RT9012 Preliminary 300mA Dual LDO Regulator with POR General Description Features RT9012 is a dual channel, low noise, and low dropout with the sourcing ability up to 300mA and power-on reset function. The range of output voltage is from 1.2V to 3.6V by operating from 2.5V to 5.5V input. z Wide Operating Voltage Ranges : 2.5V to 5.5V z Low-Noise for RF Application No Noise Bypass Capacitor Required Fast Response in Line/Load Transient TTL-Logic-Controlled Shutdown Input Low Temperature Coefficient Dual LDO Outputs (300mA/300mA) Ultra-low Quiescent Current 27μ μA/LDO High Output Accuracy 2% Short Circuit Protection Thermal Shutdown Protection Current Limit Protection Short Circuit Thermal Folded Back Protection Tiny 8-Lead WDFN Package RoHS Compliant and 100% Lead (Pb)-Free RT9012 offers 2% accuracy, extremely low dropout voltage (240mV @ 300mA), and extremely low ground current, only 27μA per LDO. The shutdown current is near zero current which is suitable for battery-power devices. Other features include current limiting, over temperature, output short circuit protection. z z z z z z z z z RT9012 is short circuit thermal folded back protected. RT9012 lowers its OTP trip point from 165°C to 110°C when output short circuit occurs (VOUT < 0.4V) providing maximum safety to end users. z z z z RT9012 can operate stably with very small ceramic output capacitors, reducing required board space and component cost. RT9012 is available in fixed output voltages in the z WDFN-8L 2x2 package. z Ordering Information RT9012- Applications z z z Package Type QW : WDFN-8L 2x2 (W-Type) Operating Temperature Range P : Pb Free with Commercial Standard G : Green (Halogen Free with Commercial Standard) Output Voltage : VOUT1/VOUT2 CM : 1.20V/2.80V, FM : 1.50V/2.80V FS : 1.50V/3.30V, GK : 1.80V/2.60V GM : 1.80V/2.80V, GP : 1.80V/3.00V GS : 1.80V/3.30V, JG : 2.50V/1.80V JM : 2.50V/2.80V, JP : 2.50V/3.00V JS : 2.50V/3.30V, JN : 2.50V/2.85V MG : 2.80V/1.80V, MM : 2.80V/2.80V NN : 2.85V/2.85V, PP : 3.00V/3.00V Note : z CDMA/GSM Cellular Handsets Battery-Powered Equipment Laptop, Palmtops, Notebook Computers Hand-Held Instruments PCMCIA Cards Portable Information Appliances Pin Configurations (TOP VIEW) VIN 1 EN1 2 EN2 3 SET 4 8 9 7 6 5 VOUT1 VOUT2 POR GND WDFN-8L 2x2 Marking Information For marking information, contact our sales representative directly or through a Richtek distributor located in your area, otherwise visit our website for detail. Richtek Pb-free and Green products are : `RoHS compliant and compatible with the current requirements of IPC/JEDEC J-STD-020. `Suitable for use in SnPb or Pb-free soldering processes. `100% matte tin (Sn) plating. DS9012-06 August 2007 www.richtek.com 1 RT9012 Preliminary Typical Application Circuit 100K VIN VIN POR CIN 1uF RT9012 EN1 Chip Enable VOUT1 COUT1 1uF VOUT1 EN2 VOUT2 SET GND COUT2 1uF VOUT2 CDELAY Functional Pin Description Pin No. Pin Name Pin Function 1 VIN Supply Input. 2 EN1 Chip Enable1 (Active High). 3 EN2 Chip Enable2 (Active High). 4 SET Delay Set Input. Connect external capacitor to GND to set the internal delay. 5 GND Common Ground. 6 POR 7 VOUT2 Channel 2 Output Voltage. 8 VOUT1 Channel 1 Output Voltage. Exposed Pad (9) Power-On Reset Output : Open-drain output. Active low indicates an output under-voltage condition on regulator 2. The exposed pad must be soldered to a large PCB and connected to GND GND for maximum power dissipation. Available Voltage Version Code C F W G D Y H E J K T Voltage 1.2 1.5 1.6 1.8 1.85 1.9 2 2.1 2.5 2.6 2.65 Code L M N V P Q R S -- -- -- Voltage 2.7 2.8 2.85 2.9 3 3.1 3.2 3.3 -- -- -- www.richtek.com 2 DS9012-06 August 2007 RT9012 Preliminary Function Block Diagram EN1 Shutdown and Logic Control 0.2uA VIN - VREF MOS Driver + Error Amplifier VOUT1 Current-Limit and Thermal Protection GND EN2 Shutdown and Logic Control 0.2uA - VREF + Error Amplifier MOS Driver VOUT2 Current-Limit and Thermal Protection GND SET DS9012-06 August 2007 POR& Delay POR www.richtek.com 3 RT9012 Preliminary Absolute Maximum Ratings z z z z z z z (Note 1) Supply Input Voltage -----------------------------------------------------------------------------------------------------Other I/O Pin Voltages --------------------------------------------------------------------------------------------------Power Dissipation, PD @ TA = 25°C WDFN-8L 2x2 -------------------------------------------------------------------------------------------------------------Package Thermal Resistance (Note 4) WDFN-8L 2x2, θJA --------------------------------------------------------------------------------------------------------Lead Temperature (Soldering, 10 sec.) ------------------------------------------------------------------------------Storage Temperature Range -------------------------------------------------------------------------------------------ESD Susceptibility (Note 2) HBM (Human Body Mode) ---------------------------------------------------------------------------------------------MM (Machine Mode) ------------------------------------------------------------------------------------------------------ Recommended Operating Conditions z z z z 6V 6V 0.606W 165°C/W 260°C −65°C to 150°C 2kV 200V (Note 3) Supply Input Voltage ------------------------------------------------------------------------------------------------------ 2.5V to 5.5V Enable Input Voltage ------------------------------------------------------------------------------------------------------ 0V to 5.5V Operation Junction Temperature Range ------------------------------------------------------------------------------ −40°C to 125°C Operation Ambient Temperature Range ------------------------------------------------------------------------------ 0°C to 85°C Electrical Characteristics (VIN = VOUT + 1V, VEN = VIN, CIN = COUT = 1μF, TA = 25°C, unless otherwise specified.) Parameter Input Voltage Dropout Voltage Symbol VIN (Note 5) VDROP Test Conditions Min Typ Max Units 2.5 -- 5.5 V IOUT = 150mA -- 120 -- mV IOUT = 300mA -- 240 -- mV 1.2 -- 3.6 V VIN = 2.5V to 5.5V Output voltage range VOUT VOUT Accuracy ΔV IOUT = 1mA -2 -- +2 % Line Regulation ΔVLINE VIN = (VOUT + 0.3V) to 5.5V or VIN > 2.5V, whichever is larger -- -- 0.2 %/V Load Regulation ΔVLOAD 1mA < IOUT< 300mA -- -- 0.6 % RLOAD = 1Ω 330 450 700 mA Current Limit Quiescent Current IQ VEN > 1.5V -- 58 80 μA Shutdown Current IQ_SD VEN < 0.4V -- -- 1 μA VIH VIN = 2.5V to 5.5V, Power On 1.5 -- -- VIL VIN = 2.5V to 5.5V, Shutdown -- -- 0.4 -- 100 -- ppm/°C EN Threshold Output Voltage TC V Thermal Shutdown TSD -- 170 -- °C Thermal Shutdown Hysteresis ΔTSD -- 40 -- °C To be continued www.richtek.com 4 DS9012-06 August 2007 RT9012 Preliminary Parameter Min Typ Max Units f =100Hz -- 65 -- dB f =1kHz -- 60 -- dB f =10kHz -- 50 -- dB f =100Hz -- 65 -- dB f =1kHz -- 50 -- dB f =10kHz -- 50 -- dB VTHL Low Threshold, % of nominal VOUT2 (Flag On) 90 -- -- % VTHH High Threshold, % of nominal VOUT2 (Flag Off) -- -- 96 % POR Output Logic Low Voltage VOL ILOW = 250uA -- 0.02 0.1 V POR Leakage Current IPOR Flag Off -1 0.01 1 μA Set pin Current Source VSET = 0 0.60 1.25 1.70 μA Set pin Threshold POR = high -- 1.4 -- V PSRR ILOAD = 10mA PSRR ILOAD = 150mA Symbol PSRR PSRR Test Conditions Power Good Reset Threshold Note 1. Stresses listed as the above "Absolute Maximum Ratings" may cause permanent damage to the device. These are for stress ratings. Functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may remain possibility to affect device reliability. Note 2. Devices are ESD sensitive. Handling precaution recommended. Note 3. The device is not guaranteed to function outside its operating conditions. Note 4. θJA is measured in the natural convection at T A = 25°C on a low effective thermal conductivity test board of JEDEC 51-3 thermal measurement standard. Note 5. The dropout voltage is defined as VIN -VOUT, which is measured when VOUT is VOUT(NORMAL) − 100mV. DS9012-06 August 2007 www.richtek.com 5 RT9012 Preliminary Typical Operating Characteristics Output Voltage vs. Temperature Output Voltage vs. Temperature 3.4 RT9012-GS, VOUT1 1.85 Output Voltage (V) Output Voltage (V) 1.9 1.8 1.75 RT9012-GS, VOUT2 3.35 3.3 3.25 3.2 1.7 -50 -25 0 25 50 75 100 -50 125 -25 0 Temperature (°C) RT9012-GS VIN = VEN = 4.3V CIN = COUT1 = COUT2 = 1uF/X7R 100 125 RT9012-GS, VOUT2 TJ = 125°C 300 60 55 250 TJ = 25°C 200 150 TJ = -40°C 100 50 50 0 -50 -25 0 25 50 75 100 0 125 50 Temperature (°C) 0 PSRR 10000 RT9011-FM, VOUT1 VIN = 4.3V ± 0.1V CIN = COUT1 = COUT2 = 1uF/X7R ILOAD = 100mA ILOAD = 50mA -20 -40 ILOAD = 10mA -60 -80 0.01 10 0.1 100 1 1000 10k 10000 Frequency (Hz) (Hz) www.richtek.com 6 100 150 200 250 300 Load Current (mA) 100k 100000 1000k 1000000 POR Delay Time (ms) 20 PSRR (dB) 75 Dropout Voltage vs. Load Current 350 Dropout Voltage (mV) Quiescent Current (uA) 65 50 Temperature (°C) Quiescent Current vs. Temperature 70 25 POR Delay RT9012-FM 1000 100 10 1 0.1 0.01 0.0001 0.0010 0.0100 0.1000 1.0000 POR Setting Capacitance (uF) DS9012-06 August 2007 RT9012 Preliminary Line Transient Response Line Transient Response RT9012-GS, Both ILOAD = 10mA VIN = 3.8V to 4.8V RT9012-GS, Both ILOAD = 1mA VIN = 3.8V to 4.8V VIN 4.8 (V) VIN 4.8 (V) VOUT2 (10mV/Div) VOUT2 (10mV/Div) VOUT1 (10mV/Div) VOUT1 (10mV/Div) 3.8 3.8 Time (100μs/Div) Time (100μs/Div) Line Transient Response Line Transient Response RT9012-GS, Both ILOAD = 50mA VIN = 3.8V to 4.8V RT9012-GS, Both ILOAD = 100mA VIN = 3.8V to 4.8V VIN 4.8 (V) VIN 4.8 (V) VOUT2 (10mV/Div) VOUT2 (10mV/Div) VOUT1 (10mV/Div) VOUT1 (10mV/Div) 3.8 3.8 Time (100μs/Div) Time (100μs/Div) Load Transient Response Load Transient Response RT9012-GS, ILOAD = 10mA to 100mA VIN = VEN = 4.3V CIN = COUT1 = COUT2 = 1uF/X7R RT9012-GS, ILOAD = 10mA to 50mA VIN = VEN = 4.3V CIN = COUT1 = COUT2 = 1uF/X7R IOUT (50mA/Div) IOUT (100mA/Div) VOUT1 (20mV/Div) VOUT1 (20mV/Div) VOUT2 (20mV/Div) VOUT2 (20mV/Div) Time (250μs/Div) DS9012-06 August 2007 Time (250μs/Div) www.richtek.com 7 RT9012 Preliminary Start Up EN Pin Shutdown Response RT9012-FM, VIN = 5V IOUT1 = IOUT2 = 50mA RT9012-FM, VIN = 5V IOUT1 = IOUT2 = 50mA (5V/Div) V EN (5V/Div) V EN V OUT2 V OUT2 V OUT1 V OUT1 (1V/Div) (1V/Div) Time (5μs/Div) Time (50μs/Div) Power-On Noise RT9012-FM Both ILOAD = 10mA RT9012-GS, No LOAD VIN = VEN = 4.5V(By battery) 150 CIN = COUT1 = COUT2 = 1uF/X7R 100 Noise (μV/Div) VEN (5V/Div) VOUT1 (1V/Div) VOUT2 (2V/Div) POR (5V/Div) 50 0 -50 -100 -150 Time (10μs/Div) Time (10ms/Div) Noise 300 RT9012-GS, ILOAD = 50mA VIN = VEN = 4.5V(By battery) CIN = COUT1 = COUT2 = 1uF/X7R Noise (μV/Div) 200 100 0 -100 -200 -300 Time (10ms/Div) www.richtek.com 8 DS9012-06 August 2007 RT9012 Preliminary Applications Information Like any low-dropout regulator, the external capacitors used with the RT9012 must be carefully selected for regulator stability and performance. Using a capacitor whose value is > 1μF on the RT9012 input and the amount of capacitance can be increased without limit. The input capacitor must be located a distance of not more than 0.5 inch from the input pin of the IC and returned to a clean analog ground. Any good quality ceramic or tantalum can be used for this capacitor. The capacitor with larger value and lower ESR (equivalent series resistance) provides better PSRR and line-transient response. The output capacitor must meet both requirements for minimum amount of capacitance and ESR in all LDOs application. The RT9012 is designed specifically to work with low ESR ceramic output capacitor in space-saving and performance consideration. Using a ceramic capacitor whose value is at least 1μF with ESR is > 20mΩ on the RT9012 output ensures stability. The RT9012 still works well with output capacitor of other types due to the wide stable ESR range. Figure 1. shows the curves of allowable ESR range as a function of load current for various output capacitor values. Output capacitor of larger capacitance can reduce noise and improve load transient response, stability, and PSRR. The output capacitor should be located not more than 0.5 inch from the VOUT pin of the RT9012 and returned to a clean analog ground. Region of Stable COUT ESR vs. Load Current Region ESR (Ω) (Ω) OUT ESR RegionofofStable StableCCOUT 100 RT9012-FM, VIN = 5V CIN = COUT1 = COUT2 = 1uF/X7R 10 Unstable Range 1 Thermal Considerations Thermal protection limits power dissipation in RT9012. When the operation junction temperature exceeds 170°C, the OTP circuit starts the thermal shutdown function and turns the pass element off. The pass element turn on again after the junction temperature cools by 40°C. RT9012 lowers its OTP trip level from 170°C to 110°C when output short circuit occurs (VOUT < 0.4V) as shown in Figure 2. It limits IC case temperature under 100°C and provides maximum safety to customer while output short circuit occurring. VOUT Short to GND 0.4V VOUT IOUT TSD 170 °C 110 °C OTP Trip Point 110 °C IC Temperature 80 °C Figure 2. Short Circuit Thermal Folded Back Protection when Output Short Circuit Occurs (Patent) For continuous operation, do not exceed absolute maximum operation junction temperature 125°C. The power dissipation definition in device is : PD = (VIN − VOUT) x IOUT + VIN x IQ Stable Range 0.1 0.01 The maximum power dissipation depends on the thermal resistance of IC package, PCB layout, the rate of surroundings airflow and temperature difference between junction to ambient. The maximum power dissipation can be calculated by following formula : Simulation Verify 0.001 0 50 100 150 200 Load Current (mA) Figure 1. Stable Cout ESR Range DS9012-06 August 2007 250 300 PD(MAX) = ( TJ(MAX) − TA ) /θJA Where T J(MAX) is the maximum operation junction temperature 125°C, TA is the ambient temperature and the θJA is the junction to ambient thermal resistance. www.richtek.com 9 RT9012 Preliminary For recommended operating conditions specification of RT9012, where T J(MAX) is the maximum junction temperature of the die (125°C) and TA is the operated ambient temperature. The junction to ambient thermal resistance (θJA is layout dependent) for WDFN-8L 2x2 package is 108°C/W on the standard JEDEC 51-3 singlelayer thermal test board. The maximum power dissipation at TA = 25°C can be calculated by following formula : P D(MAX) = ( 125°C − 25°C ) / 108 = 0.926W for WDFN-8L 2x2 packages The maximum power dissipation depends on operating ambient temperature for fixed T J(MAX) and thermal resistance θJA . For RT9012 packages, the Figure 3 of derating curves allows the designer to see the effect of rising ambient temperature on the maximum power allowed. Power Dissipation vs. Ambient Temperature 0.8 Power Dissipation (W) 0.7 0.6 WDFN-8L 2x2 0.5 0.4 0.3 0.2 0.1 0 0 25 50 75 100 125 Ambient Temperature (°C) Figure 3. Derating Curves for RT9012 Packages www.richtek.com 10 DS9012-06 August 2007 RT9012 Preliminary Outline Dimension D2 D L E E2 1 e SEE DETAIL A b 2 1 2 1 A A1 A3 DETAIL A Pin #1 ID and Tie Bar Mark Options Note : The configuration of the Pin #1 identifier is optional, but must be located within the zone indicated. Symbol Dimensions In Millimeters Dimensions In Inches Min Max Min Max A 0.700 0.800 0.028 0.031 A1 0.000 0.050 0.000 0.002 A3 0.175 0.250 0.007 0.010 b 0.200 0.300 0.008 0.012 D 1.950 2.050 0.077 0.081 D2 1.000 1.250 0.039 0.049 E 1.950 2.050 0.077 0.081 E2 0.400 0.650 0.016 0.026 e L 0.500 0.300 0.020 0.400 0.012 0.016 W-Type 8L DFN 2x2 Package Richtek Technology Corporation Richtek Technology Corporation Headquarter Taipei Office (Marketing) 5F, No. 20, Taiyuen Street, Chupei City 8F, No. 137, Lane 235, Paochiao Road, Hsintien City Hsinchu, Taiwan, R.O.C. Taipei County, Taiwan, R.O.C. Tel: (8863)5526789 Fax: (8863)5526611 Tel: (8862)89191466 Fax: (8862)89191465 Email: [email protected] DS9012-06 August 2007 www.richtek.com 11