RICHTEK RT9902PQV

RT9902
Preliminary
4 Channel DC/DC Converters IC with High-Efficiency Step-Up
and Step-Down
General Description
Features
The RT9902 is a complete power supply solution for digital
still cameras and other hand-held devices. It integrates a
high-efficiency main step-up DC-DC converter, two highefficiency step-down converters, a charge pump, and a
linear controller that drives an external P-MOSFET for linear
regulator. The RT9902 is targeted for applications that use
either two or three AA cells or a single lithiumion battery.
z
z
z
z
z
z
z
z
z
z
Applications
z
z
z
Pin Configurations
Operating Temperature Range
P : Pb Free with Commercial Standard
G : Green (Halogen Free with Commercial Standard)
`100% matte tin (Sn) plating.
ENM
COMP2
FB2
24
VDD2
VDD3
LX3
2
23
VDD2
3
22
LX2
PGND3
SS
RT
4
21
GND
7
18
LX2
PGND2
LX1
LX1
LDO_O
8
17
VDD1
GND
5
20
6
19
33
9
10
11 12 13
14 15
16
PGND1
`Suitable for use in SnPb or Pb-free soldering processes.
25
CX
ments of IPC/JEDEC J-STD-020.
27 26
1
VDDC
`RoHS compliant and compatible with the current require-
30 29 28
COMP3
CPFB
Richtek Pb-free and Green products are :
32 31
EN1
Note :
EN2
FB3
(TOP VIEW)
EN3
Package Type
QV : VQFN-32L 5x5 (V-Type)
Digital Still Cameras
PDAs
Portable Devices
COMP1
RT9902
z
GND
Ordering Information
z
FB1
RT9902 is available in VQFN-32L 5x5 package.
z
LFB
The feature of the charge pump is to deliver few current
to micro-controller when the system operates in the
standby mode. RT9902 includes a linear controller with
0.8V reference voltage. An adjustable operating frequency
(up to 1.4MHz) is utilized to get optimum size, cost, and
efficiency.
VDDM
The main step-up DC-DC converter accepts inputs from
1.5V to 5.5V and build in 2.6A Internal switch. The two
step-down DC-DC converters (CH2, CH3) accept inputs
from 1.5V to 5.5V and regulate a resistor adjustable
output from 0.8V to 5.5V. Each DC-DC converter has
independent shutdown input.
z
1.5V to 5.5V Battery Input Voltage Range
Main step-up DC-DC Converter
`1.5V to 5.5V Adjustable Output Voltage
`Up to 90% Efficiency
`2.6A, 0.3Ω
Ω Internal Power Switch
Two Step-Down DC-DC Converters
`0.8V to 5.5V Adjustable Output Voltage
`94% Efficiency
`100% Duty Cycle
Step-up Charge Pump for Micro-Controller
Linear Controller for Linear Regulator
Up to 1.4MHz Switching Frequency
1μ
μA Supply Current in Shutdown Mode
Programmable Soft Start Function
Independent Enable Pin (CH1, CH2, CH3)
External Compensation Network (CH1, CH2, CH3)
Short Circuit Protection (CH1, CH2, CH3)
Over Voltage Protection (CH2)
32-Lead VQFN Package
RoHS Compliant and 100% Lead (Pb)-Free
VQFN-32L 5x5
DS9902-10 August 2007
www.richtek.com
1
RT9902
Preliminary
Typical Application Circuit
1-cell Li+ Battery 3V to 4.2V
V BAT
C17 C18
10μF 10μF
C12
1μF
L2
4.7μH
C19
0.1μF
C1 to C2
10μF x 2
L1
4.7μH
1.5V/500mA
C7
100pF
V BAT
32
D1
SS0520
C8
10μF
14
VDDC
FB1
R3
680k
15
D2
C11 SS0520
22nF
1nF
13
R4
130k
25
ENM
26
EN1
29
30
R5
LDO_O
CPFB
LFB
EN2
VDD2
EN3
12 COMP1
27 COMP2
R7 30k
1 COMP3
5 SS
C16
1nF
6
R8
4
C21 to C24
10μF x 4
R11
51k
Q1
SI2301
C25
100pF
10
23
24
L3
4.7μH
C31
100pF
20 16
C20
100pF
8
21
LX2
22
FB2
C15
1nF
R9
510k
R10
150k
RT9902
CX
30k
R6
C14
1nF
20k
17
11
C12
Chip Enable
C13
4.7nF
VDD1
D3
SS0520
R12
470k
V BAT
C29 to C30
10μF x 2
C26
10μF
V IN
3.52V
V OUT
3.3V/500mA
C27 to C28
10μF x 2
R13
150k
2.5V/500mA
R14
470k
28
GND
C9 to C10
10μF x 2
LX1 18
19
FB3
PGND3
IGBT Driver
5V/50mA
LX3
PGND1
R2
220k
3
RT
C3 to C6
10μF x 4
VDD3
PGND2
R1
200k
2
VDDM
9
V BAT
C32 to C35
10μF x 4
R15
220k
7, 31
Exposed Pad (33)
Figure 1. Typical Application Circuit from 1-cell Li+ Battery
www.richtek.com
2
DS9902-10 August 2007
RT9902
Preliminary
1-cell Li+ Battery 3.4V to 4.2V
V BAT
C17 C18
10μF 10μF
C12
1μF
C19
0.1μF
9
L1
4.7μH
1.5V/500mA
C7
100pF
V BAT
14
25
Chip Enable
26
29
30
R5
20k
R6 30k
C13
4.7nF
R7
C14
1nF
30k
VDD1
VDDC
11
LDO_O
CPFB
LFB
EN1
EN2
VDD2
EN3
12 COMP1
6
R8
4
20 16
R11
51k
C25
100pF
23
24
L3
4.7μH
C31
100pF
1 COMP3
C21 to C24
10μF x 4
Q1
SI2301
10
21
LX2
22
27 COMP2
C20
100pF
8
ENM
5 SS
C16
1nF
R9
680k
R10
130k
RT9902
CX
FB2
C15
1nF
17
FB1
15
D2
22nF
SS0520
13
R4
130k
FB3
D3
SS0520
R12
470k
V BAT
C29 to C30
10μF x 2
V IN
C26
10μF
V OUT
C27 to C28
10μF x 2
R13
150k
3.3V/500mA
R14
470k
28
GND
C11
1nF
C12
LX1 18
19
PGND1
C9 to C10
10μF x 2
R3
680k
LX3
32
D1
SS0520
C8
10μF
IGBT Driver
5V/50mA
3
PGND2
R2
220k
VDD3
PGND3
C3 to C6
10μF x 4
R1
200k
2
5V/500mA
RT9701CB
5
VIN
VOUT
4
EN
VOUT 1
Chip Enable
GND
10uF
2
3
VDDM
C1 to C2
10μF x 2
RT
V BAT
L2
4.7μH
C32 to C35
10μF x 4
R15
150k
7, 31
Exposed Pad (33)
Figure 2. Typical Application Circuit from 1-cell Li+ Battery
DS9902-10 August 2007
www.richtek.com
3
RT9902
Preliminary
2-AA Battery 2.0V to 3.4V
C16
1μF
C1 to C2
10μF x 2
L1
4.7μH
1.5V/300mA
R1
200k
C7
100pF
R2
220k
32
D1
SS0520
V BAT
14
C8
10μF
FB3
VDD1
FB1
C11
15
D2
SS0520 10nF
13
R4
15k
Chip Enable
ENM
26
EN1
30
R5 20k
R6 30k
27
LFB
EN2
VDD2
EN3
COMP1
LX2
COMP2
FB2
C14
1nF
5 SS
C15
1nF
6
4
R8
20 16
C17 to C18
10μF x 2
I/O 3.3V/500mA
R9
470k
C19
C20 to C23
10μF x 4
100pF
R10
150k
R11
8
Q1
SI2301
10
R13
150k
23
24
21
22
R12
470k
C24
100pF
L3
4.7μH
C30
100pF
1 COMP3
V BAT
D3
SS0520
C25
10μF
V IN
V OUT
C26 to C27
10μF x 2
3.3V
C28 to C29
10μF x 2
2.5V/300mA
R14
470k
C31 to C34
10μF x 4
28
GND
C12
4.7nF
R7 30k
C13
1nF
12
LDO_O
CPFB
25
29
11
RT9902
CX
PGND1
R3
47k
C10
1nF
L2
4.7μH
17
VDDC
PGND2
C9
10μF
LX1 18
19
LX3
PGND3
μC standby
3.3V/1mA
VDD3
RT
C3 to C6
10μF x 4
3
VDDM
9
2
V BAT
R15
220k
7, 31
Exposed Pad (33)
Figure 3. Typical Application Circuit from 2-AA Battery Supply
www.richtek.com
4
DS9902-10 August 2007
RT9902
Preliminary
Function Block Diagram
VDDM
VDDC
CX
CPFB
EN
CH1
Current-MODE
Asynchronous
Step-Up
PWM
CH4
Charge Pump
LDO_O
Linear
Controller
LFB
EN
PGND1
COMP1
FB1
EN2
VDD2
CH2
Current-MODE
Synchronous
Step-Down
PWM
LX2
PGND2
Buck2
PWM
OSC
RT
EN1
VDD1
LX1
Boost
Soft-Start
OSC
SS
ENM
Thermal
Shutdown
COMP2
FB2
EN3
VDD3
CH3
Current-MODE
Synchronous
Step-Down
PWM
LX3
PGND3
Buck3
COMP3
FB3
GND
DS9902-10 August 2007
ENM
EN1
EN2
EN3
Charge
Pump
CH1 + Linear
Controller
CH2
CH3
0
X
X
X
Off
Off
Off
Off
1
0
0
0
On
Off
Off
Off
1
1
0
0
On
On
Off
Off
1
1
1
0
On
On
On
Off
1
1
1
1
On
On
On
On
www.richtek.com
5
RT9902
Preliminary
Functional Pin Description
Pin No.
Pin Name
Pin Function
1
COMP3
CH3 Feedback Compensation Pin.
2
VDD3
3
LX3
CH3 Power Input Pin.
CH3 Switch Node. Drains of the internal P-Channel and N-MOSFET switches.
Connect an inductor to LX3 pins together as close as possible.
4
PGND3
5
SS
6
RT
7
GND
Analog Ground.
8
LDO_O
Linear Controller Driver Output.
9
VDDM
Device Input Power Pin.
10
LFB
Linear Controller Feedback Input.
11
FB1
CH1 Feedback Input Pin.
12
COMP1
CH1 Feedback Compensation Pin.
13
CPFB
Charge Pump Feedback Pin.
14
VDDC
Charge Pump Power Input Pin.
15
CX
Charge Pump External Driver Pin.
16
PGND1
Power Ground for CH1.
17
VDD1
CH1 Power Input Pin. Connect output of Boost to this pin.
LX1
CH1 Switch Node. Connect an inductor to LX1 pins together as close as possible.
PGND2
Power Ground for CH2.
CH2 Switch Node. Drains of the internal P-MOSFET and N-MOSFET switches.
Connect an inductor to LX2 pins together as close as possible.
18, 19
20
Power Ground for CH3.
Sets the soft start interval of the converter. Connect a capacitor from this pin to
ground.
Frequency Setting Resistor Connection Pin. Frequency is 500kHz if RT pin not
connected.
21, 22
LX2
23, 24
VDD2
25
ENM
26
EN1
27
COMP2
CH2 Feedback Compensation Pin.
28
FB2
29
EN2
30
EN3
CH2 Feedback Input.
CH2 Enable Input. Tie this pin higher than 1.3V to enable CH2. Tie below 0.4V to
turn off the CH2.
CH3 Enable Input. Tie this pin higher than 1.3V to enable CH3. Tie below 0.4V to
turn off the CH3.
31
GND
Analog Ground.
32
FB3
CH3 Feedback Input.
Exposed Pad (33) GND
www.richtek.com
6
CH2 Power Input Pin.
Whole Device Control Pin. Tie this pin higher than 1.3V to enable the device. Tie
below 0.4V to turn off the device.
CH1 Enable Input. Tie this pin higher than 1.3V to enable CH1. Tie below 0.4V to
turn off the CH1.
The exposed pad must be soldered to a large PCB and connected to GND for
maximum power dissipation.
DS9902-10 August 2007
RT9902
Preliminary
Absolute Maximum Ratings
z
z
z
z
z
z
z
z
z
z
z
z
Supply Input Voltage (VDDM, VDD1, VDD2,VDD3,VDDC) ----------------------------------------------------- −0.3 to 7V
LX1 Pin Switch Voltage ----------------------------------------------------------------------------------------- −0.3V to 7V
LX2 Pin Switch Voltage ----------------------------------------------------------------------------------------- −0.3V to (VDD2 + 0.3V)
LX3 Pin Switch Voltage ----------------------------------------------------------------------------------------- −0.3V to (VDD3 + 0.3V)
CX Pin Switch Voltage ------------------------------------------------------------------------------------------ −0.3V to (VDDC + 0.3V)
Other I/O Pin Voltage -------------------------------------------------------------------------------------------- −0.3V to (VDDM + 0.3V)
Package Thermal Resistance
VQFN-32L 5x5, θJA ----------------------------------------------------------------------------------------------- 34°C/W
Lead Temperature (Soldering, 10 sec.) ---------------------------------------------------------------------- 260°C
Operation Temperature Range --------------------------------------------------------------------------------- −40°C to 85°C
Junction Temperature Range ----------------------------------------------------------------------------------- 0°C to 125°C
Storage Temperature Range ----------------------------------------------------------------------------------- −65°C to 150°C
ESD Susceptibility
HBM (Human Body Mode) ------------------------------------------------------------------------------------- 2kV
MM (Machine Mode) --------------------------------------------------------------------------------------------- 200V
Electrical Characteristics
(VDDM =3.3V, TA = 25°C, Unless Otherwise specification)
Parameter
Symbol
Test Condition
Min
Typ
Max
Units
--
1.5
--
V
2.4
--
5.5
V
5.5
V
Supply Voltage
Minimum Startup Voltage (Boost)
VST
VDDM Operating Voltage
VVDDM
VDDM Pin Voltage
VVDD1
VDD1, VDD2, VDD3 Pin
VVDD2,
Voltage
VDD1, VDD2, VDD3 Operating
Voltage
Boost loading < 1mA
1.5
VVDD3
VDDM Over Voltage Protection
--
6.5
--
V
--
0.01
1
μA
--
30
42
μA
--
250
350
μA
--
250
350
μA
--
250
350
μA
Supply Current
Shutdown Supply Current
IOFF
VENM pin=0V
VVDDM = 3.3V, VENM = 3.3V,
Charge Pump Current
IVDDM
VEN1 = 0V, VEN2 = 0V,
VEN3 = 0V
VVDDM = 3.3V,
CH1 DC/DC Converter + Linear
Controller Supply Current
IVDDM
VFB1 = 0.9V
VENM = 3.3V, VEN1 = 3.3V,
VEN2 = 0V, VEN3 = 0V
VVDDM = 3.3V,
CH2 DC/DC Converter Supply
Current
IVDDM
VFB2 = 0.9V
VENM = 3.3V, VEN1 = 0V,
VEN2 = 3.3V, VEN3 = 0V
VVDDM = 3.3V,
CH3 DC/DC Converter Supply
Current
IVDDM
VFB3 = 0.9V
VENM = 3.3V, VEN1 = 0V,
VEN2 = 0V, VEN3 = 3.3V
To be continued
DS9902-10 August 2007
www.richtek.com
7
RT9902
Parameter
Preliminary
Symbol
Test Condition
Min
Typ
Max
Units
Oscillator
Operation Frequency Range
FOSC
475
550
625
kHz
CH1 Maximum Duty Cycle
DMAX1
RT Open
--
85
90
%
CH2 Maximum Duty Cycle
DMAX2
--
--
100
%
CH3 Maximum Duty Cycle
DMAX3
--
--
100
%
0.788
0.8
0.812
V
0.78
0.8
0.82
V
--
--
12
mV
GM
--
0.2
--
ms
Compensation Source Current
--
22
--
μA
Compensation Sink Current
--
22
--
μA
N-MOSFET
--
300
400
mΩ
VVDD1 = 3.3V
2
2.6
3
A
N-MOSFET, VVDD2 = 3.3V
--
350
450
mΩ
P-MOSFET, VVDD2 = 3.3V
--
350
450
mΩ
1.3
1.5
1.9
A
N-MOSFET, VVDD3 = 3.3V
--
350
450
mΩ
P-MOSFET, VVDD3 = 3.3V
--
350
450
mΩ
1.3
1.5
1.9
A
0.774
0.79
0.806
V
110
150
--
μA
UVP Threshold Voltage @FB2, FB3
0.3
0.4
0.5
V
Over Voltage Protection @FB2
0.95
1
--
V
VVDDM = 3.3V
--
0.8
1.3
V
VVDDM = 3.3V
0.4
0.8
--
V
140
180
--
°C
--
10
--
°C
Feedback Voltage (CH1, CH2, CH3, CH4)
Feedback Voltage
Feedback Voltage (Charge Pump)
VFB
CH1, CH2, CH3
VCPFB
CH4
Feedback Voltage
︱ΔVFB︱
CH1, CH2, CH3, CH4
3.0V < VDDM < 5.5V
Error Amplifier
Power Switch
CH1 On Resistance of MOSFET
RDS(ON)
CH1 Current Limitation
CH2 On Resistance of MOSFET
RDS(ON)
CH2 Current Limitation
CH3 On Resistance of MOSFET
VVDD2 = 3.3V
RDS(ON)
CH3 Current Limitation
VVDD3 = 3.3V
Linear Controller
Feedback Voltage for Linear
Controller
VLFB
LDO_O pin Sink Current
VLDO_O = 1V
UVP (CH2, CH3) & Over Voltage Protection (CH2)
Control
ENM, EN1, EN2, EN3 Input High
Level Threshold
ENM, EN1, EN2, EN3 Input Low
Level Threshold
Thermal Protection
Thermal Shutdown
TSD
Thermal Shutdown Hysteresis
ΔTSD
www.richtek.com
8
DS9902-10 August 2007
RT9902
Preliminary
Typical Operating Characteristics
Oscillator Ferquency vs. RRT
1800
0.806
1600
Oscillator Frequecny (kHz)
Reference Voltage (V)
Reference Voltage vs. Temperature
0.808
0.804
0.802
0.8
0.798
0.796
0.794
1400
1200
1000
800
600
400
200
0.792
0
-50
-30
-10
10
30
50
70
90
0
100
200
300
Temperature (°C)
500
600
RRT (kΩ)
Boost Output Voltage vs. VDD1 Voltage
Boost Efficiency vs. Output Current
3.345
100
VBAT = 2.5V, VDDM = 3.3V, IOUT = 250mA
VOUT = 3.3V
2.5V
80
2V
1.8V
70
60
Output Voltage (V)
3.34
VIN
3V
90
Efficiency (%)
400
3.335
3.33
3.325
3.32
3.315
3.31
Boost
3.305
50
1
10
100
1.5
1000
Output Current (mA)
3
3.5
4
4.5
5
5.5
Boost Load Transient Response
Output Voltage
Deviation
(100mV/Div)
VBAT = 2.5V, VDD1 = 3.3V, IOUT = 250mA
3.33
3.328
3.326
3.324
3.322
Load Current
(200mA/Div)
Output Voltage (V)
2.5
VDD1 Voltage (V)
Output Voltage vs. VDDM Voltage
3.332
2
3.32
3.318
3.316
2.4
2.8
3.2
3.6
4
4.4
4.8
5.2
5.6
VIN = 1.8V, VOUT = 3.3V, @IOUT = 100mA to 400mA
Time (1ms/Div)
VDDM Voltage (V)
DS9902-10 August 2007
www.richtek.com
9
RT9902
Preliminary
Boost Load Transient Response
VIN = 2.5V, VOUT = 3.3V, @IOUT = 100mA to 400mA
Time (1ms/Div)
Time (1ms/Div)
Boost Load Transient Response
Boost LX & Output Ripple
VIN = 1.8V, VOUT = 3.3V, @IOUT = 100mA
LX1
(2V/Div)
VIN = 3V, VOUT = 3.3V, @IOUT = 100mA to 400mA
Output Ripple
(10mV/Div)
Load Current
(200mA/Div)
Load Current
(200mA/Div)
VIN = 2V, VOUT = 3.3V, @IOUT = 100mA to 400mA
Output Voltage
Deviation
(100mV/Div)
Load Current
(200mA/Div)
Output Voltage
Deviation
(100mV/Div)
Output Voltage
Deviation
(100mV/Div)
Boost Load Transient Response
Time (1ms/Div)
Time (1us/Div)
Boost LX & Output Ripple
Boost LX & Output Ripple
Output Ripple
(10mV/Div)
Output Ripple
(20mV/Div)
Time (1us/Div)
www.richtek.com
10
VIN = 2.5V, VOUT = 3.3V, @IOUT = 100mA
LX1
(2V/Div)
LX1
(2V/Div)
VIN = 1.8V, VOUT = 3.3V, @IOUT = 300mA
Time (1us/Div)
DS9902-10 August 2007
RT9902
Preliminary
Boost LX & Output Ripple
Boost LX & Output Ripple
VIN = 2.5V, VOUT = 3.3V, @IOUT = 400mA
Output Ripple
(10mV/Div)
Output Ripple
(20mV/Div)
LX1
(2V/Div)
LX1
(2V/Div)
VIN = 3V, VOUT = 3.3V, @IOUT = 100mA
Time (1us/Div)
Time (1us/Div)
Buck2 Efficiency vs. Output Current
Boost LX & Output Ripple
100
VIN = 3V, VOUT = 3.3V, @IOUT = 400mA
VOUT = 1.5V
VIN = 2.2V
Output Ripple
(10mV/Div)
LX1
(2V/Div)
Efficiency (%)
90
80
VIN = 4.5V
VIN = 2.5V
VIN = 3V
VIN = 3.8V
70
60
50
Time (1us/Div)
1
10
100
1000
Output Current (mA)
Buck2 Efficiency vs. Output Current
100
Buck2 Efficiency vs. Output Current
100
VOUT = 1.8V
VIN = 2.5V
90
VIN = 4.5
80
80
Efficiency (%)
Efficiency (%)
VOUT = 2.5V
90
VIN = 3V
VIN = 4.5 VIN = 3.8V
70
70
60
VIN = 3.8V
50
VIN = 3V
60
40
30
50
1
10
100
Output Current (mA)
DS9902-10 August 2007
1000
1
10
100
1000
Output Current (mA)
www.richtek.com
11
RT9902
Preliminary
Buck2 Output Voltage vs. VDD2 Voltage
Buck2 Output Voltage vs. VDDM Voltage
1.82
1.82
VDD2 = 3.3V, IOUT = 250mA
1.818
1.816
1.816
Output Voltage (V)
Output Voltage (V)
VBAT = VDDM = 3.3V, IOUT = 250mA
1.818
1.814
1.812
1.81
1.808
1.814
1.812
1.81
1.808
1.806
1.806
1.804
1.804
2
2.5
3
3.5
4
2
4.5
3.5
4
4.5
5
5.5
VDDM Voltage (V)
Buck2 Load Transient Response
Buck2 Load Transient Response
6
@IOUT = 100mA to 400mA
VDD2 = 2.5V, VDDM = 3.3V, VOUT = 1.8V
Load Current
(200mA/Div)
Output Voltage
Deviation
(100mV/Div)
Output Voltage
Deviation
(100mV/Div)
Load Current
(200mA/Div)
3
VDD2 Voltage (V)
@IOUT = 100mA to 400mA
Time (1ms/Div)
VDD2 = 3.8V, VDDM = 3.3V, VOUT = 1.8V
Time (1ms/Div)
www.richtek.com
12
Output Voltage
Deviation
(100mV/Div)
Buck2 Load Transient Response
Load Current
(200mA/Div)
Output Voltage
Deviation
(100mV/Div)
@IOUT = 100mA to 400mA
VDD2 = 3V, VDDM = 3.3V, VOUT = 1.8V
Time (1ms/Div)
Buck2 Load Transient Response
Load Current
(200mA/Div)
2.5
@IOUT = 100mA to 400mA
VDD2 = 4.5V, VDDM = 3.3V, VOUT = 1.8V
Time (1ms/Div)
DS9902-10 August 2007
RT9902
Preliminary
Buck2 LX & Output Ripple
Buck2 LX & Output Ripple
@IOUT = 250mA
Time (500ns/Div)
Buck2 LX & Output Ripple
Buck2 LX & Output Ripple
LX2
(2V/Div)
Output Ripple
(10mV/Div)
@IOUT = 250mA
VDD2 = 3V, VDDM = 3.3V, VOUT = 1.8V
@IOUT = 500mA
VDD2 = 3V, VDDM = 3.3V, VOUT = 1.8V
Time (500ns/Div)
Time (500ns/Div)
Buck2 LX & Output Ripple
Buck2 LX & Output Ripple
LX2
(2V/Div)
@IOUT = 250mA
VDD2 = 3.8V, VDDM = 3.3V, VOUT = 1.8V
Time (500ns/Div)
DS9902-10 August 2007
Output Ripple
(10mV/Div)
Output Ripple
(10mV/Div)
VDD2 = 2.5V, VDDM = 3.3V, VOUT = 1.8V
Time (500ns/Div)
LX2
(2V/Div)
Output Ripple
(10mV/Div)
Output Ripple
(10mV/Div)
VDD2 = 2.5V, VDDM = 3.3V, VOUT = 1.8V
LX2
(2V/Div)
Output Ripple
(10mV/Div)
LX2
(2V/Div)
LX2
(2V/Div)
@IOUT = 500mA
@IOUT = 500mA
VDD2 = 3.8V, VDDM = 3.3V, VOUT = 1.8V
Time (500ns/Div)
www.richtek.com
13
RT9902
Preliminary
Buck2 LX & Output Ripple
Output Ripple
(10mV/Div)
Output Ripple
(10mV/Div)
LX2
(2V/Div)
LX2
(2V/Div)
Buck2 LX & Output Ripple
@IOUT = 250mA
VDD2 = 4.5V, VDDM = 3.3V, VOUT = 1.8V
@IOUT = 500mA
VDD2 = 4.5V, VDDM = 3.3V, VOUT = 1.8V
Time (500ns/Div)
Time (500ns/Div)
Buck3 Efficiency vs. Output Current
Buck3 Efficiency vs. Output Current
100
100
VOUT = 1.5V
VOUT = 1.8V
VIN = 2.2V
90
80
Efficiency (%)
Efficiency (%)
90
VIN = 4.5V
VIN = 3V
VIN = 3.8V
70
VIN = 2.5V
80
VIN = 4.5V
VIN = 3.8V VIN = 3V
70
60
60
50
50
1
10
100
1
1000
10
100
1000
Output Current (mA)
Output Current (mA)
Buck3 Output Voltage vs. VDD3 Voltage
Buck3 Efficiency vs. Output Current
1.806
100
VBAT = VDDM = 3.3V, IOUT = 250mA
VOUT = 2.5V
1.804
90
VIN = 4.5V
Output Voltage (V)
80
Efficiency (%)
VIN = 2.5V
70
VIN = 3.8V
60
50
VIN = 3V
40
1.802
1.8
1.798
1.796
1.794
1.792
1.79
30
1
10
100
Output Current (mA)
www.richtek.com
14
1000
2
2.5
3
3.5
4
4.5
VDD3 Voltage (V)
DS9902-10 August 2007
RT9902
Preliminary
Buck3 Output Voltage vs. VDDM Voltage
Buck3 Load Transient Response
1.806
Output Voltage
Deviation
(100mV/Div)
VDD3 = 3.3V, IOUT = 250mA
1.802
1.8
@IOUT = 100mA to 400mA
1.798
1.796
Load Current
(200mA/Div)
Output Voltage (V)
1.804
1.794
1.792
1.79
2
2.5
3
3.5
4
4.5
5
5.5
VDD3 = 2.5V, VDDM = 3.3V, VOUT = 1.8V
6
Time (1ms/Div)
VDDM Voltage (V)
VDD3 = 3V, VDDM = 3.3V, VOUT = 1.8V
Load Current
(200mA/Div)
Load Current
(200mA/Div)
Output Voltage
Deviation
(100mV/Div)
@IOUT = 100mA to 400mA
Buck3 Load Transient Response
Output Voltage
Deviation
(100mV/Div)
Buck3 Load Transient Response
VDD3 = 3.8V, VDDM = 3.3V, VOUT = 1.8V
Time (1ms/Div)
Time (1ms/Div)
Buck3 Load Transient Response
Buck3 LX & Output Ripple
@IOUT = 250mA
VDD3 = 4.5V, VDDM = 3.3V, VOUT = 1.8V
Time (1ms/Div)
DS9902-10 August 2007
Output Ripple
(10mV/Div)
LX3
(2V/Div)
Output Voltage
Deviation
(100mV/Div)
@IOUT = 100mA to 400mA
Load Current
(200mA/Div)
@IOUT = 100mA to 400mA
VDD3 = 2.5V, VDDM = 3.3V, VOUT = 1.8V
Time (500ns/Div)
www.richtek.com
15
RT9902
Preliminary
Buck3 LX & Output Ripple
Buck3 LX & Output Ripple
Output Ripple
(10mV/Div)
VDD3 = 2.5V, VDDM = 3.3V, VOUT = 1.8V
LX3
Output Ripple
(10mV/Div) (2V/Div)
@IOUT = 250mA
LX3
(2V/Div)
@IOUT = 500mA
Time (500ns/Div)
Time (500ns/Div)
Buck3 LX & Output Ripple
Buck3 LX & Output Ripple
@IOUT = 500mA
@IOUT = 250mA
VDD3 = 3V, VDDM = 3.3V, VOUT = 1.8V
LX3
Output Ripple
(10mV/Div) (2V/Div)
LX3
Output Ripple
(2V/Div)
(10mV/Div)
VDD3 = 3V, VDDM = 3.3V, VOUT = 1.8V
VDD3 = 3.8V, VDDM = 3.3V, VOUT = 1.8V
Time (500ns/Div)
Time (500ns/Div)
Buck3 LX & Output Ripple
Buck3 LX & Output Ripple
VDD3 = 3.8V, VDDM = 3.3V, VOUT = 1.8V
Time (500ns/Div)
www.richtek.com
16
LX3
Output Ripple
(10mV/Div) (2V/Div)
Output Ripple
(10mV/Div)
LX3
(2V/Div)
@IOUT = 500mA
@IOUT = 250mA
VDD2 = 4.5V, VDDM = 3.3V, VOUT = 1.8V
Time (500ns/Div)
DS9902-10 August 2007
RT9902
Preliminary
Buck3 LX & Output Ripple
Charge Pump CX & Output Ripple
@IOUT = 1mA
Output Ripple
(10mV/Div)
LX3
(2V/Div)
Output Ripple Charge Pump
(5mV/Div)
(2V/Div)
@IOUT = 500mA
VDD2 = 4.5V, VDDM = 3.3V, VOUT = 1.8V
VIN = 2V, VDDM = 3.3V, VOUT = 3.3V
Time (500ns/Div)
Time (5us/Div)
Charge Pump CX & Output Ripple
Linear Controller Load Transient Response
Output Voltage
Deviation (mV)
Load Current
(mA)
Output Ripple Charge Pump
(5mV/Div)
(2V/Div)
@IOUT = 1mA
VIN = 2.5V, VDDM = 3.3V, VOUT = 3.3V
VIN = 3.5V, VOUT = 3.3V
20 TA = 25°C
0
-20
400
200
0
Time (25us/Div)
Time (1ms/Div)
0
-20
≈
400
200
0
Time (1ms/Div)
DS9902-10 August 2007
Output Voltage
Deviation (mV)
VIN = 3.8V, VOUT = 3.3V
20 TA = 25°C
Linear Controller Load Transient Response
Load Current
(mA)
Load Current
(mA)
Output Voltage
Deviation (mV)
Linear Controller Load Transient Response
≈
≈
≈
VIN = 4.2V, VOUT = 3.3V
10 TA = 25°C
0
-10
≈
≈
400
200
0
Time (1ms/Div)
www.richtek.com
17
RT9902
Preliminary
0
-10
≈
≈
400
Output Voltage
Deviation (mV)
VIN = 3.3V, VOUT = 3.3V
10 TA = 25°C
Boost Series Linear Controller Load
Transient Response
Load Current
(mA)
Load Current
(mA)
Output Voltage
Deviation (mV)
Boost Series Linear Controller Load
Transient Response
200
0
Time (1ms/Div)
VIN = 3V, VOUT = 3.3V
10 TA = 25°C
0
-10
≈
≈
400
200
0
Time (1ms/Div)
Load Current
(mA)
Output Voltage
Deviation (mV)
Boost Series Linear Controller Load
Transient Response
VIN = 4.2V, VOUT = 3.3V
10 TA = 25°C
0
-10
≈
≈
400
200
0
Time (1ms/Div)
www.richtek.com
18
DS9902-10 August 2007
Preliminary
RT9902
Application Information
The RT9902 is a four-channel DC/DC converter with one
linear controller for digital still cameras and other handheld device. The four channels DC/DC converters are as
follows:
CH1: Step-up, asynchronous current mode DC/DC
converter with an internal power MOSFET, current limit
protection and high efficiency control for wide loading
range.
CH2: Step-down, synchronous current mode DC/DC
converter with internal power MOSFETs, current limit,
short-circuit , over voltage protection and high efficiency
control for wide loading range.
CH3: Step-down, synchronous current mode DC/DC
converter with internal power MOSFETs, current limit,
short-circuit protection and high efficiency control for wide
loading range.
CH4: Charge pump DC/DC converter.
Soft-Start
CH1, CH2 and CH3 can be soft-started individually every
time when the channel is enabled. Soft-start is achieved
by ramping up the voltage reference of each channel's
input of error amplifier. Adding a capacitor on SS pin to
ground sets the ramping up speed of each voltage
reference. Triangle wave will be appeared on SS pin,
which provides a clock base for soft-start.
The soft-start timing would be setted by following formular.
TSS = 10 ×
CSS
1nF
At light load, efficiency is enhanced by pulse-skipping
mode. In this mode, the NMOS turns on by a constant
pulse width. As loading increased, the converter operates
at constant frequency PWM mode. The maximum duty
of the constant frequency is 80% for the boost to prevent
high input current drawn from input.
Protection
Current Limit
The current of NMOS is sensed cycle by cycle to prevent
over current. If the current is higher than 2.6A (typical),
then the NMOS is off . This state is latched and then
reset automatically at next clock cycle.
Under Voltage
The status of under voltage is decided by comparing FB1
voltage with 0.4V. This function is enabled after soft-start
finishes. If the FB1 voltage is less than 0.4V, then the
NMOS will be turned off immediately. And this state is
latched. After a dummy count period, the controller begins
a re-soft-start procedure.
If the status of under voltage remains after 4 successive
times of soft-start, then CH1 is latched.
Over Voltage
The over voltage protection is used when the output of
CH1 supplies the power of the main chip. If the output
voltage of CH1 is over 6.5V, the main chip is shutdown
and the NMOS is kept off.
(ms)
Oscillator
The internal oscillator synchronizes CH1, CH2 and CH3
PWM operation frequency. The operation frequency is
set by a resistor between RT pin to ground, ranging from
550kHz to 1.4MHz.
Step-up (Boost) DC/DC Converter (CH1)
The step-up channel (CH1) is designed as current-mode
DC/DC PWM converters with built-in internal power MOS
and external schottky diode. Output voltage is regulated
and adjustable up to 5.5V. This channel typically supplies
3.3V for main system power.
DS9902-10 August 2007
Step-Down (Buck) DC/DC Converter (CH2, CH3)
The step-down channels (CH2, CH3) are designed as
synchronous current-mode DC/DC PWM converters.
Output voltage is regulated and adjustable down to 0.8V.
The internal synchronous power switches eliminate the
typical schottky free wheeling diode and improve
efficiency.
At light load, efficiency is enhanced by pulse-skipping
mode. In this mode, the high-side PMOS turns on by a
constant pulse width. As loading increased, the converter
operates at constant frequency PWM mode. While the
input voltage is close to output voltage, the converter
enters low dropout mode. Duty could be as long as 100%
to extend battery life.
www.richtek.com
19
RT9902
Preliminary
Protection
Current Limit (CH2, CH3)
The current of high-side PMOS is sensed cycle by cycle
to prevent over current. If the current is higher than 1.5A
(typical), then the high-side PMOS is off and the low-side
NMOS is on. This state is latched and then reset
automatically at next clock cycle.
IMAX = 2 x (VDDC-VF) x CCP x FCP
z
VF : Schottky diode forward voltage
z
Fpump : Charge pump maximum frequency is 500kHz
Recommand CCP ≤ 0.1μF.
VBAT
VDDC
Under Voltage (CH2, CH3)
The status of under voltage is decided by comparing FB2
(or FB3) voltage with 0.4V. This function is enabled after
soft-start finishes. If the FB2 (or FB3) voltage is less than
0.4V, then the high/low-side power MOS are turned off
immediately. And this state is latched. After a dummy
count period, the CH2 (or CH3) begins a soft-start
procedure.
However, if the status of under voltage remains after 3
successive times of soft-start, then CH2 (or CH3) is
latched.
UV remain after 3
How to reset?
successive soft-start
CH2 CH2 is latched, and whole Toggle ENM
IC is shut down
CH3 CH3 is latched
Toggle EN3 or ENM
Over Voltage Protection (CH2)
Over voltage protection (OVP) is used to protect the
external parts connected to the output of CH2. If the FB2
voltage is higher than 1V, the high-side PMOS is off and
low-side NMOS is on. This status is latched and could be
reset by toggling ENM.
CX
CCP
R1
CPFB
GND
R2
CX
COUT
Reference
The chip has an internal 0.8V reference voltage, which is
the inputs of the error amplifiers of the CH1, CH2, and
CH3 to compare the difference of feedback voltage. The
reference voltage can be set up stably when the supplied
power (VDDM) is above 1.5V, and EN1 (or EN2, EN3)
goes high.
Thermal Protection
Thermal protection function is integrated in the chip. When
the chip temperature is higher than 178 °C, the controllers
of CH1, CH2, and CH3 are shutdown. 10°C is the
hysteresis range of temperature to prevent unstable
operation when the thermal protection happens. When
the thermal protection is relieved, the chip operates well
again.
Charge Pump DC/DC Converter
This is a low quiescent charge pump DC/DC converter,
which is enabled by ENM. Add a capacitor CX (~1nF)
between charge pump VOUT and CPFB to speed up charge
pump response time. Output ripple can be easily
suppressed by increasing the capacitance ratio of COUT
and CCP. This charge pump DC/DC converter can apply
to μC stanby power or the gate driver power of IGBT for
photoflash, etc.
The maximum output current can be determined by CCP
and C OUT ration. This equation would describe the
relationship.
www.richtek.com
20
DS9902-10 August 2007
RT9902
Preliminary
Outline Dimension
D2
D
SEE DETAIL A
L
1
E
E2
e
b
1
1
2
2
A
A1
A3
DETAIL A
Pin #1 ID and Tie Bar Mark Options
Note : The configuration of the Pin #1 identifier is optional,
but must be located within the zone indicated.
Symbol
Dimensions In Millimeters
Dimensions In Inches
Min
Max
Min
Max
A
0.800
1.000
0.031
0.039
A1
0.000
0.050
0.000
0.002
A3
0.175
0.250
0.007
0.010
b
0.180
0.300
0.007
0.012
D
4.950
5.050
0.195
0.199
D2
3.400
3.750
0.134
0.148
E
4.950
5.050
0.195
0.199
E2
3.400
3.750
0.134
0.148
e
L
0.500
0.350
0.020
0.450
0.014
0.018
V-Type 32L QFN 5x5 Package
Richtek Technology Corporation
Richtek Technology Corporation
Headquarter
Taipei Office (Marketing)
5F, No. 20, Taiyuen Street, Chupei City
8F, No. 137, Lane 235, Paochiao Road, Hsintien City
Hsinchu, Taiwan, R.O.C.
Taipei County, Taiwan, R.O.C.
Tel: (8863)5526789 Fax: (8863)5526611
Tel: (8862)89191466 Fax: (8862)89191465
Email: [email protected]
DS9902-10 August 2007
www.richtek.com
21