RENESAS HD151TS207SS

HD151TS207SS
Mother Board Clock Generator
for Intel P4+ Chipset (Springdale)
REJ03D0006-0100Z
Preliminary
Rev.1.00
Apr.25.2003
Description
The HD151TS207SS is Intel CK409T type high-performance, low-skew, low-jitter, PC motherboard clock
generator. It is specifically designed for Intel Pentium®4+ chipset.
Features
•
•
•
•
•
•
•
•
•
•
•
•
•
•
3 differential pairs of current mode control CPU clocks
1 differential pair of Serial Reference Clock (SRC), selectable 100 MHz/200 MHz
6 copies PCI clocks and 3 copies PCIF clocks @3.3V, 33.3 MHz
1 copy PCI clock @3.3 V, selectable 33.3 MHz/25 MHz
1 copy USB clock @3.3 V, selectable 48 MHz/24 MHz
1 copy DOT clock @3.3 V, 48 MHz
4 copies of 3V66 clocks @3.3 V, 66.6 MHz
1 copy of 3V66/VCH clock @3.3 V, selectable 66.6 MHz/48 MHz
2 copies of REF clocks @3.3 V, 14.318 MHz
Power save and clock stop function
I2CTM serial port programming
Programmable Clock Control (Spread Spectrum Percentage, Clock Output Skew, Slew Rate)
Watchdog timer and reset output
56pin SSOP (300 mils)
Note: I2C is a trademark of Philips Corporation.
Pentium is registered trademark of Intel Corporation
Rev.1.00, Apr.25.2003, page 1 of 38
HD151TS207SS
Key Specifications
•
•
•
•
•
Supply Voltages: VDD = 3.3 V±5%
CPU clock cycle to cycle jitter = |125ps| (SSC Disabled)
CPU clock group Skew = 100ps
3V66 clock group Skew = 250psmax
PCI clock group Skew = 500psmax
Rev.1.00, Apr.25.2003, page 2 of 38
HD151TS207SS
Pin Arrangement
REF0 1
56 FS_B
REF1 2
55 VDD_A
VDD_REF 3
54 VSS_A
53 VSS_IREF
XTAL_IN 4
XTAL_OUT 5
52 IREF
VSS_REF 6
51 FS_A
FS2/PCIF_0 7
50 TEST_CLK#
FS4/PCIF_1 8
49 PCI_STOP#
PCIF_2 9
48 VDD_CPU
VDD_PCI 10
47 CPU_2
VSS_PCI 11
46 CPU_2#
MODE/PCI_0 12
45 VSS_CPU
PCI_1 13
44 CPU_1
PCI_2 14
43 CPU_1#
PCI_3 15
42 VDD_CPU
VDD_PCI 16
41 CPU_0
VSS_PCI 17
40 CPU_0#
39 VSS_SRC
SEL100_200/PCI_4 18
38 SRC
SEL33_25/PCI_5 19
37 SRC#
PCI_6 20
36 VDD_SRC
PWRDWN#/SAFE_F# 21
3V66_0/RESET# 22
35 VTT_PWRGD#
3V66_1 23
34 VDD_48
VDD_3V66 24
33 VSS_48
VSS_3V66 25
32 FS3/DOT_48
3V66_2 26
31 SEL48_24/USB_48
3V66_3 27
30 SDATA
SCLK 28
29 SEL66_48/3V66_4/VCH
(Top view)
PCI_STOP#, PWRDWN# = 150 kΩ Internal Pull-up
Rev.1.00, Apr.25.2003, page 3 of 38
HD151TS207SS
Pin Descriptions
Pin name
No.
Type
Description
VSS_A
54
Ground
Ground for PLL
VSS_CPU
45
Ground for outputs
VSS_IREF
53
Ground for current reference
VSS_SRC
39
Ground for outputs
VSS_3V66
25
VSS_PCI
11, 17
VSS_REF
6
VSS_48
33
VDD_A
55
VDD_CPU
42, 48
VDD_SRC
36
VDD_3V66
24
VDD_PCI
10, 16
VDD_REF
3
VDD_48
34
REF0
1
REF1
2
XTAL_IN
Power
3.3 V Power Supply for PLL
3.3 V Power Supply for outputs
OUTPUT
3.3 V 14.318 MHz reference clock.
4
INPUT
14.318 MHz XTAL input.
XTAL_OUT
5
OUTPUT
14.318 MHz XTAL output.
Don’t connect when an external clock is applied at XTAL_IN.
FS2/PCIF_[0:1]
7,8
INPUT/
OUTPUT
Frequency select latch input pin.
/Free running PCI clock 3.3 V output.
PCIF_2
9
OUTPUT
Free running PCI clock 3.3 V output.
**MODE/PCI_0
12
INPUT/
OUTPUT
Function select latch input pin for pin 22,
1 = Reset#, 0 = clock output.
/PCI clock 3.3 V output.
PCI_[1:3]
13,14,
15
OUTPUT
PCI clock 3.3 V outputs.
**SEL100_200/
PCI_4
18
INPUT/
OUTPUT
Latched select input for SRC output.
1 = 200 MHz, 0 = 100 MHz
/PCI clock 3.3 V output.
**SEL33_25/PCI_5 19
INPUT/
OUTPUT
Latched select input for PCI5 output.
1 = 25 MHz, 0 = 33 MHz
/PCI clock 3.3 V output.
PCI_6
OUTPUT
PCI clock 3.3 V outputs.
Note:
20
(*):
(**):
Those pins are 150 kΩ internal pulled-UP.
Those pins are 150 kΩ internal pulled-DOWN.
Rev.1.00, Apr.25.2003, page 4 of 38
HD151TS207SS
Pin Descriptions (cont.)
Pin name
No.
Type
Description
PWRDWN#/
SAFE_F#
21
INPUT
PULL–UP*
PWRDWN# / SAFE_F# selectable input.
Default is PWRDWN# input.
Byte15[5] = “1” : SAFE_F# input.
PWRDWN# is all clocks stop pin.
Asynchronous active “Low” input.
When asserted low, all output clocks are disabled.
SAFE_F# is active “Low” input.
When SAFE_F# is “Low” ,frequency mode is changed to the
predefined frequency mode.
3V66_0/RESET#
22
OUTPUT
3V66 / Watchdog RESET# selectable output.
Default is 3V66 output.
This signal is active low and selected by Mode latch input.
3V66_[1:3]
23,26,
27
OUTPUT
3V66 clock 3.3V outputs.
SCLK
28
INPUT
PULL-UP*
Clock input for I2C logic.
**SEL66_48/
3V66_4/VCH
29
INPUT/
OUTPUT
Latched select input for 3V66/VCH output 1 = 48 MHz,
0 = 66.66 MHz. /3V66 or VCH clock output.
SDATA
30
IN/OUTPUT
PULL-UP*
Data input for I2C logic.
**SEL48_24/
USB_48
31
INPUT/
OUTPUT
Latched select input for 48_24 MHz output
1 = 24 MHz, 0 = 48 MHz / 24_48 MHz clock 3.3 V output.
FS3/DOT_48
32
INPUT/
OUTPUT
Frequency select latch input pin.
/DOT_48 clock 3.3 V output.
VTT_PWRGD#
35
INPUT
PULL-UP*
Qualifying input that latches FS_A and FS_B.
When asserted low, FS_A and FS_B are latched.
SRC#
37
OUTPUT
“Complementary” clock of Differential Serial Reference Clock.
SRC
38
OUTPUT
“True” clock of Differential Serial Reference Clock.
CPU_[0:2]#
40,43,
46
OUTPUT
“Complementary” clock of differential CPU clock.
CPU_[0:2]
41,44,
47
OUTPUT
“True” clock of differential CPU clock.
PCI_STOP#
49
INPUT
PULL–UP*
PCI clocks stop pin. Active “Low” input.
When asserted low, PCI[6:0] and SRC clocks are
synchronously disabled in low state.
Usually this pin does not give to effect PCIF[2:0] clock outputs.
TEST_CLK#
50
INPUT
PULL-UP*
Test clock mode pin. Active “Low” input.
FS_[A:B]
51,52
INPUT
CPU clocks frequency select latch input.
IREF
52
INPUT
A precision resistor is attached to this pin which is connected
to internal current reference.
A resistor is connected between this pin and GNDIREF.
Note:
(*):
(**):
Those pins are 150 kΩ internal pulled-UP.
Those pins are 150 kΩ internal pulled-DOWN
Rev.1.00, Apr.25.2003, page 5 of 38
HD151TS207SS
Block Diagram
3.3 V VDD_48 VSS_48
3.3 V VDD_A VSS_A
6× 3.3V VDD
6×VSS
VSS_IREF
IREF
REF[1:0]
(14.318MHz)
XTAL
14.318 MHz
CK2
1/M2
CPU[2:0]
CPU[2:0]#
OSC
SSC2
PLL2
For
CPU
VCO2
SRC
SRC#
1/N2
Clock
Select
PWRDWN#/SAFE_F#
PCI_STOP#
Input
Clock
VTT_PWRGD#
Select
CK1
1/M1
PLL1
For
SSC1
SRC
3V66
1/N1
PCI
VCO1
Clock
Divider
Delay
Control
Stop
Control
TEST_CLK#
*MODE
*SEL100_200
*SEL66_48
*SEL48_24
*SEL33_25
*FS_4/3/2A/B
SCLK
SDATA
CK0
1/M0
USB
PLL
3V66_0/RESET#
3V66[3:1]
3V66_4/VCH
USB_48
DOT_48
Control Logic
Rev.1.00, Apr.25.2003, page 6 of 38
PCIF[2:0]
VCO0
1/N0
* : Latched Input pin.
PCI[6:0]
HD151TS207SS
I2C Controlled Register Bit Map
Byte0 Control Register
Bit
Description
7
Contents
Type
Default
Reserved
R
0
6
Reserved
R
0
5
Reserved
R
0
4
Reserved
R
0
3
PCI_Stop Reflects the current value
of the external PCI_STOP# pin
R
X
2
Reserved
R
X
1
FS_B Reflects the value of the
FS_B pin sampled on power up
0 = FS_B Low at power up
1 = FS_B High at power up
R
X
0
FS_A Reflects the value of the
FS_A pin sampled on power up
0 = FS_A Low at power up
1 = FS_A High at power up
R
X
0 = PCI_STOP# pin is Low
1 = PCI_STOP# pin is High
Note
See
Table
1
Table1 Clock Frequency Function Table
Byte6
Bit5
FS_A
FS_B
CPU
[MHz]
SRC
[MHz]
3V66
[MHz]
PCIF
PCI
[MHz]
REF0
REF1
[MHz]
USB
DOT
[MHz]
0
0
0
100
100/200
66
33
14.318
48
0
0
1
200
100/200
66
33
14.318
48
0
1
0
133
100/200
66
33
14.318
48
0
1
1
166
100/200
66
33
14.318
48
1
0
0
200
100/200
66
33
14.318
48
1
0
1
400
100/200
66
33
14.318
48
1
1
0
266
100/200
66
33
14.318
48
1
1
1
333
100/200
66
33
14.318
48
Note
Table2 Test Clock select table
TEST_CLK# CPU
[MHz]
SRC
[MHz]
3V66
[MHz]
PCIF
PCI
[MHz]
REF0
REF1
[MHz]
USB
DOT
[MHz]
Note
1
REF/2
REF/2
REF/4
REF/8
REF
REF/2
Hi–Z
Hi–Z
Hi–Z
Hi–Z
Hi–Z
Hi–Z
See Note1,
Table3
0
Note:
1. REF is a clock over driven on the XIN during test mode.
Rev.1.00, Apr.25.2003, page 7 of 38
HD151TS207SS
I2C Controlled Register Bit Map (cont.)
Table3 FS_A and FS_B pin Input level
Logic Level
Min Voltage
Max Voltage
0 (Low)

0.35V
1 (High)
0.70V

Byte1 Control Register
Bit
Description
Contents
Type
Default
Note
7
Allow control of SCR with assertion
of PCI_STOP#
0 = Free running
1 = Stopped with
PCI_STOP#
RW
0
See
Table5
6
SRC Output enable
0 = Disabled (tristate)
1 = Enabled
RW
1
5
Reserved
RW
1
4
Reserved
RW
1
3
Reserved
RW
1
2
CPU2 Output enable
0 = Disabled (tristate)
1 = Enabled
RW
1
1
CPU1 Output enable
0 = Disabled (tristate)
1 = Enabled
RW
1
0
CPU0 Output enable
0 = Disabled (tristate)
1 = Enabled
RW
1
Byte2 Control Register
Bit
Description
Contents
Type
Default
Note
7
SRC_Pwrdwn drive mode
0 = Driven in power down,
1 = Tristate
RW
0
See
Table5
6
SRC_Stop drive mode
0 = Driven when stopped,
1 = Tristate
RW
0
5
CPU2_Pwrdwn drive mode
0 = Driven in power down,
1 = Tristate
RW
0
4
CPU1_Pwrdwn drive mode
0 = Driven in power down,
1 = Tristate
RW
0
3
CPU0_Pwrdwn drive mode
0 = Driven in power down,
1 = Tristate
RW
0
2
Reserved
RW
0
1
Reserved
RW
0
0
Reserved
RW
0
Rev.1.00, Apr.25.2003, page 8 of 38
See
Table4
HD151TS207SS
I2C Controlled Register Bit Map (cont.)
Table4 CPU Clock Power Management Truth Table
Signal
Pin
PWRDWN#
PWRDWN#
Tristate Bit
Byte2[5:3]
Non-Stop
Outputs
Byte1[5:3] = 1
CPU[2:0]
1
X
Running
CPU[2:0]
0
0
Driven @ Iref x2
CPU[2:0]
0
1
Tristate
Note:
Note
See Note1
1. Iref = VDD/(3Rr) = 3.3/(3x475) = 2.32 mA,
Iref x2 = 4.6 mA (Voh @Z: 0.23 V @50 Ω)
Table5 SRC Clock Power Management Truth Table
Signal
Pin
PWRDWN#
Pin
PCI_STOP# PWRDWN#
PCI_STOP# Tristate Bit Tristate Bit
Byte2[6]
Byte2[7]
Non-Stop
Stoppable Note
Outputs
Outputs
Byte1[7] = 1 Byte1[7] = 0
SRC
1
1
X
X
Running
Running
SRC
1
0
0
X
Running
Driven @
Iref x6
SRC
1
0
1
X
Running
Tristate
SRC
0
X
X
0
Driven @
Iref x2
Driven @
Iref x2
SRC
0
X
X
1
Tristate
Tristate
Note:
See Note1
See Note1
1. Iref = VDD/(3Rr) = 3.3/(3x475) = 2.32 mA
Iref x6 = 13.9 mA (Voh @Z: 0.7 V @50 Ω)
Iref x2 = 4.6 mA (Voh @Z: 0.23 V @50 Ω)
Byte3 Control Register
Bit
Description
Contents
Type
Default
7
PCI_Stop control
0 = Enabled, all stoppable PCI
and SRC clocks are stopped.
1 = Disabled
RW
1
6
PCI_6 Output enable
0 = Disabled, 1 = Enabled
RW
1
5
PCI_5 Output enable
0 = Disabled, 1 = Enabled
RW
1
4
PCI_4 Output enable
0 = Disabled, 1 = Enabled
RW
1
3
PCI_3 Output enable
0 = Disabled, 1 = Enabled
RW
1
2
PCI_2 Output enable
0 = Disabled, 1 = Enabled
RW
1
1
PCI_1 Output enable
0 = Disabled, 1 = Enabled
RW
1
0
PCI_0 Output enable
0 = Disabled, 1 = Enabled
RW
1
Rev.1.00, Apr.25.2003, page 9 of 38
Note
HD151TS207SS
I2C Controlled Register Bit Map (cont.)
Byte4 Control Register
Bit
7
Description
USB_48 2x output drive
6
USB_48MHz Output Enable
5
Allow control of PCIF_2 with
assertion of PCI_STOP#
Allow control of PCIF_1 with
assertion of PCI_STOP#
Allow control of PCIF_0 with
assertion of PCI_STOP#
PCIF_2 Output enable
PCIF_1 Output enable
PCIF_0 Output enable
4
3
2
1
0
Contents
0 = 2x Drive strength,
1 = Normal
0 = Disabled,
1 = Enabled
0 = Free Running
1 = Stopped with PCI_STOP#
0 = Free Running
1 = Stopped with PCI_STOP#
0 = Free Running
1 = Stopped with PCI_STOP#
0 = Disabled, 1 = Enabled
0 = Disabled, 1 = Enabled
0 = Disabled, 1 = Enabled
Type
RW
Default
0
RW
1
RW
0
RW
0
RW
0
RW
RW
RW
1
1
1
Note
Byte5 Control Register
Bit
Description
Contents
Type
Default
7
DOT_48MHz Output Enable
0 = Disabled, 1 = Enabled
RW
1
6
Reserved
RW
1
5
VCH Select 66MHz / 48MHz
0 = 3V66 mode
1 = VCH (48 MHz) mode
RW
0
4
3V66_4/VCH Output Enable
0 = Disabled (tristate),
1 = Enabled
RW
1
3
3V66_3 Output Enable
0 = Disabled, 1 = Enabled
RW
1
2
3V66_2 Output Enable
0 = Disabled, 1 = Enabled
RW
1
1
3V66_1 Output Enable
0 = Disabled, 1 = Enabled
RW
1
0
3V66_0 Output Enable
0 = Disabled, 1 = Enabled
RW
1
Note
Byte6 Control Register
Bit
Description
Contents
Type
Default
7
Test Clock Mode
0 = Disabled, 1 = Enabled
RW
0
6
Reserved
RW
0
5
FS_A & FS_B Operation
0 = Normal, 1 = Test mode
RW
0
4
SRC Frequency Select
0 = 100MHz, 1 = 200 MHz
RW
0
3
Reserved
RW
0
2
Spread Spectrum Mode
0 = Spread OFF
1 = Spread ON
RW
0
1
REF1 Output Enable
0 = Disabled, 1 = Enabled
RW
1
0
REF0 Output Enable
0 = Disabled, 1 = Enabled
RW
1
Rev.1.00, Apr.25.2003, page 10 of 38
Note
See
B9[7:6]
HD151TS207SS
I2C Controlled Register Bit Map (cont.)
Byte7 Vendor Identification Register
Bit
Description
Contents
Type
Default
7
Revision Code Bit3
Vendor Specific
R
0
6
Revision Code Bit2
Vendor Specific
R
0
5
Revision Code Bit1
Vendor Specific
R
0
4
Revision Code Bit0
Vendor Specific
R
1
3
Vendor ID Bit3
Vendor Specific
R
1
2
Vendor ID Bit2
Vendor Specific
R
1
1
Vendor ID Bit1
Vendor Specific
R
1
0
Vendor ID Bit0
Vendor Specific
R
1
Note
Byte8 Read Back Byte Count Register
Bit
Description
Contents
Type
Default
7
Read back byte count Bit7
RW
0
6
Read back byte count Bit6
RW
0
5
Read back byte count Bit5
Writing to this register will configure
byte Count and how many bytes will
be read back.
Default is 1Ehex = 30 bytes.
RW
0
4
Read back byte count Bit4
RW
1
3
Read back byte count Bit3
RW
1
2
Read back byte count Bit2
RW
1
1
Read back byte count Bit1
RW
1
0
Read back byte count Bit0
RW
0
Rev.1.00, Apr.25.2003, page 11 of 38
Note
HD151TS207SS
I2C Controlled Register Bit Map (cont.)
Byte9 Control Register
Bit
Description
Contents
Type
Default
7
SSC2 Enable Bit
B6[2] = 0 or B9[7] = 1 : SSC2 =OFF
B6[2] = 1 & B9[7] = 0 : SSC2 = ON
RW
0
6
SSC1 Enable Bit
B6[2] = 0 or B9[6] = 1 : SSC1 = OFF
B6[2] = 1 & B9[6] = 0 : SSC1 = ON
RW
0
5
Clock Frequency Control
Bit4
Latched input PCIF_1 at Power ON
RW
X
4
Clock Frequency Control
Bit3
Latched input DOT48 at Power ON
RW
X
3
Clock Frequency Control
Bit2
Latched input PCIF_0 at Power ON
RW
X
2
Clock Frequency Control
Bit1
Latched input FS_A at Power ON
RW
X
1
Clock Frequency Control
Bit0
Latched input FS_B at Power ON
RW
X
0
Frequency Select Mode Bit
0 = Freq. is selected by latched input
FS_A and FS_B
2
1 = Freq. is selected by I C B9[5:1]
RW
0
Rev.1.00, Apr.25.2003, page 12 of 38
Note
See
Table
6
HD151TS207SS
I2C Controlled Register Bit Map (cont.)
Table6 Clock Frequency Function Table
No.
FS_4
FS_3
FS_2
FS_A
FS_B
CPU
[MHz]
SRC
[MHz]
3V66
[MHz]
PCI
[MHz]
B9[5]
B9[4]
B9[3]
B9[2]
B9[1]
0
0
0
0
0
0
100.02
100.02
66.68
33.34
1
0
0
0
0
1
200.03
100.02
66.68
33.34
2
0
0
0
1
0
133.36
100.02
66.68
33.34
3
0
0
0
1
1
166.69
100.02
66.68
33.34
4
0
0
1
0
0
200.03
100.02
66.68
33.34
5
0
0
1
0
1
400.07
100.02
66.68
33.34
6
0
0
1
1
0
266.71
100.02
66.68
33.34
7
0
0
1
1
1
333.39
100.02
66.68
33.34
8
0
1
0
0
0
138.69
100.02
66.68
33.34
9
0
1
0
0
1
142.25
100.02
66.68
33.34
10
0
1
0
1
0
145.80
100.02
66.68
33.34
11
0
1
0
1
1
149.36
100.02
66.68
33.34
12
0
1
1
0
0
152.91
100.02
66.68
33.34
13
0
1
1
0
1
156.47
100.02
66.68
33.34
14
0
1
1
1
0
160.03
100.02
66.68
33.34
15
0
1
1
1
1
163.58
100.02
66.68
33.34
16
1
0
0
0
0
167.14
100.02
66.68
33.34
17
1
0
0
0
1
170.70
100.02
66.68
33.34
18
1
0
0
1
0
174.25
100.02
66.68
33.34
19
1
0
0
1
1
177.81
100.02
66.68
33.34
20
1
0
1
0
0
181.36
100.02
66.68
33.34
21
1
0
1
0
1
184.92
100.02
66.68
33.34
22
1
0
1
1
0
186.70
100.02
66.68
33.34
23
1
0
1
1
1
189.36
100.02
66.68
33.34
24
1
1
0
0
0
192.03
100.02
66.68
33.34
25
1
1
0
0
1
194.70
100.02
66.68
33.34
26
1
1
0
1
0
197.37
100.02
66.68
33.34
27
1
1
0
1
1
200.03
100.02
66.68
33.34
28
1
1
1
0
0
202.70
100.02
66.68
33.34
29
1
1
1
0
1
205.37
100.02
66.68
33.34
30
1
1
1
1
0
208.03
100.02
66.68
33.34
31
1
1
1
1
1
210.70
100.02
66.68
33.34
Rev.1.00, Apr.25.2003, page 13 of 38
HD151TS207SS
I2C Controlled Register Bit Map (cont.)
Byte10 Control Register
Bit
Description
Contents
Type
Default
7
SSC Spread Select Bit[2:0]
Bit[2:0] =
000 = –0.500%, 100 = ±0.250%
001 = –0.750%, 101 = ±0.375%
010 = –1.000%, 110 = ±0.500%
011 = –1.500%, 111 = ±0.750%
RW
0
RW
0
RW
0
When SAFE_F# is Enable
(B15[5]=1)
PWRDWN#/SAFE_F# pin to
“Low”, and if B23[1]=0, frequency
selection is changed to these
setting and
PWRDWN#/SAFE_F# pin to
“High”, frequency selection is
changed back to the last mode.
R
X
R
X
R
X
R
X
R
X
6
5
4
Backup of latch Input FS_4 at
Power ON
3
Backup of latch Input FS_3 at
Power ON
2
Backup of latch Input FS_2 at
Power ON
1
Backup of latch Input FS_A at
Power ON
0
Backup of latch Input FS_B at
Power ON
Note
Byte11 Control Register
Bit
Description
Contents
Type
Default
7
PCI_STOP# Enable Control Bit
0 = Enable , 1 = Disable
RW
0
6
CPU_STOP# Enable Control Bit
0 = Enable , 1 = Disable
RW
0
5
PWRDWN# Enable Control Bit
0 = Enable , 1 = Disable
RW
0
When SAFE_F# is Enable
(B15[5]=1)
PWRDWN#/SAFE_F# pin to
“Low”, and if B23[1]=1,
frequency selection is changed to
these setting and
PWRDWN#/SAFE_F# pin to
“High”, frequency selection is
changed back to the last mode.
R
X
R
X
R
X
R
X
R
X
4
3
2
2
Backup of B9[5] written by I C
2
Backup of B9[4] written by I C
2
Backup of B9[3] written by I C
2
1
Backup of B9[2] written by I C
0
Backup of B9[1] written by I2C
Rev.1.00, Apr.25.2003, page 14 of 38
Note
HD151TS207SS
I2C Controlled Register Bit Map (cont.)
Byte12 Control Register
Bit
Description
7
Type
Default
Reserved
R/W
0
6
Reserved
R/W
0
5
Reserved
R/W
0
4
Reserved
R/W
0
3
Reserved
R/W
0
2
PLL1 Output (VCO1) Frequency
Control Bit
(M1/N1 Divider Control Bit)
PLL1 : for SRC/3V66/PCI_PLL
0 = Normal mode
PLL1 M1[6:0] and N1[9:0] are
changed on Table 5 selection
decided by FS4/3/2/A/B or
B9[5:1]
1 = Over or Down clocking mode
PLL1 M1[6:0] and N1[9:0] are
changed by B12[1:0], B13[7:0]
and B14[6:0].
B12[1:0], B13[7:0] and B14[6:0]
are able to be changed at B12[2]
= 1.
R/W
0
1
PLL1 N1 Divider Control Bit9
N1[9]
R/W
0
PLL1 N1 Divider Control Bit8
N1[8]
R/W
0
0
Note:
Contents
Note
See.
Note
1
1. B12[1:0], B13[7:0] and B14[6:0] must be written together (at writing B14) in every case.
Byte13 Control Register
Bit
Description
Contents
Type
Default
Note
7
PLL1 N1 Divider Control Bit7
N1[7]
R/W
0
6
PLL1 N1 Divider Control Bit6
N1[6]
R/W
1
See
Note
1
5
PLL1 N1 Divider Control Bit5
N1[5]
R/W
0
4
PLL1 N1 Divider Control Bit4
N1[4]
R/W
0
3
PLL1 N1 Divider Control Bit3
N1[3]
R/W
1
2
PLL1 N1 Divider Control Bit2
N1[2]
R/W
0
1
PLL1 N1 Divider Control Bit1
N1[1]
R/W
1
0
PLL1 N1 Divider Control Bit0
N1[0]
R/W
1
Note:
1. B12[1:0], B13[7:0] and B14[6:0] must be written together (at writing B14) in every case.
Rev.1.00, Apr.25.2003, page 15 of 38
HD151TS207SS
I2C Controlled Register Bit Map (cont.)
Byte14 Control Register
Bit
Description
7
Reserved
6
PLL1 M1 Divider Control Bit6
5
Type
Default
Note
R/W
0
M1[6]
R/W
0
See
Note
1
PLL1 M1 Divider Control Bit5
M1[5]
R/W
0
4
PLL1 M1 Divider Control Bit4
M1[4]
R/W
1
3
PLL1 M1 Divider Control Bit3
M1[3]
R/W
0
2
PLL1 M1 Divider Control Bit2
M1[2]
R/W
0
1
PLL1 M1 Divider Control Bit1
M1[1]
R/W
1
0
PLL1 M1 Divider Control Bit0
M1[0]
R/W
0
Note:
Contents
1. B12[1:0], B13[7:0] and B14[6:0] must be written together (at writing B14) in every case.
Byte15 Control Register
Bit
Description
Contents
Type
Default
7
PCI_5 Output Frequency Select
Bit
0 = 33.3 MHz, 1 = 25 MHz
R/W
0
6
USB_48 Output Frequency
Select Bit
0 = 48MHz, 1 = 24 MHz
R/W
0
5
SAFE_F# Input mode select Bit
0 = PWRDWN# input mode
1 = SAFE_F# input mode
Default is PWRDWN# input.
SAFE_F# is active “Low” input.
When SAFE_F# is “Low”,
frequency mode is changed to
the predefined frequency mode.
Predefined frequency mode is
selected by B23[1].
R/W
0
4
Clock Divider Control Bit
0 = Normal mode
Clock dividers are changed by
Table 5 selection decided B9[5:1]
1 = Over or Down clocking mode
Clock dividers are changed by
B15[3:0] and B16[7:0].
B15[3:0] and B16[7:0] are able to
be changed at B15[4] = 1.
R/W
0
3
CPU Divider Control Bit3
R/W
X
2
CPU Divider Control Bit2
0001 = 1/1,
0010 = 1/2,
0011 = 1/3,
0100 = 1/4,
0101 = 1/5,
0110 = 1/6,
R/W
X
1
CPU Divider Control Bit1
0
CPU Divider Control Bit0
Rev.1.00, Apr.25.2003, page 16 of 38
0111 = 1/7
1000 = 1/8
1001 = 1/9
1010 = 1/10
1011 = 1/11
R/W
X
R/W
X
Note
HD151TS207SS
I2C Controlled Register Bit Map (cont.)
Byte16 Control Register
Bit
Description
Contents
Type
Default
7
3V66 / PCI / PCIF Divider Control
Bit3
3V66 divider ratio =
R/W
X
R/W
X
R/W
X
R/W
X
R/W
X
R/W
X
R/W
X
R/W
X
Type
Default
6
3V66 / PCI / PCIF Divider Control
Bit2
0010 = 1/2,
0011 = 1/3,
0100 = 1/4,
0101 = 1/5,
0110 = 1/6,
5
3V66 / PCI / PCIF Divider Control
Bit1
PCI / PCIF divider ratio = 3v66 x
1/2
4
3V66 / PCI / PCIF Divider Control
Bit0
3
SRC Divider Control Bit3
2
SRC Divider Control Bit2
1
SRC Divider Control Bit1
0
SRC Divider Control Bit0
0001 = 1/1,
0010 = 1/2,
0011 = 1/3,
0100 = 1/4,
0101 = 1/5,
0110 = 1/6
0111 = 1/7
1000 = 1/8
1001 = 1/9
1010 = 1/10
1011 = 1/11
0111 = 1/7
1000 = 1/8
1001 = 1/9
1010 = 1/10
1011 = 1/11
Note
Byte17 Control Register
Bit
Description
7
Reserved
R/W
0
6
Reserved
R/W
0
5
Reserved
R/W
0
4
PLL2 Output (VCO2) Frequency
Control Bit
(M2 / N2 Divider Control Bit)
PLL2 : for CPU
0 = Normal mode
VCO2 frequency is changed on
Table 5 selection decided by
FS4/3/2/A/B or B9[5:1].
1 = Over or Down clocking mode
VCO2 frequency is changed by
B17[3:0] and B18[7:0] with
decimal.
B17[3:0] and B18[7:0] are able to
be changed at B17[4] = 1.
R/W
0
3
VCO2 Frequency Control Bit11
R/W
0
2
VCO2 Frequency Control Bit10
These bits are 100MHz digit of
VCO2 frequency.
0000 = 0, 0001 = 1 …. 1001 = 9
R/W
1
1
VCO2 Frequency Control Bit9
R/W
0
0
VCO2 Frequency Control Bit8
R/W
0
Note:
Contents
1. B17[3:0] and B18[7:0] must be written together (at writing B18) in every case.
Rev.1.00, Apr.25.2003, page 17 of 38
Note
See
Note
1
HD151TS207SS
I2C Controlled Register Bit Map (cont.)
Byte18 Control Register
Bit
Description
Contents
Type
Default
Note
7
VCO2 Frequency Control Bit7
R/W
0
6
VCO2 Frequency Control Bit6
These bits are 10MHz digit of
VCO2 frequency.
0000 = 0, 0001 = 1 …. 1001 = 9
R/W
0
See
Note
1
5
VCO2 Frequency Control Bit5
R/W
0
4
VCO2 Frequency Control Bit4
R/W
0
3
VCO2 Frequency Control Bit3
R/W
0
2
VCO2 Frequency Control Bit2
R/W
0
1
VCO2 Frequency Control Bit1
R/W
0
0
VCO2 Frequency Control Bit0
R/W
0
Note:
These bits are 1MHz digit of
VCO2 frequency.
0000 = 0, 0001 = 1 …. 1001 = 9
1. B17[3:0] and B18[7:0] must be written together (at writing B18) in every case.
How to set VCO2 frequency to 666 MHz.
Write
Byte17
0
Byte18
0
0
1
0
1
1
0
0
1
6
ON
1
0
0
1
1
6
0
6
max 720
min 200
How to read actual frequency of VCO2 and CPU clock
Byte17[4] = 1
Actual VCO2 freq. read back.
Byte19
0
1
1
6
Note:
0
0
Byte20
1
1
6
0
0
1
1
0
1
0
6
Case of VCO2 = 666.8 MHz.
Other clock frequency are able to read using the same way as shown at upper.
Byte19, Byte20 = Read back of VCO2 actual frequency.
Byte21, Byte22 = Read back of CPU actual frequency.
Rev.1.00, Apr.25.2003, page 18 of 38
0
8
0
HD151TS207SS
I2C Controlled Register Bit Map (cont.)
Byte19 Control Register
Bit
Description
Contents
Type
Default
7
VCO2 Frequency Read Bit15
R
0
6
VCO2 Frequency Read Bit14
R
0
5
VCO2 Frequency Read Bit13
Calculation result of VCO2
frequency.
100 MHz digit
0000 = 0, 0001 = 1 …. 1001 = 9
R
0
4
VCO2 Frequency Read Bit12
R
0
3
VCO2 Frequency Read Bit11
R
0
2
VCO2 Frequency Read Bit10
1
VCO2 Frequency Read Bit9
0
VCO2 Frequency Read Bit8
Calculation result of VCO2
frequency.
10 MHz digit
0000 = 0, 0001 = 1 …. 1001 = 9
R
0
R
0
R
0
Note
Byte20 Control Register
Bit
Description
Contents
Type
Default
7
VCO2 Frequency Read Bit7
R
0
6
VCO2 Frequency Read Bit6
R
0
5
VCO2 Frequency Read Bit5
Calculation result of VCO2
frequency.
1 MHz digit
0000 = 0, 0001 = 1 …. 1001 = 9
R
0
4
VCO2 Frequency Read Bit4
R
0
3
VCO2 Frequency Read Bit3
R
0
2
VCO2 Frequency Read Bit2
R
0
1
VCO2 Frequency Read Bit1
R
0
0
VCO2 Frequency Read Bit0
R
0
Calculation result of VCO2
frequency.
0.1 MHz digit
0000 = 0, 0001 = 1 …. 1001 = 9
Note
Byte21 Control Register
Bit
Description
Contents
Type
Default
7
CPU Frequency Read Bit15
R
0
6
CPU Frequency Read Bit14
R
0
5
CPU Frequency Read Bit13
Calculation result of CPU
frequency.
100 MHz digit
0000 = 0, 0001 = 1 …. 1001 = 9
R
0
4
CPU Frequency Read Bit12
R
0
3
CPU Frequency Read Bit11
R
0
2
CPU Frequency Read Bit10
R
0
1
CPU Frequency Read Bit9
R
0
0
CPU Frequency Read Bit8
R
0
Rev.1.00, Apr.25.2003, page 19 of 38
Calculation result of CPU
frequency.
10 MHz digit
0000 = 0, 0001 = 1 …. 1001 = 9
Note
HD151TS207SS
I2C Controlled Register Bit Map (cont.)
Byte22 Control Register
Bit
Description
Contents
Type
Default
7
CPU Frequency Read Bit7
R
0
6
CPU Frequency Read Bit6
Calculation result of CPU frequency.
1 MHz digit
0000 = 0, 0001 = 1 …. 1001 = 9
R
0
5
CPU Frequency Read Bit5
R
0
4
CPU Frequency Read Bit4
R
0
3
CPU Frequency Read Bit3
R
0
2
CPU Frequency Read Bit2
R
0
1
CPU Frequency Read Bit1
R
0
0
CPU Frequency Read Bit0
R
0
Calculation result of CPU frequency.
0.1 MHz digit
0000 = 0, 0001 = 1 …. 1001 = 9
Note
Byte23 Control Register
Bit
Description
Contents
Type
Default
7
Watchdog Enable Control Bit
0 = Disable , Pin22 = 3V66_0 output
1 = Enable , Pin22 = RESET# output
R/W
0
6
RESET# Reverse Control Bit
0 = Normal , 1 = Reverse
R/W
0
5
Watchdog Timer Count Bit3
R/W
1
4
Watchdog Timer Count Bit2
These 4 bits corresponds to how
many watchdog timer will wait from
becoming “Alarm mode” (B23[0] = 1)
to outputting RESET# pin to “Low”.
Default is 586ms x8 = 4.7s at Power
ON
R/W
0
3
Watchdog Timer Count Bit1
2
Watchdog Timer Count Bit0
1
Backup Frequency Select Bit
0
Watchdog Status Bit
Rev.1.00, Apr.25.2003, page 20 of 38
R/W
0
R/W
0
0 = B10[4:0] , 1 = B11[4:0]
When SAFE_F# is “Low” , frequency
mode is changed to the predefined
frequency mode decided by B10[4:0]
or B11[4:0].
R/W
0
0 = Normal mode, 1 = Alarm mode
R/W
0
Note
HD151TS207SS
I2C Controlled Register Bit Map (cont.)
Byte24 Control Register
Bit
Description
7
Reserved
6
PCI_STOP# Stop PCI_6
Control Bit
5
Contents
Type
Default
Note
R/W
0
0 = Stoppable, 1 = Free running
R/W
0
PCI_STOP# Stop PCI_5
Control Bit
0 = Stoppable, 1 = Free running
R/W
0
4
PCI_STOP# Stop PCI_4
Control Bit
0 = Stoppable, 1 = Free running
R/W
0
3
PCI_STOP# Stop PCI_3
Control Bit
0 = Stoppable, 1 = Free running
R/W
0
2
PCI_STOP# Stop PCI_2
Control Bit
0 = Stoppable, 1 = Free running
R/W
0
1
PCI_STOP# Stop PCI_1
Control Bit
0 = Stoppable, 1 = Free running
R/W
0
0
PCI_STOP# Stop PCI_0
Control Bit
0 = Stoppable, 1 = Free running
R/W
0
Type
Default
Note
See
Note
1
Byte25 Control Register
Bit
Description
Contents
7
CPU Clock Skew1 Control
Bit3
1
CPU Clock Skew1 Control
Bit2
R/W
0
5
CPU Clock Skew1 Control
Bit1
R/W
0
4
CPU Clock Skew1 Control
Bit0
Ahead
0111 = –0.20ns
0110 = –0.40ns
0101 = –0.60ns
0100 = –0.80ns
0011 = –1.00ns
0010 = –1.20ns
0001 = –1.40ns
0000 = –1.60ns
R/W
6
Delay
1000 = +0.00ns,
1001 = +0.20ns,
1010 = +0.40ns,
1011 = +0.60ns,
1100 = +0.80ns,
1101 = +1.00ns,
1110 = +1.20ns,
1111 = +1.40ns,
R/W
0
3
CPU Clock Skew2 Control
Bit3
1
CPU Clock Skew2 Control
Bit2
R/W
0
1
CPU Clock Skew2 Control
Bit1
R/W
0
0
CPU Clock Skew2 Control
Bit0
Ahead
0111 = –0.15ns
0110 = –0.30ns
0101 = –0.45ns
0100 = –0.60ns
0011 = –0.75ns
0010 = –0.90ns
0001 = –1.05ns
0000 = –1.20ns
R/W
2
Delay
1000 = +0.00ns,
1001 = +0.15ns,
1010 = +0.30ns,
1011 = +0.45ns,
1100 = +0.60ns,
1101 = +0.75ns,
1110 = +0.90ns,
1111 = +1.05ns,
R/W
0
Note:
1. Total CPU Clock Skew is Skew1+Skew2.
Rev.1.00, Apr.25.2003, page 21 of 38
See
Note
1
HD151TS207SS
I2C Controlled Register Bit Map (cont.)
Byte26 Control Register
Bit
Description
Contents
Type
Default
Note
7
PCIF / PCI Clock Skew2
Control Bit3
R/W
0
6
PCIF / PCI Clock Skew2
Control Bit2
R/W
0
See
Note
1
5
PCIF / PCI Clock Skew2
Control Bit1
R/W
0
4
PCIF / PCI Clock Skew2
Control Bit0
Skew2 is “Late” Skew that is Delay
Time from “Normal” Skew1.
0000 = +0.0ns, 1000 = +3.2ns
0001 = +0.4ns, 1001 = +3.6ns
0010 = +0.8ns, 1010 = +4.0ns
0011 = +1.2ns, 1011 = +4.4ns
0100 = +1.6ns, 1100 = +4.8ns
0101 = +2.0ns, 1101 = +5.2ns
0110 = +2.4ns, 1110 = +5.6ns
0111 = +2.8ns, 1111 = +6.0ns
R/W
0
3
PCIF / PCI Clock Skew1
Control Bit3
R/W
1
2
PCIF / PCI Clock Skew1
Control Bit2
R/W
0
1
PCIF / PCI Clock Skew1
Control Bit1
R/W
0
0
PCIF / PCI Clock Skew1
Control Bit0
Skew1 is “Normal” Skew.
Delay
Ahead
1000 = +0.0ns, 0111 = –0.4ns
1001 = +0.4ns, 0110 = –0.8ns
1010 = +0.8ns, 0101 = –1.2ns
1011 = +1.2ns, 0100 = –1.6ns
1100 = +1.6ns, 0011 = –2.0ns
1101 = +2.0ns, 0010 = –2.4ns
1110 = +2.4ns, 0001 = –2.8ns
1111 = +2.8ns, 0000 = –3.2ns
R/W
0
Note:
See
Note
1
1. PCIF / PCI Clock Skew is Skew1 (= Normal) or Skew1+Skew2 (= Late).
Byte27 Control Register
Bit
Description
7
Reserved
6
PCIF_2 Skew Select Bit
5
PCIF_1 Skew Select Bit
4
Type
Default
R/W
0
0 = Normal, 1 = Late
R/W
0
0 = Normal, 1 = Late
R/W
0
PCIF_0 Skew Select Bit
0 = Normal, 1 = Late
R/W
0
3
3V66 Clock Skew Control
Bit3
R/W
1
2
3V66 Clock Skew Control
Bit2
R/W
0
1
3V66 Clock Skew Control
Bit1
R/W
0
0
3V66 Clock Skew Control
Bit0
Delay
1000 = +0.0ns,
1001 = +0.4ns,
1010 = +0.8ns,
1011 = +1.2ns,
1100 = +1.6ns,
1101 = +2.0ns,
1110 = +2.4ns,
1111 = +2.8ns,
R/W
0
Note:
Contents
Ahead
0111 = –0.4ns
0110 = –0.8ns
0101 = –1.2ns
0100 = –1.6ns
0011 = –2.0ns
0010 = –2.4ns
0001 = –2.8ns
0000 = –3.2ns
1. Normal = Skew1(B26[3:0]), Late = Skew1(B26[3:0]) +Skew2 (B26[7:4]).
Rev.1.00, Apr.25.2003, page 22 of 38
Note
See
Note
1
HD151TS207SS
I2C Controlled Register Bit Map (cont.)
Byte28 Control Register
Bit
Description
Contents
Type
Default
7
Reserved
0 = Normal, 1 = Late
R/W
0
6
PCI_6 Skew Select Bit
0 = Normal, 1 = Late
R/W
0
5
PCI_5 Skew Select Bit
0 = Normal, 1 = Late
R/W
0
4
PCI_4 Skew Select Bit
0 = Normal, 1 = Late
R/W
0
3
PCI_3 Skew Select Bit
0 = Normal, 1 = Late
R/W
0
2
PCI_2 Skew Select Bit
0 = Normal, 1 = Late
R/W
0
1
PCI_1 Skew Select Bit
0 = Normal, 1 = Late
R/W
0
0
PCI_0 Skew Select Bit
0 = Normal, 1 = Late
R/W
0
Note:
Note
See
Note
1
1. Normal = Skew1(B26[3:0]), Late = Skew1(B26[3:0]) +Skew2 (B26[7:4]).
Byte29 Control Register
Bit
Description
Contents
Type
7
VCH Slew Rate Control Bit1
1
VCH Slew Rate Control Bit0
00 = Normal, 10 = “++”
01 = “+“
, 11 = “–”
R/W
6
R/W
0
5
PCI Slew Rate Control Bit1
R/W
1
4
PCI Slew Rate Control Bit0
R/W
0
3
PCIF Slew Rate Control Bit1
R/W
1
2
PCIF Slew Rate Control Bit0
R/W
0
1
3V66 Slew Rate Control Bit1
R/W
1
0
3V66 Slew Rate Control Bit0
R/W
0
Rev.1.00, Apr.25.2003, page 23 of 38
00 = Normal, 10 = “++”
01 = “+“
, 11 = “–”
00 = Normal, 10 = “++”
01 = “+“
, 11 = “–”
00 = Normal, 10 = “++”
01 = “+“
, 11 = “–”
Default
Note
HD151TS207SS
Clock Stop Timing Diagram
PCI_STOP# Assertion/De-assersion
PCI_STOP#
PCI_F
Low
PCI
SRC (Stoppable)
6× Iref (Controled by Byte2[6])
SRC (Stoppable)
Tristate (Controled by Byte2[6])
SRC# (Stoppable)
Tristate
PCI_STOP# Assertion/De-assertion Waveforms
PWRDWN# Assertion/De-assersion
< 1.8 ms
PWRDWN#
2× Iref (Controled by Byte2[5:3])
CPU (Stoppable)
6× Iref
Float (Controled by Byte2[5:3])
CPU (Stoppable)
6× Iref
Float
CPU# (Stoppable)
PWRDWN# Assertion/De-assertion Waveforms
PWRDWN# Functionality
PWRDWN#
1
0
CPU
Normal
Iref:2
or Float
Rev.1.00, Apr.25.2003, page 24 of 38
CPU#
SRC
Normal Normal
Iref:2
Float or Float
SRC#
Normal
Float
3V66 PCIF/PCI
66MHz 33MHz
Low
Low
USB/DOT
48MHz
REF
14.318MHz
Low
Low
HD151TS207SS
Renesas clock generator I2C Serial Interface Operation
1. Write mode
1.1 Controller (host) sends a start bit.
1.2 Controller (host) sends the write address D2 (h).
1.3 Renesas clock generator will acknowledge (Renesas clock gen. sends “Low”).
1.4 Controller (host) sends a begin byte M.
1.5 Renesas clock generator will acknowledge (Renesas clock gen. sends “Low”).
1.6 Controller (host) sends a byte count N.
1.7 Renesas clock generator will acknowledge (Renesas clock gen. sends “Low”).
1.8 Controller (host) sends data from byte M to byte M+N–1.
1.9 Renesas clock generator will acknowledge each byte one at a time.
1.10 Controller (host) sends a stop bit.
1 bit
7 bits
Start bit
1 bit 1 bit
8 bits
1 bit
8 bits
1 bit
8 bits
Slave
R/W Ack Begin Byte = M Ack Byte Count = N Ack Byte M
address D2(h)
1 bit
8 bits
1 bit
8 bits
Ack
Byte M+1
Ack
Byte M+N–1
Rev.1.00, Apr.25.2003, page 25 of 38
1 bit
1 bit
Ack Stop bit
HD151TS207SS
Renesas clock generator I2C Serial Interface Operation (cont.)
2. Read mode
2.1 Controller (host) sends a start bit.
2.2 Controller (host) sends the write address D2 (h).
2.3 Renesas clock generator will acknowledge (Renesas clock gen. sends “Low”).
2.4 Controller (host) sends a begin byte M.
2.5 Renesas clock generator will acknowledge (Renesas clock gen. sends “Low”).
2.6 Controller (host) sends a restart bit.
2.7 Controller (host) sends the read address D3 (h).
2.8 Renesas clock generator will acknowledge (Renesas clock gen. sends “Low”).
2.9 Renesas clock generator will send the byte count N.
2.10 Controller (host) will acknowledge.
2.11 Renesas clock generator will send data from byte M to byte M+N–1.
2.12 When Renesas clock generator sends the last byte, controller (host) will not acknowledge.
2.13 Controller (host) sends a stop bit.
1 bit
7 bits
Start bit
1 bit
8 bits
1 bit 1 bit
8 bits
1 bit
1 bit
7 bits
1 bit
Slave
R/W Ack Begin Byte = M Ack Restart bit Slave
R/W
address D2(h)
address D3(h)
1 bit
8 bits
Ack Begin Count = N Ack Byte M
1 bit
8 bits
1 bit
Ack Byte M+1 Ack
8 bits
1 bit
1 bit
Byte M+N–1 Not Ack Stop bit
Notes: 1. Renesas clock generator is a slave/receiver, I2C component. It can read back the data stored in
the latches for the verification.
2. The data transfer rate supported by this clock generator is 100k bits/sec or less (standard
mode).
3. The input is operating at 3.3 V logic levels.
4. The data byte format is 8 bit bytes.
5. To simplify the clock generator I2C interface, the protocol is set to use only block-write from
the controller.
6. The bytes must be accessed in sequential order from lowest to highest byte with the ability to
stop after any complete byte has been transferred. The data is loaded until a stop sequence is
issued.
7. At power-on, all registers are set to a default condition, as shown.
Rev.1.00, Apr.25.2003, page 26 of 38
HD151TS207SS
Absolute Maximum Ratings
Item
Symbol
Ratings
Unit
Supply voltage
VDD
–0.5 to 4.6
V
Input voltage
VI
–0.5 to 4.6
V
Output voltage *1
VO
–0.5 to VDD
+0.5
V
Input clamp current
IIK
–50
mA
VI < 0
Output clamp current
IOK
–50
mA
VO < 0
Continuous output current
IO
±50
mA
VO = 0 to VDD
0.7
W
–65 to +150
°C
Maximum power dissipation
at Ta = 55°C (in still air)
Storage temperature
Notes:
Tstg
Conditions
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage
to the device. These are stress ratings only, and functional operation of the device at these or
any other conditions beyond those indicated under “recommended operating conditions” is not
implied. Exposure to absolute maximum rated conditions for extended periods may affect device
reliability.
1. The input and output negative voltage ratings may be exceeded if the input and output clamp
current ratings are observed.
Recommended Operating Conditions
Item
Symbol
Min
Typ
Max
Unit
Supply voltage
VDD
3.135
3.3
3.465
V
Supply voltage
VDDA
3.135
3.3
3.465
V
–0.3
—
VDD+0.3
V
VIH
2.0
—
VDD+0.3
V
Low level input voltage
VIL
–0.3
—
0.8
V
Operating temperature
Ta
0
—
70
°C
DC input signal voltage
High level input voltage
Rev.1.00, Apr.25.2003, page 27 of 38
Conditions
HD151TS207SS
DC Electrical Characteristics / Serial Input Port
Ta = 0°C to 70°C, VDD = 3.3 V
Typ *1
Max
Unit


0.8
V
VIH
2.0


V
Input Current
II
–50

+50
µA
VI = 0 V or 3.465 V,
VDD = 3.465 V
Input capacitance
CI

10

pF
SDATA & SCLK
Item
Symbol Min
Input Low Voltage
VIL
Input High Voltage
Note:
Test Conditions
1. For conditions shown as Min or Max, use the appropriate value specified under recommended
operating conditions.
AC Electrical Characteristics / Serial Input port
Ta = 0°C to 70°C, VDD = 3.3 V
Item
Symbol
Min
Typ
Max
Unit
Test Conditions
SCLK Frequency
FSCLK


100
kHz
Normal Mode
Start Hold Time
tSTHD
4.0


µs
SCLK Low Time
tLOW
4.7


µs
SCLK High Time
tHIGH
4.0


µs
Data Setup Time
tDSU
250


ns
Data Hold Time
tDHD
300


ns
Stop Setup Time
tSTSU
4.0


µs
BUS Free Time between
Stop & Start Condition
tSPF
4.7


µs
Rev.1.00, Apr.25.2003, page 28 of 38
Notes
HD151TS207SS
DC Electrical Characteristics CPU/CPU# Clock
Ta = 0°C to 70°C, VDD = 3.3 V, Iref = 475 Ω
Typ *1
Item
Symbol Min
Output voltage
VO


IO

3000
Output Current
Output resistance
Max
Unit
Test Conditions
1.20
V
Rp = 49.9 Ω, VDD = 3.3 V
I(nom) * 
mA
VDD = 3.3 V

Ω
VO = 1.2 V
2

Notes: 1. For conditions shown as Min or Max, use the appropriate value specified under recommended
operating conditionaI (nom) is output current(Ioh) shown in below.
2. Ioh = VDD/(3Rr) = 3.3/(3x475) = 2.32 mA,
Ioh x6 = 13.89 mA (Voh @Z: 0.695 V @50 Ω),
Ioh x2 = 4.63 mA (Voh @Z: 0.232 V @50 Ω)
AC Electrical Characteristics CPU/CPU# Clock (CPU at 0.7V Timing)
Ta = 0°C to 70°C, VDD = 3.3 V, CL = 2 pF, Rs = 33.2 Ω, Rp = 49.9 Ω
Item
Symbol
Min
Typ
Max
Unit
Cycle to cycle jitter
tCCS

|125|

ps
CPU Group Skew
(CPU clock out to
CPU clock out)
tskS

|100|

ps
Rise time
tr
175

700
ps
VO = 0.175 V
to 0.525 V
200MHz
Fall time
tf
175

700
ps
VO = 0.175 V
to 0.525 V
200MHz
Clock Duty Cycle
45
50
55
%
CPU clock period(100)

9.99

ns
CPU clock period(133)

7.49

ns
CPU clock period(166)

5.99

ns
CPU clock period(200)

4.99

ns
0.25

0.55
V
Cross point(0.7V) voltage
Note:
Vcross
1. Difference of cycle time between two adjoining cycles.
Rev.1.00, Apr.25.2003, page 29 of 38
Test Conditions
Notes
Note1
200MHz
200MHz
HD151TS207SS
DC Electrical Characteristics SRC/SRC# Clock
Ta = 0°C to 70°C, VDD = 3.3 V, Iref = 475 Ω
Item
Symbol Min
Output voltage
VO
Output Current
IO
Output resistance
Typ *1
Max
Unit
Test Conditions


1.20
V
Rp = 49.9 Ω, VDD = 3.3 V

I(nom)

mA
VDD = 3.3 V
3000


Ω
VO = 1.2 V
Notes: 1. For conditions shown as Min or Max, use the appropriate value specified under recommended
operating conditions
2. I(nom) is output current(Ioh) shown in below.
Ioh = VDD/(3Rr) = 3.3/(3x475) = 2.32 mA,
Ioh x6 = 13.89 mA (Voh @Z: 0.695V @50 Ω),
Ioh x2 = 4.63 mA (Voh @Z: 0.232V @50 Ω)
AC Electrical Characteristics SRC/SRC# Clock (SRC at 0.7V Timing)
Ta = 0°C to 70°C, VDD = 3.3 V, CL = 2 pF, Rs = 33.2 Ω, Rp = 49.9 Ω
Item
Symbol
Min
Typ
Max
Unit
Cycle to cycle jitter
tCCS

|125|

ps
Rise time
tr
175

700
ps
VO = 0.175 V
to 0.525 V
100 MHz
Fall time
tf
175

700
ps
VO = 0.175 V
to 0.525 V
100 MHz
Clock Duty Cycle
45
50
55
%
SRC clock period(100)

9.99

ns
SRC clock period(200)

4.99

ns
Cross point(0.7V) voltage Vcross
0.25

0.55
V
Note:
1. Difference of cycle time between two adjoining cycles.
Rev.1.00, Apr.25.2003, page 30 of 38
Test Conditions Notes
Note1
100 MHz
100 MHz
HD151TS207SS
DC Electrical Characteristics / 3V66 Buffer (CK409T Type5 Buffer)
Ta = 0°C to 70°C, VDD = 3.3 V
Item
Symbol
Min
Typ *1 Max
Unit
Test Conditions
Output Voltage
VOH
3.1


V
IOH = –1 mA, VDD = 3.3 V
VOL


50
mV
IOL = 1 mA, VDD = 3.3 V
IOH


–33
mA
VOH = 1.0 V
IOL
30


mA
VOL = 1.95 V
Output Current
Note:
1. For conditions shown as Min or Max, use the appropriate value specified under recommended
operating conditions.
AC Electrical Characteristics / 3V66 Buffer
Ta = 0°C to 70°C, VDD = 3.3 V, CL = 30 pF
Item
Symbol
Min
Typ
Max
Unit
Test Conditions Notes
Cycle to cycle jitter
tCCS

|250|

ps
Fig.1
3V66 Buffer (3V66 (4:0))
Group Skew
tskS

0
250
ps
Rising edge
@1.5 V to 1.5 V
Fig.2
Slew rate
tSL
1.0

4.0
V/ns
Clock Period

14.998

ns
Clock Duty Cycle
45
50
55
%
3V66 (4:0) leads
33 MHz PCI
1.5

3.5
ns
Note:
1. Difference of cycle time between two adjoining cycles.
Rev.1.00, Apr.25.2003, page 31 of 38
Note1
0.4V to
2.4 V
HD151TS207SS
DC Electrical Characteristics / PCI & PCIF Clock (CK409T Type5 Buffer)
Ta = 0°C to 70°C, VDD = 3.3 V
Item
Symbol
Min
Typ *1
Max
Unit
Test Conditions
Output Voltage
VOH
3.1


V
IOH = –1 mA, VDD = 3.3 V
VOL


50
mV
IOL = 1 mA, VDD = 3.3 V
IOH


–33
mA
VOH = 1.0 V
IOL
30


mA
VOL = 1.95 V
Output Current
Note:
1. For conditions shown as Min or Max, use the appropriate value specified under recommended
operating conditions.
AC Electrical Characteristics / PCI & PCIF Clock
Ta = 0°C to 70°C, VDD = 3.3 V, CL = 30 pF
Item
Symbol
Min
Typ
Max
Unit
Cycle to cycle jitter
tCCS

|250|

ps
Fig.1
Rising edge
@1.5V to 1.5 V
Fig.2
PCI Group Skew
tskS
Clock Period
Slew rate
Clock Duty Cycle
Note:
tSL

0
500
ps

29.996

ns
1.0

4.0
V/ns
45
50
55
%
1. Difference of cycle time between two adjoining cycles.
Rev.1.00, Apr.25.2003, page 32 of 38
Test Conditions Notes
Note1
0.4 V to
2.4 V
HD151TS207SS
DC Electrical Characteristics / USB & VCH 48MHz Clock
(CK409T Type3A Buffer)
Ta = 0°C to 70°C, VDD = 3.3 V
Item
Symbol
Min
Typ *1
Max
Unit
Test Conditions
Output Voltage
VOH
3.1


V
IOH = –1 mA, VDD = 3.3 V
VOL


50
mV
IOL = 1 mA, VDD = 3.3 V
IOH


–29
mA
VOH = 1.0 V
IOL
29


mA
VOL = 1.95 V
Output Current
Note:
1. For conditions shown as Min or Max, use the appropriate value specified under recommended
operating conditions.
AC Electrical Characteristics / USB & VCH 48MHz Clock
Ta = 0°C to 70°C, VDD = 3.3 V, CL = 20 pF
Item
Symbol
Min
Typ
Max
Unit
Test Conditions Notes
Cycle to cycle jitter
tCCS

|350|

ps
Fig.1

20.831

ns
1.0

2.0
V/ns
45
50
55
%
Clock Period
Slew rate
Clock Duty Cycle
Note:
tSL
1. Difference of cycle time between two adjoining cycles.
Rev.1.00, Apr.25.2003, page 33 of 38
Note1
0.4 V to
2.4 V
HD151TS207SS
DC Electrical Characteristics / DOT Clock (CK409T Type3B Buffer)
Ta = 0°C to 70°C, VDD = 3.3 V
Item
Symbol
Min
Typ *1 Max
Unit
Test Conditions
Output Voltage
VOH
3.1


V
IOH = –1 mA, VDD = 3.3 V
VOL


50
mV
IOL = 1 mA, VDD = 3.3 V
IOH


–29
mA
VOH = 1.0 V
IOL
29


mA
VOL = 1.95 V
Output Current
Note:
1. For conditions shown as Min or Max, use the appropriate value specified under recommended
operating conditions.
AC Electrical Characteristics / DOT Clock
Ta = 0°C to 70°C, VDD = 3.3 V, CL = 10 pF
Item
Symbol
Min
Typ
Max
Unit
Test Conditions Notes
Cycle to cycle jitter
tCCS

|350|

ps
Fig.1

20.831

ns
2.0

4.0
V/ns
45
50
55
%
Clock Period
Slew rate
Clock Duty Cycle
Note:
tSL
1. Difference of cycle time between two adjoining cycles.
Rev.1.00, Apr.25.2003, page 34 of 38
Note1
0.4V to
2.4V
HD151TS207SS
DC Electrical Characteristics / REF Clock (CK409T Type5 Buffer)
Ta = 0°C to 70°C, VDD = 3.3 V
Item
Symbol
Min
Typ *1 Max
Unit
Test Conditions
Output Voltage
VOH
3.1


V
IOH = –1 mA, VDD = 3.3 V
VOL


50
mV
IOL = 1 mA, VDD = 3.3 V
IOH


–33
mA
VOH = 1.0 V
IOL
30


mA
VOL = 1.95 V
Output Current
Note:
1. For conditions shown as Min or Max, use the appropriate value specified under recommended
operating conditions.
AC Electrical Characteristics / REF Clock
Ta = 0°C to 70°C, VDD = 3.3 V, CL = 30 pF
Item
Symbol
Min
Typ
Max
Unit
Test Conditions Notes
Cycle to cycle jitter
tCCS

|1000|

ps
Fig.1

69.841

ns
1.0

4.0
V/ns
45
50
55
%
Clock Period
Slew rate
Clock Duty Cycle
Note:
tSL
1. Difference of cycle time between two adjoining cycles.
Rev.1.00, Apr.25.2003, page 35 of 38
Note1
0.4 V to
2.4 V
HD151TS207SS
Clock Out
tcycle n+1
tcycle n
t CCS = (tcycle n) - (tcycle n+1)
Fig.1 Cycle to Cycle Jitter (3.3V Single Ended Clock Output)
Clock Outx
1.5 V
Clock Outy
1.5 V
tskS
Fig.2 Output Clock Skew (3.3V Single Ended Clock Output)
RS = 33.2 Ω
ZLT = ZLC = 50 Ω
CPU
LT
TS207
RS = 33.2 Ω
CPU#
RI(ref) =
475 Ω
LC
RP =
49.9 Ω
RP =
49.9 Ω
CL = 2 pF
Fig.3 Load Circuit for CPU/CPU#
Rev.1.00, Apr.25.2003, page 36 of 38
CL = 2 pF
HD151TS207SS
Package Dimensions
Unit : mm
18.40
29
7.50
56
1
28
10.35
Rev.1.00, Apr.25.2003, page 37 of 38
0.3
0.10(0.004)
0.2
0.635
2.6
0.25
0˚– 8˚
0.5
0.76
HD151TS207SS
Sales Strategic Planning Div.
Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan
Keep safety first in your circuit designs!
1. Renesas Technology Corporation puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with
them. Trouble with semiconductors may lead to personal injury, fire or property damage.
Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of
nonflammable material or (iii) prevention against any malfunction or mishap.
Notes regarding these materials
1. These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corporation product best suited to the customer's application; they
do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corporation or a third party.
2. Renesas Technology Corporation assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts,
programs, algorithms, or circuit application examples contained in these materials.
3. All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these
materials, and are subject to change by Renesas Technology Corporation without notice due to product improvements or other reasons. It is therefore recommended that customers
contact Renesas Technology Corporation or an authorized Renesas Technology Corporation product distributor for the latest product information before purchasing a product listed
herein.
The information described here may contain technical inaccuracies or typographical errors.
Renesas Technology Corporation assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors.
Please also pay attention to information published by Renesas Technology Corporation by various means, including the Renesas Technology Corporation Semiconductor home page
(http://www.renesas.com).
4. When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information
as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corporation assumes no responsibility for any damage,
liability or other loss resulting from the information contained herein.
5. Renesas Technology Corporation semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially
at stake. Please contact Renesas Technology Corporation or an authorized Renesas Technology Corporation product distributor when considering the use of a product contained
herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.
6. The prior written approval of Renesas Technology Corporation is necessary to reprint or reproduce in whole or in part these materials.
7. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be
imported into a country other than the approved destination.
Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.
8. Please contact Renesas Technology Corporation for further details on these materials or the products contained therein.
http://www.renesas.com
Copyright © 2003. Renesas Technology Corporation, All rights reserved. Printed in Japan.
Colophon 0.0
Rev.1.00, Apr.25.2003, page 38 of 38