W320-04 200-MHz Spread Spectrum Clock Synthesizer/Driver with Differential CPU Outputs 2W320-04 Features Benefits ® • Compliant with Intel CK-Titan clock synthesizer/driver Supports next-generation Pentium® processors using specifications differential clock drivers • Multiple output clocks at different frequencies Motherboard clock generator — Three pairs of differential CPU outputs, up to 200 MHz — Supports multiple CPUs and a chipset — Ten synchronous PCI clocks, three free-running — Support for PCI slots and chipset — Six 3V66 clocks — Supports AGP, DRCG reference, and Hub Link — Two 48-MHz clocks — Supports USB host controller and graphic controller — One reference clock at 14.318 MHz — Supports ISA slots and I/O chip — One VCH clock • Spread Spectrum clocking (down spread) Enables reduction of electromagnetic interference (EMI) and overall system cost • Power-down features (PCI_STOP#, CPU_STOP# PWR_DWN#) Enables ACPI-compliant designs • Three Select inputs (Mode select and IC Frequency Select) Supports up to four CPU clock frequencies • OE and Test Mode support Enables ATE and “bed of nails” testing • 56-pin SSOP package and 56-pin TSSOP package Widely available standard package enables lower cost Logic Block Diagram Pin Configurations SSOP and TSSOP Top View XTAL OSC VDD_REF PWR VDD_REF 1 56 REF XTAL_IN 2 55 S1 XTAL_OUT 3 54 S0 GND_REF 4 53 CPU_STOP# PCI_F0 5 52 CPU0 PCI_F1 6 51 CPU#0 PCI_F2 7 50 VDD_CPU VDD_PCI 8 49 CPU1 GND_PCI 9 48 CPU#1 PCI0 10 47 GND_CPU VDD_PCI PCI_F0:2 PCI1 11 46 VDD_CPU PCI2 45 CPU2 PCI0:6 PCI3 12 13 44 CPU#2 VDD_PCI 14 43 MULT0# GND_PCI PCI4 15 42 IREF 41 PCI5 PCI6 VDD_3V66 17 GND_IREF S2 19 38 REF PLL Ref Freq PLL 1 Divider Network PWR S0:2 Gate PWR_GD# CPU_STOP# Stop Clock Control VDD_CPU CPU0:2 CPU#0:2 PWR Stop Clock Control PCI_STOP# /2 PWR_DWN# VDD_3V66 3V66_0 PWR 3V66_2:4/ 66BUFF0:2 PWR 3V66_5/ 66IN PLL 2 VDD_48MHz PWR USB (48MHz) DOT (48MHz) 39 USB GND_3V66 20 37 66BUFF0/3V66_2 21 36 GND_ 48 MHz 66BUFF1/3V66_3 22 35 66BUFF2/3V66_4 66IN/3V66_5 23 34 3V66_1/VCH PCI_STOP# 24 25 33 3V66_0 32 VDD_3V66 26 31 GND_3V66 27 30 28 29 SCLK SDATA PWR_GD# SDATA SCLK 18 40 DOT VDD_ 48 MHz PWR_DWN# VDD_CORE GND_CORE VCH_CLK/ 3V66_1 16 W320-04 X1 X2 SMBus Logic Cypress Semiconductor Corporation Document #: 38-07010 Rev. *B • 3901 North First Street • San Jose • CA 95134 • 408-943-2600 Revised January 8, 2002 W320-04 Pin Summary Name Pins Description REF 56 3.3V 14.318-MHz clock output. XTAL_IN 2 14.318-MHz crystal input. XTAL_OUT 3 14.318-MHz crystal input. CPU, CPU# [0:2] 44, 45, 48, 49, 51, 52 Differential CPU clock outputs. 3V66_0 33 3.3V 66-MHz clock output. 3V66_1/VCH 35 3.3V selectable through SMBus to be 66 MHz or 48 MHz. 66IN/3V66_5 24 66-MHz input to buffered 66BUFF and PCI or 66-MHz clock from internal VCO. 66BUFF [2:0] /3V66 [4:2] 21, 22, 23 66-MHz buffered outputs from 66Input or 66-MHz clocks from internal VCO. PCI_F [0:2] 5, 6, 7, 33-MHz clocks divided down from 66Input or divided down from 3V66. PCI [0:6] 10, 11, 12, 13, 16, 17, 18 PCI clock outputs divided down from 66Input or divided down from 3V66. USB 39 Fixed 48-MHz clock output. DOT 38 Fixed 48-MHz clock output. S2 40 Special 3.3V 3-level input for Mode selection. S1, S0 54, 55 3.3V LVTTL inputs for CPU frequency selection. IREF 42 A precision resistor is attached to this pin, which is connected to the internal current reference. MULT0 43 3.3V LVTTL input for selecting the current multiplier for the CPU outputs. PWR_DWN# 25 3.3V LVTTL input for Power_Down# (active LOW). PCI_STOP# 34 3.3V LVTTL input for PCI_STOP# (active LOW). CPU_STOP# 53 3.3V LVTTL input for CPU_STOP# (active LOW). PWRGD# 28 3.3V LVTTL input is a level sensitive strobe used to determine when S[2:0] and MULTI0 inputs are valid and OK to be sampled (Active LOW). Once PWRGD# is sampled LOW, the status of this output will be ignored. SDATA 29 SMBus compatible SDATA. SCLK 30 SMBus compatible SCLK. VDD_REF, VDD_PCI, VDD_3V66, VDD_CPU 1, 8, 14, 19, 32, 46, 50 3.3V power supply for outputs. VDD_48 MHz 37 3.3V power supply for 48 MHz. VDD_CORE 26 3.3V power supply for PLL. GND_REF, GND_PCI, GND_3V66, GND_IREF, VDD_CPU 4, 9, 15, 20, 31, 36, 41, 47 Ground for outputs. GND_CORE 27 Document #: 38-07010 Rev. *B Ground for PLL. Page 2 of 18 W320-04 Function Table[1] CPU (MHz) 3V66[0:1] (MHz) 66BUFF[0:2]/ 3V66[2:4] (MHz) 66IN/3V66_5 (MHz) PCI_F/PCI (MHz) USB/DOT (MHz) Notes: 14.318 MHz 48 MHz 2, 3, 4 14.318 MHz 48 MHz 2, 3, 4 66IN/2 14.318 MHz 48 MHz 2, 3, 4 66 MHz Input 66IN/2 14.318 MHz 48 MHz 2, 3, 4 66 MHz 33 MHz 14.318 MHz 48 MHz 2, 3, 4 66 MHz 66 MHz 33 MHz 14.318 MHz 48 MHz 2, 3, 4 66 MHz 66 MHz 66 MHz 33 MHz 14.318 MHz 48 MHz 2, 3, 4 66 MHz 66 MHz 66 MHz 33 MHz 14.318 MHz 48 MHz 2, 3, 4 Hi-Z Hi-Z Hi-Z Hi-Z Hi-Z Hi-Z Hi-Z 1, 5 TCLK/2 TCLK/4 TCLK/4 TCLK/4 TCLK/8 TCLK TCLK/2 7, 8, 5 0 Reserved Reserved Reserved Reserved Reserved Reserved Reserved – 1 Reserved Reserved Reserved Reserved Reserved Reserved Reserved – S2 S1 S0 1 0 0 66 MHz 66 MHz 66IN 66 MHz Input 66IN/2 1 0 1 100 MHz 66 MHz 66IN 66 MHz Input 66IN/2 1 1 0 200 MHz 66 MHz 66IN 66 MHz Input 1 1 1 133 MHz 66 MHz 66IN 0 0 0 66 MHz 66 MHz 66 MHz 0 0 1 100 MHz 66 MHz 0 1 0 200 MHz 0 1 1 133 MHz Mid 0 0 Mid 0 1 Mid 1 Mid 1 REF0(MHz) Swing Select Functions Mult0 Board Target Trace/Term Z Reference R, IREF = VDD/(3*Rr) Output Current VOH @ Z 0 50Ω Rr = 221 1%, IREF = 5.00 mA IOH = 4*IREF 1.0V @ 50 1 50Ω Rr = 475 1%, IREF = 2.32 mA IOH = 6*IREF 0.7V @ 50 Clock Driver Impedances Impedance Buffer Name VDD Range CPU, CPU# Min. Ω Buffer Type Typ. Ω Type X1 Max. Ω 50 REF 3.135–3.465 Type 5 12 30 55 PCI, 3V66, 66BUFF 3.135–3.465 Type 5 12 30 55 USB 3.135–3.465 Type 3A 12 30 60 DOT 3.135–3.465 Type 3B 12 30 60 Clock Enable Configuration PWR_DWN# CPU_STOP# PCI_STOP# CPU CPU# 3V66 66BUFF PCI_F PCI USB/DOT VCOS/ OSC 0 X X IREF*2 FLOAT LOW LOW LOW LOW LOW OFF 1 0 0 ON FLOAT ON ON ON OFF ON ON 1 0 1 ON LOW ON ON ON ON ON ON 1 1 0 ON ON ON ON ON OFF ON ON 1 1 1 ON ON ON ON ON ON ON ON Note: 1. TCLK is a test clock driven in on the XTALIN input in test mode. 2. “Normal” mode of operation 3. Range of reference frequency allowed is min. = 14.316, nom. = 14.31818 MHz, max. = 14.32 MHz. 4. Frequency accuracy of 48 MHz must be +167PPM to match USB default. 5. Mid. is defined a Voltage level between 1.0V and 1.8V for three-level input functionality. Low is below 0.8V. High is above 2.0V. 6. Required for DC output impedance verification. 7. These modes are to use the SAME internal dividers as the CPU = 200 MHz mode. The only change is to slow down the internal VCO to allow under clock margining. Document #: 38-07010 Rev. *B Page 3 of 18 W320-04 Serial Data Interface (SMBus) ability to stop after any complete byte has been transferred. Indexed bytes are not allowed. To enhance the flexibility and function of the clock synthesizer, a two signal SMBus interface is provided according to SMBus specification. Through the Serial Data Interface, various device functions such as individual clock output buffers, can be individually enabled or disabled. W320-04 support both block read and block write operations. A block write begins with a slave address and a WRITE condition. The R/W bit is used by the SMBus controller as a data direction bit. A zero indicates a WRITE condition to the clock device. The slave receiver address is 11010010 (D2h). The registers associated with the Serial Data Interface initialize to their default setting upon power-up, and therefore use of this interface is optional. Clock device register changes are normally made upon system initialization, if any are required. The interface can also be used during system operation for power management functions. Data Protocol The clock driver serial protocol accepts only block writes from the controller. The bytes must be accessed in sequential order from lowest to highest byte, (most significant bit first) with the Start Slave Address R/W 0/1 A bit 1 1 0 1 0 0 1 0 1 bit 7 bits 1 1 Command Code 00000000 8 bits A command code of 0000 0000 (00h) and the byte count bytes are required for any transfer. After the command code, the core logic issues a byte count which describes number of additional bytes required for the transfer, not including the command code and byte count bytes. For example, if the host has 20 data bytes to send, the first byte would be the number 20 (14h), followed by the 20 bytes of data. The byte count byte is required to be a minimum of 1 byte and a maximum of 32 bytes It may not be 0. Figure 1 shows an example of a block write. A transfer is considered valid after the acknowledge bit corresponding to the byte count is read by the controller. A Byte Count = N A Data Byte 0 A 1 8 bits 1 8 bits . . . Data Byte N-1 A Stop bit 1 8 bits 1 1 bit From Master to Slave From Slave to Master Figure 1. An Example of a Block Write Data Byte Configuration Map Data Byte 0: Control Register (0 = Enable, 1 = Disable) Affected Pin# Bit Name Description Type Power On Default Bit 7 5, 6, 7, 10, 11, 12, 13, 16, 17, 18, 33, 35 PCI [0:6] CPU[2:0] 3V66[1:0] Spread Spectrum Enable 0 = Spread Off, 1 = Spread On R/W 0 Bit 6 – TBD TBD R 0 Bit 5 35 3V66_1/VCH VCH Select 66 MHz/48 MHz 0 = 66 MHz, 1 = 48 MHz R/W 0 Bit 4 44, 45, 48, 49, 51, 52 CPU [2:0] CPU# [2:0] CPU_STOP# Reflects the current value of the external CPU_STOP# pin R N/A Bit 3 10, 11, 12, 13, 16, 17, 18 PCI [6:0] PCI_STOP# (Does not affect PCI_F [2:0] pins) R/W N/A Bit 2 – – S2 Reflects the value of the S2 pin sampled on power-up R N/A Bit 1 – – S1 Reflects the value of the S1 pin sampled on power-up R N/A Bit 0 – – S0 Reflects the value of the S1 pin sampled on power-up R N/A Document #: 38-07010 Rev. *B Page 4 of 18 W320-04 Data Byte 1 Bit Pin# Name Description Type Power On Default Bit 7 – N/A CPU Mult0 Value R Bit 6 52, 49, 45 CPU0:2 Three-State CPU0:2 during power down 0 = Normal; 1 = Three-stated R/W N/A 0 Bit 5 44, 45 CPU2 CPU2# Allow Control of CPU2 with assertion of CPU_STOP# 0 = Not free running; 1 = Free running R/W 0 Bit 4 48, 49 CPU1 CPU1# Allow Control of CPU1 with assertion of CPU_STOP# 0 = Not free running;1 = Free running R/W 0 Bit 3 51, 52 CPU0 CPU0# Allow Control of CPU0 with assertion of CPU_STOP# 0= Not free running; 1 = Free running R/W 0 Bit 2 44, 45 CPU2 CPU2# CPU2 Output Enable 1 = Enabled; 0 = Disabled R/W 1 Bit 1 48, 49 CPU1 CPU1# CPU1Output Enable 1 = Enabled; 0= Disabled R/W 1 Bit 0 51, 52 CPU0 CPU0# CPU0 Output Enable 1 = Enabled; 0 = Disabled R/W 1 Data Byte 2 Bit Pin# Name Pin Description Type Power On Default Bit 7 – N/A N/A R 0 Bit 6 18 PCI6 PCI6 Output Enable 1 = Enabled; 0 = Disabled R/W 1 Bit 5 17 PCI5 PCI5 Output Enable 1 = Enabled; 0 = Disabled R/W 1 Bit 4 16 PCI4 PCI4 Output Enable 1 = Enabled; 0 = Disabled R/W 1 Bit 3 13 PCI3 PCI3 Output Enable 1 = Enabled; 0 = Disabled R/W 1 Bit 2 12 PCI2 PCI2 Output Enable 1 = Enabled; 0 = Disabled R/W 1 Bit 1 11 PCI1 PCI1 Output Enable 1 = Enabled; 0 = Disabled R/W 1 Bit 0 10 PCI0 PCI0 Output Enable 1 = Enabled; 0 = Disabled R/W 1 Type Power On Default Data Byte 3 Bit Pin# Name Pin Description Bit 7 38 DOT DOT 48-MHz Output Enable R/W 1 Bit 6 39 USB USB 48-MHz Output Enable R/W 1 Bit 5 7 PCI_F2 Allow control of PCI_F2 with assertion of PCI_STOP# 0 = Free running; 1 = Stopped with PCI_STOP# R/W 0 Bit 4 6 PCI_F1 Allow control of PCI_F1 with assertion of PCI_STOP# 0 = Free running; 1 = Stopped with PCI_STOP# R/W 0 Bit 3 5 PCI_F0 Allow control of PCI_F0 with assertion of PCI_STOP# 0 = Free running; 1 = Stopped with PCI_STOP# R/W 0 Bit 2 7 PCI_F2 PCI_F2 Output Enable R/W 1 Bit 1 6 PCI_F1 PCI_F1Output Enable R/W 1 Bit 0 5 PCI_F0 PCI_F0 Output Enable R/W 1 Document #: 38-07010 Rev. *B Page 5 of 18 W320-04 Data Byte 4 Bit Pin# Name Pin Description Type Power On Default Bit 7 – TBD N/A R 0 Bit 6 – TBD N/A R 0 Bit 5 33 3V66_0 3V66_0 Output Enable 1 = Enabled; 0 = Disabled R/W 1 Bit 4 35 3V66_1/VCH 3V66_1/VCH Output Enable 1 = Enabled; 0 = Disabled R/W 1 Bit 3 24 66IN/3V66_5 3V66_5 Output Enable 1 = Enable; 0 = Disable NOTE: This bit should be used when pin 24 is configured as 3v66_5 output. Do not clear this bit when pin 24 is configured as 66in input. R/W 1 Bit 2 23 66BUFF2 66-MHz Buffered 2 Output Enable 1 = Enabled; 0 = Disabled R/W 1 Bit 1 22 66BUFF1 66-MHz Buffered 1 Output Enable 1 = Enabled; 0 = Disabled R/W 1 Bit 0 21 66BUFF0 66-MHz Buffered 0 Output Enable 1 = Enabled; 0 = Disabled R/W 1 Data Byte 5 Bit Pin# Name Pin Description Type Power On Default R 0 Bit 7 N/A N/A Bit 6 N/A N/A R 0 Bit 5 66BUFF [2:0] Tpd 66IN to 66BUFF propagation delay control R/W 0 Bit 4 66BUFF [2:0] Bit 3 DOT Bit 2 DOT Bit 1 USB Bit 0 USB R/W 0 DOT edge rate control R/W 0 R/W 0 USB edge rate control R/W 0 R/W 0 Byte 6: Vendor ID Bit Description Type Power On Default Bit 7 Revision Code Bit 3 R 0 Bit 6 Revision Code Bit 2 R 0 Bit 5 Revision Code Bit 1 R 0 Bit 4 Revision Code Bit 0 R 0 Bit 3 Vendor ID Bit 3 R 1 Bit 2 Vendor ID Bit 2 R 0 Bit 1 Vendor ID Bit 1 R 0 Bit 0 Vendor ID Bit 0 R 0 Document #: 38-07010 Rev. *B Page 6 of 18 W320-04 Maximum Ratings Storage Temperature (Non-Condensing) ... –65°C to +150°C (Above which the useful life may be impaired. For user guidelines, not tested.) Max. Soldering Temperature (10 sec) ...................... +260°C Junction Temperature............................................... +150°C Supply Voltage ..................................................–0.5 to +7.0V Package Power Dissipation...............................................1Ω Input Voltage .............................................. –0.5V to VDD+0.5 Static Discharge Voltage (per MIL-STD-883, Method 3015) ............................ > 2000V Operating Conditions[8] Over which Electrical Parameters are Guaranteed Parameter Description Min. Max. Unit V VDD_REF, VDD_PCI,VDD_CORE, VDD_3V66, VDD_CPU, 3.3V Supply Voltages 3.135 3.465 VDD_48 MHz 48-MHz Supply Voltage 2.85 3.465 V TA Operating Temperature, Ambient 0 70 °C Cin Input Pin Capacitance 5 pF CXTAL XTAL Pin Capacitance 22.5 pF CL Max. Capacitive Load on USBCLK, REF PCICLK, 3V66 f(REF) Reference Frequency, Oscillator Nominal Value pF 20 30 14.318 14.318 MHz Electrical Characteristics Over the Operating Range Parameter Description Test Conditions Min. Max. Unit VIH High-level Input Voltage VIL Low-level Input Voltage Except Crystal Pads VOH High-level Output Voltage USB, REF, 3V66 IOH = –1 mA 2.4 V PCI IOH = –1 mA 2.4 V VOL Low-level Output Voltage Except Crystal Pads. Threshold Voltage for Crystal Pads = VDD/2 2.0 0.8 IOL = 1 mA 0.4 V PCI IOL = 1 mA 0.55 V –5 5 mA –5 5 Input HIGH Current IIL Input LOW Current 0 < VIN < VDD IOH High-level Output Current CPU For IOH =6*IRef Configuration Type X1, VOH = 0.65V REF, DOT, USB Type 3, VOH = 1.00V 0 < VIN < VDD 12.9 Type X1, VOH = 0.74V 3V66, DOT, PCI, REF Type 5, VOH = 1.00V 14.9 –23 –33 Type 5, VOH = 3.135V REF, DOT, USB Type 3, VOL = 1.95V –33 29 Type 3, VOL = 0.4V 3V66, PCI, REF Type 5, VOL =1.95 V Type 5, VOL = 0.4V IOZ Output Leakage Current IDD3 Three-state mA mA –29 Type 3, VOH = 3.135V Low-level Output Current V USB, REF, 3V66 IIH IOL V mA 27 30 38 10 mA 3.3V Power Supply Current VDD_CORE/VDD3.3 = 3.465V, FCPU = 133 MHz 360 mA IDDPD3 3.3V Shut-down Current VDD_CORE/VDD3.3 = 3.465V and @ IREF = 2.32 mA 25 mA IDDPD3 3.3V Shut-down Current VDD_CORE/VDD3.3 = 3.465V and @ IREF = 5.0 mA 45 mA Note:Notes: 8. The voltage on any input or I/O pin cannot exceed te powe pin during power-ujp. Power supply sequencing is NOT required. Document #: 38-07010 Rev. *B Page 7 of 18 W320-04 - Switching Characteristics[9] Over the Operating Range Parameter Output Description [10] Test Conditions Min. Max. Unit t1 All Output Duty Cycle Measured at 1.5V 45 55 % t3 USB, REF, DOT Falling Edge Rate Between 2.4V and 0.4V 0.5 2.0 ns t3 PCI,3V66 Falling Edge Rate Between 2.4V and 0.4V 1.0 4.0 V/ns t5 3V66[0:1] 3V66-3V66 Skew Measured at 1.5V 500 ps t5 66BUFF[0:2] 66BUFF-66BUFF Skew Measured at 1.5V 175 ps t6 PCI PCI-PCI Skew Measured at 1.5V 500 ps t7 3V66, PCI 3V66-PCI Clock Jitter 3V66 leads. Measured at 1.5V 3.5 ns t9 3V66 Cycle-Cycle Clock Jitter Measured at 1.5V t9 = t9A – t9B 250 ps t9 USB, DOT Cycle-Cycle Clock Jitter Measured at 1.5V t9 = t9A – t9B 350 ps t9 PCI Cycle-Cycle Clock Jitter Measured at 1.5V t9 = t9A – t9B 500 ps t9 REF Cycle-Cycle Clock Jitter Measured at 1.5V t9 = t9A – t9B 1000 ps 1.5 CPU 1.0V Switching Characteristics t2 CPU Rise Time Measured differential waveform from –0.35V to +0.35V 175 467 ps t3 CPU Fall Time Measured differential waveform from –0.35V to +0.35V 175 467 ps t4 CPU CPU-CPU Skew Measured at Crossover 150 ps t8 CPU Cycle-Cycle Clock Jitter Measured at Crossover t8 = t8A – t8B 150 ps 325 mV CPU Rise/Fall Matching [13] Measured with test loads [12] Voh CPU High-level Output Voltage including overshoot Measured with test loads 0.92 1.45 V Vol CPU Low-level Output Voltage including undershoot Measured with test loads[12] –0.2 0.35 V Vcrossover CPU Crossover Voltage Measured with test loads[12] 0.51 0.76 V CPU 0.7V Switching Characteristics t2 CPU Rise Time Measured single ended waveform from 0.175V to 0.525V 175 700 ps t3 CPU Fall Time Measured single ended waveform from 0.175V to 0.525V 175 700 ps t4 CPU CPU-CPU Skew Measured at Crossover 150 ps t8 CPU Cycle-Cycle Clock Jitter Measured at Crossover t8 = t8A – t8B With all outputs running 150 ps CPU Rise/Fall Matching Measured with test loads[11, 12] 20 % [12] Voh CPU High-level Output Voltage Including Overshoot Measured with test loads 0.85 V Vol CPU Low-level Output Voltage Including Undershoot Measured with test loads[12] –0.15 V Vcrossover CPU Crossover Voltage Measured with test loads[12] 0.43 V 0.28 Notes: 9. All parameters specified with loaded outputs. 10. Duty cycle is measured at 1.5V when VDD = 3.3V. When VDD = 2.5V, duty cycle is measured at 1.25V. 11. Determined as a fraction of 2*(Trp – Trn)/(Trp +Trn) Where Trp is a rising edge and Trp is an intersecting falling edge. 12. The 0.7V test load is Rs = 33.2 ohm, Rp = 49.9 ohm in test circuit. 13. The 1.0V test load is shown on the test circuit page. Document #: 38-07010 Rev. *B Page 8 of 18 W320-04 Definition and Application of PWRGD# Signal Vtt VRM8.5 PWRGD# CPU BSEL0 BSEL1 3.3V 3.3V 3.3V NPN PWRGD# CLOCK S0 10K 10K 10K 10K GMCH GENERATOR S1 Document #: 38-07010 Rev. *B Page 9 of 18 W320-04 Switching Waveforms Duty Cycle Timing (Single-ended Output) t1B t1A Duty Cycle Timing (CPU Differential Output) t1B t1A All Outputs Rise/Fall Time VDD OUTPUT 0V t3 t2 CPU-CPU Clock Skew Host_b Host Host_b Host t4 3V66-3V66 Clock Skew 3V66 3V66 PCI-PCI Clock Skew PCI PCI Document #: 38-07010 Rev. *B Page 10 of 18 W320-04 Switching Waveforms (continued) 3V66-PCI Clock Skew 3V66 PCI t7 CPU Clock Cycle-Cycle Jitter t8A t8B Host_b Host Cycle-Cycle Clock Jitter t9A t9B CLK PWRDWN# Assertion 66BUFF PCI Power Down Rest of Generator PCI_F (APIC) PWR_DWN# CPU CPU# 3V66 UNDEF 66IN USB REF Note: PCI_STOP# asserted LOW Document #: 38-07010 Rev. *B Page 11 of 18 W320-04 PWRDWN# Deassertion 10-30 µs min. 100-200 µs max. < 3 ms 66BUFF1/GMCH 66BUFF0,2 PCI PCI_F (APIC) PWR_DWN# CPU CPU# 3V66 66IN USB REF Note: PCI_STOP# asserted LOW PWRGD# Timing Diagrams GND VRM 5/12V PWRGD# VID [3:0] BSEL [1:0] PWRGD# FROM VRM Possible glitch while Clock VCC is coming up. Will be gone in 0.2–0.3 mS delay. PWRGD# FROM NPN VCC CPU CORE PWRGD# 0.2 -- 0.3 ms Wait for delay PWRGD# VCC W320 CLOCK GEN CLOCK STATE State 0 State 1 State 2 Sample BSELS State 3 OFF ON CLOCK VCO OFF ON CLOCK OUTPUTS Figure 2. CPU Power Before Clock Power Document #: 38-07010 Rev. *B Page 12 of 18 W320-04 GND VRM 5/12V PWRGD# VID [3:0] BSEL [1:0] PWRGD# FROM VRM PWRGD# FROM NPN VCC CPU CORE PWRGD# 0.2 – 0.3 ms delay VCC W320 CLOCK GEN CLOCK STATE State 0 State 1 Wait for PWRGD# Sample BSELS State 2 State 3 OFF ON CLOCK VCO OFF ON LOCK OUTPUTS Figure 3. CPU Power After Clock Power Document #: 38-07010 Rev. *B Page 13 of 18 W320-04 Layout Example +3.3V Supply FB VDDQ3 0.005 µF C2 G G G 10 µF C1 G 1 2 3 4 5 6 7 8 9 G G V G G G G G V G W320-04 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 56 55 54 53 52 G 51 V 50 G 49 48 G 47 V 46 G 45 44 43 42 G 41 40 39 38 37 G 36 35 34 G 33 V 32 G 31 30 G 29 G V G G V G G V G G G VDDQ3 8Ω G C6 C5 G G FB = Dale ILB1206 - 300 or 2TDKACB2012L-120 or 2 Murata BLM21B601S. Ceramic Caps C1 = 10–22 µF C2 = 0.005 µF C5 = 0.1 µF C6 = 10 µF G = VIA to GND plane layer. V = VIA to respective supply plane layer. Note: Each supply plane or strip should have a ferrite bead and capacitors. Document #: 38-07010 Rev. *B Page 14 of 18 W320-04 Test Circuit VDD_REF, VDD_PCI, VDD_3V66, VDD_CORE VDD_48 MHz, VDD_CPU 0.7V Test Load 4, 9, 15, 20, 27, 31, 36, 41 Rp 8, 14, 19, 26, 32, 37, 46, 50 Ref,USB Outputs Test Node Rs W320-04 Test Nodes OUTPUTS 20 pF PCI,3V66 Outputs Test Node 2pF CPU 2pF Rs Rp 30 pF Note: Each supply pin must have an individual decoupling capacitor. Note: All capacitors must be placed as close to the pins as is physically possible. 0.7V amplitude: RS = 33 ohm, RP = 50 ohm VDD_REF, VDD_PCI, VDD_3V66, VDD_CORE VDD_48 MHz, VDD_CPU 4, 9, 15, 20, 27, 31, 36, 41 1.0V Test Load 33 8, 14, 19, 26, 32, 37, 46 ,50 2pF Ref,USB Outputs Test Node W320-04 475 CPU 33 OUTPUTS 20 pF Test Nodes 2pF PCI,3V66 Outputs Test Node 30 pF 63.4 63.4 1.0V Amplitude Ordering Information Ordering Code W320-04H W320-04X Document #: 38-07010 Rev. *B Package Type 56-pin SSOP 56-pin TSSOP Operating Range Commercial 0°C TO 70°C Page 15 of 18 W320-04 Package Diagrams 56-Lead Shrunk Small Outline Package O56 51-85062-*C Document #: 38-07010 Rev. *B Page 16 of 18 W320-04 Package Diagrams (continued) 56-Pin Thin Shrink Small Outline Package Intel and Pentium are registered trademarks of Intel Corporation. Direct Rambus is a trademark of Rambus, Inc. All product and company names mentioned in this document may be the trademarks of their respective holders. Document #: 38-07010 Rev. *B Page 17 of 18 © Cypress Semiconductor Corporation, 2001. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress Semiconductor product. Nor does it convey or imply any license under patent or other rights. Cypress Semiconductor does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress Semiconductor products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress Semiconductor against all charges. W320-04 Document Title: W320-04 200-MHz Spread Spectrum Clock Synthesizer/Driver with Differential CPU Outputs Document Number: 38-07010 REV. ECN NO. Issue Date Orig. of Change ** 106455 05/24/01 IKA Description of Change New Data Sheet *A 111419 02/07/02 IKA Changes to Switching Characteristics Table *B 122716 12/21/02 RBI Added power up requirements to Operating Conditions information. Document #: 38-07010 Rev. *B Page 18 of 18