/second max.
6 °C/second max.
6 minutes max.
8 minutes max.
Preheat & Soak
Temperature min (Tsmin)
Temperature max (Tsmax)
Time (Tsmin to Tsmax) (ts)
Average ramp-up rate
(Tsmax to TP)
Liquidous temperature (TL)
Time at liquidous (tL)
Peak package body Temperature
(Tp)*
Time 25°C to peak temperature
* Tolerance for peak profile Temperature (Tp) is defined as a supplier minimum and a user maximum.
** Tolerance for time at peak profile temperature (tp) is defined as a supplier minimum and a user maximum.
Table 1. SnPb Eutectic Process – Classification Temperatures (Tc)
Package
Thickness
<2.5 mm
≥2.5 mm
Volume mm
<350
235 °C
220 °C
3
Volume mm
≥350
220 °C
220 °C
3
Table 2. Pb-free Process – Classification Temperatures (Tc)
Package
Thickness
<1.6 mm
1.6 mm – 2.5 mm
≥2.5 mm
Volume mm
<350
260 °C
260 °C
250 °C
3
Volume mm
350-2000
260 °C
250 °C
245 °C
3
Volume mm
>2000
260 °C
245 °C
245 °C
3
Reliability Test Program
Test item
SOLDERABILITY
HOLT
PCT
TCT
HBM
MM
Latch-Up
Method
JESD-22, B102
JESD-22, A108
JESD-22, A102
JESD-22, A104
MIL-STD-883-3015.7
JESD-22, A115
JESD 78
Copyright  ANPEC Electronics Corp.
Rev. A.3 - Jul., 2009
29
Description
5 Sec, 245°C
1000 Hrs, Bias @ 125°C
168 Hrs, 100%RH, 2atm, 121°C
500 Cycles, -65°C~150°C
VHBM≧2KV
VMM≧200V
10ms, 1tr≧100mA
www.anpec.com.tw
APA2178
Customer Service
Anpec Electronics Corp.
Head Office :
No.6, Dusing 1st Road, SBIP,
Hsin-Chu, Taiwan, R.O.C.
Tel : 886-3-5642000
Fax : 886-3-5642050
Taipei Branch :
2F, No. 11, Lane 218, Sec 2 Jhongsing Rd.,
Sindian City, Taipei County 23146, Taiwan
Tel : 886-2-2910-3838
Fax : 886-2-2917-3838
Copyright  ANPEC Electronics Corp.
Rev. A.3 - Jul., 2009
30
www.anpec.com.tw