Noninverting Buffer with MC74VHC1G07 Open Drain Output The MC74VHC1G07 is an advanced high speed CMOS buffer with open drain output fabricated with silicon gate CMOS technology. It achieves high speed operation similar to equivalent Bipolar Schottky TTL while maintaining CMOS low power dissipation. The internal circuit is composed of three stages, including a buffer and an open drain output which provides the capability to set the output switching level. This allows the MC74VHC1G07 to be used to interface 5 V circuits to circuits of any voltage between V CC and 7 V using an external resistor and power supply. The MC74VHC1G07 input structure provides protection when voltages up to 7 V are applied, regardless of the supply voltage. • High Speed: t PD = 3.8 ns (Typ) at V CC = 5 V • Low Internal Power Dissipation: I CC = 2 mA (Max) at T A = 25°C • Power Down Protection Provided on Inputs • Pin and Function Compatible with Other Standard Logic Families • Chip Complexity: FET = 105; Equivalent Gate = 26 MARKING DIAGRAMS 5 4 1 2 V7d 3 SC–88A / SOT–353/SC–70 DF SUFFIX CASE 419A Pin 1 d = Date Code 5 Figure 1. Pinout (Top View) 4 V7d 1 2 Figure 2. Logic Symbol 3 TSOP–5/SOT–23/SC–59 DT SUFFIX CASE 483 Pin 1 d = Date Code FUNCTION TABLE PIN ASSIGNMENT 1 2 3 4 5 NC IN A GND OUT Y V CC Inputs A L H Output Y L Z ORDERING INFORMATION See detailed ordering and shipping information in the package dimensions section on page 4 of this data sheet. VH7–1/4 MC74VHC1G07 MAXIMUM RATINGS Symbol V CC V IN Parameter Value – 0.5 to + 7.0 DC Supply Voltage Unit V DC Input Voltage – 0.5 to +7.0 V DC Output Voltage – 0.5 to +7.0 V Input Diode Current –20 mA Output Diode Current V OUT < GND; V OUT > V CC +20 mA DC Output Current, per Pin + 25 mA DC Supply Current, V CC and GND +50 mA Power dissipation in still air SC–88A, TSOP–5 200 mW Thermal resistance SC–88A, TSOP–5 333 °C/W Lead Temperature, 1 mm from Case for 10 s 260 °C Junction Temperature Under Bias + 150 °C Storage temperature –65 to +150 °C ESD Withstand Voltage Human Body Model (Note 2) >2000 V Machine Model (Note 3) > 200 Charged Device Model (Note 4) N/A I LATCH–UP Latch–Up Performance Above V CC and Below GND at 125°C (Note 5) ± 500 mA 1. Maximum Ratings are those values beyond which damage to the device may occur. Exposure to these conditions or conditions beyond those indicated may adversely affect device reliability. Functional operation under absolute–maximum–rated conditions is not implied. Functional operation should be restricted to the Recommended Operating Conditions. 2. Tested to EIA/JESD22–A114–A 3. Tested to EIA/JESD22–A115–A 4. Tested to JESD22–C101–A 5. Tested to EIA/JESD78 V OUT I IK I OK I OUT I CC PD θ JA TL TJ T stg V ESD RECOMMENDED OPERATING CONDITIONS Symbol Parameter V CC DC Supply Voltage V IN DC Input Voltage V OUT DC Output Voltage TA Operating Temperature Range t r ,t f Input Rise and Fall Time Min 2.0 0.0 0.0 – 55 0 0 V CC = 3.3 ± 0.3 V V CC = 5.0 ± 0.5 V Max 5.5 5.5 7.0 + 125 100 20 Unit V V V °C ns/V DEVICE JUNCTION TEMPERATURE VERSUS Time, Hours 1,032,200 419,300 178,700 79,600 37,000 17,800 8,900 Time, Years 117.8 47.9 20.4 9.4 4.2 2.0 1.0 NORMALIZED FAILURE RATE TIME TO 0.1% BOND FAILURES Junction Temperature °C 80 90 100 110 120 130 140 1 1 10 100 1000 TIME, YEARS Figure 3. Failure Rate vs. Time Junction Temperature VH7–2/4 MC74VHC1G07 DC ELECTRICAL CHARACTERISTICS V Symbol V IH Parameter Minimum High–Level Test Conditions Input Voltage V IL Maximum Low–Level Input Voltage V OH V OL Min 1.5 Max Min 1.5 Max Min 1.5 3.0 4.5 2.1 3.15 2.1 3.15 2.1 3.15 5.5 2.0 3.85 3.85 3.85 V 0.5 0.5 0.9 1.35 0.9 1.35 2.0 1.9 1.9 3.0 4.5 2.9 4.4 3.0 4.0 2.9 4.4 2.9 4.4 V IN = V IH or V IL I OH = –4 mA 3.0 2.58 2.48 2.34 I OH = –8 mA V IN = V IH or V IL 4.5 2.0 3.94 3.80 I OL = 50 µA 3.0 4.5 I OH = – 50 µA Unit V 0.9 1.35 1.9 Output Voltage V IN = V IH or V IL Max 0.5 5.5 2.0 V IN = V IH or V IL Output Voltage V IN = V IH or V IL Typ T A < 85°C –55°C<TA<125°C (V) 2.0 3.0 4.5 Minimum High–Level Maximum Low–Level T A = 25°C CC 1.65 1.65 1.65 V 3.66 0.0 0.1 0.1 0.1 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.1 V V IN = V IH or V IL I OL = 4 mA 3.0 0.36 0.44 0.52 4.5 0 to5.5 0.36 ±0.1 0.44 ±1.0 0.52 ±1.0 µA 5.5 2.0 20 40 µA 0 0.25 2.5 5.0 µA I IN Maximum Input I OL = 8 mA V IN = 5.5 V or GND I CC Leakage Current Maximum Quiescent V IN = V CC or GND Supply Current I OPD Maximum Off–state Leakage Current V OUT = 5.5 V AC ELECTRICAL CHARACTERISTICS C load = 50 pF, Input t r = t f = 3.0 ns T A = 25°C Symbol t PZL t PLZ C IN Parameter Maximum Output Enable Time, Input A to Y Maximum Output Disable Time Test Conditions T A < 85°C –55°C to 125°C Typ Max V CC = 3.3 ± 0.3 V C L = 15 pF R L = R I = 500 Ω C L = 50 pF 5.0 7.5 7.1 10.6 8.5 12.0 10.0 14.5 V CC = 5.0 ± 0.5 V C L = 15 pF R L = R I = 500 Ω C L = 50 pF V CC = 3.3 ± 0.3 V C L = 50 pF R L = R I = 500 Ω V CC = 5.0 ± 0.5 V C L = 50 pF R L = R I = 500 Ω 3.8 5.3 7.5 5.5 7.5 10.6 6.5 8.5 12.0 8.0 10.0 14.5 5.3 7.5 8.5 10.0 4 10 10 10 Maximum Input Capacitance Min Min Max Min Max Unit ns ns pF Typical @ 25°C, V CC = 5.0 V C PD Power Dissipation Capacitance (Note 6) 18 pF 6. C PD is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation: I CC(OPR) = C PD x V CCx f in + I CC . C PD is used to determine the no– load dynamic power consumption; P D = C PD x V CC 2 x f in + I CCx V CC . VH7–3/4 MC74VHC1G07 A Figure 5. Switching Waveforms Figure 4. Output Voltage Mismatch Application C L = 50 pF equivalent (Includes jig and probe capacitance) R L = R 1 = 500 Ω or equivalent R T = Z OUT of pulse generator (typically 50 Ω) Figure 6. Test Circuit Figure 8. LED Driver Figure 7. Complex Boolean Functions Figure 9. GTL Driver DEVICE ORDERING INFORMATION Device Nomenclature Device Order Number Logic Circuit Temp Range Indicator Identifier Technology Device Function Package Type Package Tape and (Name/SOT#/ Suffix Reel Suffix Common Name) MC74VHC1G07DFT1 MC 74 VHC1G 07 DF T1 MC74VHC1G07DFT2 MC 74 VHC1G 07 DF T2 MC74VHC1G07DFT4 MC 74 VHC1G 07 DF T4 MC74VHC1G07DTT1 MC 74 VHC1G 07 DT T1 MC74VHC1G07DTT3 MC 74 VHC1G 07 DT T3 SC–70/SC–88A/ SOT–353 SC–70/SC–88A/ SOT–353 SC–70/SC–88A/ SOT–353 SOT–23/TSOPS/ SC–59 SOT–23/TSOPS/ SC–59 Tape and Reel Size 178 mm (7 in) 3000 Unit 178 mm (7 in) 3000 Unit 330 mm (13 in) 10,000 Unit 178 mm (7 in) 3000 Unit 330 mm (13 in) 10,000 Unit VH7–4/4