HD151TS206SS Mother Board Clock Generator for Intel P4+ Chipset (Springdale) REJ03D0005-0100Z Preliminary Rev.1.00 Apr.28.2003 Description The HD151TS206SS is Intel CK409 type high-performance, low-skew, low-jitter, PC motherboard clock generator. It is specifically designed for Intel Pentium®4+ chipset. Features • • • • • • • • • • • 3 differential pairs of current mode control CPU clock 1 differential pairs of Serial Reference Clock (SRC) 6 PCI clocks and 3 PCIF clocks @3.3 V, 33.3 MHz typ. 1 copy of 48 MHz for USB @3.3 V 1 copy of 48 MHz for DOT @3.3 V 4 copies of 3V66 clock @3.3 V,66.6 MHz 1 copy of [email protected] V, 48 MHz Power save and clock stop function. I2CTM serial port programming Programmable Clock Control (Spread Spectrum Percentage, Clock Output Skew, Slew Rate) 48pin SSOP (300 mils) Note: I2C is a trademark of Philips Corporation. Pentium is registered trademark of Intel Corporation Rev.1.00, Apr.28.2003, page 1 of 34 HD151TS206SS Key Specifications • • • • • Supply Voltages: VDD = 3.3 V±5% CPU clock cycle to cycle jitter = |125ps| (SSC Disabled) CPU clock group Skew = 100ps 3V66 clock group Skew = 250psmax PCI clock group Skew = 500psmax Rev.1.00, Apr.28.2003, page 2 of 34 HD151TS206SS Pin Arrangement **FS1/REF0 1 48 AVDD *FS0/REF1 2 47 AVSS VDD/REF 3 46 IREF 45 CPU_2 XTAL_IN 4 XTAL_OUT 5 44 CPU_2# VSS_REF 6 43 VSS_CPU **FS2/PCIF_0 7 42 CPU_1 **FS4/PCIF_1 8 41 CPU_1# PCIF_2 9 40 VDD_CPU VDD_PCI 10 39 CPU_0 VSS_PCI 11 38 CPU_0# **MODE/PCI_0 12 37 VSS_CPU PCI_1 13 36 SRC PCI_2 14 35 SRC# PCI_3 15 34 VDD_SRC VDD_PCI 16 33 *VTT_PWRGD# VSS_PCI 17 32 *SDATA 31 *SCLK **SEL100_200/PCI_4 18 30 3V66_0/RESET# **SEL33_25/PCI_5 19 29 3V66_1 *PWRDWN#/SAFE_F 20 **SEL48_24/48_24MHz 21 28 VSS_3V66 **FS3/48MHz 22 27 VDD_3V66 VSS_48 23 26 3V66_2 VDD_48 24 25 **SEL66_48/3V66_3/VCH (Top view) (*): (**): Those pins are 150 kΩ internal pulled-Up. Those pins are 150 kΩ internal pulled-Down. Rev.1.00, Apr.28.2003, page 3 of 34 HD151TS206SS Pin Descriptions Pin name No. Type Description AVSS 47 Ground Ground for PLL VSS_CPU 43,37 VSS_3V66 28 VSS_PCI 11,17 VSS_REF 6 VSS_48 23 AVDD 48 VDD_CPU 40 VDD_SRC 34 VDD_3V66 27 VDD_PCI 10,16 Ground for outputs Power 3.3 V Power Supply for PLL 3.3 V Power Supply for outputs VDD_REF 3 VDD_48 24 **FS1/REF0 1 INPUT/OUTPUT Frequency select latch input pin. 3.3 V 14.318 MHz reference clock. *FS0/REF1 2 INPUT/OUTPUT Frequency select latch input pin. 3.3 V 14.318 MHz reference clock. XTAL_IN 4 INPUT 14.318 MHz XTAL input. XTAL_OUT 5 OUTPUT 14.318 MHz XTAL output. Don’t connect when an external clock is applied at XTAL_IN. **FS2/PCIF_0 7, INPUT/OUTPUT Frequency select latch input pin. Free running PCI clock 3.3 V output. 33 MHz clocks divided down from 3V66. **FS4/PCIF_1 8 INPUT/OUTPUT Frequency select latch input pin. Free running PCI clock 3.3 V output. 33 MHz clocks divided down from 3V66. PCIF_2 9 OUTPUT Free running PCI clock 3.3 V output. 33 MHz clocks divided down from 3V66. **MODE/PCI_0 12 INPUT/OUTPUT Function select latch input pin for pin 30, 1 = Reset#, 0 = clock output. / PCI clock 3.3 V output. 33 MHz clocks divided down from 3V66. PCI[1:5] 13,14,15, OUTPUT 18,19 Note: (*): (**): PCI clock 3.3 V output. 33 MHz clocks divided down from 3V66. Those pins are 150 kΩ internal pull-up. Those pins are 150 kΩ internal pull-down Rev.1.00, Apr.28.2003, page 4 of 34 HD151TS206SS Pin Descriptions (cont.) Pin name No. Type Description **SEL100_200/PCI_4 18 INPUT/OUTPUT Latched select input for SRC output. 1 = 200 MHz, 0 = 100 MHz /PCI clock 3.3 V output. 33 MHz clock divided down from 3V66. **SEL33_25/PCI_5 19 INPUT/OUTPUT Latched select input for PCI5 output. 1 = 25 MHz, 0 = 33 MHz /PCI clock 3.3 V output. 33 MHz clock divided down from 3V66. *PWRDWN# /SAFE_FREQ 20 INPUT Power down pin. All circuits will be powered down. Asynchronous active low input pin used to power down the device into low power state. The internal clocks are disabled and VCO and the crystal are stopped. When Byte15 bit5 = 1 Safe frequency input select. Real time input for frequency jump. Driving this input 'LOW' will cause output to jump to predefined IIC frequency location. **SEL48_24/48_24MHz 21 INPUT/OUTPUT Latched select input for 48_24 MHz output 1 = 24 MHz, 0 = 48 MHz / 48_24 MHz clock 3.3 V output. **FS3/48MHz 22 INPUT/OUTPUT Frequency select latch input pin. 3.3 V Fixed 48 MHz DOT clock output. **SEL66_48 /3V66_3/VCH 25 INPUT/OUTPUT Latched select input for 3V66/VCH output 1 = 48 MHz, 0 = 66.66 MHz. / 3V66 or VCH clock output. 3V66_2,3V66_1 26,29 OUTPUT 3.3 V 66.66 MHz clock output. 3V66_0/RESET# 30 OUTPUT 3.3 V 66.66 MHz clock output / Real time system reset signal for frequency gear ratio change or watchdog timer timeout. This signal is active low and selected by Mode latch input. *SCLK 31 INPUT Clock input for I2C logic. *SDATA 32 INPUT/OUTPUT Data input and output for I2C logic. *VTT_PWRGD# 33 INPUT Qualifying input that latches Frequency latch inputs. When this input is at a logic low, Frequency latched. SRC# 35 OUTPUT “Complementary” clock of Differential Serial Reference Clock. SRC 36 OUTPUT “True” clock of Differential Serial Reference Clock. CPU[0:2] 39,42, 45 OUTPUT “True” clocks of differential pair CPU clock. CPU#[0:2] 38,41, 44 OUTPUT “Complementary” clocks of differential pair CPU clock. IREF 46 INPUT A precision resistor is attached to this pin which is connected to internal current reference. Note: (*): (**): Those pins are 150 kΩ internal pull-up. Those pins are 150 kΩ internal pull-down Rev.1.00, Apr.28.2003, page 5 of 34 HD151TS206SS Block Diagram 3.3 V VDD_48 VSS_48 3.3 V AVDD AVSS 6× 3.3V VDD 6×VSS IREF REF[1:0] (14.318MHz) XTAL 14.318 MHz CK2 1/M2 CPU[2:0] CPU[2:0]# OSC SSC2 PLL2 For CPU VCO2 SRC SRC# 1/N2 Clock Select PWRDWN#/SAFE_F# Input Clock VTT_PWRGD# CK1 1/M1 PLL1 For SSC1 SRC 3V66 1/N1 PCI Select VCO1 Clock Divider Delay Control Stop Control *MODE *SEL100_200 *SEL66_48 *SEL48_24 *SEL33_25 *FS_4/3/2/1/0 SCLK SDATA CK0 1/M0 USB PLL 3V66_0/RESET# 3V66[2:1] 3V66_3/VCH 48MHz 48_24MHz Control Logic Rev.1.00, Apr.28.2003, page 6 of 34 PCIF[2:0] VCO0 1/N0 (*) : Latched Input pin. PCI[5:0] HD151TS206SS I2C Controlled Register Bit Map Byte0 Control Register Bit Description 7 Contents Type Default Reserved R 0 6 Reserved R 0 5 Reserved R 0 4 Reserved R 0 3 Reserved R 1 2 Reserved R 1 1 Reserved R X 0 Reserved R X Type Default RW 0 RW 1 Note Byte1 Control Register Bit Description Contents 7 Reserved 6 SRC Output enable 5 Reserved RW 1 4 Reserved RW 1 3 Reserved RW 1 2 CPU2 Output enable 0 = Disabled (tristate) 1 = Enabled RW 1 1 CPU1 Output enable 0 = Disabled (tristate) 1 = Enabled RW 1 0 CPU0 Output enable 0 = Disabled (tristate) 1 = Enabled RW 1 0 = Disabled (tristate) 1 = Enabled Note Byte2 Control Register Bit Description Contents Type Default Note 7 SRC_Pwrdwn drive mode 0 = Driven in power down, 1 = Tristate RW 0 6 Reserved RW 0 See Table 2 5 CPU2_Pwrdwn drive mode 0 = Driven in power down, 1 = Tristate RW 0 4 CPU1_Pwrdwn drive mode 0 = Driven in power down, 1 = Tristate RW 0 3 CPU0_Pwrdwn drive mode 0 = Driven in power down, 1 = Tristate RW 0 2 Reserved RW 0 1 Reserved RW 0 0 Reserved RW 0 Rev.1.00, Apr.28.2003, page 7 of 34 See Table 1 HD151TS206SS I2C Controlled Register Bit Map (cont.) Table1 CPU Clock Power Management Truth Table Signal Pin PWRDWN# PWRDWN# Tristate Bit Byte2[5:3] CPU[2:0] 1 X Running CPU[2:0] 0 0 Driven @ Iref x2 CPU[2:0] 0 1 Tristate Note: Note See Note1 1. Iref = VDD/(3Rr) = 3.3/(3x475) = 2.32 mA. Iref x6 = 13.9 mA (Voh @Z: 0.7 V @50 Ω), Iref x2 = 4.6 mA (Voh @Z: 0.23 V @50 Ω) Table2 SRC Clock Power Management Truth Table Signal Pin PWRDWN# PWRDWN# Tristate Bit Byte2[7] SRC 1 X Note Running SRC 0 0 Driven @ Iref x2 SRC 0 1 Tristate Note: See Note1 1. Iref = VDD/(3Rr) = 3.3/(3x475) = 2.32 mA. Iref x6 = 13.9 mA (Voh @Z: 0.7 V @50 Ω), Iref x2 = 4.6 mA (Voh @Z: 0.23 V @50 Ω) Byte3 Control Register Bit Description 7 6 5 PCI_5 Output enable 4 PCI_4 Output enable 3 Contents Type Default Reserved RW 1 Reserved RW 1 0 = Disabled, 1 = Enabled RW 1 0 = Disabled, 1 = Enabled RW 1 PCI_3 Output enable 0 = Disabled, 1 = Enabled RW 1 2 PCI_2 Output enable 0 = Disabled, 1 = Enabled RW 1 1 PCI_1 Output enable 0 = Disabled, 1 = Enabled RW 1 0 PCI_0 Output enable 0 = Disabled, 1 = Enabled RW 1 Note Byte 4 Control Register Bit Description 7 Reserved Type Default RW 0 6 48_24MHz Output Enable RW 1 5 4 Reserved RW 0 Reserved RW 0 3 Reserved 2 PCIF_2 Output enable 0 = Disabled, 1 = Enabled RW 0 RW 1 1 PCIF_1 Output enable 0 = Disabled, 1 = Enabled RW 1 0 PCIF_0 Output enable 0 = Disabled, 1 = Enabled RW 1 Rev.1.00, Apr.28.2003, page 8 of 34 Contents 0 = Disabled, 1 = Enabled Note HD151TS206SS I2C Controlled Register Bit Map (cont.) Byte5 Control Register Bit Description Contents Type Default 7 48MHz Output Enable 0 = Disabled, 1 = Enabled RW 1 6 Reserved RW 1 5 VCH Select 66MHz / 48MHz RW 0 4 Reserved RW 1 3 3V66_3/VCH Output Enable 0 = Disabled, 1 = Enabled RW 1 2 3V66_2 Output Enable 0 = Disabled, 1 = Enabled RW 1 1 3V66_1 Output Enable 0 = Disabled, 1 = Enabled RW 1 0 3V66_0 Output Enable 0 = Disabled, 1 = Enabled RW 1 0 = 3V66 mode 1 = VCH (48MHz) mode Note Byte6 Control Register Bit Description Contents Type Default 7 Test Clock Mode 0 = Disabled, 1 = Enabled RW 0 6 Reserved RW 0 5 Reserved RW 0 4 SRC Frequency Select RW 0 3 Reserved RW 0 2 Spread Spectrum Mode 0 = Spread OFF 1 = Spread ON RW 0 1 REF1 Output Enable 0 = Disabled, 1 = Enabled RW 1 0 REF0 Output Enable 0 = Disabled, 1 = Enabled RW 1 0 = 100 MHz, 1 = 200 MHz Note See B9[7:6] Byte7 Vendor Identification Register Bit Description Contents Type Default 7 Revision Code Bit3 Vendor Specific R 0 6 Revision Code Bit2 Vendor Specific R 0 5 Revision Code Bit1 Vendor Specific R 0 4 Revision Code Bit0 Vendor Specific R 1 3 Vendor ID Bit3 Vendor Specific R 1 2 Vendor ID Bit2 Vendor Specific R 1 1 Vendor ID Bit1 Vendor Specific R 1 0 Vendor ID Bit0 Vendor Specific R 1 Rev.1.00, Apr.28.2003, page 9 of 34 Note HD151TS206SS I2C Controlled Register Bit Map (cont.) Byte8 Read Back Byte Count Register Bit Description Contents Type Default 7 Read back byte count Bit7 RW 0 6 Read back byte count Bit6 RW 0 5 Read back byte count Bit5 Writing to this register will configure byte Count and how many bytes will be read back. Default is 1Ehex = 30 bytes. RW 0 4 Read back byte count Bit4 RW 1 3 Read back byte count Bit3 RW 1 2 Read back byte count Bit2 RW 1 1 Read back byte count Bit1 RW 1 0 Read back byte count Bit0 RW 0 Note Byte9 Control Register Bit Description Contents Type Default 7 SSC2 Enable Bit B6[2] = 0 or B9[7] = 1 : SSC2 = OFF B6[2] = 1 & B9[7] = 0 : SSC2 = ON RW 0 6 SSC1 Enable Bit B6[2] = 0 or B9[6] = 1 : SSC1 = OFF B6[2] = 1 & B9[6] = 0 : SSC1 = ON RW 0 5 Clock Frequency Control Bit4 Latched input FS_4 at Power ON RW X 4 Clock Frequency Control Bit3 Latched input FS_3 at Power ON RW X 3 Clock Frequency Control Bit2 Latched input FS_2 at Power ON RW X 2 Clock Frequency Control Bit1 Latched input FS_1 at Power ON RW X 1 Clock Frequency Control Bit0 Latched input FS_0 at Power ON RW X 0 Frequency Select Mode Bit 0 = Freq. is selected by latched input FS(4:0) 2 1 = Freq. is selected by I C B9[5:1] RW 0 Rev.1.00, Apr.28.2003, page 10 of 34 Note See Table3 HD151TS206SS I2C Controlled Register Bit Map (cont.) Table3 Clock Frequency Function Table No. FS_4 FS_3 FS_2 FS_1 FS_0 CPU [MHz] SRC [MHz] 3V66 [MHz] PCI [MHz] B9[5] B9[4] B9[3] B9[2] B9[1] 0 0 0 0 0 0 100.02 100.02 66.68 33.34 1 0 0 0 0 1 200.03 100.02 66.68 33.34 2 0 0 0 1 0 133.36 100.02 66.68 33.34 3 0 0 0 1 1 166.69 100.02 66.68 33.34 4 0 0 1 0 0 200.03 100.02 66.68 33.34 5 0 0 1 0 1 400.07 100.02 66.68 33.34 6 0 0 1 1 0 266.71 100.02 66.68 33.34 7 0 0 1 1 1 333.39 100.02 66.68 33.34 8 0 1 0 0 0 138.69 100.02 66.68 33.34 9 0 1 0 0 1 142.25 100.02 66.68 33.34 10 0 1 0 1 0 145.80 100.02 66.68 33.34 11 0 1 0 1 1 149.36 100.02 66.68 33.34 12 0 1 1 0 0 152.91 100.02 66.68 33.34 13 0 1 1 0 1 156.47 100.02 66.68 33.34 14 0 1 1 1 0 160.03 100.02 66.68 33.34 15 0 1 1 1 1 163.58 100.02 66.68 33.34 16 1 0 0 0 0 167.14 100.02 66.68 33.34 17 1 0 0 0 1 170.70 100.02 66.68 33.34 18 1 0 0 1 0 174.25 100.02 66.68 33.34 19 1 0 0 1 1 177.81 100.02 66.68 33.34 20 1 0 1 0 0 181.36 100.02 66.68 33.34 21 1 0 1 0 1 184.92 100.02 66.68 33.34 22 1 0 1 1 0 186.70 100.02 66.68 33.34 23 1 0 1 1 1 189.36 100.02 66.68 33.34 24 1 1 0 0 0 192.03 100.02 66.68 33.34 25 1 1 0 0 1 194.70 100.02 66.68 33.34 26 1 1 0 1 0 197.37 100.02 66.68 33.34 27 1 1 0 1 1 200.03 100.02 66.68 33.34 28 1 1 1 0 0 202.70 100.02 66.68 33.34 29 1 1 1 0 1 205.37 100.02 66.68 33.34 30 1 1 1 1 0 208.03 100.02 66.68 33.34 31 1 1 1 1 1 210.70 100.02 66.68 33.34 Rev.1.00, Apr.28.2003, page 11 of 34 HD151TS206SS I2C Controlled Register Bit Map (cont.) Byte10 Control Register Bit Description Contents 7 SSC Spread Select Bit[2:0] Bit[2:0] = 000 = –0.500%, 001 = –0.750%, 010 = –1.000%, 011 = –1.500%, 6 5 100 = ±0.250% 101 = ±0.375% 110 = ±0.500% 111 = ±0.750% Type Default RW 0 RW 0 RW 0 R X R X R X 4 Backup of latch Input FS_4 at Power ON 3 Backup of latch Input FS_3 at Power ON 2 Backup of latch Input FS_2 at Power ON 1 Backup of latch Input FS_1 at Power ON R X 0 Backup of latch Input FS_0 at Power ON R X Type Default When SAFE_F# is Enable (B15[5]=1) PWRDWN#/SAFE_F# pin to “Low”, and if B23[1]=0, frequency selection is changed to these setting and PWRDWN#/SAFE_F# pin to “High”, frequency selection is changed back to the last mode. Note Byte11 Control Register Bit Description 7 Reserved RW 0 6 Reserved RW 0 5 PWRDWN# Enable Control Bit 0 = Enable, 1 = Disable RW 0 4 Backup of B9[5] written by 2 IC R X 3 Backup of B9[4] written by I2 C R X 2 Backup of B9[3] written by 2 IC When SAFE_F# is Enable (B15[5]=1) PWRDWN#/SAFE_F# pin to “Low”, and if B23[1]=1, frequency selection is changed to these setting and PWRDWN#/SAFE_F# pin to “High”, frequency selection is changed back to the last mode. R X 1 Backup of B9[2] written by 2 IC R X 0 Backup of B9[1] written by I2 C R X Rev.1.00, Apr.28.2003, page 12 of 34 Contents Note HD151TS206SS I2C Controlled Register Bit Map (cont.) Byte12 Control Register Bit 7 6 5 4 3 2 1 0 Note: Description Reserved Reserved Reserved Reserved Reserved PLL1 Output (VCO1) Frequency Control Bit (M1/N1 Divider Control Bit) PLL1 : for SRC/3V66/PCI_PLL Contents Type RW RW RW RW RW RW Default 0 0 0 0 0 0 0 = Normal mode PLL1 M1[6:0] and N1[9:0] are changed on Table 5 selection decided by FS4/3/2/A/B or B9[5:1] 1 = Over or Down clocking mode PLL1 M1[6:0] and N1[9:0] are changed by B12[1:0] , B13[7:0] and B14[6:0]. B12[1:0] ,B13[7:0] and B14[6:0] are able to be changed at B12[2] = 1. PLL1 N1 Divider Control Bit9 N1[9] RW 0 PLL1 N1 Divider Control Bit8 N1[8] RW 0 1. B12[1:0] ,B13[7:0] and B14[6:0] must be written together (at writing B14) in every case. Note See Note1 Byte13 Control Register Bit Description Contents Type Default Note 7 PLL1 N1 Divider Control Bit7 N1[7] R/W 0 6 PLL1 N1 Divider Control Bit6 N1[6] R/W 1 See Note1 5 PLL1 N1 Divider Control Bit5 N1[5] R/W 0 4 PLL1 N1 Divider Control Bit4 N1[4] R/W 0 3 PLL1 N1 Divider Control Bit3 N1[3] R/W 1 2 PLL1 N1 Divider Control Bit2 N1[2] R/W 0 1 PLL1 N1 Divider Control Bit1 N1[1] R/W 1 PLL1 N1 Divider Control Bit0 N1[0] R/W 1 0 Note: 1. B12[1:0] ,B13[7:0] and B14[6:0] must be written together (at writing B14) in every case. Byte14 Control Register Bit 7 6 5 4 3 2 1 0 Note: Description Contents Type Default Reserved R/W 0 PLL1 M1 Divider Control Bit6 M1[6] R/W 0 PLL1 M1 Divider Control Bit5 M1[5] R/W 0 PLL1 M1 Divider Control Bit4 M1[4] R/W 1 PLL1 M1 Divider Control Bit3 M1[3] R/W 0 PLL1 M1 Divider Control Bit2 M1[2] R/W 0 PLL1 M1 Divider Control Bit1 M1[1] R/W 1 PLL1 M1 Divider Control Bit0 M1[0] R/W 0 1. B12[1:0] ,B13[7:0] and B14[6:0] must be written together (at writing B14) in every case. Rev.1.00, Apr.28.2003, page 13 of 34 Note See Note1 HD151TS206SS I2C Controlled Register Bit Map (cont.) Byte15 Control Register Bit Description Contents Type Default 7 PCI_5 Output Frequency Select Bit 0 = 33.3 MHz , 1 = 25 MHz R/W 0 6 48_24MHz Output Frequency Select Bit 0 = 48 MHz , 1 = 24 MHz R/W 0 5 SAFE_F# Input mode select Bit 0 = PWRDWN# input mode 1 = SAFE_F# input mode Default is PWRDWN# input. SAFE_F# is active “Low” input. When SAFE_F# is “Low”, frequency mode is changed to the predefined frequency mode. Predefined frequency mode is selected by B23[1]. R/W 0 4 Clock Divider Control Bit 0 = Normal mode Clock dividers are changed by Table 5 selection decided B9[5:1] 1 = Over or Down clocking mode Clock dividers are changed by B15[3:0] and B16[7:0]. B15[3:0] and B16[7:0] are able to be changed at B15[4] = 1. R/W 0 3 CPU Divider Control Bit3 R/W X 2 CPU Divider Control Bit2 R/W X 1 CPU Divider Control Bit1 0001 = 1/1, 0010 = 1/2, 0011 = 1/3, 0100 = 1/4, R/W X 0 CPU Divider Control Bit0 R/W X 0101 = 1/5, 1001 = 1/9 0110 = 1/6, 1010 = 1/10 0111 = 1/7, 1011 = 1/11 1000 = 1/8 Note Byte16 Control Register Bit Description Contents Type Default 7 3V66 / PCI / PCIF Divider Control Bit3 R/W X 6 3V66 / PCI / PCIF Divider Control Bit2 R/W X 5 3V66 / PCI / PCIF Divider Control Bit1 3V66 divider ratio = 0010 = 1/2, 0110 = 1/6, 1010 = 1/10 0011 = 1/3, 0111 = 1/4, 1011 = 1/11 0100 = 1/4, 1000 = 1/8, 1100 = 1/12 0101 = 1/5, 1001 = 1/9 PCI / PCIF divider ratio = 3V66 x 1/2 R/W X 4 3V66 / PCI / PCIF Divider Control Bit0 R/W X 3 SRC Divider Control Bit3 R/W X 2 SRC Divider Control Bit2 R/W X 1 SRC Divider Control Bit1 R/W X 0 SRC Divider Control Bit0 R/W X Rev.1.00, Apr.28.2003, page 14 of 34 0001 = 1/1, 0010 = 1/2, 0011 = 1/3, 0100 = 1/4, 0101 = 1/5, 1001 = 1/9 0110 = 1/6, 1010 = 1/10 0111 = 1/7, 1011 = 1/11 1000 = 1/8 Note HD151TS206SS I2C Controlled Register Bit Map (cont.) Byte17 Control Register Bit Description Contents Type Default 7 Reserved 1 R/W 0 6 Reserved 1 R/W 0 5 Reserved 1 R/W 0 4 PLL2 Output (VCO2) Frequency Control Bit (M2 / N2 Divider Control Bit) PLL2 : for CPU 0 = Normal mode VCO2 frequency is changed on Table 5 selection decided by FS4/3/2/1/0 or B9[5:1]. 1 = Over or Down clocking mode VCO2 frequency is changed by B17[3:0] and B18[7:0] with decimal. B17[3:0] and B18[7:0] are able to be changed at B17[4] = 1. R/W 0 3 VCO2 Frequency Control Bit11 R/W 0 2 VCO2 Frequency Control Bit10 These bits are 100MHz digit of VCO2 frequency. 0000 = 0, 0001 = 1 …. 1001 = 9 R/W 1 1 VCO2 Frequency Control Bit9 R/W 0 0 VCO2 Frequency Control Bit8 R/W 0 Note: Note See Note1 1. B17[3:0] and B18[7:0] must be written together (at writing B18) in every case. Byte18 Control Register Bit Description Contents Type Default Note 7 VCO2 Frequency Control Bit7 R/W 0 See Note1 6 VCO2 Frequency Control Bit6 These bits are 10MHz digit of VCO2 frequency. 0000 = 0, 0001 = 1 …. 1001 = 9 R/W 0 5 VCO2 Frequency Control Bit5 R/W 0 4 VCO2 Frequency Control Bit4 R/W 0 3 VCO2 Frequency Control Bit3 R/W 0 2 VCO2 Frequency Control Bit2 R/W 0 1 VCO2 Frequency Control Bit1 R/W 0 0 VCO2 Frequency Control Bit0 R/W 0 Note: These bits are 1MHz digit of VCO2 frequency. 0000 = 0, 0001 = 1 …. 1001 = 9 1. B17[3:0] and B18[7:0] must be written together (at writing B18) in every case. Rev.1.00, Apr.28.2003, page 15 of 34 HD151TS206SS I2C Controlled Register Bit Map (cont.) How to set VCO2 frequency to 666 MHz. Write Byte17 0 Byte18 0 0 1 0 1 ON 1 0 0 1 6 1 0 0 1 1 6 0 6 max 720 min 200 How to read actual frequency of VCO2 and CPU clock Byte17[4] = 1 Actual VCO2 freq. read back. Byte19 0 1 1 0 0 Byte20 1 6 Note: 1 0 6 0 1 1 0 1 0 6 0 0 8 Case of VCO2 = 666.8 MHz. Other clock frequency are able to read using the same way as shown at upper. Byte19, Byte20 = Read back of VCO2 actual frequency. Byte21, Byte22 = Read back of CPU actual frequency. Byte19 Control Register Bit Description Contents Type Default 7 VCO2 Frequency Read Bit15 R 0 6 VCO2 Frequency Read Bit14 Calculation result of VCO2 frequency. 100 MHz digit 0000 = 0, 0001 = 1 …. 1001 = 9 R 0 5 VCO2 Frequency Read Bit13 R 0 4 VCO2 Frequency Read Bit12 R 0 3 VCO2 Frequency Read Bit11 R 0 2 VCO2 Frequency Read Bit10 R 0 1 VCO2 Frequency Read Bit9 R 0 0 VCO2 Frequency Read Bit8 R 0 Rev.1.00, Apr.28.2003, page 16 of 34 Calculation result of VCO2 frequency. 10 MHz digit 0000 = 0, 0001 = 1 …. 1001 = 9 Note HD151TS206SS I2C Controlled Register Bit Map (cont.) Byte20 Control Register Bit Description Contents Type Default 7 VCO2 Frequency Read Bit7 R 0 6 VCO2 Frequency Read Bit6 Calculation result of VCO2 frequency. 1 MHz digit 0000 = 0, 0001 = 1 …. 1001 = 9 R 0 5 VCO2 Frequency Read Bit5 R 0 4 VCO2 Frequency Read Bit4 R 0 3 VCO2 Frequency Read Bit3 R 0 2 VCO2 Frequency Read Bit2 R 0 1 VCO2 Frequency Read Bit1 R 0 0 VCO2 Frequency Read Bit0 R 0 Calculation result of VCO2 frequency. 0.1 MHz digit 0000 = 0, 0001 = 1 …. 1001 = 9 Note Byte 21 Control Register Bit Description Contents Type Default 7 CPU Frequency Read Bit15 R 0 6 CPU Frequency Read Bit14 Calculation result of CPU frequency. 100 MHz digit 0000 = 0, 0001 = 1 …. 1001 = 9 R 0 5 CPU Frequency Read Bit13 R 0 4 CPU Frequency Read Bit12 R 0 3 CPU Frequency Read Bit11 R 0 2 CPU Frequency Read Bit10 R 0 1 CPU Frequency Read Bit9 R 0 0 CPU Frequency Read Bit8 R 0 Calculation result of CPU frequency. 10MHz digit 0000 = 0, 0001 = 1 …. 1001 = 9 Note Byte22 Control Register Bit Description Contents Type Default 7 CPU Frequency Read Bit7 R 0 6 CPU Frequency Read Bit6 Calculation result of CPU frequency. 1 MHz digit 0000 = 0, 0001 = 1 …. 1001 = 9 R 0 5 CPU Frequency Read Bit5 R 0 4 CPU Frequency Read Bit4 R 0 3 CPU Frequency Read Bit3 R 0 2 CPU Frequency Read Bit2 R 0 1 CPU Frequency Read Bit1 R 0 0 CPU Frequency Read Bit0 R 0 Rev.1.00, Apr.28.2003, page 17 of 34 Calculation result of CPU frequency. 0.1 MHz digit 0000 = 0, 0001 = 1 …. 1001 = 9 Note HD151TS206SS I2C Controlled Register Bit Map (cont.) Byte23 Control Register Bit Description Contents Type Default 7 Watchdog Enable Control Bit 0 = Disable, Pin22 = 3V66_0 output 1 = Enable, Pin22 = RESET# output R/W 0 6 RESET# Reverse Control Bit 0 = Normal , 1 = Reverse R/W 0 5 Watchdog Timer Count Bit3 R/W 1 4 Watchdog Timer Count Bit2 R/W 0 3 Watchdog Timer Count Bit1 R/W 0 2 Watchdog Timer Count Bit0 These 4 bits corresponds to how many watchdog timer will wait from becoming “Alarm mode” (B23[0] = 1) to outputting RESET# pin to “Low”. Default is 586ms x8 = 4.7s at Power ON R/W 0 1 Backup Frequency Select Bit 0 = B10[4:0], 1 = B11[4:0] When SAFE_F# is “Low” , frequency mode is changed to the predefined frequency mode decided by B10[4:0] or B11[4:0]. R/W 0 0 Watchdog Status Bit 0 = Normal mode, 1 = Alarm mode R/W 0 Contents Type Default Note Byte24 Control Register Bit Description 7 Reserved R/W 0 6 Reserved R/W 0 5 Reserved R/W 0 4 Reserved R/W 0 3 Reserved R/W 0 2 Reserved R/W 0 1 Reserved R/W 0 0 Reserved R/W 0 Rev.1.00, Apr.28.2003, page 18 of 34 Note HD151TS206SS I2C Controlled Register Bit Map (cont.) Byte25 Control Register Bit Description Contents 7 CPU Clock Skew1 Control Bit3 6 CPU Clock Skew1 Control Bit2 5 CPU Clock Skew1 Control Bit1 4 CPU Clock Skew1 Control Bit0 Delay 1000 = +0.00ns, 1001 = +0.25ns, 1010 = +0.50ns, 1011 = +0.75ns, 1100 = +1.00ns, 1101 = +1.25ns, 1110 = +1.50ns, 1111 = +1.75ns, 3 CPU Clock Skew2 Control Bit3 2 CPU Clock Skew2 Control Bit2 1 CPU Clock Skew2 Control Bit1 0 CPU Clock Skew2 Control Bit0 Note: Delay 1000 = +0.0ns, 1001 = +0.1ns, 1010 = +0.2ns, 1011 = +0.3ns, 1100 = +0.4ns, 1101 = +0.5ns, 1110 = +0.6ns, 1111 = +0.7ns, Ahead 0111 = –0.25ns 0110 = –0.50ns 0101 = –0.75ns 0100 = –1.00ns 0011 = –1.25ns 0010 = –1.50ns 0001 = –1.75ns 0000 = –2.00ns Ahead 0111 = –0.1ns 0110 = –0.2ns 0101 = –0.3ns 0100 = –0.4ns 0011 = –0.5ns 0010 = –0.6ns 0001 = –0.7ns 0000 = –0.8ns Type Default Note R/W 1 See Note1 R/W 0 R/W 0 R/W 0 R/W 1 R/W 0 R/W 0 R/W 0 See Note1 1. Total CPU Clock Skew is Skew1+Skew2. Byte26 Control Register Bit Description Contents Type Default Note 7 PCIF / PCI Clock Skew2 Control Bit3 R/W 0 See Note1 6 PCIF / PCI Clock Skew2 Control Bit2 R/W 0 5 PCIF / PCI Clock Skew2 Control Bit1 R/W 0 4 PCIF / PCI Clock Skew2 Control Bit0 Skew2 is “Late” Skew that is Delay Time from “Normal” Skew1. 0000 = +0.0ns, 1000 = +4.0ns 0001 = +0.5ns, 1001 = +4.5ns 0010 = +1.0ns, 1010 = +5.0ns 0011 = +1.5ns, 1011 = +5.5ns 0100 = +2.0ns, 1100 = +6.0ns 0101 = +2.5ns, 1101 = +6.5ns 0110 = +3.0ns, 1110 = +7.0ns 0111 = +3.5ns, 1111 = +7.5ns R/W 0 3 PCIF / PCI Clock Skew1 Control Bit3 R/W 1 2 PCIF / PCI Clock Skew1 Control Bit2 R/W 0 1 PCIF / PCI Clock Skew1 Control Bit1 R/W 0 0 PCIF / PCI Clock Skew1 Control Bit0 R/W 0 Note: Skew1 is “Normal” Skew. Delay Ahead 1000 = +0.0ns, 0111 = –0.5ns 1001 = +0.5ns, 0110 = –1.0ns 1010 = +1.0ns, 0101 = –1.5ns 1011 = +1.5ns, 0100 = –2.0ns 1100 = +2.0ns, 0011 = –2.5ns 1101 = +2.5ns, 0010 = –3.0ns 1110 = +3.0ns, 0001 = –3.5ns 1111 = +3.5ns, 0000 = –4.0ns 1. PCIF / PCI Clock Skew is Skew1 (= Normal) or Skew1+Skew2 (= Late). Rev.1.00, Apr.28.2003, page 19 of 34 See Note1 HD151TS206SS I2C Controlled Register Bit Map (cont.) Byte27 Control Register Bit 7 6 5 4 3 2 1 0 Note: Description Reserved PCIF_2 Skew Select Bit PCIF_1 Skew Select Bit PCIF_0 Skew Select Bit 3V66 Clock Skew Control Bit3 3V66 Clock Skew Control Bit2 3V66 Clock Skew Control Bit1 3V66 Clock Skew Control Bit0 Contents Type R/W R/W R/W R/W R/W 0 = Normal, 1 = Late 0 = Normal, 1 = Late 0 = Normal, 1 = Late Delay Ahead 1000 = +0.0ns, 0111 = –0.5ns 1001 = +0.5ns, 0110 = –1.0ns R/W 1010 = +1.0ns, 0101 = –1.5ns 1011 = +1.5ns, 0100 = –2.0ns R/W 1100 = +2.0ns, 0011 = –2.5ns 1101 = +2.5ns, 0010 = –3.0ns R/W 1110 = +3.0ns, 0001 = –3.5ns 1111 = +3.5ns, 0000 = –4.0ns 1. Normal = Skew1(B26[3:0]), Late = Skew1(B26[3:0]) + Skew2 (B26[7:4]). Default 0 0 0 0 1 Note See Note1 0 0 0 Byte 28 Control Register Bit Description Contents Type Default 7 Reserved 0 = Normal, 1 = Late R/W 0 6 PCI_6 Skew Select Bit 0 = Normal, 1 = Late R/W 0 5 PCI_5 Skew Select Bit 0 = Normal, 1 = Late R/W 0 4 PCI_4 Skew Select Bit 0 = Normal, 1 = Late R/W 0 3 PCI_3 Skew Select Bit 0 = Normal, 1 = Late R/W 0 2 PCI_2 Skew Select Bit 0 = Normal, 1 = Late R/W 0 1 PCI_1 Skew Select Bit 0 = Normal, 1 = Late R/W 0 0 PCI_0 Skew Select Bit 0 = Normal, 1 = Late R/W 0 Note: Note See Note1 1. Normal = Skew1(B26[3:0]), Late = Skew1(B26[3:0]) + Skew2 (B26[7:4]). Byte29 Control Register Bit Description Contents Type Default 7 VCH Slew Rate Control Bit1 R/W 1 6 VCH Slew Rate Control Bit0 00 = Normal, 10 = “++” 01 = “+“ , 11 = “–” R/W 0 5 PCI Slew Rate Control Bit1 R/W 1 4 PCI Slew Rate Control Bit0 R/W 0 3 PCIF Slew Rate Control Bit1 2 PCIF Slew Rate Control Bit0 1 3V66 Slew Rate Control Bit1 0 3V66 Slew Rate Control Bit0 Rev.1.00, Apr.28.2003, page 20 of 34 00 = Normal, 10 = “++” 01 = “+“ , 11 = “–” 00 = Normal, 10 = “++” 01 = “+“ , 11 = “–” R/W 1 R/W 0 00 = Normal, 10 = “++” 01 = “+“ , 11 = “–” R/W 1 R/W 0 Note HD151TS206SS Clock Stop Timing Diagram PWRDWN# Assertion/De-assersion < 1.8 ms PWRDWN# 2× Iref (Controled by Byte2[5:3]) CPU (Stoppable) 6× Iref Float (Controled by Byte2[5:3]) CPU (Stoppable) 6× Iref Float CPU# (Stoppable) PWRDWN# Assertion/De-assertion Waveforms PWRDWN# Functionality PWRDWN# 1 0 CPU Normal Iref:2 or Float CPU# SRC Normal Normal Iref:2 Float or Float SRC# Normal Float 3V66 PCIF/PCI 66MHz 33MHz Low Low USB/DOT 48MHz REF 14.318MHz Low Low Renasas clock generator I2C Serial Interface Operation 1. Write mode 1.1 Controller (host) sends a start bit. 1.2 Controller (host) sends the write address D2 (h). 1.3 Renasas clock generator will acknowledge (Renasas clock gen. sends “Low”). 1.4 Controller (host) sends a begin byte M. 1.5 Renasas clock generator will acknowledge (Renasas clock gen. sends “Low”). 1.6 Controller (host) sends a byte count N. 1.7 Renasas clock generator will acknowledge (Renasas clock gen. sends “Low”). 1.8 Controller (host) sends data from byte M to byte M+N–1. 1.9 Renasas clock generator will acknowledge each byte one at a time. 1.10 Controller (host) sends a stop bit. 1 bit 7 bits Start bit 1 bit 1 bit 8 bits 1 bit 8 bits 1 bit 8 bits Slave R/W Ack Begin Byte = M Ack Byte Count = N Ack Byte M address D2(h) 1 bit 8 bits 1 bit 8 bits Ack Byte M+1 Ack Byte M+N–1 Rev.1.00, Apr.28.2003, page 21 of 34 1 bit 1 bit Ack Stop bit HD151TS206SS Renasas clock generator I2C Serial Interface Operation (cont.) 2. Read mode 2.1 Controller (host) sends a start bit. 2.2 Controller (host) sends the write address D2 (h). 2.3 Renasas clock generator will acknowledge (Renasas clock gen. sends “Low”). 2.4 Controller (host) sends a begin byte M. 2.5 Renasas clock generator will acknowledge (Renasas clock gen. sends “Low”). 2.6 Controller (host) sends a restart bit. 2.7 Controller (host) sends the read address D3 (h). 2.8 Renasas clock generator will acknowledge (Renasas clock gen. sends “Low”). 2.9 Renasas clock generator will send the byte count N. 2.10 Controller (host) will acknowledge. 2.11 Renasas clock generator will send data from byte M to byte M+N–1. 2.12 When Renasas clock generator sends the last byte, controller (host) will not acknowledge. 2.13 Controller (host) sends a stop bit. 1 bit 7 bits Start bit 1 bit 8 bits 1 bit 1 bit 8 bits 1 bit 1 bit 7 bits 1 bit Slave R/W Ack Begin Byte = M Ack Restart bit Slave R/W address D2(h) address D3(h) 1 bit 8 bits Ack Begin Count = N Ack Byte M 1 bit 8 bits 1 bit Ack Byte M+1 Ack 8 bits 1 bit 1 bit Byte M+N–1 Not Ack Stop bit Notes: 1. Renasas clock generator is a slave/receiver, I2C component. It can read back the data stored in the latches for the verification. 2. The data transfer rate supported by this clock generator is 100k bits/sec or less (standard mode). 3. The input is operating at 3.3 V logic levels. 4. The data byte format is 8 bit bytes. 5. To simplify the clock generator I2C interface, the protocol is set to use only block-write from the controller. 6. The bytes must be accessed in sequential order from lowest to highest byte with the ability to stop after any complete byte has been transferred. The data is loaded until a stop sequence is issued. 7. At power-on, all registers are set to a default condition, as shown. Rev.1.00, Apr.28.2003, page 22 of 34 HD151TS206SS Absolute Maximum Ratings Item Symbol Ratings Unit Supply voltage VDD –0.5 to 4.6 V VI –0.5 to 4.6 V Output voltage * VO –0.5 to VDD +0.5 V Input clamp current IIK –50 mA VI < 0 Output clamp current IOK –50 mA VO < 0 Continuous output current IO VO = 0 to VDD Input voltage 1 Maximum power dissipation at Ta = 55°C (in still air) Storage temperature Notes: Tstg ±50 mA 0.7 W –65 to +150 °C Conditions Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not implied. Exposure to absolute maximum rated conditions for extended periods may affect device reliability. 1. The input and output negative voltage ratings may be exceeded if the input and output clamp current ratings are observed. Recommended Operating Conditions Item Symbol Min Type Max Unit Supply voltage VDD 3.135 3.3 3.465 V Supply voltage VDDA 3.135 3.3 3.465 V –0.3 — VDD+0.3 V DC input signal voltage High level input voltage VIH 2.0 — VDD+0.3 V Low level input voltage VIL –0.3 — 0.8 V Operating temperature Ta 0 — 70 °C Rev.1.00, Apr.28.2003, page 23 of 34 Conditions HD151TS206SS DC Electrical Characteristics / Serial Input Port Ta = 0°C to 70°C, VDD = 3.3 V Typ *1 Max Unit 0.8 V VIH 2.0 V Input Current II –50 +50 µA VI = 0 V or 3.465 V, VDD = 3.465 V Input capacitance CI 10 pF SDATA & SCLK Item Symbol Min Input Low Voltage VIL Input High Voltage Note: Test Conditions 1. For conditions shown as Min or Max, use the appropriate value specified under recommended operating conditions. AC Electrical Characteristics / Serial Input port Ta = 0°C to 70°C, VDD = 3.3 V Item Symbol Min Typ Max Unit Test Conditions SCLK Frequency FSCLK 100 kHz Normal Mode Start Hold Time tSTHD 4.0 µs SCLK Low Time tLOW 4.7 µs SCLK High Time tHIGH 4.0 µs Data Setup Time tDSU 250 ns Data Hold Time tDHD 300 ns Stop Setup Time tSTSU 4.0 µs BUS Free Time between Stop & Start Condition tSPF 4.7 µs Rev.1.00, Apr.28.2003, page 24 of 34 Notes HD151TS206SS DC Electrical Characteristics CPU/CPU# Clock Ta = 0°C to 70°C, VDD = 3.3 V, Iref = 475 Ω Typ *1 Item Symbol Min Output voltage VO IO 3000 Output Current Output resistance Max Unit Test Conditions 1.20 V Rp = 49.9 Ω,VDD = 3.3 V I(nom) * mA VDD = 3.3 V Ω VO = 1.2 V 2 Notes: 1. For conditions shown as Min or Max, use the appropriate value specified under recommended operating conditions 2. I(nom) is output current(Ioh) shown in below. Ioh = VDD/(3Rr) = 3.3/(3x475) = 2.32 mA, Ioh x6 = 13.89 mA (Voh @Z: 0.695 V @50 Ω), Ioh x2 = 4.63 mA (Voh @Z: 0.232 V @50 Ω) AC Electrical Characteristics CPU/CPU# Clock (CPU at 0.7V Timing) Ta = 0°C to 70°C, VDD = 3.3 V, CL = 2 pF, Rs = 33.2 Ω, Rp = 49.9 Ω Item Symbol Min Typ Max Unit Cycle to cycle jitter tCCS |125| ps CPU Group Skew (CPU clock out to CPU clock out) tskS |100| ps Rise time tr 175 700 ps Vo=0.175V to 0.525V 200MHz Fall time tf 175 700 ps Vo=0.175V to 0.525V 200MHz Clock Duty Cycle 45 50 55 % CPU clock period(100) 9.99 ns CPU clock period(133) 7.49 ns CPU clock period(166) 5.99 ns CPU clock period(200) 4.99 ns 0.25 0.55 V Cross point(0.7V) voltage Note: Vcross 1. Difference of cycle time between two adjoining cycles. Rev.1.00, Apr.28.2003, page 25 of 34 Test Conditions Notes Note1 200MHz 200MHz HD151TS206SS DC Electrical Characteristics SRC/SRC# Clock Ta = 0°C to 70°C, VDD = 3.3 V, Iref = 475 Ω Item Symbol Min Output voltage VO IO 3000 Output Current Output resistance Typ *1 Max Unit Test Conditions 1.20 V Rp = 49.9 Ω, VDD = 3.3 V I(nom)* mA VDD = 3.3 V ohm VO = 1.2 V 2 Notes: 1. For conditions shown as Min or Max, use the appropriate value specified under recommended operating conditions 2. I(nom) is output current(Ioh) shown in below. Ioh = VDD/(3Rr) = 3.3/(3x475) = 2.32 mA, Ioh x6 = 13.89 mA (Voh @Z: 0.695 V @50 Ω), Ioh x2 = 4.63 mA (Voh @Z: 0.232 V @50 Ω) AC Electrical Characteristics SRC/SRC# Clock (SRC at 0.7V Timing) Ta = 0°C to 70°C, VDD = 3.3 V, CL = 2 pF, Rs = 33.2 Ω, Rp = 49.9 Ω Item Symbol Min Typ Max Unit Cycle to cycle jitter tCCS |125| ps Rise time tr 175 700 ps VO = 0.175 V to 0.525 V 100 MHz Fall time tf 175 700 ps VO = 0.175 V to 0.525 V 100 MHz Clock Duty Cycle 45 50 55 % SRC clock period(100) 9.99 ns SRC clock period(200) 4.99 ns Cross point(0.7V) voltage Vcross 0.25 0.55 V Note: 1. Difference of cycle time between two adjoining cycles. Rev.1.00, Apr.28.2003, page 26 of 34 Test Conditions Notes Note1 100 MHz 100 MHz HD151TS206SS DC Electrical Characteristics / 3V66 Buffer (CK409 Type5 Buffer) Ta = 0°C to 70°C, VDD = 3.3 V Item Symbol Min Typ *1 Max Unit Test Conditions Output Voltage VOH 3.1 V IOH = –1 mA, VDD = 3.3 V VOL 50 mV IOL = 1 mA, VDD = 3.3 V IOH –33 mA VOH = 1.0 V IOL 30 mA VOL = 1.95 V Output Current Note: 1. For conditions shown as Min or Max, use the appropriate value specified under recommended operating conditions. AC Electrical Characteristics / 3V66 Buffer Ta = 0°C to 70°C, VDD = 3.3 V, CL = 30 pF Item Symbol Min Typ Max Unit Test Conditions Notes Cycle to cycle jitter tCCS |250| ps Fig.1 3V66 Buffer (3V66 (4:0)) Group Skew tskS 0 250 ps Rising edge @1.5V to 1.5V Fig.2 Slew rate tSL 1.0 4.0 V/ns Clock Period 14.9979 ns Clock Duty Cycle 45 50 55 % 3V66 (4:0) leads 33MHz PCI 1.5 3.5 ns Note: 1. Difference of cycle time between two adjoining cycles. Rev.1.00, Apr.28.2003, page 27 of 34 Note1 0.4V to 2.4V HD151TS206SS DC Electrical Characteristics / PCI & PCIF Clock (CK409 Type5 Buffer) Ta = 0°C to 70°C, VDD = 3.3 V Item Symbol Min Typ *1 Max Unit Test Conditions Output Voltage VOH 3.1 V IOH = –1 mA, VDD = 3.3 V VOL 50 mV IOL = 1 mA, VDD = 3.3 V IOH –33 mA VOH = 1.0 V IOL 30 mA VOL = 1.95 V Output Current Note: 1. For conditions shown as Min or Max, use the appropriate value specified under recommended operating conditions. AC Electrical Characteristics / PCI & PCIF Clock Ta = 0°C to 70°C, VDD = 3.3 V, CL = 30 pF Item Symbol Min Typ Cycle to cycle jitter tCCS |250| ps Fig.1 PCI Group Skew tskS 0 500 ps Rising edge @1.5V to 1.5V Fig.2 29.996 ns 1.0 4.0 V/ns 45 50 55 % Clock Period Slew rate Clock Duty Cycle Note: tSL Max 1. Difference of cycle time between two adjoining cycles. Rev.1.00, Apr.28.2003, page 28 of 34 Unit Test Conditions Notes 0.4 V to 2.4 V Note1 HD151TS206SS DC Electrical Characteristics / 48_24MHz & VCH 48MHz Clock (CK409 Type3A Buffer) Ta = 0°C to 70°C, VDD = 3.3 V Item Symbol Min Typ *1 Max Unit Test Conditions Output Voltage VOH 3.1 V IOH = –1 mA, VDD = 3.3 V VOL 50 mV IOL = 1 mA, VDD = 3.3 V IOH –29 mA VOH = 1.0 V IOL 29 mA VOL = 1.95 V Output Current Note: 1. For conditions shown as Min or Max, use the appropriate value specified under recommended operating conditions. AC Electrical Characteristics / 48_24MHz & VCH 48MHz Clock Ta = 0°C to 70°C, VDD = 3.3 V, CL = 20 pF Item Symbol Min Typ Max Unit Test Conditions Notes Cycle to cycle jitter tCCS |350| ps Fig.1 20.831 ns 1.0 2.0 V/ns 45 50 55 % Clock Period Slew rate Clock Duty Cycle Note: tSL 1. Difference of cycle time between two adjoining cycles. Rev.1.00, Apr.28.2003, page 29 of 34 Note1 0.4V to 2.4V HD151TS206SS DC Electrical Characteristics / 48MHz Clock (CK409 Type3B Buffer) Ta = 0°C to 70°C, VDD = 3.3 V Item Symbol Min Typ *1 Max Unit Test Conditions Output Voltage VOH 3.1 V IOH = –1 mA, VDD = 3.3 V VOL 50 mV IOL = 1 mA, VDD = 3.3 V IOH –29 mA VOH = 1.0 V IOL 29 mA VOL = 1.95 V Output Current Note: 1. For conditions shown as Min or Max, use the appropriate value specified under recommended operating conditions. AC Electrical Characteristics / 48MHz Clock Ta = 0°C to 70°C, VDD = 3.3 V, CL = 10 pF Item Symbol Min Typ Max Unit Test Conditions Notes Cycle to cycle jitter tCCS |350| ps Fig.1 20.831 ns 2.0 4.0 V/ns 45 50 55 % Clock Period Slew rate Clock Duty Cycle Note: tSL 1. Difference of cycle time between two adjoining cycles. Rev.1.00, Apr.28.2003, page 30 of 34 Note1 0.4V to 2.4V HD151TS206SS DC Electrical Characteristics / REF Clock (CK409 Type5 Buffer) Ta = 0°C to 70°C, VDD = 3.3 V Item Symbol Min Typ *1 Max Unit Test Conditions Output Voltage VOH 3.1 V IOH = –1 mA, VDD = 3.3 V VOL 50 mV IOL = 1 mA, VDD = 3.3 V IOH –33 mA VOH = 1.0 V IOL 30 mA VOL = 1.95 V Output Current Note: 1. For conditions shown as Min or Max, use the appropriate value specified under recommended operating conditions. AC Electrical Characteristics / REF Clock Ta = 0°C to 70°C, VDD = 3.3 V, CL = 30 pF Item Symbol Min Typ Max Unit Test Conditions Notes Cycle to cycle jitter tCCS |1000| ps Fig.1 69.841 ns 1.0 4.0 V/ns 45 50 55 % Clock Period Slew rate Clock Duty Cycle Note: tSL 1. Difference of cycle time between two adjoining cycles. Rev.1.00, Apr.28.2003, page 31 of 34 Note1 0.4V to 2.4V HD151TS206SS Clock Out tcycle n+1 tcycle n t CCS = (tcycle n) - (tcycle n+1) Fig.1 Cycle to Cycle Jitter (3.3V Single Ended Clock Output) Clock Outx 1.5 V Clock Outy 1.5 V tskS Fig.2 Output Clock Skew (3.3V Single Ended Clock Output) RS = 33.2 Ω ZLT = ZLC = 50 Ω CPU LT TS206 RS = 33.2 Ω CPU# RI(ref) = 475 Ω LC RP = 49.9 Ω RP = 49.9 Ω CL = 2 pF Fig.3 Load Circuit for CPU/CPU# Rev.1.00, Apr.28.2003, page 32 of 34 CL = 2 pF HD151TS206SS Package Dimensions Unit: mm 15.85 ± 0.3 25 1 24 0.635 0.25 ± 0.1 0.15 0.13 M Rev.1.00, Apr.28.2003, page 33 of 34 0.10 Min 0.78 Max 0.15 ± 0.05 2.65 Max 7.50 ± 0.3 48 10.40 ± 0.4 1.45 0˚ - 10˚ 0.60 ± 0.2 HD151TS206SS Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan Keep safety first in your circuit designs! 1. Renesas Technology Corporation puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or mishap. Notes regarding these materials 1. These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corporation product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corporation or a third party. 2. Renesas Technology Corporation assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials. 3. All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Renesas Technology Corporation without notice due to product improvements or other reasons. It is therefore recommended that customers contact Renesas Technology Corporation or an authorized Renesas Technology Corporation product distributor for the latest product information before purchasing a product listed herein. The information described here may contain technical inaccuracies or typographical errors. Renesas Technology Corporation assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors. Please also pay attention to information published by Renesas Technology Corporation by various means, including the Renesas Technology Corporation Semiconductor home page (http://www.renesas.com). 4. When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corporation assumes no responsibility for any damage, liability or other loss resulting from the information contained herein. 5. Renesas Technology Corporation semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Renesas Technology Corporation or an authorized Renesas Technology Corporation product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use. 6. The prior written approval of Renesas Technology Corporation is necessary to reprint or reproduce in whole or in part these materials. 7. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination. Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited. 8. Please contact Renesas Technology Corporation for further details on these materials or the products contained therein. http://www.renesas.com Copyright © 2003. Renesas Technology Corporation, All rights reserved. Printed in Japan. Colophon 0.0 Rev.1.00, Apr.28.2003, page 34 of 34