ETC MAX16070-MAX16071系统监测器

19-5003; Rev 1; 6/10
12 通道 /8通道、闪存配置系统监测器,
提供非易失故障寄存器
内的所有器件配置信息均存储在非易失闪存存储器。出现故
障时,故障标志和通道电压可自动存储到非易失闪存存储器,
以便回读故障信息。
S 12/8 路输入监测具有过压 /欠压 / 预警门限
内部精度为1% 的10 位 ADC用于测量每路输入,并将结果与
过压门限、欠压门限以及可以配置为欠压或过压的预警门限
进行比较。当检测电压超出设定的门限时产生故障报警信号。
针对不同的故障条件可以配置三个独立的报警输出信号。
因为 MAX16070/MAX16071支持高达14V的电源电压,该
系列器件可直接采用多数系统中的12V中等电压总线供电。
MAX16070/MAX16071有 8/6 个可编程的通用输入 / 输出
引脚 (GPIO)。通过闪存配置 GPIO后,可以用作故障输出、
看门狗输入或输出以及手动复位。
系统关断时,MAX16070/MAX16071的非易失故障存储器
用于记录信息。故障记录器会在内部闪存中记录故障,为了
防止意外擦除数据,还可设置锁存位保护存储的故障数据。
MAX16070/MAX16071采用SMBus™ 或 JTAG串口进行配
置。MAX16070/MAX16071采用 40 引脚、6mmx6mm
TQFN 封装。两款器件均工作在 -40 °C至+85°C 温度范围。
应用
特性
S 工作电压范围为2.8V至14V
S ±2.5%电流监测精度
S 精度为1%的10 位 ADC,用于监测12/8 路电压输入
S 单端或差分ADC,用于系统电压 / 电流监测
S 集成高边检流放大器
S 非易失故障事件记录器
S 两个可编程故障输出和一个复位输出
S 八个通用输入 / 输出可配置为:
专用故障输出
看门狗定时功能
手动复位
裕量调节使能
S SMBus (带超时检测)和 JTAG 接口
S 通过闪存可配置延时和门限
S -40°C至+85°C工作温度范围
定购信息
PART
TEMP RANGE
PIN-PACKAGE
MAX16070ETL+
-40NC to +85NC
40 TQFN-EP*
MAX16071ETL+
-40NC to +85NC
40 TQFN-EP*
+表示无铅(Pb)/ 符合 RoHS 标准的封装。
*EP= 裸焊盘。
网络设备
电信设备 (基站、接入 )
存储 /RAID 系统
服务器
引脚配置和典型工作电路在数据资料的最后给出。
SMBus 是IntelCorp. 的商标。
________________________________________________________________ Maxim Integrated Products 1
本文是英文数据资料的译文,文中可能存在翻译上的不准确或错误。如需进一步确认,请在您的设计中参考英文资料。
有关价格、供货及订购信息,请联络Maxim亚洲销售中心:10800 852 1249 (北中国区),10800 152 1249 (南中国区),
或访问Maxim的中文网站:china.maxim-ic.com。
MAX16070/MAX16071
概述
MAX16070/MAX16071闪存可配置系统监测器能够对多
个系统电压进行管理。MAX16070/MAX16071还可通过专
用的高边电流检测放大器精确监测 (±2.5%) 一路电流通道。
MAX16070 可以同时监测12 路系统电压,MAX16071可以
监测 8 路电源电压。这些器件都集成了可选的差分或单端模 /
数转换器 (ADC)。包括过压门限、欠压门限以及定时设置在
MAX16070/MAX16071
12 通道 /8通道、闪存配置系统监测器,
提供非易失故障寄存器
ABSOLUTE MAXIMUM RATINGS
Input/Output Current ..........................................................20mA
Continuous Power Dissipation (TA = +70NC)
40-Pin TQFN (derate 26.3mW/NC above +70NC)........2105mW
Operating Temperature Range........................... -40NC to +85NC
Junction Temperature .....................................................+150NC
Storage Temperature Range............................. -65NC to +150NC
Lead Temperature (soldering, 10s).................................+300NC
Soldering Temperature (reflow).......................................+260NC
VCC, CSP, CSM to GND.........................................-0.3V to +15V
CSP to CSM...........................................................-0.7V to +0.7V
MON_, GPIO_, SCL, SDA, A0, RESET to GND
(programmed as open-drain outputs)..................-0.3V to +6V
EN, TCK, TMS, TDI to GND.....................................-0.3V to +4V
DBP, ABP to GND....-0.3V to the lower of +3V and (VCC + 0.3V)
TDO, GPIO_, RESET
(programmed as push-pull outputs)..... -0.3V to (VDBP + 0.3V)
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute
maximum rating conditions for extended periods may affect device reliability.
ELECTRICAL CHARACTERISTICS
(VCC = 2.8V to 14V, TA = -40NC to +85NC, unless otherwise specified. Typical values are at VABP = VDBP = VCC = 3.3V, TA = +25NC.)
(Note 1)
PARAMETER
Operating Voltage Range
Undervoltage Lockout (Rising)
Undervoltage Lockout Hysteresis
Minimum Flash Operating
Voltage
Supply Current
SYMBOL
VCC
VUVLO
CONDITIONS
MIN
Reset output asserted low
1.2
(Note 2)
2.8
ICC
MAX
14
Minimum voltage on VCC to ensure the
device is flash configurable
2.7
VUVLO_HYS
Vflash
TYP
100
Minimum voltage on VCC to ensure flash
erase and write operations
UNITS
V
V
mV
2.7
V
No load on output pins
4.5
7
During flash writing cycle
10
14
mA
ABP Regulator Voltage
VABP
CABP = 1μF, no load, VCC = 5V
2.85
3
3.15
V
DBP Regulator Voltage
VDBP
CDBP = 1μF, no load, VCC = 5V
2.8
3
3.1
V
Boot Time
tBOOT
VCC > VUVLO
200
350
μs
Flash Writing Time
8-byte word
Internal Timing Accuracy
(Note 3)
EN Input Voltage
EN Input Current
Input Voltage Range
VTH_EN_R
EN voltage rising
VTH_EN_F
EN voltage falling
IEN
122
-8
ms
+8
1.41
1.365
1.39
1.415
%
V
-0.5
+0.5
μA
0
5.5
V
2 _______________________________________________________________________________________
12 通道 /8通道、闪存配置系统监测器,
提供非易失故障寄存器
(VCC = 2.8V to 14V, TA = -40NC to +85NC, unless otherwise specified. Typical values are at VABP = VDBP = VCC = 3.3V, TA = +25NC.)
(Note 1)
PARAMETER
SYMBOL
CONDITIONS
MIN
TYP
MAX
UNITS
Bits
LSB
ADC DC ACCURACY
Resolution
Offset Error
ADCOFF
10
0.35
0.70
1
Integral Nonlinearity
ADCINL
1
LSB
Differential Nonlinearity
ADCDNL
1
LSB
50
μs
Gain Error
ADCGAIN
ADC Total Monitoring Cycle Time
tCYCLE
ADC IN_ Ranges
TA = +25°C
TA = -40°C to +85°C
No MON_ fault detected
40
1 LSB = 5.43mV
5.56
1 LSB = 2.72mV
2.78
1 LSB = 1.36mV
1.39
%
V
CURRENT SENSE
CSP Input-Voltage Range
3
VCSP
ICSP
Input Bias Current
ICSM
CSP Total Unadjusted Error
Overcurrent Differential
Threshold
VSENSE Fault Threshold
Hysteresis
CSPERR
OVCTH
VCSP = VCSM
VSENSE Ranges
VCSP VCSM
46
51
56
Gain = 12
94
101
108
Gain = 6
190
202
210
0.5
CMRRSNS
PSRRSNS
μA
%FSR
mV
0
r73h[6:5] = ‘01’
3
4
5
12
16
20
r73h[6:5] = ‘11’
50
64
60
Gain = 6
232
Gain = 12
116
Gain = 24
58
ms
mV
29
-2.5
Q0.2
+2.5
-4
Q0.2
+4
VSENSE = 25mV, gain = 24
Q0.5
VSENSE = 10mV, gain = 48
Q1
VCSP > 4V
V
%OVCTH
r73h[6:5] = ‘10’
VSENSE = 20mV to 100mV, VCSP = 5V,
gain = 6
Power-Supply Rejection Ratio
30.5
Gain = 24
VSENSE = 50mV, gain = 12
Common-Mode Rejection Ratio
25
2
Gain = 48
Gain Accuracy
5
21.5
VSENSE = 150mV (gain = 6 only)
ADC Current Measurement
Accuracy
3
Gain = 48
OVCHYS
OVCDEL
25
(Note 4)
r73h[6:5] = ‘00’
Secondary Overcurrent Threshold
Timeout
14
14
-1.5
+1.5
%
%
80
dB
80
dB
_______________________________________________________________________________________ 3
MAX16070/MAX16071
ELECTRICAL CHARACTERISTICS (continued)
MAX16070/MAX16071
12 通道 /8通道、闪存配置系统监测器,
提供非易失故障寄存器
ELECTRICAL CHARACTERISTICS (continued)
(VCC = 2.8V to 14V, TA = -40NC to +85NC, unless otherwise specified. Typical values are at VABP = VDBP = VCC = 3.3V, TA = +25NC.)
(Note 1)
PARAMETER
SYMBOL
CONDITIONS
MIN
TYP
MAX
UNITS
OUTPUTS (RESET, GPIO_)
ISINK = 2mA
0.4
ISINK = 10mA, GPIO_ only
0.7
VCC = 1.2V, ISINK = 100μA (RESET only)
0.3
Maximum Output Sink Current
Total current into RESET, GPIO_,
VCC = 3.3V
30
mA
Output-Voltage High (Push-Pull)
ISOURCE = 100μA
1
μA
0.8
V
+1
μA
0.4
V
35
ms
0.8
V
Output-Voltage Low
VOL
2.4
V
V
Output Leakage (Open Drain)
SMBus INTERFACE
Logic-Input Low Voltage
VIL
Input voltage falling
Logic-Input High Voltage
VIH
Input voltage rising
2.0
IN = GND or VCC
-1
Input Leakage Current
Output Sink Current
Input Capacitance
SMBus Timeout
VOL
ISINK = 3mA
5
CIN
tTIMEOUT
V
SCL time low for reset
25
pF
INPUTS (A0, GPIO_)
Input Logic-Low
VIL
Input Logic-High
VIH
2.0
V
WDI Pulse Width
tWDI
100
ns
MR Pulse Width
tMR
1
μs
MR to RESET Delay
0.5
μs
MR Glitch Rejection
SMBus TIMING
100
ns
400
kHz
Serial Clock Frequency
fSCL
Bus Free Time Between STOP
and START Condition
tBUF
1.3
μs
START Condition Setup Time
tSU:STA
0.6
μs
START Condition Hold Time
tHD:STA
0.6
μs
STOP Condition Setup Time
tSU:STO
0.6
μs
tLOW
1.3
μs
Clock Low Period
Clock High Period
Data Setup Time
tHIGH
0.6
μs
tSU:DAT
100
ns
4 _______________________________________________________________________________________
12 通道 /8通道、闪存配置系统监测器,
提供非易失故障寄存器
(VCC = 2.8V to 14V, TA = -40NC to +85NC, unless otherwise specified. Typical values are at VABP = VDBP = VCC = 3.3V, TA = +25NC.)
(Note 1)
PARAMETER
SYMBOL
Output Fall Time
tOF
Data Hold Time
tHD:DAT
Pulse Width of Spike Suppressed
CONDITIONS
MIN
TYP
CBUS = 10pF to 400pF
From 50% SCL falling to SDA change
0.3
MAX
UNITS
250
ns
0.9
μs
30
tSP
ns
JTAG INTERFACE
TDI, TMS, TCK Logic-Low Input
Voltage
VIL
Input voltage falling
TDI, TMS, TCK Logic-High Input
Voltage
VIH
Input voltage rising
TDO Logic-Output Low Voltage
VOL
ISINK = 3mA
TDO Logic-Output High Voltage
VOH
ISOURCE = 200μA
2.4
TDI, TMS Pullup Resistors
RPU
Pullup to DBP
40
I/O Capacitance
CI/O
TCK Clock Period
0.8
2
V
V
0.4
V
60
kω
V
50
5
pF
1000
t1
ns
t2, t3
50
TCK to TMS, TDI Setup Time
t4
15
TCK to TMS, TDI Hold Time
t5
10
TCK to TDO Delay
t6
500
ns
TCK to TDO High-Z Delay
t7
500
ns
TCK High/Low Time
500
ns
ns
ns
Note 1: Specifications are guaranteed for the stated global conditions, unless otherwise noted. 100% production tested at TA =
+25NC and TA = +85NC. Specifications at TA = -40NC are guaranteed by design.
Note 2: For 3.3V VCC applications, connect VCC, DBP, and ABP together. For higher supply applications, connect VCC only to the
supply rail.
Note 3: Applies to RESET, fault, autoretry, sequence delays, and watchdog timeout.
Note 4: Total unadjusted error is a combination of gain, offset, and quantization error.
_______________________________________________________________________________________ 5
MAX16070/MAX16071
ELECTRICAL CHARACTERISTICS (continued)
MAX16070/MAX16071
12 通道 /8通道、闪存配置系统监测器,
提供非易失故障寄存器
SDA
tSU:DAT
tHD:DAT
tLOW
tBUF
tSU:STA
tHD:STA
tSU:STO
SCL
tHIGH
tHD:STA
tR
tF
START
CONDITION
STOP
CONDITION
REPEATED START
CONDITION
图1.SMBus 时序图
t1
t2
t3
TCK
t4
t5
TDI, TMS
t6
t7
TDO
图2.JTAG 时序图
6 _______________________________________________________________________________________
START
CONDITION
12 通道 /8通道、闪存配置系统监测器,
提供非易失故障寄存器
(Typical values are at VCC = 3.3V, TA = +25°C, unless otherwise noted.)
NORMALIZED MON_ THRESHOLD
vs. TEMPERATURE
+25NC
3
-40NC
ABP AND DBP
REGULATORS ACTIVE
2
FOR LOW-VOLTAGE APPLICATIONS
VCC < 3.6V CONNECT ABP AND
DBP TO VCC
1
0
2
4
6
8
10
5.6V RANGE,
HALF SCALE,
PUV THRESHOLD
0.2
-40
-20
0
20
40
60
MAX16070 toc03
1.002
1.000
0.998
0.996
0.994
0
0.992
80
-40
-20
0
20
40
60
VCC (V)
TEMPERATURE (NC)
TEMPERATURE (NC)
TRANSIENT DURATION
vs. THRESHOLD OVERDRIVE (EN)
NORMALIZED TIMING ACCURACY
vs. TEMPERATURE
MON_ DEGLITCH
vs. TRANSIENT DURATION
100
80
60
40
0.984
0.982
0.980
0.978
0.976
120
100
0
10
1
100
80
60
40
20
0.974
20
80
MAX16070 toc06
120
0.986
TRANSIENT DURATION (µs)
MAX16070 toc04
140
0.972
-40
-20
0
20
40
60
0
80
2
4
8
16
EN OVERDRIVE (mV)
TEMPERATURE (NC)
DEGLITCH VALUE
MR TO RESET PROPAGATION DELAY
vs. TEMPERATURE
OUTPUT VOLTAGE
vs. SINK CURRENT (OUT = LOW)
OUTPUT-VOLTAGE HIGH vs.
SOURCE CURRENT (PUSH-PULL OUTPUT)
MAX
0.40
0.35
1.4
0.30
VOUT (V)
1.2
1.0
MIN
0.8
3.3
3.2
3.1
GPIO_
0.25
0.20
0.15
0.6
3.4
3.0
2.8
2.7
RESET
0.10
2.6
0.2
0.05
2.5
0
0
2.4
-20
0
20
40
TEMPERATURE (NC)
60
80
0
5
10
IOUT (mA)
GPIO_
2.9
0.4
-40
MAX16070 toc09
1.8
1.6
0.45
MAX16070 toc07
2.0
VOUT (V)
TRANSIENT DURATION (µs)
0.4
14
12
160
DELAY (µs)
0.6
MAX16070 toc05
0
0.8
1.004
MAX16070 toc08
ICC (mA)
4
1.0
1.006
NORMALIZED EN THRESHOLD
+85NC
MAX16070 toc02
5
NORMALIZED EN THRESHOLD
vs. TEMPERATURE
1.2
NORMALIZED MON_ THRESHOLD
ABP AND DBP CONNECTED TO VCC
NORMALIZED SLOT DELAY
6
MAX16070 toc01
VCC SUPPLY CURRENT
vs. VCC SUPPLY VOLTAGE
15
20
RESET
0
500
1000
1500
IOUT (µA)
_______________________________________________________________________________________ 7
MAX16070/MAX16071
典型工作特性
典型工作特性(续)
(Typical values are at VCC = 3.3V, TA = +25°C, unless otherwise noted.)
INTEGRAL NONLINEARITY vs. CODE
DIFFERENTIAL NONLINEARITY vs. CODE
0.6
0.8
0.6
0.4
0.2
0.2
DNL (LSB)
0.4
0
-0.2
0
-0.2
-0.4
-0.4
-0.6
-0.6
-0.8
-0.8
-1.0
-1.0
128 256 384 512 640 768 896 1024
0
128 256 384 512 640 768 896 1024
CODE (LSB)
CODE (LSB)
NORMALIZED CURRENT-SENSE
ACCURACY vs. TEMPERATURE
CURRENT-SENSE ACCURACY
vs. CSP-CSM VOLTAGE
1.0
MAX16070 toc12
1.05
1.03
200mV
MAX16070 toc13
0
0.8
0.6
0.4
25mV
ERROR (mV)
1.01
0.99
0.2
0
-0.2
-0.4
100mV
-0.6
0.97
-0.8
-1.0
0.95
10
-40
0
60
5
10
15
20
25
TEMPERATURE (NC)
CSP-CSM VOLTAGE (mV)
CURRENT-SENSE TRANSIENT DURATION
vs. CSP-CSM OVERDRIVE
RESET OUTPUT CURRENT
vs. SUPPLY VOLTAGE
18
MAX16070 toc14
1.8
1.6
1.2
1.0
0.8
0.6
14
12
8
6
4
0.2
2
0
0
20
40
60
80
CSP-CSM OVERDRIVE (mV)
100
ABP AND DBP
REGULATORS ACTIVE
10
0.4
0
ABP AND DBP
CONNECTED TO VCC
16
OUTPUT CURRENT (mA)
1.4
30
MAX16070 toc15
NORMALIZED CURRENT-SENSE ACCURACY
MAX16070 toc11
0.8
INL (LSB)
1.0
MAX16070 toc10
1.0
TRANSIENT DURATION (Fs)
MAX16070/MAX16071
12 通道 /8通道、闪存配置系统监测器,
提供非易失故障寄存器
VRESET = 0.3V
0
2
4
6
8
10
SUPPLY VOLTAGE (V)
12
8 _______________________________________________________________________________________
14
12 通道 /8通道、闪存配置系统监测器,
提供非易失故障寄存器
引脚
名称
功能
1–5, 37, 38,
40
MON2–MON6,
MON7, MON8,
MON1
监测电压输入1至监测电压输入8。通过配置寄存器设置监测电压范围,写入 ADC
寄存器的测量值可以通过 SMBus 或 JTAG 接口回读。
6
CSP
MAX16070
MAX16071
1–5, 34, 35,
40
6
7
7
CSM
8
8
RESET
检流放大器同相输入端,将 CSP 连接至外部检流电阻的电源端。
检流放大器反相输入端,将 CSM 连接至外部检流电阻的负载端。
可配置复位输出。
15
15
SCL
JTAG 测试模式选择。
JTAG 测试数据输入。
JTAG 测试时钟。
JTAG 测试数据输出。
SMBus串行数据漏极开路输入 / 输出。
四态 SMBus 地址,POR 期间采样地址。
SMBus串行时钟输入。
16, 33
16, 36
GND
地。
17, 18
—
GPIO7, GPIO8
通用输入 / 输出7和通用输入 / 输出8。GPIO_可以配置为TTL 输入或推挽、漏极开路、
高阻输出,也可配置为故障状态或反向排序时的下拉电路。
19–24
17–22
GPIO1–GPIO6
通用输入 / 输出1至通用输入 / 输出6。GPIO_可以配置为TTL 输入或推挽、漏极开路、
高阻输出,也可配置为故障状态时的下拉电路。
25, 26, 27, 29
23–28,
30, 39
N.C.
28
29
EN
30
31, 32
DBP
31
33, 34
VCC
器件电源。VCC 连接至 2.8V 至14V电源电压,采用一个10 µF电容将VCC 旁路至GND。
35
ABP
模拟电源旁路。采用一个1µF 陶瓷电容将ABP 旁路至GND。
36–39
—
MON9–
MON12
—
—
EP
9
9
TMS
10
10
TDI
11
11
TCK
12
12
TDO
13
13
SDA
14
14
A0
32
无连接,内部没有连接。
模拟使能输入。VEN 低于使能门限时,所有输出被禁止。
数字电源旁路。所有推挽输出均以 DBP为参考,采用一个1µF电容将 DBP 旁路至
GND。
监测电压输入9至监测电压输入12。通过配置寄存器设置监测电压范围,写入 ADC
寄存器的测量值可以通过 SMBus 或 JTAG 接口回读。
裸焊盘,内部连接至GND。连接至地,但不要将其作为主要的接地端。
_______________________________________________________________________________________ 9
MAX16070/MAX16071
引脚说明
MAX16070/MAX16071
12 通道 /8通道、闪存配置系统监测器,
提供非易失故障寄存器
功能框图
VCC
ABP
DBP
OVERC
RESET
MAX16070
MAX16071
ANY_FAULT
FAULT1
DECODE
LOGIC
FAULT2
MR
EN
MARGIN
1.4V
CSP
WDI
WATCHDOG
TIMER
AV
CSM
WDO
VCSTH
GPIO1–GPIO8
RESET
G
P
I
O
C
O
N
T
R
O
L
GPIO1
GPIO2
GPIO3
GPIO4
GPIO5
GPIO6
GPIO7
GPIO8
REF
MON1–
MON12
VOLTAGE
SCALING
AND
MUX
10-BIT ADC
(SAR)
ADC
REGISTERS
DIGITAL
COMPARATORS
RAM
REGISTERS
SMBus INTERFACE
AO
SCL
SDA
JTAG
INTERFACE
FLASH
MEMORY
GND
TDO
TDI
TCK
TMS
10 �������������������������������������������������������������������������������������
12 通道 /8通道、闪存配置系统监测器,
提供非易失故障寄存器
电路将转换结果与存储器中保存的过压和欠压门限进行比
较。当转换结果超出设置门限时,可配置相应的转换产生故
障报警。可以根据多种故障组合设置 GPIO_ 报警。此外,可
以配置发生故障时关断系统、触发非易失故障记录器,记录
器将所有故障信息自动写入闪存,并对数据进行写保护,以
防止意外擦除数据。
MAX16070/MAX16071同时提供 SMBus 和 JTAG 串行接
口,用于访问寄存器和闪存,任何时候只能使用一种接口。
关于如何通过这些接口对内部存储器进行访问操作,请参考
SMBus 兼容接口 和JTAG 串行接口 部分。存储器划分成 3 个
页面,由特殊的 SMBus 和 JTAG 命令控制访问。
所有 RAM 寄存器在 POR( 上电复位 ) 时均置为工厂默认值
‘0’。当VCC 达到 2.8V(最大值 ) 欠压锁定(UVLO)门限时,
启动 POR。POR 过程中,器件开始装载排序设置。装载排序
设置时,屏蔽所有监测输入可能触发的故障,将闪存中的
内容复制到各自的寄存器。装载设置期间,不能通过串口访
问 MAX16070/MAX16071。装载设置持续时间为150 µs,
在 此之后器件就绪,可进行常规操作。装载设置过程中,
RESET置为低电平;装载设置完成后,如果所有被监测通道
处于各自的门限范围内,RESET将在设定的超时周期内持续
保持低电平。装载设置期间,GPIO_ 为高阻态。
电源
VCC连接到 2.8V 至14V电源,为 MAX16070/MAX16071
供电,采用一个10 µ F电容将VCC 旁路至地。两个内部稳压
器ABP 和 DBP 为器件的模拟电路和数字电路供电。对于工
作在 3.6V 或更低电压的情况,将ABP 和 DBP 连接至 VCC,
以禁止稳压器工作。
ABP为3.0V(典型值 ) 稳压器,为内部模拟电路供电。采用
一个1µ F 陶瓷电容将ABP 旁路至 GND,电容应尽可能靠近
器件放置。
DBP为内部 3.0V(典型值 ) 稳压器,DBP为闪存和数字电路
供电。所有推挽输出都以 DBP 为参考。采用一个1µ F 陶瓷电
容将 DBP 输出旁路至 GND,电容应尽可能靠近器件放置。
不要用 ABP 或 DBP 为外部电路供电。
使能
为使能监测功能,EN 的电压必须大于1.4V,并且 r73h[0] 中
的软件使能位必须置为
‘1’。将 EN 拉至低于1.35V 或将软件
使能位置为
‘0’,可关断器件并禁止监测功能。软件使能位
的配置请参见表1。不使用时,可将 EN 连接至 ABP。
表1. 软件使能配置
REGISTER
ADDRESS
73h
FLASH
ADDRESS
273h
MAX16070/MAX16071
详细说明
MAX16070 可监测多达12 路系统电源,MAX16071则可监
测多达 8 路系统电源。启动后,如果 EN 是高电平,且软件使
能位置
‘1’
,则根据保存在闪存的配置开始监测。内部多路复
用器循环监测每路 MON_输入。每次终止多路复用操作时,
10 位 ADC 将监测的模拟电压转换成数字信号,并将结果保
存到寄存器内。每完成一次转换 (50 µs,最大值 ),内部逻辑
BIT RANGE
DESCRIPTION
[0]
Software enable
[1]
Reserved
[2]
1 = Margin mode enabled
[3]
Early warning threshold select
0 = Early warning is undervoltage
1 = Early warning is overvoltage
[4]
Independent watchdog mode enable
1 = Watchdog timer is independent of sequencer
0 = Watchdog timer boots after sequence completes
______________________________________________________________________________________ 11
MAX16070/MAX16071
12 通道 /8通道、闪存配置系统监测器,
提供非易失故障寄存器
监 测 状 态 下, 当 EN 跌 落 至 欠 压 门 限 以下 时, 寄 存 器 位
ENRESET 将被置为‘1’。该寄存器位将闭锁,必须通过软件
清零。该位指示 RESET是否因为 EN 跌落到门限以下而被置
低。ENRESET的 POR 状态为
‘0’。该位仅在 EN 比较器输出
的下降沿或通过软件使能位置位。
电压 / 电流监测
MAX16070/MAX16071具有一个内部10 位 ADC,用于检
测 MON_电压输入。内部多路复用器循环监测已经使能的每
路输入,完成一次监测循环的时间不超过40 µs,每次采集时
间大约为3.2µs。每当多路复用器停止时,10 位 ADC 将模拟输
入转换成数字结果,并将结果存储到寄存器内。ADC 转换
结果存储在寄存器 r00h 至 r1Ah(参见表 6)。可通过 SMBus
或 JTAG 串行接口读取 ADC 转换结果。
MAX16070 提供12 路输入 MON1至 MON12用于电压监测;
MAX16071提供 8 路输入 MON1至 MON8用于电压监测。可
以通过寄存器 r43h 至 r45h( 见表 5) 设置每路输入电压的范
围。当 MON_ 配置寄存器置为
‘11’
时,不监测 MON_电压,
每路监测电压的三个可编程门限为过压、欠压和辅助预警门
限,可以在 r73h[3] 中将辅助预警门限设置为欠压或过压门
限,请参考故障 部分了解过压和欠压门限设置的详细信息。
所有电压门限均为 8 位字节宽度。将10 位 ADC 转换结果的 8
个 MSB 位与过压、欠压门限进行对比。
ADC 不转换没有使能的输入,它们存储的是禁止通道之前
的最后一次采集数据。
ADC 转换结果寄存器在装载设置时复位至 00h,执行重新
装载命令时,这些寄存器不再复位。
在 r46h(表 5)中将 MAX16070/MAX16071配置为差分模
式, 可 选 择 的 差 分 对 为 MON1/MON2、MON3/MON4、
MON5/MON6、MON7/MON8、MON9/MON10、MON11/
MON12,且第一路输入电压始终高于第二路输入电压。利
用差分电压检测可以避免电压失调或测量电源电流,参见
图 3。差分模式下,奇数序号的 MON_输入测量对 GND 电
压的绝对值,偶数序号输入结果为奇、偶序号输入之差,
典型的差分测量电路如图3 所示。
多路复用器不会停止在这些输入,从而缩短了循环检测时
间。这些输入不能用来触发故障状态。
RS
POWER
SUPPLY
ILOAD
VMON
CSP
MONEVEN
MONODD
RSENSE
-
CSM
TO ADC MUX
*AV
+
MAX16070
MAX16071
MAX16070
LOAD
MONODD
-
MONEVEN
OVERC
+
+
-
POWER
SUPPLY
*VCSTH
LOAD
*ADJUSTABLE BY r47h [3:2]
图3. 差分测量连接
图4. 检流放大器
12 �������������������������������������������������������������������������������������
12 通道 /8通道、闪存配置系统监测器,
提供非易失故障寄存器
一旦 EN 高于其门限值并且软件使能位置位,则进入启动延时
阶段,然后开始电压监测。延迟时间由寄存器 r77h[3:0] 配
置,如表 2 和表3 所示。
内部检流放大器
电流检测输入CSP/CSM 和检流放大器简化了功率监测 (参见
图 4)。通过 r47h[0] 使能检流放大器时,ADC还监测 CSP 的
对地电压。转换结果位于寄存器 r19h 和 r1Ah(参见表 6)。通
过 r47h[1] 可设置 CSP的两个可选电压范围,参见表 4。虽然
可以通过 SMBus 或 JTAG 监测电压,该监测电压不带门限比
较器,不能触发任何故障报警。对于检流放大器,提供四种
可选范围,电流转换 ADC 的输出为:
此外,提供两个可编程的电流检测触发门限:主过流门限和
次过流门限。进行快速故障检测时,主过流门限通过连接
到内部 OVERC信号的模拟比较器实现。OVERC信号可以是
GPIO_ 的一路输出。关于配置 GPIO_以输出 OVERC信号的
说明请参考通用输入 / 输出 部分。主门限通过下式设置:
ITH = VCSTH/RSENSE
其中,ITH 为需要设置的电流门限,VCSTH 为 r47h[3:2] 设置
的门限,RSENSE为检流电阻值,关于 r47h 的说明请参考表
4。OVERC仅取决于主过流门限。次过流门限通过 ADC 转
换与 r6Ch 设置的数值进行比较实现。次过流门限包括位于
r73h[6:5] 的可编程时间延迟选项。主过流门限和次过流门限
检流故障通过 r47h[0] 使能 / 禁止。
XADC = (VSENSE x AV)/1.4V x (28 - 1)
其中,XADC为寄存器 r18h中的8位十进制ADC结果;VSENSE
为VCSP-VCSM;AV为 r47h[3:2] 设置的电流检测电压增益。
表 2. 启动延时寄存器
REGISTER
ADDRESS
FLASH
ADDRESS
77h
277h
BIT RANGE
DESCRIPTION
[3:0]
Boot-up delay
[7:0]
Reserved
表3. 启动延时数值
CODE
VALUE
0000
25Fs
0001
500Fs
0010
1ms
0011
2ms
0100
3ms
0101
4ms
0110
6ms
0111
8ms
1000
10ms
1001
12ms
1010
25ms
1011
100ms
1100
200ms
1101
400ms
1110
800ms
1111
1.6s
______________________________________________________________________________________ 13
MAX16070/MAX16071
启动延时
MAX16070/MAX16071
12 通道 /8通道、闪存配置系统监测器,
提供非易失故障寄存器
表4. 主过流门限和电流检测控制
REGISTER
ADDRESS
47h
FLASH
ADDRESS
BIT
RANGE
[0]
1 = Current sense is enabled
0 = Current sense is disabled
[1]
1 = CSP full-scale range is 14V
0 = CSP full-scale range is 7V
247h
73h
273h
DESCRIPTION
[3:2]
Overcurrent primary threshold and current-sense gain setting
00 = 200mV threshold, AV = 6V/V
01 = 100mV threshold, AV = 12V/V
10 = 50mV threshold, AV = 24V/V
11 = 25mV threshold, AV = 48V/V
[6:5]
Overcurrent secondary threshold deglitch
00 = No delay
01 = 14ms
10 = 15ms
11 = 60ms
表5. ADC配置寄存器
REGISTER ADDRESS
43h
FLASH
ADDRESS
BIT RANGE
DESCRIPTION
[1:0]
ADC1 full-scale range
00 = 5.6V
01 = 2.8V
10 = 1.4V
11 = Channel not converted
[3:2]
ADC2 full-scale range
00 = 5.6V
01 = 2.8V
10 = 1.4V
11 = Channel not converted
[5:4]
ADC3 full-scale range
00 = 5.6V
01 = 2.8V
10 = 1.4V
11 = Channel not converted
[7:6]
ADC4 full-scale range
00 = 5.6V
01 = 2.8V
10 = 1.4V
11 = Channel not converted
243h
14 �������������������������������������������������������������������������������������
12 通道 /8通道、闪存配置系统监测器,
提供非易失故障寄存器
REGISTER ADDRESS
44h
45h
FLASH
ADDRESS
BIT RANGE
DESCRIPTION
[1:0]
ADC5 full-scale range
00 = 5.6V
01 = 2.8V
10 = 1.4V
11 = Channel not converted
[3:2]
ADC6 full-scale range
00 = 5.6V
01 = 2.8V
10 = 1.4V
11 = Channel not converted
[5:4]
ADC7 full-scale range
00 = 5.6V
01 = 2.8V
10 = 1.4V
11 = Channel not converted
[7:6]
ADC8 full-scale range
00 = 5.6V
01 = 2.8V
10 = 1.4V
11 = Channel not converted
[1:0]
ADC9 full-scale range
00 = 5.6V
01 = 2.8V
10 = 1.4V
11 = Channel not converted
[3:2]
ADC10 full-scale range
00 = 5.6V
01 = 2.8V
10 = 1.4V
11 = Channel not converted
[5:4]
ADC11 full-scale range
00 = 5.6V
01 = 2.8V
10 = 1.4V
11 = Channel not converted
[7:6]
ADC12 full-scale range
00 = 5.6V
01 = 2.8V
10 = 1.4V
11 = Channel not converted
244h
245h
______________________________________________________________________________________ 15
MAX16070/MAX16071
表5. ADC配置寄存器(续)
MAX16070/MAX16071
12 通道 /8通道、闪存配置系统监测器,
提供非易失故障寄存器
表5. ADC配置寄存器(续)
REGISTER ADDRESS
46h
FLASH
ADDRESS
BIT RANGE
DESCRIPTION
[0]
Differential conversion ADC1, ADC2
0 = Disabled
1 = Enabled
[1]
Differential conversion ADC3, ADC4
0 = Disabled
1 = Enabled
[2]
Differential conversion ADC5, ADC6
0 = Disabled
1 = Enabled
[3]
Differential conversion ADC7, ADC8
0 = Disabled
1 = Enabled
[4]
Differential conversion ADC9, ADC10
0 = Disabled
1 = Enabled
[5]
Differential conversion ADC11, ADC12
0 = Disabled
1 = Enabled
246h
16 �������������������������������������������������������������������������������������
12 通道 /8通道、闪存配置系统监测器,
提供非易失故障寄存器
REGISTER ADDRESS
BIT RANGE
DESCRIPTION
00h
[7:0]
ADC1 result (MSB) bits 9–2
01h
[7:6]
ADC1 result (LSB) bits 1, 0
02h
[7:0]
ADC2 result (MSB) bits 9–2
03h
[7:6]
ADC2 result (LSB) bits 1, 0
04h
[7:0]
ADC3 result (MSB) bits 9–2
05h
[7:6]
ADC3 result (LSB) bits 1, 0
06h
[7:0]
ADC4 result (MSB) bits 9–2
07h
[7:6]
ADC4 result (LSB) bits 1, 0
08h
[7:0]
ADC5 result (MSB) bits 9–2
09h
[7:6]
ADC5 result (LSB) bits 1, 0
0Ah
[7:0]
ADC6 result (MSB) bits 9–2
0Bh
[7:6]
ADC6 result (LSB) bits 1, 0
0Ch
[7:0]
ADC7 result (MSB) bits 9–2
0Dh
[7:6]
ADC7 result (LSB) bits 1, 0
0Eh
[7:0]
ADC8 result (MSB) bits 9–2
0Fh
[7:6]
ADC8 result (LSB) bits 1, 0
10h
[7:0]
ADC9 result (MSB) bits 9–2
11h
[7:6]
ADC9 result (LSB) bits 1, 0
12h
[7:0]
ADC10 result (MSB) bits 9–2
13h
[7:6]
ADC10 result (LSB) bits 1, 0
14h
[7:0]
ADC11 result (MSB) bits 9–2
15h
[7:6]
ADC11 result (LSB) bits 1, 0
16h
[7:0]
ADC12 result (MSB) bits 9–2
17h
[7:6]
ADC12 result (LSB) bits 1, 0
18h
[7:0]
Current-sense ADC result
19h
[7:0]
CSP ADC output (MSB) bits 9–2
1Ah
[7:6]
CSP ADC output (LSB) bits 1, 0
______________________________________________________________________________________ 17
MAX16070/MAX16071
表6. ADC转换结果(只读)
MAX16070/MAX16071
12 通道 /8通道、闪存配置系统监测器,
提供非易失故障寄存器
通用输入 / 输出
GPIO1至GPIO8为可编程通用输入 /输出。GPIO1至GPIO8可
配置为手动复位输入、看门狗定时器输入和输出、逻辑输入 /
输出、故障报警输出。将 GPIO_ 设置为输出时,可以为漏极
开路或推挽式输出,关于 GPIO1至GPIO8 配置的详细信息请
参考表 8 和表 9。
当 GPIO1 至 GPIO8 配置为通用输入 / 输出时,通 过 r1Eh 读
取GPIO_ 端口、通过 r3Eh 写入GPIO_。需要注意的是:r3Eh
具有相应的闪存寄存器,可对通用输出的默认状态进行编
程,关于 GPIO_ 读、写操作的详细信息请参考表 7。
表7. GPIO_状态寄存器
REGISTER
ADDRESS
1Eh
3Eh
FLASH
ADDRESS
—
23Eh
BIT RANGE
DESCRIPTION
[0]
GPIO1 input state
[1]
GPIO2 input state
[2]
GPIO3 input state
[3]
GPIO4 input state
[4]
GPIO5 input state
[5]
GPIO6 input state
[6]
GPIO7 input state
[7]
GPIO8 input state
[0]
GPIO1 output state
[1]
GPIO2 output state
[2]
GPIO3 output state
[3]
GPIO4 output state
[4]
GPIO5 output state
[5]
GPIO6 output state
[6]
GPIO7 output state
[7]
GPIO8 output state
表8. GPIO_ 配置寄存器
REGISTER
ADDRESS
FLASH
ADDRESS
3Fh
23Fh
40h
41h
240h
241h
BIT RANGE
DESCRIPTION
[2:0]
GPIO1 configuration
[5:3]
GPIO2 configuration
[7:6]
GPIO3 configuration (LSB)
[0]
GPIO3 configuration (MSB)
[3:1]
GPIO4 configuration
[6:4]
GPIO5 configuration
[7]
GPIO6 configuration (LSB)
[1:0]
GPIO6 configuration (MSB)
[4:2]
GPIO7 configuration
[7:5]
GPIO8 configuration
18 �������������������������������������������������������������������������������������
12 通道 /8通道、闪存配置系统监测器,
提供非易失故障寄存器
MAX16070/MAX16071
表8. GPIO_ 配置寄存器(续)
REGISTER
ADDRESS
FLASH
ADDRESS
BIT RANGE
[0]
[1]
[2]
[3]
42h
242h
[4]
[5]
[6]
[7]
DESCRIPTION
Output configuration for GPIO1
0 = Push-pull
1 = Open drain
Output configuration for GPIO2
0 = Push-pull
1 = Open drain
Output configuration for GPIO3
0 = Push-pull
1 = Open drain
Output configuration for GPIO4
0 = Push-pull
1 = Open drain
Output configuration for GPIO5
0 = Push-pull
1 = Open drain
Output configuration for GPIO6
0 = Push-pull
1 = Open drain
Output configuration for GPIO7
0 = Push-pull
1 = Open drain
Output configuration for GPIO8
0 = Push-pull
1 = Open drain
表9. GPIO_功能配置位
CODE
GPIO1
GPIO2
GPIO3
GPIO4
GPIO5
GPIO6
GPIO7
GPIO8
000
Logic input
Logic
input
Logic input
Logic input
Logic input
Logic
input
Logic input
Logic input
001
Logic output
Logic
output
Logic output
Logic output
Logic output
Logic
output
Logic output
Logic output
010
Fault2 output
Fault2
output
Fault2 output
Fault2 output
Fault2 output
Fault2
output
Fault2 output
Fault2
output
011
Fault1 output
Fault1
output
—
Fault1 output
Fault1 output
Fault1
output
Fault1 output
—
100
ANY_FAULT
output
—
ANY_FAULT
output
ANY_FAULT
output
ANY_FAULT
output
—
ANY_FAULT
output
—
101
OVERC
output
OVERC
output
OVERC
output
OVERC
output
OVERC
output
OVERC
output
OVERC
output
OVERC
output
110
MR input
WDO
output
MR input
WDO output
MR input
WDO
output
MR input
WDO output
111
WDI input
—
—
EXTFAULT
input/output
—
MARGIN
input
—
EXTFAULT
input/output
______________________________________________________________________________________ 19
MAX16070/MAX16071
12 通道 /8通道、闪存配置系统监测器,
提供非易失故障寄存器
Fault1和 Fault2
GPIO1至GPIO8 可配置为专用的故障输出Fault1或Fault2。
对于所选择的输入以及次过流比较器,出现一次或多次过压、
欠压和预警故障时,触发故障报警输出。利用寄存器 r36h 至
r3Ah 设置 Fault1和 Fault2 的相关因素,参见表10。如果故障
输出取决于多路 MON_,当一路或多路 MON_ 超出所设置
的门限电压时,将触发故障报警输出。这些故障输出与关键
故障系统无关,详细说明请参考关键故障 部分。
表10. Fault1和 Fault2 相关因素
REGISTER
ADDRESS
36h
37h
38h
FLASH
ADDRESS
236h
BIT
RANGE
0
1 = Fault1 depends on MON1
1
1 = Fault1 depends on MON2
2
1 = Fault1 depends on MON3
3
1 = Fault1 depends on MON4
4
1 = Fault1 depends on MON5
5
1 = Fault1 depends on MON6
6
1 = Fault1 depends on MON7
7
1 = Fault1 depends on MON8
0
1 = Fault1 depends on MON9
1
1 = Fault1 depends on MON10
2
1 = Fault1 depends on MON11
3
1 = Fault1 depends on MON12
4
1 = Fault1 depends on the overvoltage thresholds of the inputs selected by
r36h and r37h[3:0]
5
1 = Fault1 depends on the undervoltage thresholds of the inputs selected by
r36h and r37h[3:0]
6
1 = Fault1 depends on the early warning thresholds of the inputs selected by
r36h and r37h[3:0]
7
0 = Fault1 is an active-low digital output
1 = Fault1 is an active-high digital output
237h
238h
DESCRIPTION
[0]
1 = Fault2 depends on MON1
[1]
1 = Fault2 depends on MON2
[2]
1 = Fault2 depends on MON3
[3]
1 = Fault2 depends on MON4
[4]
1 = Fault2 depends on MON5
[5]
1 = Fault2 depends on MON6
[6]
1 = Fault2 depends on MON7
[7]
1 = Fault2 depends on MON8
20 �������������������������������������������������������������������������������������
12 通道 /8通道、闪存配置系统监测器,
提供非易失故障寄存器
REGISTER
ADDRESS
39h
3Ah
FLASH
ADDRESS
BIT
RANGE
[0]
1 = Fault2 depends on MON9
[1]
1 = Fault2 depends on MON10
[2]
1 = Fault2 depends on MON11
[3]
1 = Fault2 depends on MON12
[4]
1 = Fault2 depends on the overvoltage thresholds of the inputs selected by
r38h and r39h[3:0]
[5]
1 = Fault2 depends on the undervoltage thresholds of the inputs selected by
r38h and r39h[3:0]
[6]
1 = Fault2 depends on the early warning thresholds of the inputs selected by
r38h and r39h[3:0]
[7]
0 = Fault2 is an active-low digital output
1 = Fault2 is an active-high digital output
[0]
1 = Fault1 depends on secondary overcurrent comparator
[1]
1 = Fault2 depends on secondary overcurrent comparator
239h
23Ah
DESCRIPTION
[7:2]
MAX16070/MAX16071
表10. Fault1和 Fault2 相关因素(续)
Reserved
ANY_FAULT
GPIO1、GPIO3、GPIO4、GPIO5 和 GPIO7 可以配置为与
故障相关的低电平有效输出。
过流比较器(OVERC)
GPIO1至 GPIO8 可以配置为在 CSP 和 CSM 两端电压超出主
过流门限时置低,详细信息请参考内部检流放大器 部分。
手动复位(MR)
GPIO1、GPIO3、GPIO5 和 GPIO7 可配置为低电平有效手
动复位输入 MR。将 MR 驱动至低电平时,触发 RESET复位。
MR 从低电平跳变到高电平后,RESET 在所选择的复位超时
周期内仍将保持复位状态。
看门狗输入(WDI)和输出(WDO)
GPIO2、GPIO4、GPIO6 和 GPIO8 可配置为看门狗定时器
输出WDO。GPIO1可配置为WDI,详细配置信息请参考表
17。WDO为低电平有效输出。关于看门狗定时器工作的详
细信息请参考看门狗定时器 部分。
外部故障(EXTFAULT)
GPIO4 和 GPIO8 可配置为外部故障输入 / 输出。当配置为推
挽输出时,EXTFAULT 指示所检测的一路或多路电压、电
流出现了关键故障。当配置为漏极开路输出时,可通过外部
电路拉低 EXTFAULT,触发关键故障。该信号可用于多片
MAX16070/MAX16071级联。
当EXTFAULT被其它器件拉低时,一个配置位决定MAX16070/
MAX16071的工作状态。如果寄存器位 r6Dh[2] 置位,则
EXTFAULT置低时会触发一次非易失故障记录操作。
故障
MAX16070/MAX16071监测输入(MON_) 通道,将测量结
果与过压门限、欠压门限以及可选择的过压或欠压预警门限
进行对比。基于这些状态,MAX16070/MAX16071能够触
发各种故障输出,把通道状态、电压等信息保存到非易失闪
存。一旦发生关键故障,事件记录器将按照配置保存故障通
道状态或 / 和发生故障时的 ADC 转换结果。事件记录器在内
部闪存记录一次故障,锁存位置位以保护所储存的故障数据
不会在后续上电过程中擦除。
被监测输入的电压超过相应的过压门限时,发生过压故障;
被监测输入的电压低于欠压门限时,发生欠压故障。在寄存
器 r48h 至 r6Ch 中设置故障门限,如表11所示。不对禁用通
道的故障状态进行监测,输入多路复用器将跳过这些输入。
只有转换结果的高 8 位与所设置的故障门限进行比较。
______________________________________________________________________________________ 21
MAX16070/MAX16071
12 通道 /8通道、闪存配置系统监测器,
提供非易失故障寄存器
表11. 故障门限寄存器
REGISTER
ADDRESS
FLASH
ADDRESS
BIT RANGE
48h
248h
[7:0]
MON1 secondary threshold
49h
249h
[7:0]
MON1 overvoltage threshold
4Ah
24Ah
[7:0]
MON1 undervoltage threshold
4Bh
24Bh
[7:0]
MON2 secondary threshold
4Ch
24Ch
[7:0]
MON2 overvoltage threshold
4Dh
24Dh
[7:0]
MON2 undervoltage threshold
4Eh
24Eh
[7:0]
MON3 secondary threshold
4Fh
24Fh
[7:0]
MON3 overvoltage threshold
50h
250h
[7:0]
MON3 undervoltage threshold
51h
251h
[7:0]
MON4 secondary threshold
52h
252h
[7:0]
MON4 overvoltage threshold
53h
253h
[7:0]
MON4 undervoltage threshold
54h
254h
[7:0]
MON5 secondary threshold
55h
255h
[7:0]
MON5 overvoltage threshold
56h
256h
[7:0]
MON5 undervoltage threshold
57h
257h
[7:0]
MON6 secondary threshold
58h
258h
[7:0]
MON6 overvoltage threshold
59h
259h
[7:0]
MON6 undervoltage threshold
5Ah
25Ah
[7:0]
MON7 secondary threshold
5Bh
25Bh
[7:0]
MON7 overvoltage threshold
5Ch
25Ch
[7:0]
MON7 undervoltage threshold
5Dh
25Dh
[7:0]
MON8 secondary threshold
5Eh
25Eh
[7:0]
MON8 overvoltage threshold
5Fh
25Fh
[7:0]
MON8 undervoltage threshold
60h
260h
[7:0]
MON9 secondary threshold
61h
261h
[7:0]
MON9 overvoltage threshold
62h
262h
[7:0]
MON9 undervoltage threshold
63h
263h
[7:0]
MON10 secondary threshold
64h
264h
[7:0]
MON10 overvoltage threshold
65h
265h
[7:0]
MON10 undervoltage threshold
66h
266h
[7:0]
MON11 secondary threshold
67h
267h
[7:0]
MON11 overvoltage threshold
68h
268h
[7:0]
MON11 undervoltage threshold
69h
269h
[7:0]
MON12 secondary threshold
6Ah
26Ah
[7:0]
MON12 overvoltage threshold
6Bh
26Bh
[7:0]
MON12 undervoltage threshold
6Ch
26Ch
[7:0]
Secondary overcurrent threshold
DESCRIPTION
22 �������������������������������������������������������������������������������������
12 通道 /8通道、闪存配置系统监测器,
提供非易失故障寄存器
抗瞬态干扰
每次转换结束时将检测故障状态。如果在某次采样时,输入
电压落在监测门限以外,输入多路复用器将停留在该通道,
对其进行多次连续采样。经过一定次数的采样后,如果输入仍
然超出了门限范围,则触发故障报警,采集次数由 r73h[6:5]
和 r74h[6:5]中的抗瞬态干扰设置决定(参见表12)。
故障标志
故障标志指示某一输入的故障状态,可以随时从寄存器 r1Bh
和 r1Ch 中读取器件任一被监测输入的故障标志,如表13 所
示。向标志寄存器的相应位写
‘1’,可清除故障标志。与发
送到故障输出的故障信号不同,这些位可以被关键故障使能
位屏蔽掉 ( 见表14)。只有关键故障使能寄存器的相应使能位
也置位时,故障标志才能置位。
表12. 抗瞬态干扰配置
REGISTER
ADDRESS
FLASH
ADDRESS
73h
273h
74h
274h
BIT RANGE
DESCRIPTION
[6:5]
Overcurrent comparator deglitch time
00 = No deglitch
01 = 4ms
10 = 15ms
11 = 60ms
[6:5]
Voltage comparator deglitch configuration
00 = 2 cycles
01 = 4 cycles
10 = 8 cycles
11 = 16 cycles
表13. 故障标志
REGISTER
ADDRESS
1Bh
1Ch
BIT RANGE
DESCRIPTION
[0]
MON1
[1]
MON2
[2]
MON3
[3]
MON4
[4]
MON5
[5]
MON6
[6]
MON7
[7]
MON8
[0]
MON9
[1]
MON10
[2]
MON11
[3]
MON12
[4]
Overcurrent
[5]
External fault (EXTFAULT)
[6]
SMB alert
______________________________________________________________________________________ 23
MAX16070/MAX16071
通用输入 / 输出(GPIO1至 GPIO8)可以配置为 ANY_FAULT
输出或专用的 Fault1和 Fault2 输出,以指示故障状态。这些
故障输出没有被关键故障使能位屏蔽掉,如表14 所示。关
于将 GPIO_ 配置为故障输出的详细信息,请参考通用输入 /
输出 部分。
MAX16070/MAX16071
12 通道 /8通道、闪存配置系统监测器,
提供非易失故障寄存器
表14. 关键故障配置
REGISTER
ADDRESS
FLASH
ADDRESS
BIT
RANGE
[1:0]
6Dh
26Dh
[2]
[7:3]
6Eh
6Fh
70h
71h
26Eh
26Fh
270h
271h
DESCRIPTION
Fault information to log
00 = Save failed line flags and ADC values in flash
01 = Save only failed line flags in flash
10 = Save only ADC values in flash
11 = Do not save anything
1 = Fault log triggered when EXTFAULT is pulled low externally
Not used
[0]
1 = Fault log triggered when MON1 is below its undervoltage threshold
[1]
1 = Fault log triggered when MON2 is below its undervoltage threshold
[2]
1 = Fault log triggered when MON3 is below its undervoltage threshold
[3]
1 = Fault log triggered when MON4 is below its undervoltage threshold
[4]
1 = Fault log triggered when MON5 is below its undervoltage threshold
[5]
1 = Fault log triggered when MON6 is below its undervoltage threshold
[6]
1 = Fault log triggered when MON7 is below its undervoltage threshold
[7]
1 = Fault log triggered when MON8 is below its undervoltage threshold
[0]
1 = Fault log triggered when MON9 is below its undervoltage threshold
[1]
1 = Fault log triggered when MON10 is below its undervoltage threshold
[2]
1 = Fault log triggered when MON11 is below its undervoltage threshold
[3]
1 = Fault log triggered when MON12 is below its undervoltage threshold
[4]
1 = Fault log triggered when MON1 is above its overvoltage threshold
[5]
1 = Fault log triggered when MON2 is above its overvoltage threshold
[6]
1 = Fault log triggered when MON3 is above its overvoltage threshold
[7]
1 = Fault log triggered when MON4 is above its overvoltage threshold
[0]
1 = Fault log triggered when MON5 is above its overvoltage threshold
[1]
1 = Fault log triggered when MON6 is above its overvoltage threshold
[2]
1 = Fault log triggered when MON7 is above its overvoltage threshold
[3]
1 = Fault log triggered when MON8 is above its overvoltage threshold
[4]
1 = Fault log triggered when MON9 is above its overvoltage threshold
[5]
1 = Fault log triggered when MON10 is above its overvoltage threshold
[6]
1 = Fault log triggered when MON11 is above its overvoltage threshold
[7]
1 = Fault log triggered when MON12 is above its overvoltage threshold
[0]
1 = Fault log triggered when MON1 is above/below the early threshold warning
[1]
1 = Fault log triggered when MON2 is above/below the early threshold warning
[2]
1 = Fault log triggered when MON3 is above/below the early threshold warning
[3]
1 = Fault log triggered when MON4 is above/below the early threshold warning
[4]
1 = Fault log triggered when MON5 is above/below the early threshold warning
[5]
1 = Fault log triggered when MON6 is above/below the early threshold warning
[6]
1 = Fault log triggered when MON7 is above/below the early threshold warning
[7]
1 = Fault log triggered when MON8 is above/below the early threshold warning
24 �������������������������������������������������������������������������������������
12 通道 /8通道、闪存配置系统监测器,
提供非易失故障寄存器
REGISTER
ADDRESS
72h
FLASH
ADDRESS
BIT
RANGE
272h
DESCRIPTION
[0]
1 = Fault log triggered when MON9 is above/below the early threshold warning
[1]
1 = Fault log triggered when MON10 is above/below the early threshold warning
[2]
1 = Fault log triggered when MON11 is above/below the early threshold warning
[3]
1 = Fault log triggered when MON12 is above/below the early threshold warning
[4]
[5]
[7:6]
1 = Fault log triggered when overcurrent early threshold is exceeded
Reserved, must be set to ‘1’
Reserved
如 果GPIO_ 设 置 为 漏 极 开 路EXTFAULT 输 入/输 出,且
EXTFAULT 通过外部电路拉低,则 r1Ch[5] 位置位。
MAX16070/MAX16071触发SMBus 报警输出后,SMB报警
位置位。清除时向该位写
‘1’,详细信息请参考SMBALERT
部分。
关键故障
正常工作过程中,可配置发生故障时,通过设置对应的关键
故障使能位将故障信息保存到闪存存储器。对于触发关键故
障的故障状态,在寄存器 r6Eh 至 r72h 中设置相应的关键故
障使能位 (参见表14)。
故障信息记录在闪存寄存器 r200h 至 r20Fh 中(参见表15)。
一旦发生故障记录事件,闪存被锁定,必须解除其锁定状态
才能存储新的故障记录。向 r8Ch[1] 写
‘0’,解除闪存的故障
锁定状态。可以配置故障信息,在寄存器中存储 ADC 转换
结果和 / 或故障标志。在 r6Dh[1:0] 中选择关键故障配置,将
‘11’,关闭故障记录器。所有保存的 ADC 结
r6Dh[1:0] 置为
果均为 8 位字宽。
表15. 非易失故障记录寄存器
FLASH ADDRESS
200h
201h
202h
BIT RANGE
DESCRIPTION
—
Reserved
[0]
Fault log triggered on MON1
[1]
Fault log triggered on MON2
[2]
Fault log triggered on MON3
[3]
Fault log triggered on MON4
[4]
Fault log triggered on MON5
[5]
Fault log triggered on MON6
[6]
Fault log triggered on MON7
[7]
Fault log triggered on MON8
[0]
Fault log triggered on MON9
[1]
Fault log triggered on MON10
[2]
Fault log triggered on MON11
[3]
Fault log triggered on MON12
[4]
Fault log triggered on overcurrent
[5]
Fault log triggered on EXTFAULT
[7:6]
MAX16070/MAX16071
表14. 关键故障配置(续)
Not used
______________________________________________________________________________________ 25
MAX16070/MAX16071
12 通道 /8通道、闪存配置系统监测器,
提供非易失故障寄存器
表15. 非易失故障记录寄存器(续)
FLASH ADDRESS
BIT RANGE
203h
[7:0]
MON1 ADC output
DESCRIPTION
204h
[7:0]
MON2 ADC output
205h
[7:0]
MON3 ADC output
206h
[7:0]
MON4 ADC output
207h
[7:0]
MON5 ADC output
208h
[7:0]
MON6 ADC output
209h
[7:0]
MON7 ADC output
20Ah
[7:0]
MON8 ADC output
20Bh
[7:0]
MON9 ADC output
20Ch
[7:0]
MON10 ADC output
20Dh
[7:0]
MON11 ADC output
20Eh
[7:0]
MON12 ADC output
20Fh
[7:0]
Current-sense ADC output
复位输出
复位输出 RESET 指示被监测输入的状态。
正常监测工作状态下,RESET 可配置为出现下述任意 MON_
输入组合超出可配置的门限组合时触发复位状态:欠压、过
压或预警。利用 r3Bh[1:0] 选择门限组合 ;利用 r3Ch[7:1] 和
r3Dh[4:0]选择MON_输入组合。需要注意的是 :将 MON_输
入配置为关键故障时将始终导致 RESET复位,与配置位状
态无关。
利用 r3Bh[3] 将 RESET 配置为推挽或漏极开路 输出;利用
r3Bh[2] 将其配置为高电平 有效或低电平 有效。通 过将表
16 中的数值装载至 r3Bh[7:4] 选择复位超时。向 r3Ch[0] 写入
‘1’,强制 RESET复位。向 r3Ch[0] 写入
‘0’后,RESET 在复
位超时周期内仍将保持复位状态,参见表16。可通过读取
r20h[0] 检查 RESET的当前状态。
看门狗定时器
看门狗定时器可以与 MAX16070/MAX16071一起工作,也
可以独立工作。二者配合工作时,在 EN 达到高电平并解除
RESET复位之前,看门狗不会有效工作。独立工作时,看门狗
定时器在VCC超过 UVLO门限、启动过程完成后,将立即开启
看门狗定时器。r73h[4]置
‘0’
,将看门狗配置为从属模式(二者
配合工作);r73h[4]置
‘1’
,将看门狗配置为独立模式。关于看
门狗定时器从属模式、独立模式配置的详细信息请参考表17。
看门狗定时器的从属工作模式
看门狗定时器可以在两种模式下监测 µP 的工作。灵活的超时
控制结构提供可调节看门狗启动延时,最大延时可以达到
300s,保证复杂系统完成足够长的启动程序。可编程看门
狗超时周期能够在处理器工作失效时快速发出报警指示。每
当发生复位(VCC 降到 UVLO 以下后又返回到 UVLO 以上,软
件重新启动,手动复位 (MR),拉低 EN 输入后又将其置高,
或发生看门狗复位 )后,在响应看门狗更新程序之前,看门
狗启动延时为系统上电提供额外的时间,完全初始化 µ P 和
系统元件。将 r76h[6:4] 置为除
‘000’
之外的任意值,使能
看门狗启动延时;将 r76h[6:4] 置为
‘000’,禁止看门狗启动
延时。
26 �������������������������������������������������������������������������������������
12 通道 /8通道、闪存配置系统监测器,
提供非易失故障寄存器
REGISTER
ADDRESS
FLASH
ADDRESS
BIT RANGE
[1:0]
3Bh
0 = Active-low
1 = Active-high
[3]
0 = Push-pull
1 = Open drain
23Bh
3Dh
23Ch
23Dh
Reset output depends on:
00 = Undervoltage threshold violations
01 = Early warning threshold violations
10 = Overvoltage threshold violations
11 = Undervoltage or overvoltage threshold violations
[2]
[7:4]
3Ch
DESCRIPTION
Reset timeout period
0000 = 25μs
0001 = 1.5ms
0010 = 2.5ms
0011 = 4ms
0100 = 6ms
0101 = 10ms
0110 = 15ms
0111 = 25ms
1000 = 40ms
1001 = 60ms
1010 = 100ms
1011 = 150ms
1100 = 250ms
1101 = 400ms
1110 = 600ms
1111 = 1s
[0]
Reset soft trigger
0 = Normal RESET behavior
1 = Force RESET to assert
[1]
1 = RESET depends on MON1
[2]
1 = RESET depends on MON2
[3]
1 = RESET depends on MON3
[4]
1 = RESET depends on MON4
[5]
1 = RESET depends on MON5
[6]
1 = RESET depends on MON6
[7]
1 = RESET depends on MON7
[0]
1 = RESET depends on MON8
[1]
1 = RESET depends on MON9
[2]
1 = RESET depends on MON10
[3]
1 = RESET depends on MON11
[4]
1 = RESET depends on MON12
[7:5]
Reserved
______________________________________________________________________________________ 27
MAX16070/MAX16071
表16. 复位输出配置
MAX16070/MAX16071
12 通道 /8通道、闪存配置系统监测器,
提供非易失故障寄存器
表17. 看门狗配置
REGISTER
ADDRESS
FLASH
ADDRESS
BIT RANGE
73h
273h
[4]
1 = Independent mode
0 = Dependent mode
[7]
1 = Watchdog affects RESET output
0 = Watchdog does not affect RESET output
76h
DESCRIPTION
[6:4]
Watchdog startup delay
000 = No initial timeout
001 = 30s
010 = 40s
011 = 80s
100 = 120s
101 = 160s
110 = 220s
111 = 300s
[3:0]
Watchdog timeout
0000 = Watchdog disabled
0001 = 1ms
0010 = 2ms
0011 = 4ms
0100 = 8ms
0101 = 14ms
0110 = 27ms
0111 = 50ms
1000 = 100ms
1001 = 200ms
1010 = 400ms
1011 = 750ms
1100 = 1.4s
1101 = 2.7s
1110 = 5s
1111 = 10s
276h
标称看门狗超时周期 tWDI,开始于长启动看门狗周期 (tWDI_
STARTUP) 结束之前的第一次WDI跳变之后 (图 5)。正常工作
模式下,在标称超时周期 tWDI之内,如果 µ P 没有以有效的
跳变 (高电平至低电平或低电平至高电平) 触发WDI,将触发
WDO 输出,在触发WDI或 RESET复位之前,WDO 保持超
时报警状态 (图 6)。
EN为低电平时,看门狗定时器处于复位状态。解除 RESET复
位状态之前,看门狗定时器不会开始计数。一旦 RESET复
位,看门狗定时器将被复位,解除 WDO 超时报警 (图7)。触
发RESET复位时,看门狗定时器将保持在复位状态。
看门狗可以经过配置控制 RESET 输出以及WDO 输出。达到
看门狗定时器周期时,如果看门狗复位输出使能位(r76h[7])置
‘1’
,RESET在复位超时周期 tRP 内保持复位。当触发RESET
复位时,清除看门狗定时器且解除WDO 报警输出;因此,达
到看门狗定时器周期时,WDO 在短时间内被拉低( 大约1µs)。
当看门狗复位输出使能位(r76h[7])置
‘0’时,RESET 不受看
门狗定时器的影响。如果触发 RESET复位是由看门狗超时引
起的,WDRESET位置
‘1’
。所连接的处理器能够检测该位,
以便确认看门狗超时触发的复位,关于看门狗功能配置的详
细信息请参考表17。
28 �������������������������������������������������������������������������������������
12 通道 /8通道、闪存配置系统监测器,
提供非易失故障寄存器
MAX16070/MAX16071
VTH
LAST MON_
< tWDI
tWDI_STARTUP
WDI
< tWDI
tRP
RESET
图5. 标准的看门狗启动时序
VCC
WDI
< tWDI
< tWDI
> tWDI
< tWDI
< tWDI
< tWDI
< tWDI
0V
tWDI
VCC
WDO
0V
图 6. 看门狗定时器工作原理
VCC
< tWDI
WDI
tWDI
tRP
< tWDI_STARTUP
< tWDI
0V
VCC
RESET
0V
VCC
WDO
0V
1µs
图7. 看门狗启动过程,看门狗复位输出使能位置为
‘1’
______________________________________________________________________________________ 29
MAX16070/MAX16071
12 通道 /8通道、闪存配置系统监测器,
提供非易失故障寄存器
看门狗定时器的独立工作模式
r73h[4] 为‘1’时,看门狗定时器工作在独立模式。独立模式
下,看门狗定时器如同一个独立的芯片进行工作。VCC 高于
UVLO后,一旦完成启动过程,将立即开启看门狗定时器。
如果触发 RESET复位,看门狗定时器和 WDO 不会受影响。
‘000’的任意值,将会有启动延时;
如果 r76h[6:4] 置为非
如果 r76h[6:4] 置为
‘000’,则不会有启动延时,延迟时间
请参见表17。
‘1’,
独立工作模式下,如果看门狗复位输出使能位 r76h[7] 置
达到看门狗定时器周期时,将触发WDO 报警并触发 RESET
复位。随后,将解除 WDO 报警。WDO 保持低电平的时间
为大约1µs。如果看门狗复位输出使能位 (r76h[7])置
‘0’,
WDT超时的情况下,将触发WDO 报警,但不影响 RESET
输出。
用户定义的寄存器
寄存器 r8Ah为用户定义配置或固件版本号的存储空间。需要
注意的是:该寄存器控制 JTAGUSERCODE 寄存器位7:0 的
内容。用户定义寄存器保存在闪存 r28Ah 中。
SMBus兼容接口
MAX16070/MAX16071具有兼容于SMBus 的 2 线串行接
口,它包括一条串行数据线 (SDA) 和一条串行时钟线 (SCL)。
SDA 和 SCL实现 MAX16070/MAX16071与主机器件的双
向通信,时钟速率高达 400kHz。图1显示了2 线接口时序图。
MAX16070/MAX16071是发送 / 接收从机器件,由主机器
件产生时钟信号。主机器件 (一般是微控制器) 在总线上启动
每次数据传输,产生用于数据传输的 SCL。
主机器件通过发送正确的地址以及随后的命令和 /或数据字,
与 MAX16070/MAX16071进行通信。从机地址输入 A0 能
够设置四种不同的状态,使多个同样器件共用同一串行总线。
从机地址 部分详细说明了从机地址。每一次传输包括 START
(S)或 REPEATEDSTART(SR)条件以及STOP(P)条件。通
过总线传输的每一个字均为 8 位,其后为应答脉冲。SCL为
逻辑输入,而 SDA为开漏输入 / 输出。SCL 和 SDA 都需要外
部上拉电阻才能产生逻辑高电平,4.7kΩ 电阻适用于大多数
应用。
存储器锁存位
寄存器 r8Ch 包含锁存位,用于配置寄存器、配置闪存、用户
闪存以及故障寄存器的锁存,详细信息请参考表18。
表18. 存储器锁存位
REGISTER
ADDRESS
8Ch
FLASH ADDRESS
BIT RANGE
DESCRIPTION
0
Configuration register lock
1 = Locked
0 = Unlocked
1
Flash fault register lock
1 = Locked
0 = Unlocked
2
Flash configuration lock
1 = Locked
0 = Unlocked
3
User flash lock
1 = Locked
0 = Unlocked
28Ch
30 �������������������������������������������������������������������������������������
12 通道 /8通道、闪存配置系统监测器,
提供非易失故障寄存器
SDA
SCL
SCL
DATA LINE STABLE, CHANGE OF
DATA ALLOWED
DATA VALID
S
P
START
CONDITION
STOP
CONDITION
MAX16070/MAX16071
SDA
图 8. 位传输
图9.START 和 STOP 条件
位传输
每个时钟脉冲发送一个数据位,SDA的数据必须在 SCL为高
电平时保持稳定(图 8);否则,MAX16070/MAX16071将从
主机收到一个START或 STOP条件(图9)。总线不忙时,SDA
和 SCL 空闲,为高电平。
应答
应答位 (ACK) 是第 9 位,附加在 8 位数据字后面,接收器件
始终产生一个ACK。当接收到地址或数据时,MAX16070/
MAX16071在第 9 个时钟周期将 SDA拉低,产生一个ACK
(图10)。发 送 数 据 时, 例 如, 主 机 器 件从 MAX16070/
MAX16071读数据时,器件等待主机器件产生 ACK。监测
ACK 可以探测到不成功的数据传输。如果接收器件忙或系
统出现了故障,数据传输失败。出现不成功的数据传输时,
总线主机应稍后重新尝试通信。在软件重新启动期间,写入
闪存或接收到非法的存储器地址时,MAX16070/MAX16071
在接收到的命令字节之后产生一个 NACK。
START 和 STOP条件
总线不忙时,SCL 和 SDA 都为空闲状态,处于高电平。SCL
为高电平时,主机器件将SDA 从高电平跳变到低电平,发出
START开启一次信号传输。SCL为高电平时,主机器件将SDA
从低电平跳变到高电平,发出 STOP 条件。STOP 条件将释
放总线,以便进行下次传输。如果产生 REPEATEDSTART
条 件,例如在读 数据块协议中,总 线将 保 持工作 状态 ( 见
图1)。
提前STOP条件
传输期间,MAX16070/MAX16071在任何时候都能识别
STOP状态,除非在同一高电平脉冲内发生STOP条件和START
条件。这一状态为非法 SMBus 格式,START 和 STOP 条件
必须至少分开一个时钟脉冲。
REPEATED START条件
从机地址
利用从机地址输入 A0,可以允许多个相同器件挂接在同一
串行总 线。将A0 接 GND、DBP(或大于 2V的外部供电电
压 )、SCL 或 SDA 设置器件的总线地址,请参考表 20 所示7
位地址列表。
从机地址还可通过向寄存器 r8Bh[6:0] 装载地址设置客户定
制值,参见表19。如果 r8Bh[6:0] 装载值为 00h,通过输入
A0 设置地址。不要将地址设置为 09h 或 7Fh,以避免地址
冲突。写入寄存器地址后从机地址设置立即生效。
可以发送 REPEATEDSTART,而不是STOP 条件来保持读
操作期间对总线的控制。START 和 REPEATEDSTART条件
的作用相同。
______________________________________________________________________________________ 31
MAX16070/MAX16071
12 通道 /8通道、闪存配置系统监测器,
提供非易失故障寄存器
CLOCK PULSE FOR ACKNOWLEDGE
2
1
SCL
8
9
SDA BY
TRANSMITTER
S
NACK
SDA BY
RECEIVER
ACK
图10. 应答
表19. SMBus设置寄存器
REGISTER
ADDRESS
FLASH ADDRESS
8Bh
28Bh
BIT RANGE
[6:0]
[7]
DESCRIPTION
I2C Slave Address Register. Set to 00h to use A0 pin
address setting.
1 = Enable PEC (packet error check).
表 20. 设置SMBus从机地址
SLAVE ADDRESSES
A0
SLAVE ADDRESS
0
1010 000R
1
1010 001R
SCL
1010 010R
SDA
1010 011R
R= 读 / 写选择位。
32 �������������������������������������������������������������������������������������
12 通道 /8通道、闪存配置系统监测器,
提供非易失故障寄存器
CRC-8字节通过下列多项式进行计算:
C = X8 + X2 + X + 1
PEC计算包括所有传输字节,其中包括地址、命令和数据。
PEC计算不包括ACK、NACK、START、STOP或REPEATED
START。
命令代码
MAX16070/MAX16071可以使用 8 个命令代码执行数据块
的读、写及其它指令,请参考表 21列出的命令代码。
软件重新初始化时,按照发送字节格式发送 A7h。软件重新
装载数据,与硬件初始化上电复位的过程相同。启动过程中,
230h 到 28Ch 范围的闪存配置数据被复制到默认页面 r30h
到 r8Ch 的寄存器地址。
发送命令代码 A8h 触发一次故障存储,将故障数据存储到
闪存。 配置关键故障记录控制寄存器 (r6Dh)可以存储 ADC
转换结果和 / 或故障标志。
利用命令代码A9h可以访问闪存页面(地址从200h 到28Dh)。
一旦发出命令代码 A9h,所有地址都将被识别为闪存地址。
发送命令代码AAh 将返回至默认页面(地址从000h到08Dh)。
发送命令代码ABh,访问用户闪存页面(地址从300h到39Fh
以及从3B0h 到 3FFh)。发送命令代码 ACh,返回闪存页面。
写闪存限制
每次必须以8 个字节写入闪存。初始地址必须为 8 字节边界
对齐,初始地址的 3 个 LSB 必须为
‘000’。利用单个写数据
块命令或采用 8 个连续写字节命令写入8 个字节。
发送字节
主机器件按照发送字节协议可以向从机器件发送一个字节的
数据 ( 见图11)。发送字节预设寄存器指针地址,进行连续
的读写操作。如果主机发送无效的存储器地址或命令代码,
从机将发出一个 NACK(而不是ACK)。如果主机发送 A5h
或 A6h,数据为 ACK,这是因为,它可能是写数据块或读
数据块的开始。如果在从机发出 ACK 之前,主机发送一个
STOP 条件,内部地址指针将不会改变。如果主机发送 A7h,
表示软件重新启动。发送字节过程如下:
1) 主机发送一个START条件。
2) 主机发送7位从机地址和1位写控制(低电平)。
3) 被寻址的从机在 SDA 上产生 ACK。
4) 主机发送一个 8 位存储器地址或命令代码。
5) 被寻址的从机在 SDA 上产生 ACK(或 NACK)。
6) 主机发送一个STOP 条件。
表 21. 命令代码
COMMAND
CODE
MAX16070/MAX16071
数据包错误检测(PEC)
MAX16070/MAX16071具有PEC模式,该模式可监测误码,
对于提高总线通信的可靠性非常有帮助。通过使能 PEC,在
每个读和 /或写操作过程中会在数据串添加一个额外的 CRC-8
误码校验字节。将 r8Bh[7] 置
‘1’,使能 PEC。
ACTION
A5h
Block write
A6h
Block read
A7h
Reboot flash in register file
A8h
Trigger emergency save to flash
A9h
Flash page access ON
AAh
Flash page access OFF
ABh
User flash access ON (must be in flash page already)
ACh
User flash access OFF (return to flash page)
______________________________________________________________________________________ 33
MAX16070/MAX16071
12 通道 /8通道、闪存配置系统监测器,
提供非易失故障寄存器
Send Byte Format
S
ADDRESS
Receive Byte Format
R/W ACK
7 bits
0
0
Slave Address: Address
of the slave on the serial
interface bus.
COMMAND
ACK
8 bits
0
P
ADDRESS
S
Data Byte: Presets the internal
address pointer or represents
a command.
ADDRESS
7 bits
SLAVE
ADDRESS
0
DATA
NACK
8 bits
1
P
Data Byte: Data is read from
the location pointed to by the
internal address pointer.
SMBALERT#
R/W ACK
0
0
Slave Address: Address
of the slave on the serial
interface bus.
Read Byte Format
S
1
Slave Address: Address
of the slave on the serial
interface bus.
Write Byte Format
S
R/W ACK
7 bits
ACK
8 bits
0
0
0
Slave Address: Address
of the slave on the serial
interface bus.
DATA
ACK
8 bits
0
P
S
COMMAND
ACK
8 bits
0
SR
SLAVE
ADDRESS
R/W ACK
0001100
D.C.
DATA BYTE NACK
R/W ACK
7 bits
ADDRESS
0
Alert Response Address:
Only the device that
interrupted the master
responds to this address.
Data Byte: Data is written to
the locations set by the
internal address pointer.
Command Byte:
Sets the internal
address pointer.
R/W ACK
7 bits
COMMAND
1
8 bits
0
DATA
NACK
8 bits
1
P
Slave Address: Slave places
its own address on the
serial bus.
P
1
Data Byte: Data is read from
the locations set by the
internal address pointer.
Command Byte:
Sets the internal
address pointer.
Block Write Format
S
ADDRESS
R/W ACK
7 bits
0
0
Slave Address: Address
of the slave on the
serial interface bus.
COMMAND
ACK
BYTE
COUNT = N
8 bits
0
8 bits
ACK DATA BYTE 1 ACK DATA BYTE … ACK DATA BYTE N ACK
8 bits
0
Command Byte:
A5h
8 bits
0
0
8 bits
Slave to master
P
0
Master to slave
Data Byte: Data is written to the locations
set by the internal address pointer.
Block Read Format
S
ADDRESS
R/W ACK
7 bits
0
0
Slave Address: Address
of the slave on the
serial interface bus.
COMMAND
ACK
8 bits
0
SR
ADDRESS
7 bits
1
0
Slave Address: Address
of the slave on the
serial interface bus.
Command Byte:
A6h
BYTE
COUNT = N
R/W ACK
ACK DATA BYTE 1 ACK DATA BYTE … ACK DATA BYTE N NACK
8 bits
0
8 bits
0
8 bits
0
8 bits
P
1
Data Byte: Data is read from the locations
set by the internal address pointer.
Write Byte Format with PEC
S
ADDRESS
R/W A
7 BITS
0
0
COMMAND
A
DATA
A
PEC
A
8 BITS
0
8 BITS
0
8 BITS
0
COMMAND
A
0
P
Read Byte Format with PEC
S
ADDRESS
R/W A
7 BITS
0
0
8 BITS
ADDRESS
R/W
A
COMMAND
7 BITS
0
0
ADDRESS
R/W
7 BITS
0
SR
ADDRESS
R/W
A
DATA
A
PEC
N
7 BITS
1
0
8 BITS
0
8 BITS
1
P
Block Write with PEC
S
A BYTE COUNT N
A
DATA BYTE 1
A
DATA BYTE
A
DATA N
A
PEC
A
8 BITS
0
0
8 BITS
0
8 BITS
0
8 BITS
0
8 BITS
0
A
COMMAND
A
A
DATA BYTE N
A
PEC
N
0
8 BITS
0
0
8 BITS
0
8 BITS
1
8 BITS
P
Block Read with PEC
S
S = START Condition
P = STOP Condition
Sr = Repeated START Condition
D.C. = Don’t Care
SR
ADDRESS
R/W
A
BYTE COUNT N
A
DATA BYTE 1
A
7 BITS
1
0
8 BITS
0
8 BITS
0
ACK = Acknowledge, SDA pulled low during rising edge of SCL.
NACK = Not acknowledge, SDA left high during rising edge of SCL.
All data is clocked in/out of the device on rising edges of SCL.
DATA BYTE
8 BITS
= SDA transitions from high to low during period of SCL.
= SDA transitions from low to high during period of SCL.
图11.SMBus 协议
34 �������������������������������������������������������������������������������������
P
12 通道 /8通道、闪存配置系统监测器,
提供非易失故障寄存器
主机器件按照接收字节协议可以读取MAX16070/MAX16071
寄存器的内容 ( 见图11)。闪存或寄存器地址必须通过发送
字节或写字协议进行预设。每完成一次读操作,内部指针递
增1。重复接收字节协议,读取下一地址的内容。接收字节
过程如下:
1) 主机发送一个START条件。
2) 主机发送7位从机地址和1位读控制(高电平)。
3) 被寻址的从机在 SDA 上产生 ACK。
4) 从机发送 8 个数据位。
5) 主机在 SDA 上产生 NACK。
6) 主机产生一个STOP 条件。
写字节
主机器件按照写字节协议可以在默认页面、扩展页面或闪存
页面写入一个字节( 见图11),这取决于当前所选择的页面。
写字节过程如下:
1) 主机发送一个START条件。
2) 主机发送7位从机地址和1位写控制(低电平)。
3) 被寻址的从机在 SDA 上产生一个ACK。
4) 主机发送 8 位存储器地址。
5) 被寻址的从机在 SDA 上产生 ACK。
6) 主机发送 8 位数据字节。
7) 被寻址的从机在 SDA 上产生 ACK。
8) 主机发送一个STOP 条件。
写入一个字节时,只发送 8 位存储器地址和 8 位数据字节。如
果存储器地址有效,数据字节被写入所寻址的地址。如果存
储器地址无效,从机将在第 5 步产生 NACK。
PEC使能时,写字节协议变为:
1) 主机发送一个START条件。
2) 主机发送7位从机ID 和1位写控制(低电平)。
3) 被寻址的从机在数据线上产生一个ACK。
4) 主机发送 8 位存储器地址。
5) 被寻址的从机在数据线上产生 ACK。
6) 主机发送 8 位数据字节。
7) 被寻址的从机在数据线上产生 ACK。
8) 主机发送一个 8 位 PEC 字节。
9) 从机在数据线上产生一个ACK(如果 PEC正确,否则发
送 NACK)。
10) 主机产生一个STOP 条件。
读字节
主机器件按照读字节协议可以在默认页面、扩展页面或者闪
存页面中读取一个字节( 见图11),这取决于当前所选择的页
面。读字节过程如下:
1) 主机发送一个START条件。
2) 主机发送7位从机地址和1位写控制(低电平)。
3) 被寻址的从机在 SDA 上产生一个ACK。
4) 主机发送 8 位存储器地址。
5) 被寻址的从机在 SDA 上产生一个ACK。
6) 主机发送一个 REPEATEDSTART条件。
7) 主机发送7位从机地址和1位读控制(高电平)。
8) 被寻址的从机在 SDA 上产生一个ACK。
9) 从机发送 8 位数据字节。
10) 主机在 SDA 上产生 NACK。
11) 主机发送一个STOP 条件。
如果存储器地址无效,从机在第 5 步发送一个 NACK,不修
改地址指针。
PEC使能时,读字节协议变为:
1) 主机发送一个START条件。
2) 主机发送7位从机ID 和1位写控制(低电平)。
3) 被寻址的从机在数据线上产生一个ACK。
4) 主机发送 8 位存储器地址。
5) 被寻址的从机在数据线上产生一个ACK。
6) 主机发送一个 REPEATEDSTART条件。
7) 主机发送7位从机ID 和1位读控制(高电平)。
8) 被寻址的从机在数据线上产生一个ACK。
9) 从机发送 8 位数据字节。
10) 主机在数据线上产生 ACK。
11) 从机发送一个8 位 PEC 字节。
12) 主机在数据线上产生一个 NACK。
13) 主机发送一个STOP 条件。
______________________________________________________________________________________ 35
MAX16070/MAX16071
接收字节
MAX16070/MAX16071
12 通道 /8通道、闪存配置系统监测器,
提供非易失故障寄存器
写数据块
主机器件按照数据块写协议可以向存储器写入一个数据块 (1
字节至16 字节)( 见图11)。应通过之前的发送字节命令预先
装载目的地址,否则,数据块写命令将从当前地址指针开始
进行写操作。写入最后一个字节后,地址指针仍然预设到下
一有效地址。如果要写入的字节数使地址指针超出配置寄存
器或配置闪存的 8Fh 或是超出用户闪存的 FFh,地址指针将
停留在 8Fh 或 FFh,剩余的数据字节将覆盖这一存储器地址。
如果命令代码无效,或者如果器件忙,从机在第 5 步产生一
个 NACK,地址指针将不会发生变化。
写数据块过程如下:
1) 主机发送一个START条件。
2) 主机发送7位从机地址和1位写控制(低电平)。
3) 被寻址的从机在 SDA 上产生一个ACK。
4) 主机发送数据块写操作的 8 位命令代码(A5h)。
5) 被寻址的从机在 SDA 上产生一个ACK。
6) 主机发送 8 位字节计数值(1字节至16 字节),n。
7) 被寻址的从机在 SDA 上产生一个ACK。
8) 主机发送 8 位数据。
9) 被寻址的从机在 SDA 上产生一个ACK。
10) 重复第 8 步和第 9 步 n-1次。
11) 主机发送一个STOP 条件。
PEC使能时,数据块写协议变为:
1) 主机发送一个START条件。
2) 主机发送7位从机ID 和1位写控制(低电平)。
3) 被寻址的从机在数据线上产生一个ACK。
4) 主机发送数据块写操作的 8 位命令代码。
5) 从机在数据线上产生一个ACK。
6) 主
机发送8位字节计数值(最少1个字节,最多16 个字节),
n。
7) 从机在数据线上产生一个ACK。
8) 主机发送 8 位数据。
9) 从机在数据线上产生一个ACK。
10) 重复第 8 步和第 9 步 n-1次。
11) 主机发送一个 8 位 PEC 字节。
12)从机在数据线上产生一个ACK(如果 PEC正确,否则发
送 NACK)。
13) 主机发送一个STOP 条件。
读数据块
主机器件按照读数据块协议可以从存储器读取16 字节的数
据块 ( 见图11)。如果主机 发出提前 STOP 条 件或产生一个
NACK,读取数据将少于16 个字节。应通过之前的发送字节
命令预先装载目的地址,否则,读数据块命令将从当前地
址指针开始进行读操作。如果要读取的字节数使地址指针
超出配置寄存器或闪存的 8Fh、或超出用户闪存的 FFh,地
址指针将停留在 8Fh 或 FFh。数据块读过程如下:
1) 主机发送一个START条件。
2) 主机发送7位从机地址和1位写控制(低电平)。
3) 被寻址的从机在 SDA 上产生一个ACK。
4) 主机发送 8 位数据块读命令 (A6h)。
5) 从机除非处于忙状态,否则将在 SDA 上产生 ACK。
6) 主机发送一个 REPEATEDSTART条件。
7) 主机发送7位从机地址和1位读控制(高电平)。
8) 从机在 SDA 上产生 ACK。
9) 从机发送 8 位字节计数值(16)。
10) 主机在 SDA 上产生 ACK。
11) 从机发送 8 位数据。
12) 主机在 SDA 上产生 ACK。
13) 重复第11步和第12 步15次。
14) 主机在 SDA 上产生 NACK。
15) 主机发送一个STOP 条件。
PEC使能时,数据块读协议变为:
1) 主机发送一个START条件。
2) 主机发送7位从机ID 和1位写控制(低电平)。
36 �������������������������������������������������������������������������������������
12 通道 /8通道、闪存配置系统监测器,
提供非易失故障寄存器
REGISTER
ADDRESS
35h
FLASH
ADDRESS
235h
BIT RANGE
[1:0]
DESCRIPTION
SMBus Alert Configuration
00 = Disabled
01 = Fault1 is SMBus ALERT
10 = Fault2 is SMBus ALERT
11 = ANY_FAULT is SMBus ALERT
3) 被寻址的从机在数据线上产生一个ACK。
4) 主机发送 8 位数据块读命令。
5) 从机除非处于忙状态,否则将在数据线上产生 ACK。
6) 主机发送一个 REPEATEDSTART条件。
7) 主机发送7位从机ID 和1位读控制(高电平)。
8) 从机在数据线上产生 ACK。
9) 从机发送 8 位字节计数值(16)。
10) 主机在数据线上产生 ACK。
11) 从机发送 8 位数据。
12) 主机在数据线上产生 ACK。
13) 重复第11步和第12 步15次。
14) 从机发送一个8 位 PEC 字节。
15) 主机在数据线上产生 NACK。
16) 主机产生一个STOP 条件。
SMBALERT
MAX16070/MAX16071
表 22. SMBus报警配置
MAX16070/MAX16071支 持 SMBus 报警 协议。为 使 能
SMBus 报警输出,根据表 22 设置 r35h[1:0],可将 Fault1、
Fault2 以及ANY_FAULT 输出配置为SMBus 报警。该输出
为漏极开路,可与 SMBus 总线上的其它器件配置线
“或”。
出现故障过程中,MAX16070/MAX16071 拉低 ALERT,
发信号给主机触发中断。主机通过在总线上发送ARA(报警
响应地址 ) 协议来响应。该协议为读字节,从机地址为 09h。
从机响应 ARA(09h)地址并向主机发送其自身SMBus 地址,
然后从机拉高 ALERT。主机接着质询从机并可确定故障原
因。通过检测 r1Ch[6],主机能确认MAX16070/MAX16071
触发了SMBus 报警。主机必须在清除 r1Ch[6] 之前发送ARA。
通过写
‘1’
可清除 r1Ch[6]。
JTAG串行接口
MAX16070/MAX16071带有一个JTAG端口,是IEEE®1149.1
规范的子集。可以使用 SMBus 或 JTAG 接口访问内部存储
器; 但是,每次只能使用一个接口。MAX16070/MAX16071
不支持IEEE1149.1边界扫描功能。MAX16070/MAX16071
具有额外的 JTAG 指令和寄存器,这些指令和寄存器不包括
在 JTAG 规范中,可以用于访问内部存储器。其它指令包括
LOADADDRESS、WRITEDATA、READDATA、REBOOT
和 SAVE。
IEEE 是美国电子和电气工程师学会的注册服务标志。
______________________________________________________________________________________ 37
MAX16070/MAX16071
12 通道 /8通道、闪存配置系统监测器,
提供非易失故障寄存器
REGISTERS
AND FLASH
01100
01011
01010
01001
01000
00111
MEMORY WRITE REGISTER
[LENGTH = 8 BITS]
00110
MEMORY READ REGISTER
[LENGTH = 8 BITS]
00101
MEMORY ADDRESS REGISTER
[LENGTH = 8 BITS]
00100
USER CODE REGISTER
[LENGTH = 32 BITS]
00011
IDENTIFICATION REGISTER
[LENGTH = 32 BITS]
BYPASS REGISTER
[LENGTH = 1 BIT]
MUX 1
00000
11111
COMMAND
DECODER
01001
SETFLSHADD
01010
RSTFLSHADD
01011
SETUSRFLSH
01100
RSTUSRFLSH
01000
SAVE
00111
REBOOT
VDB
INSTRUCTION REGISTER
[LENGTH = 5 BITS]
RPU
TDI
TMS
TCK
MUX 2
TDO
TEST ACCESS PORT
(TAP) CONTROLLER
图12.JTAG 方框图
测试访问端口(TAP)
控制器状态机
TAP 控制器是一个有限状态机,在 TCK 的上升沿响应 TMS
逻辑电平,图13 给出了有限状态机的原理图。可能出现的状
态如下所述:
Test-Logic-Reset :上电时,TAP 控制器处于test-logic-reset
状态。指令寄存器含有IDCODE 指令。器件的所有系统逻辑
电路将正常工作。如果将 TMS 驱动至高电平并保持 5 个时钟
周期,器件将从任何状态进入到该状态。
Run-Test/Idle:run-test/idle 状态用于扫描操作之间或特定测
试中。指令寄存器和测试数据寄存器保持空闲。
Select-DR-Scan: 所有测试数据寄存器保持其前一状态。
TMS为低电平时,在 TCK 的上升沿使控制器进入captureDR 状态,初始化扫描过程。TMS为高电平时,在TCK 上升
沿,控制器进入 select-IR-scan 状态。
Capture-DR:将数据并行装载到当前指令选择的测试数据
寄存器中。如果指令没有调用并行装载,或者所选寄存器不
允许并行装载,测试数据寄存器将保持其当前值。在 TCK
的上升沿,如果TMS为低电平,控制器将进入shift-DR 状态,
如果TMS为高电平,控制器进入exit1-DR 状态。
38 �������������������������������������������������������������������������������������
12 通道 /8通道、闪存配置系统监测器,
提供非易失故障寄存器
TEST-LOGIC-RESET
0
0
RUN-TEST/IDLE
1
SELECT-DR-SCAN
1
SELECT-IR-SCAN
0
1
0
1
CAPTURE-DR
CAPTURE-IR
0
0
SHIFT-DR
1
1
EXIT1-DR
1
EXIT1-IR
0
0
PAUSE-DR
PAUSE-IR
0
1
0
1
0
EXIT2-DR
EXIT2-IR
1
1
UPDATE-DR
1
0
SHIFT-IR
0
1
0
1
MAX16070/MAX16071
1
UPDATE-IR
0
1
0
图13. 抽头控制器状态图
Shift-DR:当前指令所选择的测试数据寄存器连接在 TDI和
TDO之间,当TMS为低电平时,在每个TCK 的上升沿数据
向其串行输出移动一位。在 TCK 的上升沿,如果TMS为高电
平,控制器进入exit1-DR 状态。
Exit1-DR:在此状态下,控制器在 TCK的上升沿进入updateDR 状态。如果TMS为低电平,控制器在 TCK 的上升沿进入
pause-DR 状态。
Pause-DR:此状态下暂停测试数据寄存器的移位。所有测
试数据寄存器保持其前一状态。TMS为低电平时,控制器将
保持该状态;TMS为高电平时,控制器在 TCK的上升沿进入
exit2-DR 状态。
Exit2-DR :此状态下,如果TMS为高电平,控制器在TCK的
上升沿进入update-DR 状态;如果TMS为低电平,控制器在
TCK 的上升沿进入shift-DR 状态。
Update-DR:update-DR 状态下,TCK 的下降沿将数据从测
试数据寄存器的移位寄存器通路锁存到输出锁存器。可以防
止由于移位寄存器变化而导致并行输出的变化。在 TCK 上
升沿,如果TMS为低电平,控制器进入 run-test/idle 状态;如
果TMS为高电平,进入 select-DR-scan 状态。
Select-IR-Scan:所有测试数据寄存器保持其前一状态。在
此状态下,指令寄存器保持不变。TMS为低电平时,控制器
在 TCK 的上升沿进入capture-IR 状态 ;如果TMS为高电平,
控制器在 TCK 的上升沿返回到 test-logic-reset 状态。
Capture-IR :通过capture-IR 状态将固定值装载到指令寄
存器的移位寄存器,在 TCK 上升沿装载该数值。如果TMS
为高电平,控制器在 TCK 的上升沿进入exit1-IR 状态。如果
TMS为低电平,控制器在 TCK 的上升沿进入shift-IR 状态。
Shift-IR:在此状态下,指令寄存器的移位寄存器连接在 TDI
和 TDO 之间,如果TMS为低电平,在每个TCK 的上升沿数
据向TDO 串行输出移动一位。指令寄存器以及测试数据寄
存器并行输出保持其前一状态。如果TMS为高电平,控制器
在 TCK 的上升沿进入exit1-IR 状态。如果TMS为低电平,控
制器在 TCK 的上升沿进入 shift-IR 状态,并将数据在指令移
位寄存器中移动一位。
______________________________________________________________________________________ 39
MAX16070/MAX16071
12 通道 /8通道、闪存配置系统监测器,
提供非易失故障寄存器
器连接在 TDI和 TDO 之间。在 shift-IR 状态下,如果TMS为
低电平,在 TCK 的上升沿数据向TDO 的串行输出移动一位。
Exit1-IR 状态或 exit2-IR 状态下,如果TMS为高电平,控制
器在 TCK 的上升沿进入 update-IR 状态。在同一TCK 的下降
沿,将指令移位寄存器的数据锁存到指令寄存器的并行输
出。表 23 列出了 MAX16070/MAX16071所支持的指令及
其各自的二进制运算代码。
Exit1-IR:如果TMS为低电平,控制器在 TCK 的上升沿进入
pause-IR 状态 ;如果TMS为高电平,控制器在TCK的上升沿
进入 update-IR 状态。
Pause-IR:暂停指令移位寄存器的移位过程。如果TMS为高
电平,控制器在 TCK的上升沿进入exit2-IR 状态 ;如果TMS
为低电平,TCK 的上升沿使控制器保持在 pause-IR 状态。
Exit2-IR:如果TMS为高电平,控制器在 TCK 的上升沿进入
update-IR 状态 ;此状态下,如果TMS为低电平,控制器将
在 TCK 的上升沿回到 shift-IR。
BYPASS :当 BYPASS 指令锁存到并行指令寄存器时,TDI
通过1位旁路测试数据寄存器连接至 TDO。使数据能够由
TDI传递至 TDO,而不影响器件的正常工作。
Update-IR:控制器进入此状态后,移入指令移位寄存器的
代码在 TCK 的下降沿锁存到指令寄存器的并行输出。一旦锁
存,该指令变为当前指令。当TMS为低电平时,控制器在
TCK 的上升沿进入 run-test/idle 状态 ;TMS为高电平时,控
制器进入 select-DR-scan 状态。
IDCODE:当IDCODE指令锁存到并行指令寄存器时,选中
标识数据寄存器。进入capture-DR 状态后,在 TCK 上升沿,
器件标识码装载到标识数据寄存器。Shift-DR 可通过 TDO
将标识码串行移出。在test-logic-reset 过程中,IDCODE指令
被强制送入指令寄存器。标识码的 LSB 位始终为
‘1’
,后续的
11位表示制造商的 JEDEC号,随后的16 位数字为器件信息,
4位是版本号,参见表 24。
指令寄存器
指令寄存器含有一个移位寄存器和一个并行锁存输出,字长
为 5 位。当TAP 控制器进入 shift-IR 状态时,指令移位寄存
表 23. JTAG指令集
INSTRUCTION
CODE
NOTES
BYPASS
0x1F
Mandatory instruction code
IDCODE
0x00
Load manufacturer ID code/part number
USERCODE
0x03
Load user code
LOAD ADDRESS
0x04
Load address register content
READ DATA
0x05
Read data pointed by current address
WRITE DATA
0x06
Write data pointed by current address
REBOOT
0x07
Reboot FLASH data content into register file
SAVE
0x08
Trigger emergency save to flash
SETFLSHADD
0x09
Flash page access ON
RSTFLSHADD
0x0A
Flash page access OFF
SETUSRFLSH
0x0B
User flash access ON (must be in flash page already)
RSTUSRFLSH
0x0C
User flash access OFF (return to flash page)
表 24. 32位识别码
MSB LSB
VERSION
Part number (16 bits)
Manufacturer (11 bits)
Fixed value (1 bit)
MAX16070
REV
1000000000000011
00011001011
1
MAX16071
REV
1000000000000100
00011001011
1
40 �������������������������������������������������������������������������������������
12 通道 /8通道、闪存配置系统监测器,
提供非易失故障寄存器
MSB
LSB
Don’t Care
00000000000000000
SMBus slave ID
See Table 20
USERCODE:当USERCODE指令锁存到并行指令寄存器时,
选中用户代码数据寄存器。进入capture-DR 状态后,器件用
户代码在 TCK 上升沿装载到用户代码数据寄存器。Shift-DR
可通过TDO将用户代码串行移出,参见表 25。这一指令可用
于识别多个连接在 JTAG 链路的 MAX16070/MAX16071
器件。
LOAD ADDRESS:这是对标准IEEE1149.1指令集的扩展,
以支持对 MAX16070/MAX16071存储器的访问。在 shiftDR 状态下,当 LOADADDRESS 指令锁存到指令寄存器时,
TDI通过 8 位存储器地址测试数据寄存器连接至 TDO。
User ID (r8Ah[7:0])
RSTFLSHADD:这是对标准IEEE1149.1指令集的扩展。通
过 RSTFLSHADD 返回到默认页面,禁止对闪存页面的访问。
SETUSRFLSH: 这 是 对 标 准IEEE1149.1 指 令 集 的 扩
展,支持对用户闪存页面的访问。在配置闪存页面上发送
SETUSRFLSH 命令,所有地址只被识别为闪存地址。利用该
页面可访问寄存器300h 至 3FFh。
RSTUSRFLSH:这是对标准IEEE1149.1指令集的扩展。通
过 RSTUSRFLSH 返回到配置闪存页面,禁止对用户闪存的
访问。
READ DATA:这是对标准IEEE1149.1指令集的扩展,以支
持对 MAX16070/MAX16071存储器的访问。在shift-DR 状
态下,当 READDATA 指令锁存到指令寄存器时,TDI通过
8 位存储器读测试数据寄存器连接至 TDO。
写闪存限制
每次必须以8 个字节写入闪存。初始地址必须为 8 字节边界
对齐,初始地址的 3 个 LSB 必须为
‘000’。采用 8 个连续的
命令写入
个字节。
WRITEDATA
8
WRITE DATA:这是对标准IEEE1149.1指令集的扩展,以
支持对 MAX16070/MAX16071存储器的访问。在 shift-DR
状态下,当WRITEDATA 指令锁存到指令寄存器时,TDI
通过 8 位存储器写测试数据寄存器连接至 TDO。
REBOOT :这是对标准IEEE1149.1指令集的扩展,启动一
次软件控制的 MAX16070/MAX16071复位。当 REBOOT
指令锁存到指令寄存器中时,MAX16070/MAX16071复
位,立即开始启动序列。
SAVE:这是对标准IEEE1149.1指令集的扩展,用于触发故
障记录。根据关键故障记录控制寄存器(r6Dh)的配置,当前
的 ADC 转换结果以及故障信息被存入闪存中。
SETFLSHADD:这是对标准IEEE1149.1指令集的扩展,
支持对闪存页面的访问。闪存寄存器包括 ADC 转换结果以
及GPIO_输入 / 输出数据。利用该页面可访问寄存器 200h
至 2FFh。
MAX16070/MAX16071
表 25. 32位用户代码数据
应用信息
上电时的器件状态
当VCC从0上升时,RESET 输出在 VCC 达到1.4V之前为高阻
态,从这一点开始 RESET 输出被驱动至低电平。在 VCC 达到
2.7V,闪存内容被复制到寄存器存储器之前,所有其它输
出保持高阻态 ;这样将持续150 μs(最大值 ),之后输出恢
复到相应的设置状态。
故障状态下维持供电
发生电路掉电故障时,需要在一定时间内维持 MAX16070/
MAX16071的供电,以确保完成闪存故障记录。所需要的
时间周期取决于故障控制寄存器 (r6Dh[1:0]) 的设置,如表
26所示。
对于没有提供不间断电源的应用,发生故障期间可以利用
电源 VIN 和 VCC 之间放置的二极管和大电容维持关断状态下
______________________________________________________________________________________ 41
MAX16070/MAX16071
12 通道 /8通道、闪存配置系统监测器,
提供非易失故障寄存器
的供电(图14)。电容值取决于VIN 以及需要支持的供电时间
tFAULT_SAVE。利用下式计算电容值:
对于14V的VIN,0.7V的二极管压降和153ms的tFAULT_SAVE,
需要的最小电容是202µF。
C = (tFAULT_SAVE x ICC(MAX))/(VIN - VDIODE - VUVLO)
其中,电容单位是法拉,tFAULT_SAVE 的单位为秒;ICC(MAX)
为14mA ;VDIODE 为二极管压降,且VUVLO 为 2.7V。例如,
VIN
表 26. 最大写时间
r6Dh[1:0]
VALUE
DESCRIPTION
VCC
C
MAXIMUM
WRITE TIME
(ms)
00
Save flags and ADC
readings
153
01
Save flags
102
10
Save ADC readings
153
11
Do not save anything
—
MAX16070
MAX16071
GND
图14. 发生故障期间维持关断状态下的供电电路
图15. 图形用户界面屏幕截图
42 �������������������������������������������������������������������������������������
12 通道 /8通道、闪存配置系统监测器,
提供非易失故障寄存器
提供评估板和图形用户界面(GUI),可用来进行该器件的定
制配置。配置信息请参考 MAX16070/MAX16071评估板。
RS
POWER
SUPPLY
ILOAD
多个MAX16070/MAX16071级联
多个 MAX16070/MAX16071可级联使用,以便扩充监测控
制的电源数量。根据所需状态不同可提供多种器件级联方
式。通常,有以下几种:
MONODD
MONEVEN
MAX16070
MAX16071
•将每个器件的 GPIO_ 配置为 EXTFAULT ( 漏极开路),通过
一个上拉电阻在外部将它们连接在一起。将寄存器位 r72h[5]
和 r6Dh[2] 置
‘1’
,所有故障状态将在器件之间传输。如果一
个器件出现了关键故障,EXTFAULT将置位,所有级联器件
将触发非易失故障记录,并记录所有系统电压的瞬态值。
MAX16070/MAX16071
配置器件
•将漏极开路的 RESET复位输出连接在一起,以便获得主机
系统复位信号。
图16. 电流监测连接
•将所有 EN 输入连接在一起,用于主机使能信号。
为了获得最佳精度,将偶数标记 MON_电压范围设置为1.4V。
因为 ADC 转 换 结果为10 位, 则监 测 精度 为1.4V/1024=
1.4mV。对于更加精确的电流测量,可以使用较大的检流电
阻。根据具体的应用要求折衷选择精度和检流电阻两端的
压降。
采用差分输入监测电流
MAX16070/MAX16071可利用专用的检流放大器以及配
置为差分模式的 6 对输入监测多达7 路电流,差分输入对的
精度受限于电压范围和10 位转换。每个输入对利用奇数标
记 MON_输入和偶数标记 MON_输入相组合方式,以便监
测奇数标记 MON_输入的对地电压以及两路 MON_输入之
间的电压差。这种方式下,一对输入即可监测电源电压和电
流。偶数标记 MON_输入的过压门限可用作过流标志。
图16 提供了在一对 MON_输入连接检流电阻的方式,用于
监测电流和电压。
布板和旁路
采用1µ F 陶 瓷电容分别 将 DBP 和 ABP 旁路至 GND, 通 过
10 µF电容将VCC 旁路至地。避免在敏感的模拟区域(例如模
拟供电输入回路或 ABP 的旁路电容接地等)出现数字电流返
回通道。使用专用的模拟和数字地平面,电容应尽可能靠近
器件放置。
______________________________________________________________________________________ 43
MAX16070/MAX16071
12 通道 /8通道、闪存配置系统监测器,
提供非易失故障寄存器
寄存器
FLASH
ADDRESS
REGISTER
ADDRESS
READ/
WRITE
DESCRIPTION
ADC VALUES, FAULT REGISTERS, GPIO_S AS INPUT PORTS–NOT IN FLASH
—
000
R
MON1 ADC output, MSBs
—
001
R
MON1 ADC output, LSBs
—
002
R
MON2 ADC output, MSBs
—
003
R
MON2 ADC output, LSBs
—
004
R
MON3 ADC output, MSBs
—
005
R
MON3 ADC output, LSBs
—
006
R
MON4 ADC output, MSBs
—
007
R
MON4 ADC output, LSBs
—
008
R
MON5 ADC output, MSBs
—
009
R
MON5 ADC output, LSBs
—
00A
R
MON6 ADC output, MSBs
—
00B
R
MON6 ADC output, LSBs
—
00C
R
MON7 ADC output, MSBs
—
00D
R
MON7 ADC output, LSBs
—
00E
R
MON8 ADC output, MSBs
—
00F
R
MON8 ADC output, LSBs
—
010
R
MON9 ADC output, MSBs
—
011
R
MON9 ADC output, LSBs
—
012
R
MON10 ADC output, MSBs
—
013
R
MON10 ADC output, LSBs
—
014
R
MON11 ADC output, MSBs
—
015
R
MON11 ADC output, LSBs
—
016
R
MON12 ADC output, MSBs
—
017
R
MON12 ADC output, LSBs
—
018
R
Current-sense ADC output
—
019
R
CSP ADC output, MSBs
—
01A
R
CSP ADC output, LSBs
—
01B
R/W
Fault register--failed line flags
—
01C
R/W
Fault register—failed line flags/overcurrent
—
01D
R
Reserved
—
01E
R
GPIO data in (read only)
—
01F
R
Reserved
—
020
R/W
—
021
R
Flash status/reset output monitor
Reserved
44 �������������������������������������������������������������������������������������
12 通道 /8通道、闪存配置系统监测器,
提供非易失故障寄存器
FLASH
ADDRESS
REGISTER
ADDRESS
READ/
WRITE
DESCRIPTION
GPIO AND OUTPUT DEPENDENCIES/CONFIGURATIONS
230
030
R/W
Reserved
231
031
R/W
Reserved
232
032
R/W
Reserved
Reserved
233
033
R/W
234
034
R/W
Reserved
235
035
R/W
SMBALERT pin configuration
236
036
R/W
Fault1 dependencies
Fault1 dependencies
237
037
R/W
238
038
R/W
Fault2 dependencies
239
039
R/W
Fault2 dependencies
23A
03A
R/W
Fault1/Fault2 secondary overcurrent dependencies
23B
03B
R/W
RESET output configuration
23C
03C
R/W
RESET output dependencies
23D
03D
R/W
RESET output dependencies
23E
03E
R/W
GPIO data out
23F
03F
R/W
GPIO configuration
240
040
R/W
GPIO configuration
241
041
R/W
GPIO configuration
242
042
R/W
GPIO push-pull/open drain
ADC—CONVERSIONS
243
043
R/W
ADCs voltage ranges—MON_ monitoring
244
044
R/W
ADCs voltage ranges—MON_ monitoring
245
045
R/W
ADCs voltage ranges—MON_ monitoring
246
046
R/W
Differential pairs enables
247
047
R/W
Current-sense gain-setting (CSP, HV or LV)
INPUT THRESHOLDS
248
048
R/W
MON1 secondary selectable UV/OV
249
049
R/W
MON1 primary OV
24A
04A
R/W
MON1 primary UV
24B
04B
R/W
MON2 secondary selectable UV/OV
24C
04C
R/W
MON2 primary OV
24D
04D
R/W
MON2 primary UV
24E
04E
R/W
MON3 secondary selectable UV/OV
24F
04F
R/W
MON3 primary OV
250
050
R/W
MON3 primary UV
251
051
R/W
MON4 secondary selectable UV/OV
252
052
R/W
MON4 primary OV
253
053
R/W
MON4 primary UV
______________________________________________________________________________________ 45
MAX16070/MAX16071
寄存器(续)
MAX16070/MAX16071
12 通道 /8通道、闪存配置系统监测器,
提供非易失故障寄存器
寄存器(续)
FLASH
ADDRESS
REGISTER
ADDRESS
READ/
WRITE
DESCRIPTION
254
054
R/W
MON5 secondary selectable UV/OV
255
055
R/W
MON5 primary OV
256
056
R/W
MON5 primary UV
257
057
R/W
MON6 secondary selectable UV/OV
258
058
R/W
MON6 primary OV
259
059
R/W
MON6 primary UV
25A
05A
R/W
MON7 secondary selectable UV/OV
25B
05B
R/W
MON7 primary OV
25C
05C
R/W
MON7 primary UV
25D
05D
R/W
MON8 secondary selectable UV/OV
25E
05E
R/W
MON8 primary OV
25F
05F
R/W
MON8 primary UV
260
060
R/W
MON9 secondary selectable UV/OV
261
061
R/W
MON9 primary OV
262
062
R/W
MON9 primary UV
263
063
R/W
MON10 secondary selectable UV/OV
264
064
R/W
MON10 primary OV
265
065
R/W
MON10 primary UV
266
066
R/W
MON11 secondary selectable UV/OV
267
067
R/W
MON11 primary OV
268
068
R/W
MON11 primary UV
269
069
R/W
MON12 secondary selectable UV/OV
26A
06A
R/W
MON12 primary OV
26B
06B
R/W
MON12 primary UV
26C
06C
R/W
Secondary overcurrent threshold
26D
06D
R/W
Save after EXTFAULT fault control
26E
06E
R/W
Faults causing store in flash
26F
06F
R/W
Faults causing store in flash
FAULT SETUP
270
070
R/W
Faults causing store in flash
271
071
R/W
Faults causing store in flash
272
072
R/W
Faults causing store in flash
073
R/W
Overcurrent debounce, watchdog mode, secondary threshold type, software
enables
274
074
R/W
ADC fault deglitch configuration
275
075
R/W
WDI toggle
276
076
R/W
Watchdog reset output enable, watchdog timers
277
077
R/W
Boot-up delay
TIMEOUTS
273
46 �������������������������������������������������������������������������������������
12 通道 /8通道、闪存配置系统监测器,
提供非易失故障寄存器
FLASH
ADDRESS
REGISTER
ADDRESS
READ/
WRITE
DESCRIPTION
278
078
R/W
Reserved
279
079
R/W
Reserved
27A
07A
R/W
Reserved
27B
07B
R/W
Reserved
27C
07C
R/W
Reserved
27D
07D
R/W
Reserved
07E
R/W
Reserved
Reserved
MISCELLANEOUS
27E
27F
07F
R/W
280
080
R/W
Reserved
281
081
R/W
Reserved
282
082
R/W
Reserved
283
083
R/W
Reserved
Reserved
284
084
R/W
285
085
R/W
Reserved
286
086
R/W
Reserved
287
087
R/W
Reserved
288
088
R/W
Reserved
289
089
R/W
Reserved
28A
08A
R/W
Customer use (version)
28B
08B
R/W
PEC enable/I2C address
28C
08C
R/W
28D
08D
R
Lock bits
Revision code
Nonvolatile Fault LOG
200
—
R/W
Reserved
201
—
R/W
FAULT flags, MON1–MON8
202
—
R/W
FAULT flags, MON9–MON12, EXTFAULT
203
—
R/W
MON1 ADC output
204
—
R/W
MON2 ADC output
205
—
R/W
MON3 ADC output
206
—
R/W
MON4 ADC output
207
—
R/W
MON5 ADC output
208
—
R/W
MON6 ADC output
209
—
R/W
MON7 ADC output
20A
—
R/W
MON8 ADC output
20B
—
R/W
MON9 ADC output
20C
—
R/W
MON10 ADC output
20D
—
R/W
MON11 ADC output
20E
—
R/W
MON12 ADC output
20F
—
R/W
Current-sense ADC output
______________________________________________________________________________________ 47
MAX16070/MAX16071
寄存器(续)
MAX16070/MAX16071
12 通道 /8通道、闪存配置系统监测器,
提供非易失故障寄存器
寄存器(续)
FLASH
ADDRESS
REGISTER
ADDRESS
READ/
WRITE
DESCRIPTION
USER FLASH
300
39F
R/W
3A0
3AF
—
User flash
Reserved
3B0
3FF
R/W
User flash
典型工作电路
VSUPPLY
+3.3V
OUT
IN
DC-DC
GND
VCC
MON1
MAX16070
MAX16071
OUT
IN
MON2–MON11
DC-DC
SCL
SDA
GND
OUT
IN
µC
MON12
RESET
RESET
FAULT
INT
WDI
I/O
WDO
INT
DC-DC
GND
AO
GND
48 �������������������������������������������������������������������������������������
12 通道 /8通道、闪存配置系统监测器,
提供非易失故障寄存器
VSUPPLY
+3.3V
OUT
IN
DC-DC
GND
MON1
VCC
MON2
LOAD
OUT
IN
µC
MAX16070
MAX16071
SDA
MONODD
DC-DC
GND
MONEVEN
LOAD
OUT
IN
SCL
RESET
RESET
FAULT
INT
WDI
I/O
WDO
INT
MON11
DC-DC
GND
AO
MON12
LOAD
GND
NOTE: MONODD = MON1, MON3, MON5, MON7, MON9, MON11
MONEVEN = MON2, MON4, MON6, MON8, MON10, MON12
______________________________________________________________________________________ 49
MAX16070/MAX16071
典型工作电路(续)
引脚配置
GPIO3
GPIO4
GPIO5
GPIO6
N.C.
N.C.
N.C.
EN
TOP VIEW
N.C.
DBP
30 29 28 27 26 25 24 23 22 21
VCC 31
20 GPIO2
ABP 32
19 GPIO1
GND 33
18 GPIO8
MON7 34
17 GPIO7
16 GND
MON8 35
MAX16070
MON9 36
15 SCL
14 AO
MON10 37
MON11 38
13 SDA
EP
+
MON12 39
12 TDO
11 TCK
TDI
10
TMS
9
GPIO6
8
GPIO5
MON5
7
RESET
MON4
6
N.C.
MON3
5
CSM
4
N.C.
3
CSP
2
MON6
1
MON2
MON1 40
N.C.
N.C.
N.C.
N.C.
EN
N.C.
TQFN
30 29 28 27 26 25 24 23 22 21
DBP 31
20 GPIO4
DBP 32
19 GPIO3
VCC 33
18 GPIO2
VCC 34
17 GPIO1
16 GND
ABP 35
MAX16071
GND 36
15 SCL
14 AO
MON7 37
MON8 38
13 SDA
EP
+
N.C. 39
12 TDO
11 TCK
7
8
9
10
TDI
MON5
6
TMS
MON4
5
RESET
4
CSM
3
CSP
2
MON6
1
MON3
MON1 40
MON2
MAX16070/MAX16071
12 通道 /8通道、闪存配置系统监测器,
提供非易失故障寄存器
TQFN
50 �������������������������������������������������������������������������������������
12 通道 /8通道、闪存配置系统监测器,
提供非易失故障寄存器
PROCESS: BiCMOS
封装信息
MAX16070/MAX16071
芯片信息
如需最近的封装外形信息和焊盘布局,请查询china.maxim-ic.com/
packages。请注意,封装编码中的
“+”、
“#”或“-”仅表示 RoHS 状
态。封装图中可能包含不同的尾缀字符,但封装图只与封装有关,
与 RoHS 状态无关。
封装类型
封装编码
外形编号
焊盘布局编号
40 TQFN-EP
T4066-5
21-0141
90-0055
______________________________________________________________________________________ 51
MAX16070/MAX16071
12 通道 /8通道、闪存配置系统监测器,
提供非易失故障寄存器
修订历史
修订号
修订日期
0
10/09
1
6/10
说明
修改页
—
最初版本。
更新了AbsoluteMaximumRatings 和多个章节,以满足最新的格式要求。
1–5, 8, 10, 12, 13,
14, 19, 23–26,
29–31, 33–37,
41–43, 48–51
Maxim北京办事处
北京8328信箱 邮政编码 100083
免费电话:800 810 0310
电话:010-6211 5199
传真:010-6211 5299
Maxim 不对 Maxim 产品以外的任何电路使用负责,也不提供其专利许可。Maxim 保留在任何时间、没有任何通报的前提下修改产品资料和规格的权利。
52 Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600
©2010MaximIntegratedProducts
Maxim 是 MaximIntegratedProducts,Inc.的注册商标。
MAX16070, MAX16071 12通道/8通道、闪存配置系统监测器,提供非易失故障寄存器 - 概述
ENGLISH • 简体中文 • 日本語 • 한국어 • РУССКИЙ Login | Register
最新内容
产品
方案
设计
应用
技术支持
销售联络
公司简介
Maxim > 产品 > 监控电路、电压监测器、排序器 > MAX16070, MAX16071
MAX16070, MAX16071
12通道/8通道、闪存配置系统监测器,提供非易失故障寄存器
高度集成的12通道/8通道系统管理IC,具有NV故障监测
概述 技术文档 定购信息 相关产品 用户说明 (0) 所有内容 状况
状况:生产中。
概述
数据资料
MAX16070/MAX16071闪存可配置系统监测器能够对多个系统电压进行管
理。MAX16070/MAX16071还可通过专用的高边电流检测放大器精确监测(±2.5%)一路电流通
道。MAX16070可以同时监测12路系统电压,MAX16071可以监测8路电源电压。这些器件都集成了可
选的差分或单端输入模/数转换器(ADC)。包括过压门限、欠压门限以及定时设置在内的所有器件配置
信息均存储在非易失闪存存储器。出现故障时,故障标志和通道电压可自动存储到非易失闪存存储
器,以便在发生故障后回读故障信息。
完整的数据资料
英文
下载 Rev. 1 (PDF, 1.8MB)
中文
下载 Rev. 1 (PDF, 2.4MB)
内部精度为1%的10位ADC用于测量每路输入,并将结果与过压门限、欠压门限以及配置为欠压或过压
的预报警门限进行比较。当检测电压超出设定的门限时产生故障报警信号。针对不同的故障条件可以
配置三个独立报警输出。
因为MAX16070/MAX16071支持高达14V的电源电压,该系列器件可直接采用多数系统的12V中等电压
总线供电。
MAX16070/MAX16071有8/6个可编程的通用输入/输出引脚(GPIO)。通过闪存配置GPIO后,可以用作
故障输出、看门狗输入或输出以及手动复位。
系统关断时,MAX16070/MAX16071的非易失故障存储器用于记录信息。故障日志会在内部闪存中记
录故障,为了防止错误地擦除数据,还可设置锁存位保护存储的故障数据。MAX16070/MAX16071采
用SMBus™或JTAG串口进行配置。MAX16070/MAX16071采用40引脚、6mm x 6mm TQFN封装。两
款器件均工作在-40°C至+85°C温度范围。
关键特性
工作电压范围为2.8V至14V
±2.5%电流监测精度
精度为1%的10位ADC,用于监测12/8路电压输入
单端或差分输入ADC,用于系统电压/电流监测
集成高边检流放大器
12/8路输入监测具有过压/欠压/预报警门限
非易失故障事件记录器
两个可编程故障输出和一个复位输出
八个通用输入/输出可配置为:
专用故障输出
看门狗定时功能
手动复位
裕量调节使能
SMBus (带超时检测)和JTAG接口
通过闪存可配置延时和门限
-40°C至+85°C工作温度范围
图表
http://china.maxim-ic.com/datasheet/index.mvp/id/6409[2011-01-05 8:47:08]
应用/使用
网络设备
服务器
存储/RAID系统
电信设备(基站、接入)
我的Maxim
MAX16070, MAX16071 12通道/8通道、闪存配置系统监测器,提供非易失故障寄存器 - 概述
典型工作电路
更多信息
新品发布
[ 2010-03-08 ]
http://china.maxim-ic.com/datasheet/index.mvp/id/6409[2011-01-05 8:47:08]
MAX16070, MAX16071 12通道/8通道、闪存配置系统监测器,提供非易失故障寄存器 - 概述
没有找到你需要的产品吗?
应用工程师帮助选型,下个工作日回复
参数搜索
应用帮助
概述
技术文档
定购信息
相关产品
概述
关键特性
应用/ 使用
关键指标
图表
注释、注解
数据资料
应用笔记
评估板
设计指南
可靠性报告
软件/ 模型
价格与供货
样品
在线订购
封装信息
无铅信息
类似功能器件
类似应用器件
评估板
类似型号器件
配合该器件使用的产品
参考文献: 19- 5003 Rev. 1; 2010- 08- 27
本页最后一次更新: 2010- 08- 27
联络我们:信息反馈、提出问题 • 对该网页的评价 • 发送本网页 • 隐私权政策 • 法律声明
© 2010 Maxim Integrated Products版权所有
http://china.maxim-ic.com/datasheet/index.mvp/id/6409[2011-01-05 8:47:08]
19-5003; Rev 1; 6/10
12-Channel/8-Channel, Flash-Configurable System
Monitors with Nonvolatile Fault Registers
Features
The MAX16070/MAX16071 flash-configurable system monitors supervise multiple system voltages. The
MAX16070/MAX16071 can also accurately monitor
(Q2.5%) one current channel using a dedicated highside current-sense amplifier. The MAX16070 monitors
up to twelve system voltages simultaneously, and the
MAX16071 monitors up to eight supply voltages. These
devices integrate a selectable differential or single-ended analog-to-digital converter (ADC). Device configuration information, including overvoltage and undervoltage
limits and timing settings are stored in nonvolatile flash
memory. During a fault condition, fault flags and channel
voltages can be automatically stored in the nonvolatile
flash memory for later read-back.
S Operate from 2.8V to 14V
The internal 1% accurate 10-bit ADC measures each
input and compares the result to one overvoltage, one
undervoltage, and one early warning limit that can be
configured as either undervoltage or overvoltage. A fault
signal asserts when a monitored voltage falls outside the
set limits. Up to three independent fault output signals
are configurable to assert under various fault conditions.
S Eight General-Purpose Inputs/Outputs
Because the MAX16070/MAX16071 support a powersupply voltage of up to 14V, they can be powered
directly from the 12V intermediate bus in many systems.
S Flash Configurable Time Delays and Thresholds
The MAX16070/MAX16071 include eight/six programmable general-purpose inputs/outputs (GPIOs). GPIOs
are flash configurable as dedicated fault outputs, as a
watchdog input or output, or as a manual reset.
The MAX16070/MAX16071 feature nonvolatile fault memory for recording information during system shutdown
events. The fault logger records a failure in the internal
flash and sets a lock bit protecting the stored fault data
from accidental erasure. An SMBus™ or a JTAG serial
interface configures the MAX16070/MAX16071. The
MAX16070/MAX16071 are available in a 40-pin, 6mm x
6mm, TQFN package. Both devices are fully specified
from -40NC to +85NC.
S ±2.5% Current-Monitoring Accuracy
S 1% Accurate 10-Bit ADC Monitors 12/8 Voltage
Inputs
S Single-Ended or Differential ADC for System
Voltage/Current Monitoring
S Integrated High-Side, Current-Sense Amplifier
S 12/8 Monitored Inputs with Overvoltage/
Undervoltage/Early Warning Limit
S Nonvolatile Fault Event Logger
S Two Programmable Fault Outputs and One Reset
Output
Configurable as:
Dedicated Fault Outputs
Watchdog Timer Function
Manual Reset
Margin Enable
S SMBus (with Timeout) or JTAG Interface
S -40NC to +85NC Operating Temperature Range
Ordering Information
TEMP RANGE
PIN-PACKAGE
MAX16070ETL+
PART
-40NC to +85NC
40 TQFN-EP*
MAX16071ETL+
-40NC to +85NC
40 TQFN-EP*
+Denotes a lead(Pb)-free/RoHS-compliant package.
*EP = Exposed pad.
Applications
Networking Equipment
Telecom Equipment (Base Stations, Access)
Storage/RAID Systems
Servers
Pin Configuration and Typical Operating Circuits appear at
end of data sheet.
SMBus is a trademark of Intel Corp.
________________________________________________________________ Maxim Integrated Products 1
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642,
or visit Maxim’s website at www.maxim-ic.com.
MAX16070/MAX16071
General Description
MAX16070/MAX16071
12-Channel/8-Channel, Flash-Configurable System
Managers with Nonvolatile Fault Registers
ABSOLUTE MAXIMUM RATINGS
Input/Output Current ..........................................................20mA
Continuous Power Dissipation (TA = +70NC)
40-Pin TQFN (derate 26.3mW/NC above +70NC)........2105mW
Operating Temperature Range........................... -40NC to +85NC
Junction Temperature .....................................................+150NC
Storage Temperature Range............................. -65NC to +150NC
Lead Temperature (soldering, 10s).................................+300NC
Soldering Temperature (reflow).......................................+260NC
VCC, CSP, CSM to GND.........................................-0.3V to +15V
CSP to CSM...........................................................-0.7V to +0.7V
MON_, GPIO_, SCL, SDA, A0, RESET to GND
(programmed as open-drain outputs)..................-0.3V to +6V
EN, TCK, TMS, TDI to GND.....................................-0.3V to +4V
DBP, ABP to GND....-0.3V to the lower of +3V and (VCC + 0.3V)
TDO, GPIO_, RESET
(programmed as push-pull outputs)..... -0.3V to (VDBP + 0.3V)
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute
maximum rating conditions for extended periods may affect device reliability.
ELECTRICAL CHARACTERISTICS
(VCC = 2.8V to 14V, TA = -40NC to +85NC, unless otherwise specified. Typical values are at VABP = VDBP = VCC = 3.3V, TA = +25NC.)
(Note 1)
PARAMETER
Operating Voltage Range
Undervoltage Lockout (Rising)
Undervoltage Lockout Hysteresis
Minimum Flash Operating
Voltage
Supply Current
SYMBOL
VCC
VUVLO
CONDITIONS
MIN
Reset output asserted low
1.2
(Note 2)
2.8
ICC
MAX
14
Minimum voltage on VCC to ensure the
device is flash configurable
2.7
VUVLO_HYS
Vflash
TYP
100
Minimum voltage on VCC to ensure flash
erase and write operations
UNITS
V
V
mV
2.7
V
No load on output pins
4.5
7
During flash writing cycle
10
14
mA
ABP Regulator Voltage
VABP
CABP = 1μF, no load, VCC = 5V
2.85
3
3.15
V
DBP Regulator Voltage
VDBP
CDBP = 1μF, no load, VCC = 5V
2.8
3
3.1
V
Boot Time
tBOOT
VCC > VUVLO
200
350
μs
Flash Writing Time
8-byte word
Internal Timing Accuracy
(Note 3)
EN Input Voltage
EN Input Current
Input Voltage Range
VTH_EN_R
EN voltage rising
VTH_EN_F
EN voltage falling
IEN
122
-8
ms
+8
1.41
1.365
1.39
1.415
%
V
-0.5
+0.5
μA
0
5.5
V
2 _______________________________________________________________________________________
12-Channel/8-Channel, Flash-Configurable System
Managers with Nonvolatile Fault Registers
(VCC = 2.8V to 14V, TA = -40NC to +85NC, unless otherwise specified. Typical values are at VABP = VDBP = VCC = 3.3V, TA = +25NC.)
(Note 1)
PARAMETER
SYMBOL
CONDITIONS
MIN
TYP
MAX
UNITS
Bits
LSB
ADC DC ACCURACY
Resolution
Offset Error
ADCOFF
10
0.35
0.70
1
Integral Nonlinearity
ADCINL
1
LSB
Differential Nonlinearity
ADCDNL
1
LSB
50
μs
Gain Error
ADCGAIN
ADC Total Monitoring Cycle Time
tCYCLE
ADC IN_ Ranges
TA = +25°C
TA = -40°C to +85°C
No MON_ fault detected
40
1 LSB = 5.43mV
5.56
1 LSB = 2.72mV
2.78
1 LSB = 1.36mV
1.39
%
V
CURRENT SENSE
CSP Input-Voltage Range
3
VCSP
ICSP
Input Bias Current
ICSM
CSP Total Unadjusted Error
Overcurrent Differential
Threshold
VSENSE Fault Threshold
Hysteresis
CSPERR
OVCTH
VCSP = VCSM
VSENSE Ranges
VCSP VCSM
46
51
56
Gain = 12
94
101
108
Gain = 6
190
202
210
0.5
CMRRSNS
PSRRSNS
μA
%FSR
mV
0
r73h[6:5] = ‘01’
3
4
5
12
16
20
r73h[6:5] = ‘11’
50
64
60
Gain = 6
232
Gain = 12
116
Gain = 24
58
ms
mV
29
-2.5
Q0.2
+2.5
-4
Q0.2
+4
VSENSE = 25mV, gain = 24
Q0.5
VSENSE = 10mV, gain = 48
Q1
VCSP > 4V
V
%OVCTH
r73h[6:5] = ‘10’
VSENSE = 20mV to 100mV, VCSP = 5V,
gain = 6
Power-Supply Rejection Ratio
30.5
Gain = 24
VSENSE = 50mV, gain = 12
Common-Mode Rejection Ratio
25
2
Gain = 48
Gain Accuracy
5
21.5
VSENSE = 150mV (gain = 6 only)
ADC Current Measurement
Accuracy
3
Gain = 48
OVCHYS
OVCDEL
25
(Note 4)
r73h[6:5] = ‘00’
Secondary Overcurrent Threshold
Timeout
14
14
-1.5
+1.5
%
%
80
dB
80
dB
_______________________________________________________________________________________ 3
MAX16070/MAX16071
ELECTRICAL CHARACTERISTICS (continued)
MAX16070/MAX16071
12-Channel/8-Channel, Flash-Configurable System
Managers with Nonvolatile Fault Registers
ELECTRICAL CHARACTERISTICS (continued)
(VCC = 2.8V to 14V, TA = -40NC to +85NC, unless otherwise specified. Typical values are at VABP = VDBP = VCC = 3.3V, TA = +25NC.)
(Note 1)
PARAMETER
SYMBOL
CONDITIONS
MIN
TYP
MAX
UNITS
OUTPUTS (RESET, GPIO_)
ISINK = 2mA
0.4
ISINK = 10mA, GPIO_ only
0.7
VCC = 1.2V, ISINK = 100μA (RESET only)
0.3
Maximum Output Sink Current
Total current into RESET, GPIO_,
VCC = 3.3V
30
mA
Output-Voltage High (Push-Pull)
ISOURCE = 100μA
1
μA
0.8
V
+1
μA
0.4
V
35
ms
0.8
V
Output-Voltage Low
VOL
2.4
V
V
Output Leakage (Open Drain)
SMBus INTERFACE
Logic-Input Low Voltage
VIL
Input voltage falling
Logic-Input High Voltage
VIH
Input voltage rising
2.0
IN = GND or VCC
-1
Input Leakage Current
Output Sink Current
Input Capacitance
SMBus Timeout
VOL
ISINK = 3mA
5
CIN
tTIMEOUT
V
SCL time low for reset
25
pF
INPUTS (A0, GPIO_)
Input Logic-Low
VIL
Input Logic-High
VIH
2.0
V
WDI Pulse Width
tWDI
100
ns
MR Pulse Width
tMR
1
μs
MR to RESET Delay
0.5
μs
MR Glitch Rejection
SMBus TIMING
100
ns
400
kHz
Serial Clock Frequency
fSCL
Bus Free Time Between STOP
and START Condition
tBUF
1.3
μs
START Condition Setup Time
tSU:STA
0.6
μs
START Condition Hold Time
tHD:STA
0.6
μs
STOP Condition Setup Time
tSU:STO
0.6
μs
tLOW
1.3
μs
Clock Low Period
Clock High Period
Data Setup Time
tHIGH
0.6
μs
tSU:DAT
100
ns
4 _______________________________________________________________________________________
12-Channel/8-Channel, Flash-Configurable System
Managers with Nonvolatile Fault Registers
(VCC = 2.8V to 14V, TA = -40NC to +85NC, unless otherwise specified. Typical values are at VABP = VDBP = VCC = 3.3V, TA = +25NC.)
(Note 1)
PARAMETER
SYMBOL
Output Fall Time
tOF
Data Hold Time
tHD:DAT
Pulse Width of Spike Suppressed
CONDITIONS
MIN
TYP
CBUS = 10pF to 400pF
From 50% SCL falling to SDA change
0.3
MAX
UNITS
250
ns
0.9
μs
30
tSP
ns
JTAG INTERFACE
TDI, TMS, TCK Logic-Low Input
Voltage
VIL
Input voltage falling
TDI, TMS, TCK Logic-High Input
Voltage
VIH
Input voltage rising
TDO Logic-Output Low Voltage
VOL
ISINK = 3mA
TDO Logic-Output High Voltage
VOH
ISOURCE = 200μA
2.4
TDI, TMS Pullup Resistors
RPU
Pullup to DBP
40
I/O Capacitance
CI/O
TCK Clock Period
0.8
2
V
V
0.4
V
60
kω
V
50
5
pF
1000
t1
ns
t2, t3
50
TCK to TMS, TDI Setup Time
t4
15
TCK to TMS, TDI Hold Time
t5
10
TCK to TDO Delay
t6
500
ns
TCK to TDO High-Z Delay
t7
500
ns
TCK High/Low Time
500
ns
ns
ns
Note 1: Specifications are guaranteed for the stated global conditions, unless otherwise noted. 100% production tested at TA =
+25NC and TA = +85NC. Specifications at TA = -40NC are guaranteed by design.
Note 2: For 3.3V VCC applications, connect VCC, DBP, and ABP together. For higher supply applications, connect VCC only to the
supply rail.
Note 3: Applies to RESET, fault, autoretry, sequence delays, and watchdog timeout.
Note 4: Total unadjusted error is a combination of gain, offset, and quantization error.
_______________________________________________________________________________________ 5
MAX16070/MAX16071
ELECTRICAL CHARACTERISTICS (continued)
MAX16070/MAX16071
12-Channel/8-Channel, Flash-Configurable System
Managers with Nonvolatile Fault Registers
SDA
tSU:DAT
tHD:DAT
tLOW
tBUF
tSU:STA
tHD:STA
tSU:STO
SCL
tHIGH
tHD:STA
tR
tF
START
CONDITION
STOP
CONDITION
REPEATED START
CONDITION
Figure 1. SMBus Timing Diagram
t1
t2
t3
TCK
t4
t5
TDI, TMS
t6
t7
TDO
Figure 2. JTAG Timing Diagram
6 _______________________________________________________________________________________
START
CONDITION
12-Channel/8-Channel, Flash-Configurable System
Managers with Nonvolatile Fault Registers
NORMALIZED MON_ THRESHOLD
vs. TEMPERATURE
+25NC
3
-40NC
ABP AND DBP
REGULATORS ACTIVE
2
FOR LOW-VOLTAGE APPLICATIONS
VCC < 3.6V CONNECT ABP AND
DBP TO VCC
1
0
2
4
6
8
10
5.6V RANGE,
HALF SCALE,
PUV THRESHOLD
0.2
-40
-20
0
20
40
60
MAX16070 toc03
1.002
1.000
0.998
0.996
0.994
0
0.992
80
-40
-20
0
20
40
60
VCC (V)
TEMPERATURE (NC)
TEMPERATURE (NC)
TRANSIENT DURATION
vs. THRESHOLD OVERDRIVE (EN)
NORMALIZED TIMING ACCURACY
vs. TEMPERATURE
MON_ DEGLITCH
vs. TRANSIENT DURATION
100
80
60
40
0.984
0.982
0.980
0.978
0.976
120
100
0
10
1
100
80
60
40
20
0.974
20
80
MAX16070 toc06
120
0.986
TRANSIENT DURATION (µs)
MAX16070 toc04
140
0.972
-40
-20
0
20
40
60
0
80
2
4
8
16
EN OVERDRIVE (mV)
TEMPERATURE (NC)
DEGLITCH VALUE
MR TO RESET PROPAGATION DELAY
vs. TEMPERATURE
OUTPUT VOLTAGE
vs. SINK CURRENT (OUT = LOW)
OUTPUT-VOLTAGE HIGH vs.
SOURCE CURRENT (PUSH-PULL OUTPUT)
MAX
0.40
0.35
1.4
0.30
VOUT (V)
1.2
1.0
MIN
0.8
3.3
3.2
3.1
GPIO_
0.25
0.20
0.15
0.6
3.4
3.0
2.8
2.7
RESET
0.10
2.6
0.2
0.05
2.5
0
0
2.4
-20
0
20
40
TEMPERATURE (NC)
60
80
0
5
10
IOUT (mA)
GPIO_
2.9
0.4
-40
MAX16070 toc09
1.8
1.6
0.45
MAX16070 toc07
2.0
VOUT (V)
TRANSIENT DURATION (µs)
0.4
14
12
160
DELAY (µs)
0.6
MAX16070 toc05
0
0.8
1.004
MAX16070 toc08
ICC (mA)
4
1.0
1.006
NORMALIZED EN THRESHOLD
+85NC
MAX16070 toc02
5
NORMALIZED EN THRESHOLD
vs. TEMPERATURE
1.2
NORMALIZED MON_ THRESHOLD
ABP AND DBP CONNECTED TO VCC
NORMALIZED SLOT DELAY
6
MAX16070 toc01
VCC SUPPLY CURRENT
vs. VCC SUPPLY VOLTAGE
15
20
RESET
0
500
1000
1500
IOUT (µA)
_______________________________________________________________________________________ 7
MAX16070/MAX16071
Typical Operating Characteristics
(Typical values are at VCC = 3.3V, TA = +25°C, unless otherwise noted.)
Typical Operating Characteristics (continued)
(Typical values are at VCC = 3.3V, TA = +25°C, unless otherwise noted.)
INTEGRAL NONLINEARITY vs. CODE
DIFFERENTIAL NONLINEARITY vs. CODE
0.6
0.8
0.6
0.4
0.2
0.2
DNL (LSB)
0.4
0
-0.2
0
-0.2
-0.4
-0.4
-0.6
-0.6
-0.8
-0.8
-1.0
-1.0
128 256 384 512 640 768 896 1024
0
128 256 384 512 640 768 896 1024
CODE (LSB)
CODE (LSB)
NORMALIZED CURRENT-SENSE
ACCURACY vs. TEMPERATURE
CURRENT-SENSE ACCURACY
vs. CSP-CSM VOLTAGE
1.0
MAX16070 toc12
1.05
1.03
200mV
MAX16070 toc13
0
0.8
0.6
0.4
25mV
ERROR (mV)
1.01
0.99
0.2
0
-0.2
-0.4
100mV
-0.6
0.97
-0.8
-1.0
0.95
-40
10
0
60
5
10
15
20
25
TEMPERATURE (NC)
CSP-CSM VOLTAGE (mV)
CURRENT-SENSE TRANSIENT DURATION
vs. CSP-CSM OVERDRIVE
RESET OUTPUT CURRENT
vs. SUPPLY VOLTAGE
18
MAX16070 toc14
1.8
1.6
1.2
1.0
0.8
0.6
14
12
8
6
4
0.2
2
0
0
20
40
60
80
CSP-CSM OVERDRIVE (mV)
100
ABP AND DBP
REGULATORS ACTIVE
10
0.4
0
ABP AND DBP
CONNECTED TO VCC
16
OUTPUT CURRENT (mA)
1.4
30
MAX16070 toc15
NORMALIZED CURRENT-SENSE ACCURACY
MAX16070 toc11
0.8
INL (LSB)
1.0
MAX16070 toc10
1.0
TRANSIENT DURATION (Fs)
MAX16070/MAX16071
12-Channel/8-Channel Flash-Configurable System
Monitors with Nonvolatile Fault Registers
VRESET = 0.3V
0
2
4
6
8
10
SUPPLY VOLTAGE (V)
12
8 _______________________________________________________________________________________
14
12-Channel/8-Channel, Flash-Configurable System
Managers with Nonvolatile Fault Registers
PIN
NAME
FUNCTION
MAX16070
MAX16071
1–5, 34, 35,
40
1–5, 37, 38,
40
MON2–MON6,
MON7, MON8,
MON1
6
6
CSP
Current-Sense Amplifier Positive Input. Connect CSP to the source side of the
external sense resistor.
7
7
CSM
Current-Sense Amplifier Negative Input. Connect CSM to the load side of the
external sense resistor.
8
8
RESET
Monitor Voltage Input 1–Monitor Voltage Input 8. Set monitor voltage range
through configuration registers. Measured value written to the ADC register
can be read back through the SMBus or JTAG interface.
Configurable Reset Output
9
9
TMS
10
10
TDI
JTAG Test Mode Select
JTAG Test Data Input
11
11
TCK
JTAG Test Clock
12
12
TDO
JTAG Test Data Output
13
13
SDA
14
14
A0
SMBus Serial-Data Open-Drain Input/Output
Four-State SMBus Address. Address sampled upon POR.
15
15
SCL
SMBus Serial Clock Input
16, 33
16, 36
GND
Ground
17, 18
—
GPIO7, GPIO8
General-Purpose Input/Output 7 and General-Purpose Input/Output 8.
GPIO_s can be configured to act as a TTL input, a push-pull, open-drain, or
high-impedance output or a pulldown circuit during a fault event or reverse
sequencing.
19–24
17–22
GPIO1–GPIO6
General-Purpose Input/Output 1–General-Purpose Input/Output 6. GPIO_s
can be configured to act as a TTL input, a push-pull, open-drain, or highimpedance output or a pulldown circuit during a fault event.
25, 26, 27, 29
23–28,
30, 39
N.C.
28
29
EN
30
31, 32
DBP
Digital Bypass. All push-pull outputs are referenced to DBP. Bypass DBP with
a 1FF capacitor to GND.
31
33, 34
VCC
Device Power Supply. Connect VCC to a voltage from 2.8V to 14V. Bypass
VCC with a 10FF capacitor to GND.
32
35
ABP
No Connection. Not internally connected.
Analog Enable Input. All outputs deassert when VEN is below the enable
threshold.
Analog Bypass. Bypass ABP with a 1FF ceramic capacitor to GND.
36–39
—
MON9–
MON12
Monitor Voltage Input 9–Monitor Voltage Input 12. Set monitor voltage range
through configuration registers. Measured value written to the ADC register
can be read back through the SMBus or JTAG interface.
—
—
EP
Exposed Pad. Internally connected to GND. Connect to ground, but do not
use as the main ground connection.
_______________________________________________________________________________________ 9
MAX16070/MAX16071
Pin Description
MAX16070/MAX16071
12-Channel/8-Channel, Flash-Configurable System
Managers with Nonvolatile Fault Registers
Functional Diagram
VCC
ABP
DBP
OVERC
RESET
MAX16070
MAX16071
ANY_FAULT
FAULT1
DECODE
LOGIC
FAULT2
MR
EN
MARGIN
1.4V
CSP
WDI
WATCHDOG
TIMER
AV
CSM
WDO
VCSTH
GPIO1–GPIO8
RESET
G
P
I
O
C
O
N
T
R
O
L
GPIO1
GPIO2
GPIO3
GPIO4
GPIO5
GPIO6
GPIO7
GPIO8
REF
MON1–
MON12
VOLTAGE
SCALING
AND
MUX
10-BIT ADC
(SAR)
ADC
REGISTERS
DIGITAL
COMPARATORS
RAM
REGISTERS
SMBus INTERFACE
AO
SCL
SDA
JTAG
INTERFACE
FLASH
MEMORY
GND
TDO
TDI
TCK
TMS
10 �������������������������������������������������������������������������������������
12-Channel/8-Channel, Flash-Configurable System
Managers with Nonvolatile Fault Registers
The MAX16070 monitors up to twelve system power supplies and the MAX16071 can monitor up to eight system
power supplies. After boot-up, if EN is high and the software enable bit is set to ‘1,’ monitoring begins based on
the configuration stored in flash. An internal multiplexer
cycles through each MON_ input. At each multiplexer
stop, the 10-bit ADC converts the monitored analog voltage to a digital result and stores the result in a register.
Each time a conversion cycle (50Fs, max) completes,
internal logic circuitry compares the conversion results
to the overvoltage and undervoltage thresholds stored in
memory. When a result violates a programmed threshold,
the conversion can be configured to generate a fault.
GPIO_ can be programmed to assert on combinations
of faults. Additionally, faults can be configured to shut off
the system and trigger the nonvolatile fault logger, which
writes all fault information automatically to the flash and
write-protects the data to prevent accidental erasure.
The MAX16070/MAX16071 contain both SMBus and
JTAG serial interfaces for accessing registers and flash.
Use only one interface at any given time. For more information on how to access the internal memory through
these interfaces, see the SMBus-Compatible Interface
and JTAG Serial Interface sections. The memory map
is divided into three pages with access controlled by
special SMBus and JTAG commands.
The factory-default values at POR (power-on reset) for all
RAM registers are ‘0’s. POR occurs when VCC reaches
the undervoltage-lockout threshold (UVLO) of 2.8V (max).
At POR, the device begins a boot-up sequence. During
the boot-up sequence, all monitored inputs are masked
from initiating faults and flash contents are copied to
the respective register locations. During boot-up, the
MAX16070/MAX16071 are not accessible through the
serial interface. The boot-up sequence takes up to
150Fs, after which the device is ready for normal operation. RESET is asserted low up to the boot-up phase and
remains asserted for its programmed timeout period once
sequencing is completed and all monitored channels
are within their respective thresholds. Up to the boot-up
phase, the GPIO_s are high impedance.
Power
Apply 2.8V to 14V to VCC to power the MAX16070/
MAX16071. Bypass VCC to ground with a 10FF capacitor. Two internal voltage regulators, ABP and DBP,
supply power to the analog and digital circuitry within
the device. For operation at 3.6V or lower, disable the
regulators by connecting ABP and DBP to VCC.
ABP is a 3.0V (typ) voltage regulator that powers the internal analog circuitry. Bypass ABP to GND with a 1FF ceramic capacitor installed as close to the device as possible.
DBP is an internal 3.0V (typ) voltage regulator. DBP powers flash and digital circuitry. All push-pull outputs refer to
DBP. Bypass the DBP output to GND with a 1FF ceramic
capacitor installed as close as possible to the device.
Do not power external circuitry from ABP or DBP.
Enable
To enable monitoring, the voltage at EN must be above
1.4V and the software enable bit in r73h[0] must be set
to ‘1.’ To power down and disable monitoring, either pull
EN below 1.35V or set the Software Enable bit to ‘0.’
See Table 1 for the software enable bit configurations.
Connect EN to ABP if not used.
Table 1. Software Enable Configurations
REGISTER
ADDRESS
73h
FLASH
ADDRESS
273h
BIT RANGE
DESCRIPTION
[0]
Software enable
[1]
Reserved
[2]
1 = Margin mode enabled
[3]
Early warning threshold select
0 = Early warning is undervoltage
1 = Early warning is overvoltage
[4]
Independent watchdog mode enable
1 = Watchdog timer is independent of sequencer
0 = Watchdog timer boots after sequence completes
______________________________________________________________________________________ 11
MAX16070/MAX16071
Detailed Description
MAX16070/MAX16071
12-Channel/8-Channel, Flash-Configurable System
Managers with Nonvolatile Fault Registers
When in the monitoring state, a register bit, ENRESET,
is set to a ‘1’ when EN falls below the undervoltage
threshold. This register bit latches and must be cleared
through software. This bit indicates if RESET asserted
low due to EN going under the threshold. The POR state
of ENRESET is ‘0’. The bit is only set on a falling edge
of the EN comparator output or the software enable bit.
Voltage/Current Monitoring
The MAX16070/MAX16071 feature an internal 10-bit
ADC that monitors the MON_ voltage inputs. An internal
multiplexer cycles through each of the enabled inputs,
taking less than 40Fs for a complete monitoring cycle.
Each acquisition takes approximately 3.2Fs. At each
multiplexer stop, the 10-bit ADC converts the analog
input to a digital result and stores the result in a register.
ADC conversion results are stored in registers r00h to
r1Ah (see Table 6). Use the SMBus or JTAG serial interface to read ADC conversion results.
The MAX16070 provides twelve inputs, MON1 to MON12,
for voltage monitoring. The MAX16071 provides eight
inputs, MON1 to MON8, for voltage monitoring. Each
input voltage range is programmable in registers r43h to
r45h (see Table 5). When MON_ configuration registers
are set to ’11,’ MON_ voltages are not monitored, and
the multiplexer does not stop at these inputs, decreasing
the total cycle time. These inputs cannot be configured
to trigger fault conditions.
RS
POWER
SUPPLY
The three programmable thresholds for each monitored
voltage include an overvoltage, an undervoltage, and a
secondary warning threshold that can be set in r73h[3]
to be either an undervoltage or overvoltage threshold.
See the Faults section for more information on setting
overvoltage and undervoltage thresholds. All voltage
thresholds are 8 bits wide. The 8 MSBs of the 10-bit ADC
conversion result are compared to these overvoltage
and undervoltage thresholds.
Inputs that are not enabled are not converted by the
ADC; they contain the last value acquired before that
channel was disabled.
The ADC conversion result registers are reset to 00h at
boot-up. These registers are not reset when a reboot
command is executed.
Configure the MAX16070/MAX16071 for differential
mode in r46h (Table 5). The possible differential pairs
are MON1/MON2, MON3/MON4, MON5/MON6, MON7/
MON8, MON9/MON10, MON11/MON12 with the first
input always being at a higher voltage than the second.
Use differential voltage sensing to eliminate voltage offsets or measure supply current. See Figure 3. In differential mode, the odd-numbered MON_ input measures
the absolute voltage with respect to GND while the result
of the even input is the difference between the odd and
even inputs. See Figure 3 for the typical differential measurement circuit.
ILOAD
VMON
CSP
MONEVEN
MONODD
RSENSE
-
CSM
TO ADC MUX
*AV
+
MAX16070
MAX16071
MAX16070
LOAD
MONODD
-
MONEVEN
OVERC
+
+
-
POWER
SUPPLY
*VCSTH
LOAD
*ADJUSTABLE BY r47h [3:2]
Figure 3. Differential Measurement Connections
Figure 4. Current-Sense Amplifier
12 �������������������������������������������������������������������������������������
12-Channel/8-Channel, Flash-Configurable System
Managers with Nonvolatile Fault Registers
Internal Current-Sense Amplifier
The current-sense inputs, CSP/CSM, and a currentsense amplifier facilitate power monitoring (see Figure
4). The voltage on CSP relative to GND is also monitored
by the ADC when the current-sense amplifier is enabled
with r47h[0]. The conversion results are located in registers r19h and r1Ah (see Table 6). There are two selectable voltage ranges for CSP set by r47h[1], see Table
4. Although the voltage can be monitored over SMBus
or JTAG, this voltage has no threshold comparators and
cannot trigger any faults. Regarding the current-sense
amplifier, there are four selectable ranges and the ADC
output for a current-sense conversion is:
XADC = (VSENSE x AV)/1.4V x (28 - 1)
where XADC is the 8-bit decimal ADC result in register
r18h, VSENSE is VCSP - VCSM, and AV is the currentsense voltage gain set by r47h[3:2].
In addition, there are two programmable current-sense
trip thresholds: primary overcurrent and secondary overcurrent. For fast fault detection, the primary overcurrent
threshold is implemented with an analog comparator
connected to the internal OVERC signal. The OVERC
signal can be output on one of the GPIO_s. See the
General-Purpose Inputs/Outputs section for configuring the GPIO_ to output the OVERC signal. The primary
threshold is set by:
ITH = VCSTH/RSENSE
where ITH is the current threshold to be set, VCSTH is
the threshold set by r47h[3:2], and RSENSE is the value
of the sense resistor. See Table 4 for a description of
r47h. OVERC depends only on the primary overcurrent
threshold. The secondary overcurrent threshold is implemented through ADC conversions and digital comparison set by r6Ch. The secondary overcurrent threshold
includes programmable time delay options located in
r73h[6:5]. Primary and secondary current-sense faults
are enabled/disabled through r47h[0].
Table 2. Boot-Up Delay Register
REGISTER
ADDRESS
FLASH
ADDRESS
77h
277h
BIT RANGE
DESCRIPTION
[3:0]
Boot-up delay
[7:0]
Reserved
Table 3. Boot-Up Delay Values
CODE
VALUE
0000
25Fs
0001
500Fs
0010
1ms
0011
2ms
0100
3ms
0101
4ms
0110
6ms
0111
8ms
1000
10ms
1001
12ms
1010
25ms
1011
100ms
1100
200ms
1101
400ms
1110
800ms
1111
1.6s
______________________________________________________________________________________ 13
MAX16070/MAX16071
Boot-Up Delay
Once EN is above its threshold and the software-enable
bit is set, a boot-up delay occurs before monitoring
begins. This delay is configured in register r77h[3:0] as
shown in Tables 2 and 3.
MAX16070/MAX16071
12-Channel/8-Channel, Flash-Configurable System
Managers with Nonvolatile Fault Registers
Table 4. Overcurrent Primary Threshold and Current-Sense Control
REGISTER
ADDRESS
47h
FLASH
ADDRESS
BIT
RANGE
[0]
1 = Current sense is enabled
0 = Current sense is disabled
[1]
1 = CSP full-scale range is 14V
0 = CSP full-scale range is 7V
247h
73h
273h
DESCRIPTION
[3:2]
Overcurrent primary threshold and current-sense gain setting
00 = 200mV threshold, AV = 6V/V
01 = 100mV threshold, AV = 12V/V
10 = 50mV threshold, AV = 24V/V
11 = 25mV threshold, AV = 48V/V
[6:5]
Overcurrent secondary threshold deglitch
00 = No delay
01 = 14ms
10 = 15ms
11 = 60ms
Table 5. ADC Configuration Registers
REGISTER ADDRESS
43h
FLASH
ADDRESS
BIT RANGE
DESCRIPTION
[1:0]
ADC1 full-scale range
00 = 5.6V
01 = 2.8V
10 = 1.4V
11 = Channel not converted
[3:2]
ADC2 full-scale range
00 = 5.6V
01 = 2.8V
10 = 1.4V
11 = Channel not converted
[5:4]
ADC3 full-scale range
00 = 5.6V
01 = 2.8V
10 = 1.4V
11 = Channel not converted
[7:6]
ADC4 full-scale range
00 = 5.6V
01 = 2.8V
10 = 1.4V
11 = Channel not converted
243h
14 �������������������������������������������������������������������������������������
12-Channel/8-Channel, Flash-Configurable System
Managers with Nonvolatile Fault Registers
REGISTER ADDRESS
44h
45h
FLASH
ADDRESS
BIT RANGE
DESCRIPTION
[1:0]
ADC5 full-scale range
00 = 5.6V
01 = 2.8V
10 = 1.4V
11 = Channel not converted
[3:2]
ADC6 full-scale range
00 = 5.6V
01 = 2.8V
10 = 1.4V
11 = Channel not converted
[5:4]
ADC7 full-scale range
00 = 5.6V
01 = 2.8V
10 = 1.4V
11 = Channel not converted
[7:6]
ADC8 full-scale range
00 = 5.6V
01 = 2.8V
10 = 1.4V
11 = Channel not converted
[1:0]
ADC9 full-scale range
00 = 5.6V
01 = 2.8V
10 = 1.4V
11 = Channel not converted
[3:2]
ADC10 full-scale range
00 = 5.6V
01 = 2.8V
10 = 1.4V
11 = Channel not converted
[5:4]
ADC11 full-scale range
00 = 5.6V
01 = 2.8V
10 = 1.4V
11 = Channel not converted
[7:6]
ADC12 full-scale range
00 = 5.6V
01 = 2.8V
10 = 1.4V
11 = Channel not converted
244h
245h
______________________________________________________________________________________ 15
MAX16070/MAX16071
Table 5. ADC Configuration Registers (continued)
MAX16070/MAX16071
12-Channel/8-Channel, Flash-Configurable System
Managers with Nonvolatile Fault Registers
Table 5. ADC Configuration Registers (continued)
REGISTER ADDRESS
46h
FLASH
ADDRESS
BIT RANGE
DESCRIPTION
[0]
Differential conversion ADC1, ADC2
0 = Disabled
1 = Enabled
[1]
Differential conversion ADC3, ADC4
0 = Disabled
1 = Enabled
[2]
Differential conversion ADC5, ADC6
0 = Disabled
1 = Enabled
[3]
Differential conversion ADC7, ADC8
0 = Disabled
1 = Enabled
[4]
Differential conversion ADC9, ADC10
0 = Disabled
1 = Enabled
[5]
Differential conversion ADC11, ADC12
0 = Disabled
1 = Enabled
246h
16 �������������������������������������������������������������������������������������
12-Channel/8-Channel, Flash-Configurable System
Managers with Nonvolatile Fault Registers
REGISTER ADDRESS
BIT RANGE
00h
[7:0]
ADC1 result (MSB) bits 9–2
DESCRIPTION
01h
[7:6]
ADC1 result (LSB) bits 1, 0
02h
[7:0]
ADC2 result (MSB) bits 9–2
03h
[7:6]
ADC2 result (LSB) bits 1, 0
04h
[7:0]
ADC3 result (MSB) bits 9–2
05h
[7:6]
ADC3 result (LSB) bits 1, 0
06h
[7:0]
ADC4 result (MSB) bits 9–2
07h
[7:6]
ADC4 result (LSB) bits 1, 0
08h
[7:0]
ADC5 result (MSB) bits 9–2
09h
[7:6]
ADC5 result (LSB) bits 1, 0
0Ah
[7:0]
ADC6 result (MSB) bits 9–2
0Bh
[7:6]
ADC6 result (LSB) bits 1, 0
0Ch
[7:0]
ADC7 result (MSB) bits 9–2
0Dh
[7:6]
ADC7 result (LSB) bits 1, 0
0Eh
[7:0]
ADC8 result (MSB) bits 9–2
0Fh
[7:6]
ADC8 result (LSB) bits 1, 0
10h
[7:0]
ADC9 result (MSB) bits 9–2
11h
[7:6]
ADC9 result (LSB) bits 1, 0
12h
[7:0]
ADC10 result (MSB) bits 9–2
13h
[7:6]
ADC10 result (LSB) bits 1, 0
14h
[7:0]
ADC11 result (MSB) bits 9–2
15h
[7:6]
ADC11 result (LSB) bits 1, 0
16h
[7:0]
ADC12 result (MSB) bits 9–2
17h
[7:6]
ADC12 result (LSB) bits 1, 0
18h
[7:0]
Current-sense ADC result
19h
[7:0]
CSP ADC output (MSB) bits 9–2
1Ah
[7:6]
CSP ADC output (LSB) bits 1, 0
______________________________________________________________________________________ 17
MAX16070/MAX16071
Table 6. ADC Conversion Results (Read Only)
MAX16070/MAX16071
12-Channel/8-Channel, Flash-Configurable System
Managers with Nonvolatile Fault Registers
General-Purpose Inputs/Outputs
GPIO1 to GPIO8 are programmable general-purpose
inputs/outputs. GPIO1–GPIO8 are configurable as a
manual reset input, a watchdog timer input and output,
logic inputs/outputs, fault-dependent outputs. When programmed as outputs, GPIO_s are open drain or pushpull. See Tables 8 and 9 for more detailed information on
configuring GPIO1 to GPIO8.
When GPIO1 to GPIO8 are configured as general-purpose inputs/outputs, read values from the GPIO_ ports
through r1Eh and write values to GPIO_s through r3Eh.
Note that r3Eh has a corresponding flash register, which
programs the default state of a general-purpose output.
See Table 7 for more information on reading and writing
to the GPIO_.
Table 7. GPIO_ State Registers
REGISTER
ADDRESS
1Eh
3Eh
FLASH
ADDRESS
—
23Eh
BIT RANGE
DESCRIPTION
[0]
GPIO1 input state
[1]
GPIO2 input state
[2]
GPIO3 input state
[3]
GPIO4 input state
[4]
GPIO5 input state
[5]
GPIO6 input state
[6]
GPIO7 input state
[7]
GPIO8 input state
[0]
GPIO1 output state
[1]
GPIO2 output state
[2]
GPIO3 output state
[3]
GPIO4 output state
[4]
GPIO5 output state
[5]
GPIO6 output state
[6]
GPIO7 output state
[7]
GPIO8 output state
Table 8. GPIO_ Configuration Registers
REGISTER
ADDRESS
FLASH
ADDRESS
3Fh
23Fh
40h
41h
240h
241h
BIT RANGE
DESCRIPTION
[2:0]
GPIO1 configuration
[5:3]
GPIO2 configuration
[7:6]
GPIO3 configuration (LSB)
[0]
GPIO3 configuration (MSB)
[3:1]
GPIO4 configuration
[6:4]
GPIO5 configuration
[7]
GPIO6 configuration (LSB)
[1:0]
GPIO6 configuration (MSB)
[4:2]
GPIO7 configuration
[7:5]
GPIO8 configuration
18 �������������������������������������������������������������������������������������
12-Channel/8-Channel, Flash-Configurable System
Managers with Nonvolatile Fault Registers
REGISTER
ADDRESS
FLASH
ADDRESS
BIT RANGE
[0]
[1]
[2]
[3]
42h
242h
[4]
[5]
[6]
[7]
MAX16070/MAX16071
Table 8. GPIO_ Configuration Registers (continued)
DESCRIPTION
Output configuration for GPIO1
0 = Push-pull
1 = Open drain
Output configuration for GPIO2
0 = Push-pull
1 = Open drain
Output configuration for GPIO3
0 = Push-pull
1 = Open drain
Output configuration for GPIO4
0 = Push-pull
1 = Open drain
Output configuration for GPIO5
0 = Push-pull
1 = Open drain
Output configuration for GPIO6
0 = Push-pull
1 = Open drain
Output configuration for GPIO7
0 = Push-pull
1 = Open drain
Output configuration for GPIO8
0 = Push-pull
1 = Open drain
Table 9. GPIO_ Function Configuration Bits
CODE
GPIO1
GPIO2
GPIO3
GPIO4
GPIO5
GPIO6
GPIO7
GPIO8
000
Logic input
Logic
input
Logic input
Logic input
Logic input
Logic
input
Logic input
Logic input
001
Logic output
Logic
output
Logic output
Logic output
Logic output
Logic
output
Logic output
Logic output
010
Fault2 output
Fault2
output
Fault2 output
Fault2 output
Fault2 output
Fault2
output
Fault2 output
Fault2
output
011
Fault1 output
Fault1
output
—
Fault1 output
Fault1 output
Fault1
output
Fault1 output
—
100
ANY_FAULT
output
—
ANY_FAULT
output
ANY_FAULT
output
ANY_FAULT
output
—
ANY_FAULT
output
—
101
OVERC
output
OVERC
output
OVERC
output
OVERC
output
OVERC
output
OVERC
output
OVERC
output
OVERC
output
110
MR input
WDO
output
MR input
WDO output
MR input
WDO
output
MR input
WDO output
111
WDI input
—
—
EXTFAULT
input/output
—
MARGIN
input
—
EXTFAULT
input/output
______________________________________________________________________________________ 19
MAX16070/MAX16071
12-Channel/8-Channel, Flash-Configurable System
Managers with Nonvolatile Fault Registers
Fault1 and Fault2
GPIO1 to GPIO8 are configurable as dedicated fault outputs, Fault1 or Fault2. Fault outputs can assert on one or
more overvoltage, undervoltage, or early warning conditions for selected inputs, as well as the secondary overcurrent comparator. Fault1 and Fault2 dependencies
are set using registers r36h to r3Ah. See Table 10. When
a fault output depends on more than one MON_, the
fault output asserts when one or more MON_ exceeds a
programmed threshold voltage. These fault outputs act
independently of the critical fault system, described in
the Critical Faults section.
Table 10. Fault1 and Fault2 Dependencies
REGISTER
ADDRESS
36h
37h
38h
FLASH
ADDRESS
236h
BIT
RANGE
0
1 = Fault1 depends on MON1
1
1 = Fault1 depends on MON2
2
1 = Fault1 depends on MON3
3
1 = Fault1 depends on MON4
4
1 = Fault1 depends on MON5
5
1 = Fault1 depends on MON6
6
1 = Fault1 depends on MON7
7
1 = Fault1 depends on MON8
0
1 = Fault1 depends on MON9
1
1 = Fault1 depends on MON10
2
1 = Fault1 depends on MON11
3
1 = Fault1 depends on MON12
4
1 = Fault1 depends on the overvoltage thresholds of the inputs selected by
r36h and r37h[3:0]
5
1 = Fault1 depends on the undervoltage thresholds of the inputs selected by
r36h and r37h[3:0]
6
1 = Fault1 depends on the early warning thresholds of the inputs selected by
r36h and r37h[3:0]
7
0 = Fault1 is an active-low digital output
1 = Fault1 is an active-high digital output
237h
238h
DESCRIPTION
[0]
1 = Fault2 depends on MON1
[1]
1 = Fault2 depends on MON2
[2]
1 = Fault2 depends on MON3
[3]
1 = Fault2 depends on MON4
[4]
1 = Fault2 depends on MON5
[5]
1 = Fault2 depends on MON6
[6]
1 = Fault2 depends on MON7
[7]
1 = Fault2 depends on MON8
20 �������������������������������������������������������������������������������������
12-Channel/8-Channel, Flash-Configurable System
Managers with Nonvolatile Fault Registers
REGISTER
ADDRESS
39h
3Ah
FLASH
ADDRESS
BIT
RANGE
[0]
1 = Fault2 depends on MON9
[1]
1 = Fault2 depends on MON10
[2]
1 = Fault2 depends on MON11
[3]
1 = Fault2 depends on MON12
[4]
1 = Fault2 depends on the overvoltage thresholds of the inputs selected by
r38h and r39h[3:0]
[5]
1 = Fault2 depends on the undervoltage thresholds of the inputs selected by
r38h and r39h[3:0]
[6]
1 = Fault2 depends on the early warning thresholds of the inputs selected by
r38h and r39h[3:0]
[7]
0 = Fault2 is an active-low digital output
1 = Fault2 is an active-high digital output
[0]
1 = Fault1 depends on secondary overcurrent comparator
[1]
1 = Fault2 depends on secondary overcurrent comparator
239h
23Ah
DESCRIPTION
[7:2]
Reserved
ANY_FAULT
GPIO1, GPIO3, GPIO4, GPIO5, and GPIO7 are configurable to assert low during any fault condition.
Overcurrent Comparator (OVERC)
GPIO1 to GPIO8 are configurable to assert low when
the voltage across CSP and CSM exceed the primary
overcurrent threshold. See the Internal Current-Sense
Amplifier section for more details.
Manual Reset (MR)
GPIO1, GPIO3, GPIO5, and GPIO7 are configurable to act
as an active-low manual reset input, MR. Drive MR low to
assert RESET. RESET remains asserted for the selected
reset timeout period after MR transitions from low to high.
Watchdog Input (WDI) and Output (WDO)
GPIO2, GPIO4, GPIO6, and GPIO8 are configurable as
the watchdog timer output, WDO. GPIO1 is configurable
as WDI. See Table 17 for configuration details. WDO is an
active-low output. See the Watchdog Timer section for more
information about the operation of the watchdog timer.
External Fault (EXTFAULT)
GPIO4 and GPIO8 are configurable as the external fault
input/output. When configured as push-pull, EXTFAULT
signals that a critical fault has occurred on one or more
monitored voltages or current. When configured as
open-drain, EXTFAULT can be asserted low by an external circuit to trigger a critical fault. This signal can be
used to cascade multiple MAX16070/MAX16071s.
One configuration bit determines the behavior of the
MAX16070/MAX16071 when EXTFAULT is pulled low by
some other device. If register bit r6Dh[2] is set, EXTFAULT
going low triggers a nonvolatile fault log operation.
Faults
The MAX16070/MAX16071 monitor the input (MON_)
channels and compare the results with an overvoltage
threshold, an undervoltage threshold, and a selectable
overvoltage or undervoltage early warning threshold.
Based on these conditions, the MAX16070/MAX16071
assert various fault outputs and save specific information about the channel conditions and voltages into the
nonvolatile flash. Once a critical fault event occurs, the
failing channel condition, ADC conversions at the time of
the fault, or both can be saved by configuring the event
logger. The event logger records a single failure in the
internal flash and sets a lock bit that protects the stored
fault data from accidental erasure on a subsequent
power-up.
An overvoltage event occurs when the voltage at a monitored input exceeds the overvoltage threshold for that
input. An undervoltage event occurs when the voltage
at a monitored input falls below the undervoltage threshold. Fault thresholds are set in registers r48h to r6Ch as
shown in Table 11. Disabled inputs are not monitored for
fault conditions and are skipped over by the input multiplexer. Only the upper 8 bits of a conversion result are
compared with the programmed fault thresholds.
______________________________________________________________________________________ 21
MAX16070/MAX16071
Table 10. Fault1 and Fault2 Dependencies (continued)
MAX16070/MAX16071
12-Channel/8-Channel, Flash-Configurable System
Managers with Nonvolatile Fault Registers
Table 11. Fault Threshold Registers
REGISTER
ADDRESS
FLASH
ADDRESS
BIT RANGE
48h
248h
[7:0]
MON1 secondary threshold
49h
249h
[7:0]
MON1 overvoltage threshold
4Ah
24Ah
[7:0]
MON1 undervoltage threshold
4Bh
24Bh
[7:0]
MON2 secondary threshold
4Ch
24Ch
[7:0]
MON2 overvoltage threshold
4Dh
24Dh
[7:0]
MON2 undervoltage threshold
4Eh
24Eh
[7:0]
MON3 secondary threshold
4Fh
24Fh
[7:0]
MON3 overvoltage threshold
50h
250h
[7:0]
MON3 undervoltage threshold
51h
251h
[7:0]
MON4 secondary threshold
52h
252h
[7:0]
MON4 overvoltage threshold
53h
253h
[7:0]
MON4 undervoltage threshold
54h
254h
[7:0]
MON5 secondary threshold
55h
255h
[7:0]
MON5 overvoltage threshold
56h
256h
[7:0]
MON5 undervoltage threshold
57h
257h
[7:0]
MON6 secondary threshold
58h
258h
[7:0]
MON6 overvoltage threshold
59h
259h
[7:0]
MON6 undervoltage threshold
5Ah
25Ah
[7:0]
MON7 secondary threshold
5Bh
25Bh
[7:0]
MON7 overvoltage threshold
5Ch
25Ch
[7:0]
MON7 undervoltage threshold
5Dh
25Dh
[7:0]
MON8 secondary threshold
5Eh
25Eh
[7:0]
MON8 overvoltage threshold
5Fh
25Fh
[7:0]
MON8 undervoltage threshold
60h
260h
[7:0]
MON9 secondary threshold
61h
261h
[7:0]
MON9 overvoltage threshold
62h
262h
[7:0]
MON9 undervoltage threshold
63h
263h
[7:0]
MON10 secondary threshold
64h
264h
[7:0]
MON10 overvoltage threshold
65h
265h
[7:0]
MON10 undervoltage threshold
66h
266h
[7:0]
MON11 secondary threshold
67h
267h
[7:0]
MON11 overvoltage threshold
68h
268h
[7:0]
MON11 undervoltage threshold
69h
269h
[7:0]
MON12 secondary threshold
6Ah
26Ah
[7:0]
MON12 overvoltage threshold
6Bh
26Bh
[7:0]
MON12 undervoltage threshold
6Ch
26Ch
[7:0]
Secondary overcurrent threshold
DESCRIPTION
22 �������������������������������������������������������������������������������������
12-Channel/8-Channel, Flash-Configurable System
Managers with Nonvolatile Fault Registers
Deglitch
Fault conditions are detected at the end of each conversion. When the voltage on an input falls outside a monitored threshold for one acquisition, the input multiplexer
remains on that channel and performs several successive conversions. To trigger a fault, the input must stay
outside the threshold for a certain number of acquisitions
as determined by the deglitch setting in r73h[6:5] and
r74h[6:5] (see Table 12).
Fault Flags
Fault flags indicate the fault status of a particular input.
The fault flag of any monitored input in the device can be
read at any time from registers r1Bh and r1Ch, as shown
in Table 13. Clear a fault flag by writing a ‘1’ to the appropriate bit in the flag register. Unlike the fault signals sent
to the fault outputs, these bits are masked by the Critical
Fault Enable bits (see Table 14). The fault flag is only set
when the matching enable bit in the critical fault enable
register is also set.
Table 12. Deglitch Configuration
REGISTER
ADDRESS
FLASH
ADDRESS
73h
273h
74h
274h
BIT RANGE
DESCRIPTION
[6:5]
Overcurrent comparator deglitch time
00 = No deglitch
01 = 4ms
10 = 15ms
11 = 60ms
[6:5]
Voltage comparator deglitch configuration
00 = 2 cycles
01 = 4 cycles
10 = 8 cycles
11 = 16 cycles
Table 13. Fault Flags
REGISTER
ADDRESS
1Bh
1Ch
BIT RANGE
DESCRIPTION
[0]
MON1
[1]
MON2
[2]
MON3
[3]
MON4
[4]
MON5
[5]
MON6
[6]
MON7
[7]
MON8
[0]
MON9
[1]
MON10
[2]
MON11
[3]
MON12
[4]
Overcurrent
[5]
External fault (EXTFAULT)
SMB alert
[6]
______________________________________________________________________________________ 23
MAX16070/MAX16071
The general-purpose inputs/outputs (GPIO1 to GPIO8)
can be configured as ANY_FAULT outputs or dedicated
Fault1 and Fault2 outputs to indicate fault conditions.
These fault outputs are not masked by the critical fault
enable bits shown in Table 14. See the General-Purpose
Inputs/Outputs section for more information on configuring GPIO_s as fault outputs.
MAX16070/MAX16071
12-Channel/8-Channel, Flash-Configurable System
Managers with Nonvolatile Fault Registers
Table 14. Critical Fault Configuration
REGISTER
ADDRESS
FLASH
ADDRESS
BIT
RANGE
[1:0]
6Dh
26Dh
[2]
[7:3]
6Eh
6Fh
70h
71h
26Eh
26Fh
270h
271h
DESCRIPTION
Fault information to log
00 = Save failed line flags and ADC values in flash
01 = Save only failed line flags in flash
10 = Save only ADC values in flash
11 = Do not save anything
1 = Fault log triggered when EXTFAULT is pulled low externally
Not used
[0]
1 = Fault log triggered when MON1 is below its undervoltage threshold
[1]
1 = Fault log triggered when MON2 is below its undervoltage threshold
[2]
1 = Fault log triggered when MON3 is below its undervoltage threshold
[3]
1 = Fault log triggered when MON4 is below its undervoltage threshold
[4]
1 = Fault log triggered when MON5 is below its undervoltage threshold
[5]
1 = Fault log triggered when MON6 is below its undervoltage threshold
[6]
1 = Fault log triggered when MON7 is below its undervoltage threshold
[7]
1 = Fault log triggered when MON8 is below its undervoltage threshold
[0]
1 = Fault log triggered when MON9 is below its undervoltage threshold
[1]
1 = Fault log triggered when MON10 is below its undervoltage threshold
[2]
1 = Fault log triggered when MON11 is below its undervoltage threshold
[3]
1 = Fault log triggered when MON12 is below its undervoltage threshold
[4]
1 = Fault log triggered when MON1 is above its overvoltage threshold
[5]
1 = Fault log triggered when MON2 is above its overvoltage threshold
[6]
1 = Fault log triggered when MON3 is above its overvoltage threshold
[7]
1 = Fault log triggered when MON4 is above its overvoltage threshold
[0]
1 = Fault log triggered when MON5 is above its overvoltage threshold
[1]
1 = Fault log triggered when MON6 is above its overvoltage threshold
[2]
1 = Fault log triggered when MON7 is above its overvoltage threshold
[3]
1 = Fault log triggered when MON8 is above its overvoltage threshold
[4]
1 = Fault log triggered when MON9 is above its overvoltage threshold
[5]
1 = Fault log triggered when MON10 is above its overvoltage threshold
[6]
1 = Fault log triggered when MON11 is above its overvoltage threshold
[7]
1 = Fault log triggered when MON12 is above its overvoltage threshold
[0]
1 = Fault log triggered when MON1 is above/below the early threshold warning
[1]
1 = Fault log triggered when MON2 is above/below the early threshold warning
[2]
1 = Fault log triggered when MON3 is above/below the early threshold warning
[3]
1 = Fault log triggered when MON4 is above/below the early threshold warning
[4]
1 = Fault log triggered when MON5 is above/below the early threshold warning
[5]
1 = Fault log triggered when MON6 is above/below the early threshold warning
[6]
1 = Fault log triggered when MON7 is above/below the early threshold warning
[7]
1 = Fault log triggered when MON8 is above/below the early threshold warning
24 �������������������������������������������������������������������������������������
12-Channel/8-Channel, Flash-Configurable System
Managers with Nonvolatile Fault Registers
REGISTER
ADDRESS
72h
FLASH
ADDRESS
BIT
RANGE
272h
DESCRIPTION
[0]
1 = Fault log triggered when MON9 is above/below the early threshold warning
[1]
1 = Fault log triggered when MON10 is above/below the early threshold warning
[2]
1 = Fault log triggered when MON11 is above/below the early threshold warning
[3]
1 = Fault log triggered when MON12 is above/below the early threshold warning
[4]
[5]
[7:6]
1 = Fault log triggered when overcurrent early threshold is exceeded
Reserved, must be set to ‘1’
Reserved
If a GPIO_ is configured as an open-drain EXTFAULT
input/output, and EXTFAULT is pulled low by an external
circuit, bit r1Ch[5] is set.
The SMB Alert bit is set if the MAX16070/MAX16071
have asserted the SMBus Alert output. Clear by writing a
‘1’. See SMBALERT section for more details.
Critical Faults
During normal operation, a fault condition can be configured to store fault information in the flash memory by
setting the appropriate critical fault enable bits. Set the
appropriate critical fault enable bits in registers r6Eh to r72h
(see Table 14) for a fault condition to trigger a critical fault.
Logged fault information is stored in flash registers r200h
to r20Fh (see Table 15). After fault information is logged,
the flash is locked and must be unlocked to enable a
new fault log to be stored. Write a ‘0’ to r8Ch[1] to unlock
the fault flash. Fault information can be configured to
store ADC conversion results and/or fault flags in registers. Select the critical fault configuration in r6Dh[1:0].
Set r6Dh[1:0] to ‘11’ to turn off the fault logger. All stored
ADC results are 8 bits wide.
Table 15. Nonvolatile Fault Log Registers
FLASH ADDRESS
200h
201h
202h
BIT RANGE
DESCRIPTION
—
Reserved
[0]
Fault log triggered on MON1
[1]
Fault log triggered on MON2
[2]
Fault log triggered on MON3
[3]
Fault log triggered on MON4
[4]
Fault log triggered on MON5
[5]
Fault log triggered on MON6
[6]
Fault log triggered on MON7
[7]
Fault log triggered on MON8
[0]
Fault log triggered on MON9
[1]
Fault log triggered on MON10
[2]
Fault log triggered on MON11
[3]
Fault log triggered on MON12
[4]
Fault log triggered on overcurrent
[5]
Fault log triggered on EXTFAULT
Not used
[7:6]
______________________________________________________________________________________ 25
MAX16070/MAX16071
Table 14. Critical Fault Configuration (continued)
MAX16070/MAX16071
12-Channel/8-Channel, Flash-Configurable System
Managers with Nonvolatile Fault Registers
Table 15. Nonvolatile Fault Log Registers (continued)
FLASH ADDRESS
BIT RANGE
203h
[7:0]
MON1 ADC output
DESCRIPTION
204h
[7:0]
MON2 ADC output
205h
[7:0]
MON3 ADC output
206h
[7:0]
MON4 ADC output
207h
[7:0]
MON5 ADC output
208h
[7:0]
MON6 ADC output
209h
[7:0]
MON7 ADC output
20Ah
[7:0]
MON8 ADC output
20Bh
[7:0]
MON9 ADC output
20Ch
[7:0]
MON10 ADC output
20Dh
[7:0]
MON11 ADC output
20Eh
[7:0]
MON12 ADC output
20Fh
[7:0]
Current-sense ADC output
Reset Output
The reset output, RESET, indicates the status of the monitored inputs.
During normal monitoring, RESET can be configured to
assert when any combination of MON_ inputs violates
configurable combinations of thresholds: undervoltage,
overvoltage, or early warning. Select the combination of
thresholds using r3Bh[1:0], and select the combination
of MON_ inputs using r3Ch[7:1] and r3Dh[4:0]. Note that
MON_ inputs configured as critical faults will always cause
RESET to assert regardless of these configuration bits.
RESET can be configured as push-pull or open drain
using r3Bh[3], and active-high or active-low using
r3Bh[2]. Select the reset timeout by loading a value from
Table 16 into r3Bh[7:4]. RESET can be forced to assert
by writing a ‘1’ into r3Ch[0]. RESET remains asserted
for the reset timeout period after a ‘0’ is written into
r3Ch[0]. See Table 16. The current state of RESET can
be checked by reading r20h[0].
Watchdog Timer
The watchdog timer operates together with or independently of the MAX16070/MAX16071. When operating in
dependent mode, the watchdog is not activated until EN
goes high and RESET is deasserted. When operating in
independent mode, the watchdog timer activates immediately after VCC exceeds the UVLO threshold and the
boot phase is complete. Set r73h[4] to ‘0’ to configure
the watchdog in dependent mode. Set r73h[4] to ‘1’ to
configure the watchdog in independent mode. See Table
17 for more information on configuring the watchdog
timer in dependent or independent mode.
Dependent Watchdog Timer Operation
Use the watchdog timer to monitor FP activity in two
modes. Flexible timeout architecture provides an adjustable watchdog startup delay of up to 300s, allowing complicated systems to complete lengthy boot-up
routines. An adjustable watchdog timeout allows the
supervisor to provide quick alerts when processor activity fails. After each reset event (VCC drops below UVLO
then returns above UVLO, software reboot, manual reset
(MR), EN input going low then high, or watchdog reset),
the watchdog startup delay provides an extended time
for the system to power up and fully initialize all FP and
system components before assuming responsibility for
routine watchdog updates. Set r76h[6:4] to a value other
than ‘000’ to enable the watchdog startup delay. Set
r76h[6:4] to ‘000’ to disable the watchdog startup delay.
26 �������������������������������������������������������������������������������������
12-Channel/8-Channel, Flash-Configurable System
Managers with Nonvolatile Fault Registers
REGISTER
ADDRESS
FLASH
ADDRESS
BIT RANGE
[1:0]
3Bh
0 = Active-low
1 = Active-high
[3]
0 = Push-pull
1 = Open drain
23Bh
3Dh
23Ch
23Dh
Reset output depends on:
00 = Undervoltage threshold violations
01 = Early warning threshold violations
10 = Overvoltage threshold violations
11 = Undervoltage or overvoltage threshold violations
[2]
[7:4]
3Ch
DESCRIPTION
Reset timeout period
0000 = 25μs
0001 = 1.5ms
0010 = 2.5ms
0011 = 4ms
0100 = 6ms
0101 = 10ms
0110 = 15ms
0111 = 25ms
1000 = 40ms
1001 = 60ms
1010 = 100ms
1011 = 150ms
1100 = 250ms
1101 = 400ms
1110 = 600ms
1111 = 1s
[0]
Reset soft trigger
0 = Normal RESET behavior
1 = Force RESET to assert
[1]
1 = RESET depends on MON1
[2]
1 = RESET depends on MON2
[3]
1 = RESET depends on MON3
[4]
1 = RESET depends on MON4
[5]
1 = RESET depends on MON5
[6]
1 = RESET depends on MON6
[7]
1 = RESET depends on MON7
[0]
1 = RESET depends on MON8
[1]
1 = RESET depends on MON9
[2]
1 = RESET depends on MON10
[3]
1 = RESET depends on MON11
[4]
1 = RESET depends on MON12
[7:5]
Reserved
______________________________________________________________________________________ 27
MAX16070/MAX16071
Table 16. Reset Output Configuration
MAX16070/MAX16071
12-Channel/8-Channel, Flash-Configurable System
Managers with Nonvolatile Fault Registers
Table 17. Watchdog Configuration
REGISTER
ADDRESS
FLASH
ADDRESS
BIT RANGE
73h
273h
[4]
1 = Independent mode
0 = Dependent mode
[7]
1 = Watchdog affects RESET output
0 = Watchdog does not affect RESET output
76h
DESCRIPTION
[6:4]
Watchdog startup delay
000 = No initial timeout
001 = 30s
010 = 40s
011 = 80s
100 = 120s
101 = 160s
110 = 220s
111 = 300s
[3:0]
Watchdog timeout
0000 = Watchdog disabled
0001 = 1ms
0010 = 2ms
0011 = 4ms
0100 = 8ms
0101 = 14ms
0110 = 27ms
0111 = 50ms
1000 = 100ms
1001 = 200ms
1010 = 400ms
1011 = 750ms
1100 = 1.4s
1101 = 2.7s
1110 = 5s
1111 = 10s
276h
The normal watchdog timeout period, tWDI, begins after
the first transition on WDI before the conclusion of the
long startup watchdog period, tWDI_STARTUP (Figure 5).
During the normal operating mode, WDO asserts if the
FP does not toggle WDI with a valid transition (high-tolow or low-to-high) within the standard timeout period,
tWDI. WDO remains asserted until WDI is toggled or
RESET is asserted (Figure 6).
While EN is low, the watchdog timer is in reset. The
watchdog timer does not begin counting until RESET is
deasserted. The watchdog timer is reset and WDO deasserts any time RESET is asserted (Figure 7). The watchdog timer will be held in reset while RESET is asserted.
The watchdog can be configured to control the RESET
output as well as the WDO output. RESET asserts for
the reset timeout, tRP, when the watchdog timer expires
and the Watchdog Reset Output Enable bit (r76h[7]) is
set to ‘1.’ When RESET is asserted, the watchdog timer
is cleared and WDO is deasserted, therefore, WDO
pulses low for a short time (approximately 1Fs) when
the watchdog timer expires. RESET is not affected by
the watchdog timer when the Watchdog Reset Output
Enable bit (r76h[7]) is set to ‘0.’ If a RESET is asserted
by the watchdog timeout, the WDRESET bit is set to ‘1’. A
connected processor can check this bit to see the reset
was due to a watchdog timeout. See Table 17 for more
information on configuring watchdog functionality.
28 �������������������������������������������������������������������������������������
12-Channel/8-Channel, Flash-Configurable System
Managers with Nonvolatile Fault Registers
MAX16070/MAX16071
VTH
LAST MON_
< tWDI
tWDI_STARTUP
WDI
< tWDI
tRP
RESET
Figure 5. Normal Watchdog Startup Sequence
VCC
WDI
< tWDI
< tWDI
> tWDI
< tWDI
< tWDI
< tWDI
< tWDI
0V
tWDI
VCC
WDO
0V
Figure 6. Watchdog Timer Operation
VCC
< tWDI
WDI
tWDI
tRP
< tWDI_STARTUP
< tWDI
0V
VCC
RESET
0V
VCC
WDO
0V
1µs
Figure 7. Watchdog Startup Sequence with Watchdog Reset Output Enable Bit Set to ‘1’
______________________________________________________________________________________ 29
MAX16070/MAX16071
12-Channel/8-Channel, Flash-Configurable System
Managers with Nonvolatile Fault Registers
Independent Watchdog Timer Operation
When r73h[4] is ‘1’ the watchdog timer operates in
the independent mode. In the independent mode, the
watchdog timer operates as if it were a separate device.
The watchdog timer is activated immediately upon VCC
exceeding UVLO and once the boot-up sequence is finished. When RESET is asserted, the watchdog timer and
WDO are not affected.
There will be a startup delay if r76h[6:4] is set to a value
different than ‘000.’ If r76h[6:4] is set to ‘000,’ there will
not be a startup delay. See Table 17 for delay times.
In independent mode, if the Watchdog Reset Output
Enable bit r76h[7] is set to ‘1,’ when the watchdog timer
expires, WDO asserts then RESET asserts. WDO will
then deassert. WDO will be low for approximately 1Fs.
If the Watchdog Reset Output Enable bit (r76h[7]) is set
to ‘0,’ when the WDT expires, WDO asserts but RESET
is not affected.
User-Defined Register
Register r8Ah provides storage space for a user-defined
configuration or firmware version number. Note that this
register controls the contents of the JTAG USERCODE
register bits 7:0. The user-defined register is stored at
r28Ah in the flash memory.
Memory Lock Bits
SMBus-Compatible Interface
The MAX16070/MAX16071 feature an SMBuscompatible, 2-wire serial interface consisting of a serialdata line (SDA) and a serial-clock line (SCL). SDA and
SCL facilitate bidirectional communication between the
MAX16070/MAX16071 and the master device at clock
rates up to 400kHz. Figure 1 shows the 2-wire interface
timing diagram. The MAX16070/MAX16071 are transmit/
receive slave-only devices, relying upon a master device
to generate a clock signal. The master device (typically
a microcontroller) initiates a data transfer on the bus and
generates SCL to permit that transfer.
A master device communicates to the MAX16070/
MAX16071 by transmitting the proper address followed
by a command and/or data words. The slave address
input, A0, is capable of detecting four different states,
allowing multiple identical devices to share the same
serial bus. The slave address is described further in
the Slave Address section. Each transmit sequence is
framed by a START (S) or REPEATED START (SR) condition and a STOP (P) condition. Each word transmitted
over the bus is 8 bits long and is always followed by an
acknowledge pulse. SCL is a logic input, while SDA is
an open-drain input/output. SCL and SDA both require
external pullup resistors to generate the logic-high voltage. Use 4.7kI for most applications.
Register r8Ch contains the lock bits for the configuration
registers, configuration flash, user flash, and fault register lock. See Table 18 for details.
Table 18. Memory Lock Bits
REGISTER
ADDRESS
8Ch
FLASH ADDRESS
BIT RANGE
DESCRIPTION
0
Configuration register lock
1 = Locked
0 = Unlocked
1
Flash fault register lock
1 = Locked
0 = Unlocked
2
Flash configuration lock
1 = Locked
0 = Unlocked
3
User flash lock
1 = Locked
0 = Unlocked
28Ch
30 �������������������������������������������������������������������������������������
12-Channel/8-Channel, Flash-Configurable System
Managers with Nonvolatile Fault Registers
SDA
SCL
SCL
DATA LINE STABLE, CHANGE OF
DATA ALLOWED
DATA VALID
S
P
START
CONDITION
STOP
CONDITION
Figure 8. Bit Transfer
Figure 9. START and STOP Conditions
Bit Transfer
Each clock pulse transfers one data bit. The data on
SDA must remain stable while SCL is high (Figure 8);
otherwise the MAX16070/MAX16071 register a START or
STOP condition (Figure 9) from the master. SDA and SCL
idle high when the bus is not busy.
Acknowledge
The acknowledge bit (ACK) is the 9th bit attached to any
8-bit data word. The receiving device always generates
an ACK. The MAX16070/MAX16071 generate an ACK
when receiving an address or data by pulling SDA low
during the 9th clock period (Figure 10). When transmitting data, such as when the master device reads data
back from the MAX16070/MAX16071, the device waits for
the master device to generate an ACK. Monitoring ACK
allows for detection of unsuccessful data transfers. An
unsuccessful data transfer occurs if the receiving device
is busy or if a system fault has occurred. In the event of an
unsuccessful data transfer, the bus master can reattempt
communication at a later time. The MAX16070/MAX16071
generate a NACK after the command byte received during a software reboot, while writing to the flash, or when
receiving an illegal memory address.
START and STOP Conditions
Both SCL and SDA idle high when the bus is not busy.
A master device signals the beginning of a transmission
with a START condition by transitioning SDA from high to
low while SCL is high. The master device issues a STOP
condition by transitioning SDA from low to high while
SCL is high. A STOP condition frees the bus for another
transmission. The bus remains active if a REPEATED
START condition is generated, such as in the block read
protocol (see Figure 1).
Early STOP Conditions
The MAX16070/MAX16071 recognize a STOP condition
at any point during transmission except if a STOP condition occurs in the same high pulse as a START condition.
This condition is not a legal SMBus format; at least one
clock pulse must separate any START and STOP condition.
REPEATED START Conditions
A REPEATED START can be sent instead of a STOP
condition to maintain control of the bus during a read
operation. The START and REPEATED START conditions
are functionally identical.
Slave Address
Use the slave address input, A0, to allow multiple identical devices to share the same serial bus. Connect A0 to
GND, DBP (or an external supply voltage greater than
2V), SCL, or SDA to set the device address on the bus.
See Table 20 for a listing of all possible 7-bit addresses.
The slave address can also be set to a custom value by
loading the address into register r8Bh[6:0]. See Table
19. If r8Bh[6:0] is loaded with 00h, the address is set by
input A0. Do not set the address to 09h or 7Fh to avoid
address conflicts. The slave address setting takes effect
immediately after writing to the register.
______________________________________________________________________________________ 31
MAX16070/MAX16071
SDA
MAX16070/MAX16071
12-Channel/8-Channel, Flash-Configurable System
Managers with Nonvolatile Fault Registers
CLOCK PULSE FOR ACKNOWLEDGE
2
1
SCL
8
9
SDA BY
TRANSMITTER
S
NACK
SDA BY
RECEIVER
ACK
Figure 10. Acknowledge
Table 19. SMBus Settings Register
REGISTER
ADDRESS
FLASH ADDRESS
8Bh
28Bh
BIT RANGE
[6:0]
[7]
DESCRIPTION
I2C Slave Address Register. Set to 00h to use A0 pin
address setting.
1 = Enable PEC (packet error check).
Table 20. Setting the SMBus Slave Address
SLAVE ADDRESSES
A0
SLAVE ADDRESS
0
1010 000R
1
1010 001R
SCL
1010 010R
SDA
1010 011R
R = Read/Write select bit
32 �������������������������������������������������������������������������������������
12-Channel/8-Channel, Flash-Configurable System
Managers with Nonvolatile Fault Registers
The CRC-8 byte is calculated using the polynomial
C = X8 + X2 + X + 1
The PEC calculation includes all bytes in the transmission, including address, command, and data. The PEC
calculation does not include ACK, NACK, START, STOP,
or REPEATED START.
Command Codes
The MAX16070/MAX16071 use eight command codes
for block read, block write, and other commands. See
Table 21 for a list of command codes.
To initiate a software reboot, send A7h using the send byte
format. A software-initiated reboot is functionally the same
as a hardware-initiated power-on reset. During boot-up,
flash configuration data in the range of 230h to 28Ch is
copied to r30h to r8Ch registers in the default page.
Restrictions When Writing to Flash
Flash must be written to 8 bytes at a time. The initial
address must be aligned to 8-byte boundaries—the
three LSBs of the initial address must be ‘000.’ Write the
8 bytes using a single block-write command or using 8
successive Write Byte commands.
Send Byte
The send byte protocol allows the master device to send
one byte of data to the slave device (see Figure 11). The
send byte presets a register pointer address for a subsequent read or write. The slave sends a NACK instead of
an ACK if the master tries to send a memory address or
command code that is not allowed. If the master sends
A5h or A6h, the data is ACK, because this could be the
start of the write block or read block. If the master sends
a STOP condition before the slave asserts an ACK, the
internal address pointer does not change. If the master
sends A7h, this signifies a software reboot. The send
byte procedure is the following:
1) The master sends a START condition.
2) The master sends the 7-bit slave address and a write
bit (low).
Send command code A8h to trigger a fault store to flash.
Configure the Critical Fault Log Control register (r6Dh) to
store ADC conversion results and/or fault flags.
3) The addressed slave asserts an ACK on SDA.
While in the flash page, send command code A9h to
access the flash page (addresses from 200h to 28Dh).
Once command code A9h has been sent, all addresses
are recognized as flash addresses only. Send command
code AAh to return to the default page (addresses from
000h to 08Dh). Send command code ABh to access
the user flash-page (addresses from 300h to 39Fh and
3B0h–3FFh), and send command code ACh to return to
the flash page.
5) The addressed slave asserts an ACK (or NACK) on SDA.
4) The master sends an 8-bit memory address or command code.
6) The master sends a STOP condition.
Table 21. Command Codes
COMMAND
CODE
ACTION
A5h
Block write
A6h
Block read
A7h
Reboot flash in register file
A8h
Trigger emergency save to flash
A9h
Flash page access ON
AAh
Flash page access OFF
ABh
User flash access ON (must be in flash page already)
ACh
User flash access OFF (return to flash page)
______________________________________________________________________________________ 33
MAX16070/MAX16071
Packet Error Checking (PEC)
The MAX16070/MAX16071 feature a PEC mode that is
useful for improving the reliability of the communication
bus by detecting bit errors. By enabling PEC, an extra
CRC-8 error check byte is added in the data string during each read and/or write sequence. Enable PEC by
writing a ‘1’ to r8Bh[7].
MAX16070/MAX16071
12-Channel/8-Channel, Flash-Configurable System
Managers with Nonvolatile Fault Registers
Send Byte Format
S
ADDRESS
Receive Byte Format
R/W ACK
7 bits
0
0
Slave Address: Address
of the slave on the serial
interface bus.
COMMAND
ACK
8 bits
0
P
ADDRESS
S
Data Byte: Presets the internal
address pointer or represents
a command.
ADDRESS
7 bits
SLAVE
ADDRESS
0
DATA
NACK
8 bits
1
P
Data Byte: Data is read from
the location pointed to by the
internal address pointer.
SMBALERT#
R/W ACK
0
0
Slave Address: Address
of the slave on the serial
interface bus.
Read Byte Format
S
1
Slave Address: Address
of the slave on the serial
interface bus.
Write Byte Format
S
R/W ACK
7 bits
ACK
8 bits
0
0
0
Slave Address: Address
of the slave on the serial
interface bus.
DATA
ACK
8 bits
0
P
S
COMMAND
ACK
8 bits
0
SR
SLAVE
ADDRESS
R/W ACK
0001100
D.C.
DATA BYTE NACK
R/W ACK
7 bits
ADDRESS
0
Alert Response Address:
Only the device that
interrupted the master
responds to this address.
Data Byte: Data is written to
the locations set by the
internal address pointer.
Command Byte:
Sets the internal
address pointer.
R/W ACK
7 bits
COMMAND
1
8 bits
0
DATA
NACK
8 bits
1
P
Slave Address: Slave places
its own address on the
serial bus.
P
1
Data Byte: Data is read from
the locations set by the
internal address pointer.
Command Byte:
Sets the internal
address pointer.
Block Write Format
S
ADDRESS
R/W ACK
7 bits
0
0
Slave Address: Address
of the slave on the
serial interface bus.
COMMAND
ACK
BYTE
COUNT = N
8 bits
0
8 bits
ACK DATA BYTE 1 ACK DATA BYTE … ACK DATA BYTE N ACK
8 bits
0
Command Byte:
A5h
8 bits
0
0
8 bits
Slave to master
P
0
Master to slave
Data Byte: Data is written to the locations
set by the internal address pointer.
Block Read Format
S
ADDRESS
R/W ACK
7 bits
0
0
Slave Address: Address
of the slave on the
serial interface bus.
COMMAND
ACK
8 bits
0
SR
ADDRESS
7 bits
1
0
Slave Address: Address
of the slave on the
serial interface bus.
Command Byte:
A6h
BYTE
COUNT = N
R/W ACK
ACK DATA BYTE 1 ACK DATA BYTE … ACK DATA BYTE N NACK
8 bits
0
8 bits
0
8 bits
0
8 bits
P
1
Data Byte: Data is read from the locations
set by the internal address pointer.
Write Byte Format with PEC
S
ADDRESS
R/W A
7 BITS
0
COMMAND
A
DATA
A
PEC
A
8 BITS
0
8 BITS
0
8 BITS
0
COMMAND
A
0
0
P
Read Byte Format with PEC
S
ADDRESS
R/W A
7 BITS
0
0
8 BITS
ADDRESS
R/W
A
COMMAND
7 BITS
0
0
ADDRESS
R/W
7 BITS
0
SR
ADDRESS
R/W
A
DATA
A
PEC
N
7 BITS
1
0
8 BITS
0
8 BITS
1
P
Block Write with PEC
S
A BYTE COUNT N
A
DATA BYTE 1
A
DATA BYTE
A
DATA N
A
PEC
A
8 BITS
0
0
8 BITS
0
8 BITS
0
8 BITS
0
8 BITS
0
A
COMMAND
A
A
DATA BYTE N
A
PEC
N
0
8 BITS
0
0
8 BITS
0
8 BITS
1
8 BITS
P
Block Read with PEC
S
S = START Condition
P = STOP Condition
Sr = Repeated START Condition
D.C. = Don’t Care
SR
ADDRESS
R/W
A
BYTE COUNT N
A
DATA BYTE 1
A
7 BITS
1
0
8 BITS
0
8 BITS
0
ACK = Acknowledge, SDA pulled low during rising edge of SCL.
NACK = Not acknowledge, SDA left high during rising edge of SCL.
All data is clocked in/out of the device on rising edges of SCL.
DATA BYTE
8 BITS
= SDA transitions from high to low during period of SCL.
= SDA transitions from low to high during period of SCL.
Figure 11. SMBus Protocols
34 �������������������������������������������������������������������������������������
P
12-Channel/8-Channel, Flash-Configurable System
Managers with Nonvolatile Fault Registers
7) The slave asserts an ACK on the data line.
8) The master sends an 8-bit PEC byte.
9) The slave asserts an ACK on the data line (if PEC is
good, otherwise NACK).
10) The master generates a STOP condition.
2) The master sends the 7-bit slave address and a read
bit (high).
Read Byte
The read byte protocol (see Figure 11) allows the master
device to read a single byte located in the default page,
extended page, or flash page depending on which page
is currently selected. The read byte procedure is the
following:
3) The addressed slave asserts an ACK on SDA.
1) The master sends a START condition.
4) The slave sends 8 data bits.
2) The master sends the 7-bit slave address and a
write bit (low).
1) The master sends a START condition.
5 The master asserts a NACK on SDA.
6) The master generates a STOP condition.
Write Byte
The write byte protocol (see Figure 11) allows the master
device to write a single byte in the default page, extended page, or flash page, depending on which page is currently selected. The write byte procedure is the following:
3) The addressed slave asserts an ACK on SDA.
4) The master sends an 8-bit memory address.
5) The addressed slave asserts an ACK on SDA.
6) The master sends a REPEATED START condition.
7) The master sends the 7-bit slave address and a
read bit (high).
1) The master sends a START condition.
8) The addressed slave asserts an ACK on SDA.
2) The master sends the 7-bit slave address and a write
bit (low).
9) The slave sends an 8-bit data byte.
3) The addressed slave asserts an ACK on SDA.
4) The master sends an 8-bit memory address.
10) The master asserts a NACK on SDA.
11) The master sends a STOP condition.
5) The addressed slave asserts an ACK on SDA.
If the memory address is not valid, it is NACKed by the
slave at step 5 and the address pointer is not modified.
6) The master sends an 8-bit data byte.
When PEC is enabled, the Read Byte protocol becomes:
7) The addressed slave asserts an ACK on SDA.
1) The master sends a START condition.
8) The master sends a STOP condition.
2) The master sends the 7-bit slave ID plus a write
bit (low).
To write a single byte, only the 8-bit memory address
and a single 8-bit data byte are sent. The data byte is
written to the addressed location if the memory address
is valid. The slave asserts a NACK at step 5 if the memory address is not valid.
3) The addressed slave asserts an ACK on the data line.
4) The master sends 8-bit memory address.
5) The active slave asserts an ACK on the data line.
When PEC is enabled, the Write Byte protocol becomes:
6) The master sends a REPEATED START condition.
1) The master sends a START condition.
7) The master sends the 7-bit slave ID plus a read bit (high).
2) The master sends the 7-bit slave ID plus a write
bit (low).
8) The addressed slave asserts an ACK on the data line.
3) The addressed slave asserts an ACK on the data line.
10) The master asserts an ACK on the data line.
4) The master sends an 8-bit memory address.
11) The slave sends an 8-bit PEC byte.
5) The active slave asserts an ACK on the data line.
12) The master asserts a NACK on the data line.
6) The master sends an 8-bit data byte.
13) The master generates a STOP condition.
9) The slave sends 8 data bits.
______________________________________________________________________________________ 35
MAX16070/MAX16071
Receive Byte
The receive byte protocol allows the master device to
read the register content of the MAX16070/MAX16071
(see Figure 11). The flash or register address must be
preset with a send byte or write word protocol first. Once
the read is complete, the internal pointer increases by
one. Repeating the receive byte protocol reads the contents of the next address. The receive byte procedure
follows:
MAX16070/MAX16071
12-Channel/8-Channel, Flash-Configurable System
Managers with Nonvolatile Fault Registers
Block Write
The block write protocol (see Figure 11) allows the master device to write a block of data (1 byte to 16 bytes) to
memory. Preload the destination address by a previous
send byte command; otherwise the block write command begins to write at the current address pointer.
After the last byte is written, the address pointer remains
preset to the next valid address. If the number of bytes
to be written causes the address pointer to exceed 8Fh
for configuration registers or configuration flash or FFh
for user flash, the address pointer stays at 8Fh or FFh,
respectively, overwriting this memory address with the
remaining bytes of data. The slave generates a NACK at
step 5 if the command code is invalid or if the device is
busy, and the address pointer is not altered.
The block write procedure is the following:
1) The master sends a START condition.
2) The master sends the 7-bit slave address and a
write bit (low).
3) The addressed slave asserts an ACK on SDA.
4) The master sends the 8-bit command code for block
write (A5h).
5) The addressed slave asserts an ACK on SDA.
6) The master sends the 8-bit byte count (1 byte to 16
bytes), n.
7) The addressed slave asserts an ACK on SDA.
8) The master sends 8 bits of data.
9) The addressed slave asserts an ACK on SDA.
10) Repeat steps 8 and 9 n - 1 times.
11) The master sends a STOP condition.
When PEC is enabled, the Block Write protocol becomes:
1) The master sends a START condition.
2) The master sends the 7-bit slave ID plus a write
bit (low).
3) The addressed slave asserts an ACK on the data line.
4) The master sends 8 bits of the block write command code.
9) The slave asserts an ACK on the data line.
10) Repeat 8 and 9 n - 1 times.
11) The master sends an 8-bit PEC byte.
12) The slave asserts an ACK on the data line (if PEC is
good, otherwise NACK).
13) The master generates a STOP condition.
Block Read
The block read protocol (see Figure 11) allows the
master device to read a block of up to 16 bytes from
memory. Read fewer than 16 bytes of data by issuing
an early STOP condition from the master, or by generating a NACK with the master. The destination address
should be preloaded by a previous send byte command;
otherwise the block read command begins to read at
the current address pointer. If the number of bytes to
be read causes the address pointer to exceed 8Fh for
the configuration register or configuration flash or FFh
in user flash, the address pointer stays at 8Fh or FFh,
respectively. The block read procedure is the following:
1) The master sends a START condition.
2) The master sends the 7-bit slave address and a write
bit (low).
3) The addressed slave asserts an ACK on SDA.
4) The master sends 8 bits of the block read command (A6h).
5) The slave asserts an ACK on SDA, unless busy.
6) The master generates a REPEATED START condition.
7) The master sends the 7-bit slave address and a read
bit (high).
8) The slave asserts an ACK on SDA.
9) The slave sends the 8-bit byte count (16).
10)The master asserts an ACK on SDA.
11)The slave sends 8 bits of data.
12)The master asserts an ACK on SDA.
13)Repeat steps 11 and 12 up to fifteen times.
14)The master asserts a NACK on SDA.
5) The slave asserts an ACK on the data line.
15)The master sends a STOP condition.
6) The master sends an 8-bit byte count (min 1, max
16), n.
7) The slave asserts an ACK on the data
line.
When PEC is enabled, the Block Read protocol becomes:
8) The master sends 8 bits of data.
1) The master sends a START condition.
2) The master sends the 7-bit slave ID plus a write
bit (low).
36 �������������������������������������������������������������������������������������
12-Channel/8-Channel, Flash-Configurable System
Managers with Nonvolatile Fault Registers
REGISTER
ADDRESS
35h
FLASH
ADDRESS
235h
BIT RANGE
[1:0]
DESCRIPTION
SMBus Alert Configuration
00 = Disabled
01 = Fault1 is SMBus ALERT
10 = Fault2 is SMBus ALERT
11 = ANY_FAULT is SMBus ALERT
3) The addressed slave asserts an ACK on the data line.
4) The master sends 8 bits of the block read command code.
5) The slave asserts an ACK on the data line unless busy.
6) The master sends a REPEATED START condition.
7) The master sends the 7-bit slave ID plus a read
bit (high).
8) The slave asserts an ACK on the data line.
9) The slave sends an 8-bit byte count (16).
10) The master asserts an ACK on the data line.
11) The slave sends 8 bits of data.
12) The master asserts an ACK on the data line.
13) Repeat steps 11 and 12 up to 15 times.
14) The slave sends an 8-bit PEC byte.
15) The master asserts a NACK on the data line.
16) The master generates a STOP condition.
SMBALERT
The MAX16070/MAX16071 support the SMBus alert
protocol. To enable the SMBus alert output, set r35h[1:0]
according to Table 22, which configures a Fault1, Fault2,
or ANY_FAULT output to act as the SMBus alert. This
output is open-drain and uses the wired-OR configuration with other devices on the SMBus. During a fault,
the MAX16070/MAX16071 assert ALERT low, signaling
the master that an interrupt has occurred. The master
responds by sending the ARA (Alert Response Address)
protocol on the SMBus. This protocol is a read byte with
09h as the slave address. The slave acknowledges the
ARA (09h) address and sends its own SMBus address to
the master. The slave then deasserts ALERT. The master
can then query the slave and determine the cause of the
fault. By checking r1Ch[6], the master can confirm that
the MAX16070/MAX16071 triggered the SMBus alert.
The master must send the ARA before clearing r1Ch[6].
Clear r1Ch[6] by writing a ‘1’.
JTAG Serial Interface
The MAX16070/MAX16071 feature a JTAG port that
complies with a subset of the IEEE® 1149.1 specification. Either the SMBus or the JTAG interface can be used
to access internal memory; however, only one interface
is allowed to run at a time. The MAX16070/MAX16071
do not support IEEE 1149.1 boundary-scan functionality.
The MAX16070/MAX16071 contain extra JTAG instructions and registers not included in the JTAG specification that provide access to internal memory. The extra
instructions include LOAD ADDRESS, WRITE DATA,
READ DATA, REBOOT, SAVE.
IEEE is a registered service mark of the Institute of Electrical
and Electronics Engineers, Inc.
______________________________________________________________________________________ 37
MAX16070/MAX16071
Table 22. SMBus Alert Configuration
MAX16070/MAX16071
12-Channel/8-Channel, Flash-Configurable System
Managers with Nonvolatile Fault Registers
REGISTERS
AND FLASH
01100
01011
01010
01001
01000
00111
MEMORY WRITE REGISTER
[LENGTH = 8 BITS]
00110
MEMORY READ REGISTER
[LENGTH = 8 BITS]
00101
MEMORY ADDRESS REGISTER
[LENGTH = 8 BITS]
00100
USER CODE REGISTER
[LENGTH = 32 BITS]
00011
IDENTIFICATION REGISTER
[LENGTH = 32 BITS]
BYPASS REGISTER
[LENGTH = 1 BIT]
MUX 1
00000
11111
COMMAND
DECODER
01001
SETFLSHADD
01010
RSTFLSHADD
01011
SETUSRFLSH
01100
RSTUSRFLSH
01000
SAVE
00111
REBOOT
VDB
INSTRUCTION REGISTER
[LENGTH = 5 BITS]
RPU
TDI
MUX 2
TMS
TDO
TEST ACCESS PORT
(TAP) CONTROLLER
TCK
Figure 12. JTAG Block Diagram
Test Access Port (TAP)
Controller State Machine
The TAP controller is a finite state machine that responds
to the logic level at TMS on the rising edge of TCK. See
Figure 13 for a diagram of the finite state machine. The
possible states are described in the following:
Test-Logic-Reset: At power-up, the TAP controller
is in the test-logic-reset state. The instruction register
contains the IDCODE instruction. All system logic of the
device operates normally. This state can be reached
from any state by driving TMS high for five clock cycles.
Run-Test/Idle: The run-test/idle state is used between
scan operations or during specific tests. The instruction
register and test data registers remain idle.
Select-DR-Scan: All test data registers retain their previous state. With TMS low, a rising edge of TCK moves the
controller into the capture-DR state and initiates a scan
sequence. TMS high during a rising edge on TCK moves
the controller to the select-IR-scan state.
Capture-DR: Data can be parallel-loaded into the test
data registers selected by the current instruction. If the
instruction does not call for a parallel load or the selected
test data register does not allow parallel loads, the test
38 �������������������������������������������������������������������������������������
12-Channel/8-Channel, Flash-Configurable System
Managers with Nonvolatile Fault Registers
TEST-LOGIC-RESET
0
0
RUN-TEST/IDLE
1
SELECT-DR-SCAN
1
SELECT-IR-SCAN
0
1
0
1
CAPTURE-DR
CAPTURE-IR
0
0
SHIFT-DR
1
1
EXIT1-DR
1
EXIT1-IR
0
0
PAUSE-DR
PAUSE-IR
0
1
0
1
0
EXIT2-DR
EXIT2-IR
1
1
UPDATE-DR
1
0
SHIFT-IR
0
1
0
1
UPDATE-IR
0
1
0
Figure 13. Tap Controller State Diagram
data register remains at its current value. On the rising
edge of TCK, the controller goes to the shift-DR state if
TMS is low or it goes to the exit1-DR state if TMS is high.
Shift-DR: The test data register selected by the current
instruction connects between TDI and TDO and shifts
data one stage toward its serial output on each rising
edge of TCK while TMS is low. On the rising edge of TCK,
the controller goes to the exit1-DR state if TMS is high.
Exit1-DR: While in this state, a rising edge on TCK puts
the controller in the update-DR state. A rising edge on TCK
with TMS low puts the controller in the pause-DR state.
Pause-DR: Shifting of the test data registers halts while
in this state. All test data registers retain their previous
state. The controller remains in this state while TMS is
low. A rising edge on TCK with TMS high puts the controller in the exit2-DR state.
Exit2-DR: A rising edge on TCK with TMS high while in
this state puts the controller in the update-DR state. A rising edge on TCK with TMS low enters the shift-DR state.
Update-DR: A falling edge on TCK while in the updateDR state latches the data from the shift register path of
the test data registers into a set of output latches. This
prevents changes at the parallel output because of
changes in the shift register. On the rising edge of TCK,
the controller goes to the run-test/idle state if TMS is low
or goes to the select-DR-scan state if TMS is high.
Select-IR-Scan: All test data registers retain the previous states. The instruction register remains unchanged
during this state. With TMS low, a rising edge on TCK
moves the controller into the capture-IR state. TMS high
during a rising edge on TCK puts the controller back into
the test-logic-reset state.
Capture-IR: Use the capture-IR state to load the shift
register in the instruction register with a fixed value. This
value is loaded on the rising edge of TCK. If TMS is high
on the rising edge of TCK, the controller enters the exit1IR state. If TMS is low on the rising edge of TCK, the
controller enters the shift-IR state.
Shift-IR: In this state, the shift register in the instruction
register connects between TDI and TDO and shifts data
one stage for every rising edge of TCK toward the TDO
serial output while TMS is low. The parallel outputs of
the instruction register as well as all test data registers
remain at the previous states. A rising edge on TCK with
TMS high moves the controller to the exit1-IR state. A
rising edge on TCK with TMS low keeps the controller in
the shift-IR state while moving data one stage through
the instruction shift register.
______________________________________________________________________________________ 39
MAX16070/MAX16071
1
MAX16070/MAX16071
12-Channel/8-Channel, Flash-Configurable System
Managers with Nonvolatile Fault Registers
Exit1-IR: A rising edge on TCK with TMS low puts the
controller in the pause-IR state. If TMS is high on the
rising edge of TCK, the controller enters the update-IR
state.
register connects between TDI and TDO. While in the
shift-IR state, a rising edge on TCK with TMS low shifts
the data one stage toward the serial output at TDO. A
rising edge on TCK in the exit1-IR state or the exit2-IR
state with TMS high moves the controller to the updateIR state. The falling edge of that same TCK latches the
data in the instruction shift register to the instruction register parallel output. Table 23 shows the instructions supported by the MAX16070/MAX16071 and the respective
operational binary codes.
Pause-IR: Shifting of the instruction shift register halts
temporarily. With TMS high, a rising edge on TCK puts
the controller in the exit2-IR state. The controller remains
in the pause-IR state if TMS is low during a rising edge
on TCK.
Exit2-IR: A rising edge on TCK with TMS high puts the
controller in the update-IR state. The controller loops
back to shift-IR if TMS is low during a rising edge of TCK
in this state.
BYPASS: When the BYPASS instruction is latched into
the instruction register, TDI connects to TDO through the
1-bit bypass test data register. This allows data to pass
from TDI to TDO without affecting the device’s operation.
Update-IR: The instruction code that has been shifted
into the instruction shift register latches to the parallel
outputs of the instruction register on the falling edge of
TCK as the controller enters this state. Once latched,
this instruction becomes the current instruction. A rising
edge on TCK with TMS low puts the controller in the runtest/idle state. With TMS high, the controller enters the
select-DR-scan state.
IDCODE: When the IDCODE instruction is latched into the
parallel instruction register, the identification data register
is selected. The device identification code is loaded into
the identification data register on the rising edge of TCK
following entry into the capture-DR state. Shift-DR can be
used to shift the identification code out serially through
TDO. During test-logic-reset, the IDCODE instruction
is forced into the instruction register. The identification
code always has a ‘1’ in the LSB position. The next 11 bits
identify the manufacturer’s JEDEC number and number
of continuation bytes followed by 16 bits for the device
and 4 bits for the version. See Table 24.
Instruction Register
The instruction register contains a shift register as well
as a latched 5-bit-wide parallel output. When the TAP
controller enters the shift-IR state, the instruction shift
Table 23. JTAG Instruction Set
INSTRUCTION
CODE
NOTES
BYPASS
0x1F
Mandatory instruction code
IDCODE
0x00
Load manufacturer ID code/part number
USERCODE
0x03
Load user code
LOAD ADDRESS
0x04
Load address register content
READ DATA
0x05
Read data pointed by current address
WRITE DATA
0x06
Write data pointed by current address
REBOOT
0x07
Reboot FLASH data content into register file
SAVE
0x08
Trigger emergency save to flash
SETFLSHADD
0x09
Flash page access ON
RSTFLSHADD
0x0A
Flash page access OFF
SETUSRFLSH
0x0B
User flash access ON (must be in flash page already)
RSTUSRFLSH
0x0C
User flash access OFF (return to flash page)
Table 24. 32-Bit Identification Code
MSB
LSB
VERSION
Part number (16 bits)
Manufacturer (11 bits)
Fixed value (1 bit)
MAX16070
REV
1000000000000011
00011001011
1
MAX16071
REV
1000000000000100
00011001011
1
40 �������������������������������������������������������������������������������������
12-Channel/8-Channel, Flash-Configurable System
Managers with Nonvolatile Fault Registers
MSB
LSB
Don’t Care
00000000000000000
SMBus slave ID
See Table 20
USERCODE: When the USERCODE instruction latches
into the parallel instruction register, the user-code data
register is selected. The device user-code loads into the
user-code data register on the rising edge of TCK following entry into the capture-DR state. Shift-DR can be
used to shift the user-code out serially through TDO. See
Table 25. This instruction can be used to help identify
multiple MAX16070/MAX16071 devices connected in a
JTAG chain.
LOAD ADDRESS: This is an extension to the standard
IEEE 1149.1 instruction set to support access to the
memory in the MAX16070/MAX16071. When the LOAD
ADDRESS instruction latches into the instruction register,
TDI connects to TDO through the 8-bit memory address
test data register during the shift-DR state.
READ DATA: This is an extension to the standard IEEE
1149.1 instruction set to support access to the memory
in the MAX16070/MAX16071. When the READ DATA
instruction latches into the instruction register, TDI connects to TDO through the 8-bit memory read test data
register during the shift-DR state.
WRITE DATA: This is an extension to the standard IEEE
1149.1 instruction set to support access to the memory
in the MAX16070/MAX16071. When the WRITE DATA
instruction latches into the instruction register, TDI connects to TDO through the 8-bit memory write test data
register during the shift-DR state.
REBOOT: This is an extension to the standard IEEE
1149.1 instruction set to initiate a software-controlled
reset to the MAX16070/MAX16071. When the REBOOT
instruction latches into the instruction register, the
MAX16070/MAX16071 reset and immediately begin the
boot-up sequence.
SAVE: This is an extension to the standard IEEE 1149.1
instruction set that triggers a fault log. The current ADC
conversion results along with fault information are saved
to flash depending on the configuration of the Critical
Fault Log Control register (r6Dh).
SETFLSHADD: This is an extension to the standard IEEE
1149.1 instruction set that allows access to the flash
page. Flash registers include ADC conversion results
User ID (r8Ah[7:0])
and GPIO_ input/output data. Use this page to access
registers 200h to 2FFh
RSTFLSHADD: This is an extension to the standard
IEEE 1149.1 instruction set. Use RSTFLSHADD to return
to the default page and disable access to the flash page.
SETUSRFLSH: This is an extension to the standard IEEE
1149.1 instruction set that allows access to the user flash
page. When on the configuration flash page, send the
SETUSRFLSH command, all addresses are recognized
as flash addresses only. Use this page to access registers 300h to 3FFh.
RSTUSRFLSH: This is an extension to the standard IEEE
1149.1 instruction set. Use RSTUSRFLSH to return to the
configuration flash page and disable access to the user
flash.
Restrictions When Writing to Flash
Flash must be written to 8 bytes at a time. The initial
address must be aligned to 8-byte boundaries—the 3
LSBs of the initial address must be ‘000’. Write the 8
bytes using eight successive WRITE DATA commands.
Applications Information
Device Behavior at Power-Up
When VCC is ramped from 0, the RESET output is high
impedance until VCC reaches 1.4V, at which point RESET
goes low. All other outputs are high impedance until VCC
reaches 2.7V, when the flash contents are copied into
register memory. This takes 150Fs (max), after which the
outputs assume their programmed states.
Maintaining Power
During a Fault Condition
Power to the MAX16070/MAX16071 must be maintained
for a specific period of time to ensure a successful flash
fault log operation during a fault that removes power to
the circuit. Table 26 shows the amount of time required
depends on the settings in the fault control register
(r6Dh[1:0]).
Maintain power for shutdown during fault conditions in
applications where the always-on power supply cannot
be relied upon by placing a diode and a large capacitor
between the voltage source, VIN, and VCC (Figure 14).
______________________________________________________________________________________ 41
MAX16070/MAX16071
Table 25. 32-Bit User-Code Data
MAX16070/MAX16071
12-Channel/8-Channel, Flash-Configurable System
Managers with Nonvolatile Fault Registers
The capacitor value depends on VIN and the time delay
required, tFAULT_SAVE. Use the following formula to calculate the capacitor size:
across the diode, and VUVLO is 2.7V. For example, with
a VIN of 14V, a diode drop of 0.7V, and a tFAULT_SAVE
of 153ms, the minimum required capacitance is 202FF.
C = (tFAULT_SAVE x ICC(MAX))/(VIN - VDIODE - VUVLO)
where the capacitance is in Farads and tFAULT_SAVE is in
seconds, ICC(MAX) is 14mA, VDIODE is the voltage drop
DESCRIPTION
VCC
C
Table 26. Maximum Write Time
r6Dh[1:0]
VALUE
VIN
MAXIMUM
WRITE TIME
(ms)
00
Save flags and ADC
readings
153
01
Save flags
102
10
Save ADC readings
153
11
Do not save anything
—
MAX16070
MAX16071
GND
Figure 14. Power Circuit for Shutdown During Fault Conditions
Figure 15. Graphical User Interface Screenshot
42 �������������������������������������������������������������������������������������
12-Channel/8-Channel, Flash-Configurable System
Managers with Nonvolatile Fault Registers
Cascading Multiple MAX16070/MAX16071s
Multiple MAX16070/MAX16071s can be cascaded to
increase the number of monitored rails. There are many
ways to cascade the devices depending on the desired
behavior. In general, there are several techniques:
U Configure a GPIO_ on each device to be EXTFAULT
(open drain). Externally wire them together with a
single pullup resistor. Set register bits r72h[5] and
r6Dh[2] to ‘1’ so that all faults will propagate between
devices. If a critical fault occurs on one device,
EXTFAULT will assert, triggering the nonvolatile fault
logger in all cascaded devices and recording a snapshot of all system voltages.
UConnect open-drain RESET outputs together to obtain
a master system reset signal.
UConnect all EN inputs together for a master enable
signal.
Monitoring Current Using
the Differential Inputs
The MAX16070/MAX16071 can monitor up to seven
currents using the dedicated current-sense amplifier as
well as up to six pairs of inputs configured in differential
mode. The accuracy of the differential pairs is limited by
the voltage range and the 10-bit conversions. Each input
pair uses an odd-numbered MON_ input in combination
with an even-numbered MON_ input to monitor both the
voltage from the odd-numbered MON_ to ground and
the voltage difference between the two MON_ inputs.
This way a single pair of inputs can monitor the voltage
and the current of a power-supply rail. The overvoltage
threshold on the even numbered MON_ input can be
used as an overcurrent flag.
RS
POWER
SUPPLY
MONODD
ILOAD
MONEVEN
MAX16070
MAX16071
Figure 16. Current Monitoring Connection
Figure 16 shows how to connect a current-sense resistor to a pair of MON_ inputs for monitoring both current
and voltage.
For best accuracy, set the voltage range on the evennumbered MON_ to 1.4V. Since the ADC conversion
results are 10 bits, the monitoring precision is 1.4V/1024
= 1.4mV. For more accurate current measurements,
use larger current-sense resistors. The application
requirements should determine the balance between
accuracy and voltage drop across the current-sense
resistor.
Layout and Bypassing
Bypass DBP and ABP each with a 1FF ceramic capacitor
to GND. Bypass VCC with a 10FF capacitor to ground.
Avoid routing digital return currents through a sensitive
analog area, such as an analog supply input return path
or ABP’s bypass capacitor ground connection. Use
dedicated analog and digital ground planes. Connect
the capacitors as close as possible to the device.
______________________________________________________________________________________ 43
MAX16070/MAX16071
Configuring the Device
An evaluation kit and a graphical user interface (GUI) is
available to create a custom configuration for the device.
Refer to the MAX16070/MAX16071 evaluation kit for configuration.
MAX16070/MAX16071
12-Channel/8-Channel, Flash-Configurable System
Managers with Nonvolatile Fault Registers
Register Map
FLASH
ADDRESS
REGISTER
ADDRESS
READ/
WRITE
DESCRIPTION
ADC VALUES, FAULT REGISTERS, GPIO_S AS INPUT PORTS–NOT IN FLASH
—
000
R
MON1 ADC output, MSBs
—
001
R
MON1 ADC output, LSBs
—
002
R
MON2 ADC output, MSBs
—
003
R
MON2 ADC output, LSBs
—
004
R
MON3 ADC output, MSBs
—
005
R
MON3 ADC output, LSBs
—
006
R
MON4 ADC output, MSBs
—
007
R
MON4 ADC output, LSBs
—
008
R
MON5 ADC output, MSBs
—
009
R
MON5 ADC output, LSBs
—
00A
R
MON6 ADC output, MSBs
—
00B
R
MON6 ADC output, LSBs
—
00C
R
MON7 ADC output, MSBs
—
00D
R
MON7 ADC output, LSBs
—
00E
R
MON8 ADC output, MSBs
—
00F
R
MON8 ADC output, LSBs
—
010
R
MON9 ADC output, MSBs
—
011
R
MON9 ADC output, LSBs
—
012
R
MON10 ADC output, MSBs
—
013
R
MON10 ADC output, LSBs
—
014
R
MON11 ADC output, MSBs
—
015
R
MON11 ADC output, LSBs
—
016
R
MON12 ADC output, MSBs
—
017
R
MON12 ADC output, LSBs
—
018
R
Current-sense ADC output
—
019
R
CSP ADC output, MSBs
—
01A
R
CSP ADC output, LSBs
—
01B
R/W
Fault register--failed line flags
—
01C
R/W
Fault register—failed line flags/overcurrent
—
01D
R
Reserved
—
01E
R
GPIO data in (read only)
—
01F
R
Reserved
—
020
R/W
—
021
R
Flash status/reset output monitor
Reserved
44 �������������������������������������������������������������������������������������
12-Channel/8-Channel, Flash-Configurable System
Managers with Nonvolatile Fault Registers
FLASH
ADDRESS
REGISTER
ADDRESS
READ/
WRITE
DESCRIPTION
GPIO AND OUTPUT DEPENDENCIES/CONFIGURATIONS
230
030
R/W
Reserved
231
031
R/W
Reserved
232
032
R/W
Reserved
233
033
R/W
Reserved
234
034
R/W
Reserved
235
035
R/W
SMBALERT pin configuration
Fault1 dependencies
236
036
R/W
237
037
R/W
Fault1 dependencies
238
038
R/W
Fault2 dependencies
239
039
R/W
Fault2 dependencies
23A
03A
R/W
Fault1/Fault2 secondary overcurrent dependencies
23B
03B
R/W
RESET output configuration
23C
03C
R/W
RESET output dependencies
23D
03D
R/W
RESET output dependencies
23E
03E
R/W
GPIO data out
23F
03F
R/W
GPIO configuration
240
040
R/W
GPIO configuration
241
041
R/W
GPIO configuration
242
042
R/W
GPIO push-pull/open drain
ADCs voltage ranges—MON_ monitoring
ADC—CONVERSIONS
243
043
R/W
244
044
R/W
ADCs voltage ranges—MON_ monitoring
245
045
R/W
ADCs voltage ranges—MON_ monitoring
246
046
R/W
Differential pairs enables
247
047
R/W
Current-sense gain-setting (CSP, HV or LV)
048
R/W
MON1 secondary selectable UV/OV
INPUT THRESHOLDS
248
249
049
R/W
MON1 primary OV
24A
04A
R/W
MON1 primary UV
24B
04B
R/W
MON2 secondary selectable UV/OV
24C
04C
R/W
MON2 primary OV
24D
04D
R/W
MON2 primary UV
24E
04E
R/W
MON3 secondary selectable UV/OV
24F
04F
R/W
MON3 primary OV
250
050
R/W
MON3 primary UV
251
051
R/W
MON4 secondary selectable UV/OV
252
052
R/W
MON4 primary OV
253
053
R/W
MON4 primary UV
______________________________________________________________________________________ 45
MAX16070/MAX16071
Register Map (continued)
MAX16070/MAX16071
12-Channel/8-Channel, Flash-Configurable System
Managers with Nonvolatile Fault Registers
Register Map (continued)
FLASH
ADDRESS
REGISTER
ADDRESS
READ/
WRITE
DESCRIPTION
254
054
R/W
MON5 secondary selectable UV/OV
255
055
R/W
MON5 primary OV
256
056
R/W
MON5 primary UV
257
057
R/W
MON6 secondary selectable UV/OV
258
058
R/W
MON6 primary OV
259
059
R/W
MON6 primary UV
25A
05A
R/W
MON7 secondary selectable UV/OV
25B
05B
R/W
MON7 primary OV
25C
05C
R/W
MON7 primary UV
25D
05D
R/W
MON8 secondary selectable UV/OV
25E
05E
R/W
MON8 primary OV
25F
05F
R/W
MON8 primary UV
260
060
R/W
MON9 secondary selectable UV/OV
261
061
R/W
MON9 primary OV
262
062
R/W
MON9 primary UV
263
063
R/W
MON10 secondary selectable UV/OV
264
064
R/W
MON10 primary OV
265
065
R/W
MON10 primary UV
266
066
R/W
MON11 secondary selectable UV/OV
267
067
R/W
MON11 primary OV
268
068
R/W
MON11 primary UV
269
069
R/W
MON12 secondary selectable UV/OV
26A
06A
R/W
MON12 primary OV
26B
06B
R/W
MON12 primary UV
26C
06C
R/W
Secondary overcurrent threshold
26D
06D
R/W
Save after EXTFAULT fault control
26E
06E
R/W
Faults causing store in flash
26F
06F
R/W
Faults causing store in flash
Faults causing store in flash
FAULT SETUP
270
070
R/W
271
071
R/W
Faults causing store in flash
272
072
R/W
Faults causing store in flash
273
073
R/W
Overcurrent debounce, watchdog mode, secondary threshold type, software
enables
TIMEOUTS
274
074
R/W
ADC fault deglitch configuration
275
075
R/W
WDI toggle
276
076
R/W
Watchdog reset output enable, watchdog timers
277
077
R/W
Boot-up delay
46 �������������������������������������������������������������������������������������
12-Channel/8-Channel, Flash-Configurable System
Managers with Nonvolatile Fault Registers
FLASH
ADDRESS
REGISTER
ADDRESS
READ/
WRITE
DESCRIPTION
278
078
R/W
Reserved
279
079
R/W
Reserved
27A
07A
R/W
Reserved
27B
07B
R/W
Reserved
27C
07C
R/W
Reserved
27D
07D
R/W
Reserved
MISCELLANEOUS
27E
07E
R/W
Reserved
27F
07F
R/W
Reserved
280
080
R/W
Reserved
281
081
R/W
Reserved
282
082
R/W
Reserved
283
083
R/W
Reserved
284
084
R/W
Reserved
285
085
R/W
Reserved
Reserved
286
086
R/W
287
087
R/W
Reserved
288
088
R/W
Reserved
289
089
R/W
Reserved
28A
08A
R/W
Customer use (version)
28B
08B
R/W
PEC enable/I2C address
28C
08C
R/W
28D
08D
R
Lock bits
Revision code
Nonvolatile Fault LOG
200
—
R/W
Reserved
201
—
R/W
FAULT flags, MON1–MON8
202
—
R/W
FAULT flags, MON9–MON12, EXTFAULT
203
—
R/W
MON1 ADC output
204
—
R/W
MON2 ADC output
205
—
R/W
MON3 ADC output
206
—
R/W
MON4 ADC output
207
—
R/W
MON5 ADC output
208
—
R/W
MON6 ADC output
209
—
R/W
MON7 ADC output
20A
—
R/W
MON8 ADC output
20B
—
R/W
MON9 ADC output
20C
—
R/W
MON10 ADC output
20D
—
R/W
MON11 ADC output
20E
—
R/W
MON12 ADC output
20F
—
R/W
Current-sense ADC output
______________________________________________________________________________________ 47
MAX16070/MAX16071
Register Map (continued)
MAX16070/MAX16071
12-Channel/8-Channel, Flash-Configurable System
Managers with Nonvolatile Fault Registers
Register Map (continued)
FLASH
ADDRESS
REGISTER
ADDRESS
READ/
WRITE
DESCRIPTION
USER FLASH
300
39F
R/W
3A0
3AF
—
User flash
Reserved
3B0
3FF
R/W
User flash
Typical Operating Circuits
VSUPPLY
+3.3V
OUT
IN
DC-DC
GND
VCC
MON1
MAX16070
MAX16071
OUT
IN
MON2–MON11
DC-DC
SCL
SDA
GND
OUT
IN
µC
MON12
RESET
RESET
FAULT
INT
WDI
I/O
WDO
INT
DC-DC
GND
AO
GND
48 �������������������������������������������������������������������������������������
12-Channel/8-Channel, Flash-Configurable System
Managers with Nonvolatile Fault Registers
VSUPPLY
+3.3V
OUT
IN
DC-DC
GND
MON1
VCC
MON2
LOAD
OUT
IN
µC
MAX16070
MAX16071
SDA
MONODD
DC-DC
GND
MONEVEN
LOAD
OUT
IN
SCL
RESET
RESET
FAULT
INT
WDI
I/O
WDO
INT
MON11
DC-DC
GND
AO
MON12
LOAD
GND
NOTE: MONODD = MON1, MON3, MON5, MON7, MON9, MON11
MONEVEN = MON2, MON4, MON6, MON8, MON10, MON12
______________________________________________________________________________________ 49
MAX16070/MAX16071
Typical Operating Circuits (continued)
GPIO3
GPIO4
GPIO5
GPIO6
N.C.
N.C.
N.C.
EN
TOP VIEW
N.C.
DBP
Pin Configurations
30 29 28 27 26 25 24 23 22 21
VCC 31
20 GPIO2
ABP 32
19 GPIO1
GND 33
18 GPIO8
MON7 34
17 GPIO7
16 GND
MON8 35
MAX16070
MON9 36
15 SCL
14 AO
MON10 37
MON11 38
13 SDA
EP
+
MON12 39
12 TDO
11 TCK
TDI
10
GPIO5
9
TMS
8
GPIO6
MON5
7
RESET
MON4
6
N.C.
MON3
5
CSM
4
N.C.
3
CSP
2
MON6
1
MON2
MON1 40
N.C.
N.C.
N.C.
N.C.
EN
N.C.
TQFN
30 29 28 27 26 25 24 23 22 21
DBP 31
20 GPIO4
DBP 32
19 GPIO3
VCC 33
18 GPIO2
VCC 34
17 GPIO1
16 GND
ABP 35
MAX16071
GND 36
15 SCL
14 AO
MON7 37
MON8 38
13 SDA
EP
+
N.C. 39
12 TDO
11 TCK
7
8
9
10
TDI
MON5
6
TMS
MON4
5
RESET
4
CSM
3
CSP
2
MON6
1
MON3
MON1 40
MON2
MAX16070/MAX16071
12-Channel/8-Channel, Flash-Configurable System
Managers with Nonvolatile Fault Registers
TQFN
50 �������������������������������������������������������������������������������������
12-Channel/8-Channel, Flash-Configurable System
Managers with Nonvolatile Fault Registers
PROCESS: BiCMOS
For the latest package outline information and land patterns, go to www.maxim-ic.com/packages. Note that
a “+”, “#”, or “-” in the package code indicates RoHS
status only. Package drawings may show a different suffix character, but the drawing pertains to the package
regardless of RoHS status.
PACKAGE
TYPE
PACKAGE
CODE
OUTLINE
No.
LAND PATTERN
No.
40 TQFN-EP
T4066-5
21-0141
90-0055
______________________________________________________________________________________ 51
MAX16070/MAX16071
Package Information
Chip Information
MAX16070/MAX16071
12-Channel/8-Channel, Flash-Configurable System
Managers with Nonvolatile Fault Registers
Revision History
REVISION
NUMBER
REVISION
DATE
0
10/09
Initial release
6/10
Updated Absolute Maximum Ratings and various sections to match current
style.
1
DESCRIPTION
PAGES
CHANGED
—
1–5, 8, 10, 12, 13,
14, 19, 23–26,
29–31, 33–37,
41–43, 48–51
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied.
Maxim reserves the right to change the circuitry and specifications without notice at any time.
52
© 2010
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600
Maxim Integrated Products Maxim is a registered trademark of Maxim Integrated Products, Inc.