19-4320; Rev 2; 5/10 ৰۇ భᄋຶ 5BĂ3NI{Ăଢ଼ኹቯࢯஂLj ดᒙఎਈ ``````````````````````````````````` ᄂቶ NBY26149ဵጙఎਈࢯஂLjၒ߲࢟ኹपᆍᆐ1/7W ᒗWJO ࡼ:1&Ljభᄋࡉ5BࡼঌᏲ࢟ഗăୈᔫ࢟ኹ ᆐ3/:Wᒗ6/6WLjऻޟးঌᏲ࢛ਜ਼ઁኚᆮኹ።ăᏴᑳৈ ঌᏲĂၒྜྷ࢟ኹਜ਼ᆨࣞܤછपᆍดLjୈၒ߲࢟ኹᔐᇙ ࢅތ᎖±2&ă ♦ ดᒙ42nΩ SET)PO*࣡ਜ਼35nΩ SET)PO*ࢅ࣡NPTGFU NBY26149 ݧৼࢾຫൈ QXN ᔫෝါLjఎਈຫൈభᄰ ਭᅪ࢟ݝᔜᒙᏴ611lI{ᒗ3NI{पᆍดăNBY26149ᄋ భኡᐋࡼᄢ൴ߡෝါLjጲᄋ༵Ᏺൈă୷ࡼᔫ ຫൈᏤཝჿࠣ࢟ྏଐLjᄴဟጐᏤݧቃߛࡁᅪݝ Ꮔୈă ♦ ᑳৈᆨࣞपᆍดభᑽߒ5Bೌኚ࢟ഗၒ߲ ♦ ᏴᑳৈঌᏲĂၒྜྷ࢟ኹਜ਼ᆨࣞपᆍดᄋ±2&ࡼၒ߲ றࣞ ♦ ᔫ᎖3/:Wᒗ6/6W! WJO ࢟ኹ ♦ ၒ߲࢟ኹᏴ1/7Wᒗ)1/:! y! WJO*ᒄମభࢯ ♦ ྟࣅጴᒜၒྜྷ፻࢟ഗ ♦ 611lI{ᒗ3NI{భࢯఎਈຫൈ ♦ ถ৫ဧჿࠣĂᇕጲૺ࢟ஊၒ߲࢟ྏ ຢดࢅࡴᄰ࢟ᔜࡼ oNPT ۣᑺᏴ୷ᒮঌᏲሆᄋൈLj ݀భۣߒࢅࡼည࢟ঢLjᎧॊೂऱښሤ଼ࡍࡍ܈છ೫ ࢟വݚۇă଼ࡼ࢟വݚਜ਼୭ᒙཀྵۣቤଐࡼ ጙࠨᄰਭൈă ♦ :ᒬᎾ࢟ኹభࢯၒ߲࢟ኹ 1/7WĂ1/8WĂ1/9WĂ2/1WĂ2/3WĂ2/6WĂ2/9WĂ 3/1Wਜ਼3/6Wਜ਼భࢯ NBY26149ด߅ૹݝ೫ࡒ)39NI{*࢟ኹᇙތहࡍă࢟ ኹෝါ఼ᒜஉ৩ਜ਼ᇙތहࡍᏤဧ JJJ ಢޡݗऱښLj ဧણവࡒభጲࡉࡵఎਈຫൈࡼ31&ă୷ࡼણവࡒถ ৫ۣᑺႥၾზሰ።Lj࠭ऎିቃჅኊࡼၒ߲࢟ྏLjᏤ ཝჿࠣ࢟ྏଐă ♦ భኡᐋ༓ᒜQXN᎖༵Ᏺࡼᄢ൴ߡෝါ NBY26149ᎌೝৈྯზ൝ၒྜྷLj᎖ኡᐋ:ᒬݙᄴࡼ ၒ߲࢟ኹăᑚቋᎾᒙၒ߲࢟ኹᆐఱઓᄋ ±2&ࡼၒ߲࢟ ኹறࣞLjᇄኊဧڜਣࡼ 1/2&றම࢟ᔜăᅪLjభጲᄰ ਭೌᏴनౣ࣡ࡼೝৈᅪ࢟ݝᔜLj 1/7W ดݝᓰ࢟ ኹSFGJOၒྜྷ࣡ဗଝࡼᅪݝᓰLjၒ߲࢟ኹᒙࡵ ઓኊገࡼྀੜၫᒋăNBY26149ᄰਭᅪྏ࢟ݝᒙྟࣅ ဟମLjጲଢ଼ࢅၒྜྷ፻࢟ഗă ``````````````````````````````` ࢾ৪ቧᇦ ``````````````````````````````````` ። ♦ ࢯဍᑽߒڔཝࣅྜྷᎾມᒙၒ߲ᓨზ ♦ ਭഗਜ਼ਭེۣઐ ♦ ၒ߲ᎌᇢྜྷ0Ꮞ߲࢟ഗถೆLjᓆᒲ໐ۣઐ ♦ ധఎവ࢟Ꮞኙၒ߲ ♦ 35୭Ă5nn! y! 5nnۡቯRGOᇄॖᓤ PART TEMP RANGE PIN-PACKAGE MAX15038ETG+ -40°C to +85°C 24 Thin QFN-EP* , ܭာᇄ)Qc*0९SpITܪᓰࡼॖᓤă *FQ! >! ൡă ``````````````````````````` ࢜ቯᔫ࢟വ INPUT 2.9V TO 5.5V IN ॲᇗ࢟Ꮞ QPM EN BTJD0DQV0ETQਖ਼ᎧJ0P࢟ VDD BST OUTPUT 1.8V, 4A MAX15038 LX OUT EES࢟Ꮞ PGND ᐶ࢟Ꮞ CTL2 ࢟ቧᎧᆀ࢟Ꮞ CTL1 SBJE఼ᒜ࢟Ꮞ FB FREQ REFIN SS COMP VDD MODE GND PWRGD ୭ᒙᏴၫᓾ೯ࡼᔢઁ߲ă ________________________________________________________________ Maxim Integrated Products 1 ۾ᆪဵ፞ᆪၫᓾ೯ࡼፉᆪLjᆪᒦభถࡀᏴडፉࡼݙᓰཀྵࡇᇙăྙኊጙݛཀྵཱྀLj༿Ᏼิࡼଐᒦݬఠ፞ᆪᓾ೯ă ᎌਈଥৃĂૡૺࢿ৪ቧᇦLj༿ೊNbyjnᒴሾ၉ᒦቦǖ21911!963!235:!)۱ᒦਪཌ*Lj21911!263!235:!)ฉᒦਪཌ*Lj षᆰNbyjnࡼᒦᆪᆀᐶǖdijob/nbyjn.jd/dpnă NBY26149 ``````````````````````````````````` গၤ NBY26149 5BĂ3NI{Ăଢ଼ኹቯࢯஂLj ดᒙఎਈ ABSOLUTE MAXIMUM RATINGS IN, PWRGD to GND..................................................-0.3V to +6V VDD to GND..................-0.3V to the lower of +4V or (VIN + 0.3V) COMP, FB, MODE, REFIN, CTL1, CTL2, SS, FREQ to GND ..........................................-0.3V to (VDD + 0.3V) OUT, EN to GND ......................................................-0.3V to +6V BST to LX..................................................................-0.3V to +6V BST to GND ............................................................-0.3V to +12V PGND to GND .......................................................-0.3V to +0.3V LX to PGND ..................-0.3V to the lower of +6V or (VIN + 0.3V) LX to PGND ..........-1V to the lower of +6V or (VIN + 1V) for 50ns ILX(RMS) (Note 1) ......................................................................4A VDD Output Short-Circuit Duration .............................Continuous Converter Output Short-Circuit Duration ....................Continuous Continuous Power Dissipation (TA = +70°C) 24-Pin TQFN (derate 27.8mW/°C above +70°C) ........2222mW Thermal Resistance (Note 2) θJA.................................................................................36°C/W θJC ..................................................................................6°C/W Operating Temperature Range ...........................-40°C to +85°C Junction Temperature ......................................................+150°C Storage Temperature Range .............................-65°C to +150°C Lead Temperature (soldering, 10s) .................................+300°C Soldering Temperature (reflow) .......................................+260°C Note 1: LX has internal clamp diodes to PGND and IN. Applications that forward bias these diodes should take care not to exceed the IC’s package power dissipation limits. Note 2: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a fourlayer board. For detailed information on package thermal considerations, refer to china.maxim-ic.com/thermal-tutorial. Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. ELECTRICAL CHARACTERISTICS (VIN = VEN = 5V, CVDD = 2.2μF, TA = TJ = -40°C to +85°C, typical values are at TA = +25°C, circuit of Figure 1, unless otherwise noted.) (Note 3) PARAMETER CONDITIONS MIN TYP MAX UNITS 5.5 V IN IN Voltage Range IN Supply Current Total Shutdown Current from IN 2.9 4.7 8 5 8.5 VIN = 5V, VEN = 0V 10 20 VIN = VDD = 3.3V, VEN = 0V 45 fS = 1MHz, no load VIN = 3.3V VIN = 5V mA μA 3.3V LDO (VDD) VDD rising VDD Undervoltage Lockout Threshold LX starts/stops switching VDD falling 2.6 2.35 Minimum glitch-width rejection VDD Output Voltage VIN = 5V, IVDD = 0 to 10mA VDD Dropout VIN = 2.9V, IVDD = 10mA VDD Current Limit VIN = 5V, VDD = 0V 2.8 2.55 10 V μs 3.1 3.3 3.5 25 40 mA 0.025 μA 20 ns 1 V 0.8 V 0.08 V V BST BST Supply Current VBST = VIN = 5V, VLX = 0 or 5V, VEN = 0V PWM COMPARATOR PWM Comparator Propagation Delay PWM Peak-to-Peak Ramp Amplitude PWM Valley Amplitude 2 10mV overdrive _______________________________________________________________________________________ 5BĂ3NI{Ăଢ଼ኹቯࢯஂLj ดᒙఎਈ (VIN = VEN = 5V, CVDD = 2.2μF, TA = TJ = -40°C to +85°C, typical values are at TA = +25°C, circuit of Figure 1, unless otherwise noted.) (Note 3) PARAMETER CONDITIONS MIN TYP MAX UNITS ERROR AMPLIFIER COMP Clamp Voltage, High VIN = 2.9V to 5V, VFB = 0.5V, VREFIN = 0.6V 2 V COMP Clamp Voltage, Low VIN = 2.9V to 5V, VFB = 0.7V, VREFIN = 0.6V 0.7 V COMP Slew Rate VFB step from 0.5V to 0.7V in 10ns 1.6 V/μs COMP Shutdown Resistance From COMP to GND, VIN = 3.3V, VCOMP = 100mV, VEN = VSS = 0V 6 Ω Internally Preset Output Voltage Accuracy VREFIN = VSS, MODE = GND FB Set Point Value CTL1 = CTL2 = GND, MODE = GND FB to OUT Resistor All VID settings except CTL1 = CTL2 = GND -1 0.594 5.5 +1 % 0.6 0.606 V 8 10.5 kΩ Open-Loop Voltage Gain 115 dB Error-Amplifier Unity-Gain Bandwidth 28 MHz Error-Amplifier and REFIN Common-Mode Input Range VDD = 2.9V to 3.5V Error-Amplifier Maximum Output Current VCOMP = 1V, VREFIN = 0.6V FB Input Bias Current CTL1 = CTL2 = GND 0 VFB = 0.7V, sinking 1 VFB = 0.5V, sourcing -1 VDD - 2 V mA -125 nA CTL_ CTL_ Input Bias Current VCTL_ = 0V -7.2 VCTL_ = VDD +7.2 Low, falling CTL_ Input Threshold Hysteresis μA 0.8 Open VDD/2 High, rising VDD 0.8 All VID transitions V 50 mV REFIN REFIN Input Bias Current VREFIN = 0.6V REFIN Offset Voltage VREFIN = 0.9V, FB shorted to COMP -185 -4.5 nA +4.5 mV LX (All Pins Combined) LX On-Resistance, High-Side ILX = -2A LX On-Resistance, Low-Side ILX = 2A VIN = VBST - VLX = 3.3V 42 VIN = VBST - VLX = 5V 31 VIN = 3.3V 30 VIN = 5V 24 High-side sourcing LX Current-Limit Threshold 5.7 Low-side sinking LX Leakage Current VIN = 5V, VEN = 0V 42 mΩ mΩ 7 7 Zero-crossing current threshold, MODE = VDD 54 A 0.2 VLX = 0V -0.01 VLX = 5V +0.01 μA _______________________________________________________________________________________ 3 NBY26149 ELECTRICAL CHARACTERISTICS (continued) NBY26149 5BĂ3NI{Ăଢ଼ኹቯࢯஂLj ดᒙఎਈ ELECTRICAL CHARACTERISTICS (continued) (VIN = VEN = 5V, CVDD = 2.2μF, TA = TJ = -40°C to +85°C, typical values are at TA = +25°C, circuit of Figure 1, unless otherwise noted.) (Note 3) PARAMETER LX Switching Frequency CONDITIONS VIN = 2.9V to 5V MIN TYP MAX RFREQ = 49.9kΩ 0.9 1 1.1 RFREQ = 23.6kΩ 1.8 2 2.2 Switching Frequency Range 500 LX Minimum Off-Time LX Maximum Duty Cycle RFREQ = 49.9kΩ LX Minimum Duty Cycle RFREQ = 49.9kΩ Average Short-Circuit IN Supply Current OUT connected to GND, VIN = 5V RMS LX Output Current 92 MHz 2000 kHz 78 ns 15 % 95 5 UNITS % 0.15 A 4 A ENABLE EN Input Logic-Low Threshold EN falling EN Input Logic-High Threshold EN rising EN Input Current VEN = 0 or 5V, VIN = 5V 0.9 1.5 V V 0.01 μA MODE MODE Input-Logic Threshold MODE Input-Logic Hysteresis MODE Input Bias Current Logic-low, falling 26 Logic VDD/2 or open, rising 50 Logic-high, rising 74 MODE falling 5 MODE = GND -5 MODE = VDD 5 %VDD %VDD μA SS SS Current VSS = 0.45V, VREFIN = 0.6V, sourcing 6.7 8 9.3 μA THERMAL SHUTDOWN Thermal-Shutdown Threshold Rising Thermal-Shutdown Hysteresis 165 °C 25 °C POWER-GOOD (PWRGD) Power-Good Threshold Voltage VFB falling, VREFIN = 0.6V VFB rising, VREFIN = 0.6V 88 90 92 92.5 % VREFIN Clock Cycles Power-Good Edge Deglitch VFB rising or falling 48 PWRGD Output Voltage Low IPWRGD = 4mA 0.03 PWRGD Leakage Current VIN = VPWRGD = 5V, VFB = 0.7V, VREFIN = 0.6V 0.01 μA Current-Limit Startup Blanking 112 Clock Cycles Autoretry Restart Time 896 Clock Cycles 0.1 V HICCUP OVERCURRENT LIMIT 4 _______________________________________________________________________________________ 5BĂ3NI{Ăଢ଼ኹቯࢯஂLj ดᒙఎਈ (VIN = VEN = 5V, CVDD = 2.2μF, TA = TJ = -40°C to +85°C, typical values are at TA = +25°C, circuit of Figure 1, unless otherwise noted.) (Note 3) PARAMETER CONDITIONS MIN TYP MAX UNITS FB Hiccup Threshold VFB falling 70 % VREFIN Hiccup Threshold Blanking Time VFB falling 28 μs Note 3: Specifications are 100% production tested at TA = +25°C. Limits over the operating temperature range are guaranteed by design. ````````````````````````````````````````````````````````````````````````` ࢜ቯᔫᄂቶ (Typical values are VIN = VEN = 5V, VOUT = 1.8V, RFREQ = 49.9kΩ, IOUT = 4A, TA = +25°C, circuit of Figure 1, unless otherwise noted.) FREQUENCY vs. INPUT VOLTAGE EFFICIENCY vs. OUTPUT CURRENT 90 2.20 MAX15038 toc02 100 MAX15038 toc01 100 90 MAX15038 toc03 EFFICIENCY vs. OUTPUT CURRENT 2.15 70 VOUT = 1.8V 60 VOUT = 2.5V VOUT = 1.8V 70 VOUT = 1.2V 60 VOUT = 1.2V 50 PWM SKIP 40 1.0 10.0 1.0 0.1 1.00 TA = +85°C TA = +25°C TA = -40°C -0.10 -0.15 -0.20 VOUT = 1.2V -0.30 VOUT = 1.8V -0.35 VOUT = 2.5V -0.40 4.5 INPUT VOLTAGE (V) 5.0 5.5 4.5 5.0 5.5 VOUT = 2.5V -0.02 VOUT = 1.8V -0.04 -0.06 -0.08 -0.10 VOUT = 1.2V -0.12 -0.50 0.80 4.0 4.0 LINE REGULATION (LOAD = 4A) -0.05 -0.25 3.5 -0.45 RFREQ = 49.9kΩ 3.5 3.0 0 OUTPUT-VOLTAGE CHANGE (%) 1.05 3.0 2.5 INPUT VOLTAGE (V) MAX15038 toc05a 1.10 FREQUENCY (MHz) RFREQ = 23.2kΩ 1.80 10.0 0 OUTPUT-VOLTAGE CHANGE (%) MAX15038 toc04 1.15 0.95 TA = +25°C TA = -40°C LOAD REGULATION 1.20 2.5 TA = +85°C OUTPUT CURRENT (A) FREQUENCY vs. INPUT VOLTAGE 0.85 1.95 1.85 PWM SKIP VIN = 3.3V 40 OUTPUT CURRENT (A) 0.90 2.00 1.90 50 0.1 2.05 MAX15038 toc05b VOUT = 2.5V 80 FREQUENCY (MHz) EFFICIENCY (%) EFFICIENCY (%) 2.10 80 0 1 2 LOAD CURRENT (A) 3 4 2.5 3.0 3.5 4.0 4.5 5.0 5.5 INPUT VOLTAGE (V) _______________________________________________________________________________________ 5 NBY26149 ELECTRICAL CHARACTERISTICS (continued) ```````````````````````````````````````````````````````````````````` ࢜ቯᔫᄂቶ)ኚ* (Typical values are VIN = VEN = 5V, VOUT = 1.8V, RFREQ = 49.9kΩ, IOUT = 4A, TA = +25°C, circuit of Figure 1, unless otherwise noted.) SWITCHING WAVEFORMS (FORCED PWM, 2A LOAD) LOAD TRANSIENT SWITCHING WAVEFORMS (SKIP MODE, NO LOAD) MAX15038 toc07 MAX15038 toc06 VOUT AC-COUPLED 100mV/div MAX15038 toc08 AC-COUPLED 50mV/div VOUT AC-COUPLED 100mV/div VOUT 1A/div 2A/div ILX 2A ILX 0A 0A 5V/div IOUT VLX 5V/div 0A VLX 0V 400ns/div 40μs/div 2μs/div SOFT-START WAVEFORM (RLOAD = 0.5Ω) SHUTDOWN WAVEFORM (RLOAD = 0.5Ω) MAX15038 toc09 MAX15038 toc10 VEN 5V/div VEN 5V/div VOUT 1V/div VOUT 1V/div 0V 0V 400μs/div 10μs/div INPUT SHUTDOWN CURRENT vs. INPUT VOLTAGE MAXIMUM OUTPUT CURRENT vs. OUTPUT VOLTAGE 10 9 8 7 6 MAX15038 toc12 11 10 MAXIMUM OUTPUT CURRENT (A) MAX15038 toc11 12 INPUT SHUTDOWN CURRENT (μA) NBY26149 5BĂ3NI{Ăଢ଼ኹቯࢯஂLj ดᒙఎਈ 9 8 7 6 5 4 3 VEN = 0V 2 5 2.5 3.0 3.5 4.0 4.5 INPUT VOLTAGE (V) 6 5.0 5.5 0.5 1.0 1.5 2.0 OUTPUT VOLTAGE (V) _______________________________________________________________________________________ 2.5 5BĂ3NI{Ăଢ଼ኹቯࢯஂLj ดᒙఎਈ RMS INPUT CURRENT DURING SHORT CIRCUIT vs. INPUT VOLTAGE MAX15038 toc14 0.5 RMS INPUT CURRENT (A) 1V/div VOUT 0V 5A/div IOUT 0A IIN 1A/div 0.4 0.3 0.2 0.1 0A 90 80 70 60 50 40 4A LOAD 30 20 10 VOUT = 0V 0 MEASURED ON A MAX15038EVKIT 0 2.5 400μs/div 3.0 3.5 4.0 4.5 5.0 5.5 INPUT VOLTAGE (V) 0 20 40 60 80 100 AMBIENT TEMPERATURE (°C) FEEDBACK VOLTAGE vs. TEMPERATURE SOFT-START WITH REFIN MAX15038 toc17 MAX15038 toc16 0.64 0.63 FEEDBACK VOLTAGE (V) 100 MAX15038 toc15 MAX15038 toc13 EXPOSED PAD TEMPERATURE vs. AMBIENT TEMPERATURE EXPOSED PAD TEMPERATURE (°C) HICCUP CURRENT LIMIT 1A/div IIN 0.62 0A 0.61 0.5V/div VREFIN 0V 0.60 0.59 1V/div VOUT 0V 0.58 VPWRGD 0.57 2V/div 0V 0.56 -40 -15 10 35 60 85 200μs/div TEMPERATURE (°C) STARTING INTO PREBIASED OUTPUT (MODE = VDD/2, VOUT = 2.5V, 2A LOAD) STARTING INTO PREBIASED OUTPUT (MODE = VDD, VOUT = 2.5V, 2A LOAD) MAX15038 toc19 MAX15038 toc18 5V/div VEN 5V/div VEN 0V 0V 1V/div 1V/div VOUT VOUT 0V 0V 2A IOUT 2A IOUT 0A 0A 5V/div VPWRGD 5V/div VPWRGD 0V 0V 200μs/div 200μs/div _______________________________________________________________________________________ 7 NBY26149 ```````````````````````````````````````````````````````````````````````` ࢜ቯᔫᄂቶ)ኚ* (Typical values are VIN = VEN = 5V, VOUT = 1.8V, RFREQ = 49.9kΩ, IOUT = 4A, TA = +25°C, circuit of Figure 1, unless otherwise noted.) NBY26149 5BĂ3NI{Ăଢ଼ኹቯࢯஂLj ดᒙఎਈ ```````````````````````````````````````````````````````````````````` ࢜ቯᔫᄂቶ)ኚ* (Typical values are VIN = VEN = 5V, VOUT = 1.8V, RFREQ = 49.9kΩ, IOUT = 4A, TA = +25°C, circuit of Figure 1, unless otherwise noted.) STARTING INTO PREBIASED OUTPUT (MODE = VDD/2, VOUT = 2.5V, NO LOAD) STARTING INTO PREBIASED OUTPUT (MODE = VDD, VOUT = 2.5V, NO LOAD) MAX15038 toc21 MAX15038 toc20 VEN 2V/div VEN 2V/div 0V 0V VOUT 1V/div VOUT 1V/div 0V 0V VPWRGD 2V/div VPWRGD 2V/div 0V 0V 200μs/div 200μs/div STARTING INTO PREBIASED OUTPUT ABOVE NOMINAL SETPOINT (VOUT = 1.5V) STARTING INTO PREBIASED OUTPUT ABOVE NOMINAL SETPOINT (VOUT = 1.5V) MAX15038 toc22 MAX15038 toc23 VEN 2V/div VEN 2V/div 0V 0V VOUT 1V/div VMODE = VDD, NO LOAD VOUT 1V/div 0V 0V VPWRGD 2V/div VPWRGD 2V/div VMODE = VDD/2, NO LOAD 0V 1ms/div 1ms/div TRANSITION FROM SKIP MODE TO FORCED PWM MODE TRANSITION FROM FORCED PWM MODE TO SKIP MODE MAX15038 toc24 MAX15038 toc25 VMODE 5V/div VMODE 5V/div VLX 5V/div VLX 5V/div VOUT 0.5V/div VOUT 0.5V/div 0V 2ms/div 8 0V 0V 4ms/div _______________________________________________________________________________________ 5BĂ3NI{Ăଢ଼ኹቯࢯஂLj ดᒙఎਈ ୭ ߂ 1 MODE 2 VDD 4/4W! MEPၒ߲ăดݝෝผਖ਼࢟ኹࡼ࢟ᏎၒྜྷăᏴWEE ᒗHOEᒄମೌጙৈᒗ3/3μGࡼࢅFTSĂჿࠣ࢟ྏă 3 CTL1 4 CTL2 Ꮎၒ߲࢟ኹኡᐋၒྜྷăDUM2ਜ਼DUM3ኡᐋ:ᒬݙᄴࡼᎾၒ߲࢟ኹăᎾၒ߲࢟ኹభݬܭ2ਜ਼ᒙၒ߲࢟ኹ )DUM2ĂDUM3*ݝॊă 5 REFIN ᅪݝᓰၒྜྷăೌSFGJOᒗTTဟLjဧดݝ1/7WᓰăೌSFGJOᒗᅪݝᓰ࢟ኹLjࢯஂGCᆮࢾᏴSFGJO࢟ ኹăJDࠀ᎖ਈࣥ0ࡌᡅෝါဟLjSFGJOดݝ౯ᒗHOEă 6 SS ྟࣅၒྜྷăᏴTTਜ਼HOEᒄମೌጙৈ࢟ྏLjጲᒙࣅဟମăক࢟ྏᔢቃནᒋ2oGăᎌਈᒙྟࣅဟମࡼ ሮᇼቧᇦLj༿ݬఠྟࣅਜ਼SFGJO ݝॊă 7 GND 8 COMP 9 FB 10 OUT ၒ߲࢟ኹଶހLjೌᒗၒ߲ăဧᅪ࢟ݝᔜॊኹဟLjPVUኞహă 11 FREQ ᑩຫൈኡᐋăᏴGSFRਜ਼HOEᒄମೌጙৈ࢟ᔜLj᎖ኡᐋఎਈຫൈăݬຫൈኡᐋ)GSFR*ݝॊă 12 PWRGD 13 BST 14, 15, 16 LX 17–20 PGND 21, 22, 23 IN ࢟Ꮞၒྜྷăၒྜྷ࢟Ꮞपᆍᆐ3/:Wᒗ6/6Wăݧጙৈ33μGჿࠣ࢟ྏJOവᒗQHOEă 24 EN ဧถၒྜྷLjক൝ၒྜྷ᎖ဧถ0ணᒏNBY26149ă — EP ൡăFQೌᒗᎧQHOEሤೌࡼࡍෂ૩ށLjጲᎁછྲེቶถăݙถFQᔪᆐୈࡼᆎጙೌă ถ ถෝါኡᐋၒྜྷăৎࣶቧᇦLjݬෝါኡᐋݝॊă ෝผೌăᏴణதၒྜྷവ࢟ྏऩૄ࣡ࠀHOEਜ਼QHOE࢛ೌă ࢟ኹᇙތहࡍࡼၒ߲ăᏴDPNQᒗGCਜ਼PVUᒄମೌܘገࡼޡݗᆀăJDࠀ᎖ਈࣥ0ࡌᡅෝါဟLjDPNQดݝ ౯ᒗHOEă नౣၒྜྷăGCೌᒗၒ߲ਜ਼HOEᒄମᅪ࢟ݝᔜॊኹࡼᒦቦߥᄿLjၒ߲࢟ኹభᒙࡵ1/7Wᒗ):1&! y! WJO*प ᆍดăDUM2ਜ਼DUM3ኡᐋ:ᒬݙᄴࡼᎾၒ߲࢟ኹဟLjᏴGCᒗၒ߲ᒄମೌSDᆀă ധఎവĂ࢟Ꮞኙၒ߲ăࡩWGC ဍᒗި߲WSFGJO ࡼ:3/6&! )࢜ቯᒋ*݀༦WSFGJO ࡍ᎖1/65WဟLjQXSHEᆐ ᔜზăࡩWGC ࢰൢᒗࢅ᎖WSFGJO ࡼ:1&! )࢜ቯᒋ*WSFGJO ቃ᎖1/65WဟLjQXSHEดݝ౯ᒗࢅ࢟ຳăJDࠀ᎖ਈࣥ ෝါĂWEE ࢅ᎖ดݝVWMPඡሢᑗJDࠀ᎖ེਈࣥෝါဟLjQXSHEۻดݝ౯ࢅă ܟNPTGFUདࣅ࢟ᏎăᄰਭጙৈqNPTఎਈดೌݝᒗJOăݧጙৈ1/2μG࢟ྏവCTUᒗMYă ࢟ঢೌLjჅᎌMY୭ᏴดೌݝᏴጙăೌჅᎌMY୭ᒗၒ߲࢟ঢࡼఎਈݾăJDࠀ᎖ਈࣥෝါဟLj MYᆐᔜზă ൈă࠭ᅪೌݝჅᎌQHOE୭ᒗൈށăᏴణதJDᆡᒙࠀჅᎌQHOE୭ೌᏴጙă _______________________________________________________________________________________ 9 NBY26149 ```````````````````````````````````````````````````````````````````````````` ୭ႁී NBY26149 5BĂ3NI{Ăଢ଼ኹቯࢯஂLj ดᒙఎਈ ```````````````````````````````````````````````````````````````````````````` ऱౖᅄ VDD MAX15038 3.3V LDO UVLO CIRCUITRY SHUTDOWN CONTROL EN BST CURRENT-LIMIT COMPARATOR BST SWITCH IN BIAS GENERATOR VOLTAGE REFERENCE THERMAL SHUTDOWN CONTROL LOGIC LX IN SS SOFT-START PGND CURRENT-LIMIT COMPARATOR REFIN OUT ERROR AMPLIFIER 8kΩ PWM COMPARATOR MODE FB CTL1 CTL2 VID VOLTAGECONTROL CIRCUITRY FREQ 1VP-P OSCILLATOR COMP PWRGD SHDN FB COMP CLAMPS 0.9 x VREFIN 10 ______________________________________________________________________________________ GND 5BĂ3NI{Ăଢ଼ኹቯࢯஂLj ดᒙఎਈ 2.2Ω INPUT 2.9V TO 5.5V OPTIONAL IN C6 22μF C7 0.1μF BST C15 1000pF C10 0.1μF L1 0.47μH MAX15038 OUTPUT 1.8V, 4A LX VDD C5 2.2μF OUT C8 22μF C3 560pF CTL2 C9 0.01μF R3 158Ω CTL1 PGND EN FB FREQ C2 1500pF R2 2.67kΩ REFIN R4 49.9kΩ SS C1 33pF C4 0.022μF COMP MODE GND VDD R1 20kΩ PWRGD ᅄ2/! 2NI{ĂWJO >! 3/:Wᒗ6/6WጲૺWPVU >! 2/9Wဟࡼཝჿࠣ࢟ྏଐ ``````````````````````````````` ሮᇼႁී NBY26149ᆐൈĂ࢟ኹෝါఎਈࢯஂLjᎌ5Bࡼၒ ߲࢟ഗถೆăNBY26149ᔫᏴ3/:Wᒗ6/6Wၒྜྷ࢟Ꮞपᆍ ดLjభጲᄋ1/7Wᒗ1/: y WJO ࡼၒ߲࢟ኹLjဧऻޟး ঌᏲ࢛።ăᏴᑳৈঌᏲĂၒྜྷ࢟ኹਜ਼ᆨࣞܤછपᆍดLj ୈၒ߲࢟ኹறࣞᎁ᎖±2&ă NBY26149ᎌ୷ࡼఎਈຫൈपᆍLjభጲဣሚཝჿࠣ࢟ ྏଐጲૺႥၾზሰ።)ݬᅄ 2*ăఎਈຫൈᏤݧ ቃߛࡁᅪݝᏄୈăNBY26149 ݧቃቯ)5nn y 5nn*Ă ᇄĂ35୭ۡቯRGOॖᓤăSFGJOဧNBY26149భಯሯ ᎖ EES ਜ਼ৌᔍ࢟Ꮞăݧด ࢅݝS ET)PO* )ࢅ ܟo ࡸ NPTGFU 35nΩ Ǘ ܟo ࡸ NPTGFU 42nΩ*ࡼ o ࡸ NPTGFULjభጲᏴᒮᏲਜ਼ఎਈຫൈሆۣߒൈă NBY26149ݧ࢟ኹෝါ఼ᒜஉ৩Ljࡒᎌࡒ)39NI{*ᇙ ތहࡍă࢟ኹෝါ఼ᒜஉ৩Ꮴࡉ3NI{ࡼఎਈຫൈLj ିቃ೫࢟വۇෂ૩ă࢟ኹᇙތᏥႯहࡍݧ JJJ ቯޡݗ ऱښLjߠॊಽఎਈຫൈࡼࡒLjጲࡻႥၾზሰ ።ăభࢯஂࡼྟࣅဟମభጲഉᒙLjିቃ೫ၒྜྷ ࣅ፻࢟ഗăࡩWGC ࡉࡵWSFGJO ࡼ:3/6&݀༦WSFGJO ࡍ᎖ 1/65WဟLj࢟Ꮞኙ)QXSHE*ఎധၒ߲ܤᆐ࢟ຳă NBY26149ᎌ4ᒬᔫෝါభኡᐋǖܪᓰQXNෝါĂ ࢯࣅᒗᎾມᒙၒ߲ࡼQXNෝါࢯࣅᒗᎾມᒙၒ ߲ࡼᄢ൴ߡෝါă ______________________________________________________________________________________ 11 NBY26149 `````````````````````````````````````````````````````````````````````` ࢜ቯ።࢟വ NBY26149 5BĂ3NI{Ăଢ଼ኹቯࢯஂLj ดᒙఎਈ ఼ᒜถ ఼ᒜ൝࢟വᆐᒦያࠀಯLjࢾݙᄴၒྜྷ࢟ኹĂ ঌᏲਜ਼ᆨࣞᄟୈሆܟNPTGFUࡼᐴహ܈ăᑵޟᔫෝါ ሆLj࢟ഗሢᒜਜ਼ᆨۣࣞઐᆚ߿खLj఼ᒜ൝࢟വ၃ QXN୷܈ࡼၒ߲Ljޘညܟਜ਼ࢅܟNPTGFUࡼདࣅቧ ăሌࣥઁ൝ਜ਼ᔈ࢟ྏߠ࢟ࡼဟኔ၊఼᎖఼ᒜ ൝࢟വă࢟ኹᇙތहࡍޘညࡼᇙތቧᎧᑩޘ ညࡼቓຸቧᄰਭQXN୷܈ቲ୷܈LjᎅࠥޘညჅኊ ࡼ QXN ቧăܟఎਈᏴᑩᒲ໐ࡼఎဪࣤࡴᄰLj ࡩቓຸ࢟ኹިਭ W DPNQ ቧ࢟ኹᑗި߲ሢഗඡሢဟਈ ࣥăႲઁLjᏴᑩࡼထᒲ໐ดLjࢅܟఎਈۣߒࡴᄰă ࢟ഗሢᒜ ดݝ ܟNPTGFU ᎌ 8B )࢜ቯᒋ*ख़ᒋ࢟ഗඡሢăࡩ࠭ MYഗ߲ࡼ࢟ഗި߲ࠥඡሢဟLjܟNPTGFUਈܕLjᄴဟ ࡌఎᄴݛᑳഗăᄴݛᑳഗጙᒇۣߒఎᓨზLjᒇࡵ ࢟ঢ࢟ഗࢅ᎖ࢅܟఎਈሢഗඡሢăᑚዹଢ଼ࢅᐴహ݀܈ ଢ଼ࢅၒ߲࢟ኹLjᒇᒗݙᏳި߲࢟ഗඡሢăNBY26149ݧ ࡌᡅෝါLjܜၒ߲വဟበຢਭེă ሢഗ໐ମLjྙਫWGC ࢅ᎖WSFGJO y 81&݀༦ࢅ᎖ক࢟ຳࡼဟ ମިਭ23μtဟLjNBY26149ྜྷࡌᡅෝါăܟNPTGFU ਜ਼ᄴݛᑳഗۻਈࣥLjᄴဟDPNQਜ਼SFGJOۻดݝ౯ࢅă ྙਫSFGJOਜ਼TTೌᏴጙLjกඐᑚೝৈ୭ۻ౯ࢅă ୈۣߒকᓨზ 9:7 ৈဟᒩᒲ໐LjႲઁᏴ 223 ৈဟᒩᒲ໐ ดޞ၂ᒮăྙਫࡴᒘሢഗࡼ৺ᑇ߹༹ۻLjୈૂআᑵޟ ᔫෝါă॥ᐌLjୈᏳࠨྜྷࡌᡅෝါă SFGJO࢟ኹăݧᅪݝᓰဟLjดྟݝࣅᇄăᅄ3 ჅာᆐݧᅪݝᓰဟLjဣሚྟࣅࡼऱजăೌSFGJO ᒗTTLjጲဧดݝ1/7WᓰăTT࢟ྏᔢቃནᒋ2oGă ་ኹჄࢾ)VWMP* ྦWEE ଢ଼ࢅᒗ3/66W )࢜ቯᒋ*ጲሆဟLjVWMP࢟വணᒏఎ ਈࣅᔫăጙࡡWEE ဍᒗ3/7W )࢜ቯᒋ*ጲLjVWMPஊ ߹LjᏳࠨఎဪྟࣅਭ߈ăดᒙ61nWᒣૄLj᎖ጴᒜ൴ ߡছཷă CTU ܟĂoࡸఎਈࡼᐜདࣅ࢟ኹᎅऽ࢟ྏဍኹ࢟വޘညă ࡩࢅ ܟNPTGFU ࡴᄰဟLjೌᏴ CTU ୭ਜ਼ MY ୭ᒄମ ࡼᑚৈ࢟ྏᎅWJO ࢟Ꮞߠ࢟ăࡩࢅܟNPTGFUਈࣥLjऽ ࢟ྏࡼ࢟ኹࢶଝࡵMY࣡࢟ኹLjᆐดݝܟNPTGFUᄋ ܘኊࡼࡴᄰ࢟ኹă ຫൈኡᐋ)GSFR* ఎਈຫൈభᎅጙৈ࢟ᔜᏴ611lI{ᒗ3NI{पᆍดቲ߈ܠ ࢾăಽೌᏴGSFRਜ਼HOEᒄମࡼ࢟ᔜ)SGSFR*ᒙ JDࡼఎਈຫൈăSGSFR ଐႯऱါྙሆǖ RFREQ = 50kΩ 1 × ( − 0.05μs) 0.95μs fS ᒦLjgT ᆐჅገཇࡼఎਈຫൈLjᆡᆐᓼă ྟࣅਜ਼SFGJO NBY26149ಽభྟࡼ߈ܠࣅถሢᒜࣅਭ߈ᒦࡼ ፻࢟ഗă9μB )࢜ቯᒋ*࢟ഗᏎ࣪ೌᏴ TT ࡼᅪྏ࢟ݝ ቲߠ࢟ăྟࣅဟମᎅೌᏴTTᒗHOEᒄମࡼᅪ࢟ݝ ྏᒋࢯஂăჅኊࡼ࢟ྏᒋᎅሆါࢾǖ C= REFIN R2 C MAX15038 8μA × tSS 0.6V ᒦLjuTT ᆐჅኊࡼྟࣅဟମLjᆡᆐăNBY26149થ భጲᅪᓰၒྜྷ)SFGJO*ăJDᄰਭࢯஂGCLjဧᆮࢾᏴ 12 R1 ᅄ3/! ݧᅪݝᓰဟLj࢜ቯࡼྟࣅဣሚऱज ______________________________________________________________________________________ 5BĂ3NI{Ăଢ଼ኹቯࢯஂLj ดᒙఎਈ QXSHEᆐఎധၒ߲LjWGC ި߲1/:36 y WSFGJO ݀༦WSFGJO ࡍ᎖1/65W༦ߒኚᒗ59ৈဟᒩᒲ໐ဟܤᆐᔜზăWGC ࢅ ᎖WSFGJO y :1&WSFGJO ቃ᎖1/65W݀༦ߒኚᒗ59ৈဟᒩ ᒲ໐ဟLjQXSHE౯ᒗࢅ࢟ຳăࡩJDࠀ᎖ਈࣥෝါĂWEE ࢅ ᎖ดݝVWMPඡሢᑗJDࠀ᎖ེਈࣥෝါဟLjQXSHEۻด ݝ౯ࢅă ᒙၒ߲࢟ኹ)DUM2ĂDUM3* ྙܭ2ჅာLjၒ߲࢟ኹဵᎅDUM2ਜ਼DUM3ࡼ൝ᓨზ୭ ߈ܠࢾࡼăDUM2ਜ਼DUM3ᆐྯზ࢟ຳၒྜྷǖWEEĂኞహ ਜ਼HOEăࡩDUM2ਜ਼DUM3ೌᒗHOEဟLjܘኍᏴWPVU ਜ਼ GC ᒄମೌጙৈ 9/17lΩ ࢟ᔜăDUM2 ਜ਼ DUM3 ࡼ൝ᓨზ ܘኍᏴ࢟ᒄ༄ᅲ߅߈ܠࢾăጙࡡୈۻဧถLjݙገ খܤDUM2ਜ਼DUM3ăྙਫኊገ࣪ၒ߲࢟ኹቲᒮቤ߈ܠLj ኊገᒮቤࣅ࢟Ꮞ߿खFOLj݀ᏴᏳࠨဧถ༄ᅲ߅ᒮቤ ߈ܠăᄰਭᏴWPVUĂGCਜ਼HOEᒄମဧ࢟ᔜॊኹᆀLj భᏴ1/7WᒗWJO y :1&ᒄମೌኚᒙၒ߲࢟ኹLjྙᅄ4bჅ ာăDUM2ਜ਼DUM3ܘኍೌᒗHOEă ܭ2/! DUM2ਜ਼DUM3ၒ߲࢟ኹኡᐋ CTL1 CTL2 VOUT (V) VOUT WHEN USING EXTERNAL VREFIN (V) GND GND 0.6* or 0.6 < VOUT ≤ 0.9 x VIN** VREFIN* or VREFIN < VOUT ≤ 0.9 x VIN** VDD VDD 0.7 VREFIN x (7/6) GND Unconnected 0.8 VREFIN x (4/3) GND VDD 1.0 VREFIN x (5/3) Unconnected GND 1.2 VREFIN x 2 Unconnected Unconnected 1.5 VREFIN x 2.5 Unconnected VDD 1.8 VREFIN x 3 VDD GND 2.0 VREFIN x (10/3) VDD Unconnected 2.5 VREFIN x (25/6) *ᏴS4ࠀڔᓤ9/17lΩ࢟ᔜLjS5ݙገڔᓤ࢟ᔜă **ᏴS4ਜ਼S5ࠀڔᓤᎅޡݗଐݝॊ)ݬᅄ4b*ᒦࡼါଐႯࡻࡵ ࡼ࢟ᔜă ࢟ঢኡᐋ ਈࣥෝါ དࣅ FO ᒗ HOELjጲਈࣥ JDLjࠥဟஸზ࢟ഗଢ଼ᒗ 21μB )࢜ቯᒋ*ጲሆăਈࣥ໐ମLjMYᆐᔜზăདࣅFOᒗ࢟ ຳLjဧถNBY26149ă ེۣઐ ེਭᏲۣઐถሢᒜୈࡼᔐăࡩஉᆨިਭ UK > ,276°D ဟLjᆨࣞࠅঢ༓ᒜୈྜྷਈࣥᓨზLjጲଢ଼ࢅ በᆨࣞăࡩஉᆨሆଢ଼ 31°D ጲઁLjᆨࣞࠅঢᏳࠨ ࣅୈLjᏴೌኚਭᏲᄟୈሆޘညମቌၒ߲ăེਈࣥਭ߈ உၦઁLjᒮቤఎဪྟࣅਭ߈ă ږᑍሆෂࡼါኡᐋ࢟ঢǖ L= VOUT × (VIN − VOUT ) fS × VIN × LIR × IOUT(MAX) ᒦLjMJSᆐᔢቃᐴహ܈ሆ࢟ঢᆬ݆࢟ഗᎧ൸ঌᏲ࢟ഗࡼ ܈ᒋăገࡻࡵᔢଛࡼቶถਜ਼ᆮࢾቶLjኡᐋMJSဧ᎖31& ᒗ51&ă ``````````````````````````````` ።ቧᇦ ᏴࢾߛࡁሆLjኡᐋᒇഗ࢟ᔜభถቃࡼ࢟ঢăఠࡵ ቶถLjᄰޟॏᓨᄤድᄏࠟበ࢟ঢဵᔢଛኡᐋăݙ൙ݧ ੜᒬࠟበLjࠟበܘኍᔗ৫ࡍጲۣᑺᏴNBY26149ࡼ࢟ഗሢ ᒜሆۥݙਜ਼ă JOਜ਼WEE བྷẮ ၒ߲࢟ྏኡᐋ ᆐିᎅ᎖ఎਈຫൈࡴᒘࡼᐅဉLj݀ဧNBY26149ၒ߲ றࣞᔢࡍછLjᏴ JO ਜ਼ QHOE ᒄମೌጙৈ 33μG ࡼ࢟ྏ࣪ JOቲབྷẮăᄴဟLjᏴWEE ਜ਼HOEᒄମೌጙৈ3/3μGࡼ ࢅFTSჿࠣ࢟ྏ࣪WEE ቲབྷẮăᑚቋ࢟ྏభถణத JDहᒙă ኡᐋၒ߲࢟ྏࡼਈݬၫᆐ࢟ྏᒋĂFTSĂFTMਜ਼ऄࢾ࢟ ኹࢀăᑚቋݬၫ፬ሰ ED.ED ᓞધࡼᑳᄏᆮࢾቶĂၒ߲ ࢟ኹᆬ݆ਜ਼ၾზሰ።ăၒ߲ᆬ݆ဵᎅ᎖ࡀᏴၒ߲࢟ྏ ᒦࡼ࢟ܤછĂ࢟ྏFTSࡼኹଢ଼ጲૺFTMࡼኹଢ଼ޘည ࡼăଐႯᎅ᎖ၒ߲࢟ྏĂFTSਜ਼FTMࡼၒ߲࢟ኹᆬ݆ǖ VRIPPLE = VRIPPLE(C) + VRIPPLE(ESR) + VRIPPLE(ESL) ______________________________________________________________________________________ 13 NBY26149 ࢟Ꮞኙၒ߲)QXSHE* NBY26149 5BĂ3NI{Ăଢ଼ኹቯࢯஂLj ดᒙఎਈ ᒦLjᎅ᎖ၒ߲࢟ྏĂFTSਜ਼FTMࡼၒ߲ᆬ݆ॊܰᆐǖ IP − P VRIPPLE(C) = 8 x COUT x fS ᒦLjWJO.SJQQMF ᆐၒྜྷ࢟ྏჅᏤࡼᔢࡍၒྜྷᆬ݆࢟ኹLj ፇকᒋࢅ᎖ᔢቃၒྜྷ࢟ኹࡼ3&ăEᆐᐴహ)܈WPVU0WJO*Lj UT ᆐఎਈᒲ໐)20gT*ă Ᏼఎਈຫൈሆࡼၒྜྷ࢟ྏᔜఝ።ቃ᎖ၒྜྷ࢟Ꮞࡼᔜఝ࠭ ऎဧຫఎਈ࢟ഗ્ݙᄰਭၒྜྷᏎLjऎဵᎅၒྜྷ࢟ྏ വăၒྜྷ࢟ྏܘኍߌ၊ఎਈ࢟ഗჅࡼᆬ݆࢟ഗăSNT ၒྜྷᆬ݆࢟ഗᎅሆါࢾǖ VRIPPLE(ESR) = IP − P x ESR I VRIPPLE(ESL) = P − P x ESL tON IRIPPLE = ILOAD × ǖ I P VRIPPLE(ESL) = P −P x ESL tOFF VOUT × (VIN − VOUT ) VIN ᒦLjJSJQQMF ᆐၒྜྷSNTᆬ݆࢟ഗă ᒦᔢࡍࡼጙሲă ޡݗଐ ࢟ঢ࢟ഗख़ख़ᒋ)JQ.Q*ྙሆǖ ࢟Ꮞࠅၒၫᎅၷ࢛ਜ਼ጙৈഃ࢛ᔝ߅ăၷ࢛ᎅၒ߲ ݆࢟ঢ M ਜ਼ၒ߲݆࢟ྏ D P ޘညăၒ߲݆࢟ྏࡼ FTSࢾഃ࢛ăၷ࢛ਜ਼ഃ࢛ຫൈᎅሆါ߲ǖ V V − VOUT x OUT IP −P = IN VIN fS × L ಽᑚቋါኡᐋ߱ဪ࢟ྏᒋLjࡣᔢᒫࡼནᒋገᄰਭ࣪ ዹ૦ຶৰހࡼۇ၂ࢾăᄰޟLjᆬ݆࢟ഗᏗቃࡻࡵ ࡼၒ߲࢟ኹᆬ݆ጐᏗቃăᎅ᎖࢟ঢᒋဵࢾ࢟ঢᆬ݆࢟ ഗࡼፐႤᒄጙLjჅጲݧ୷ࡍࡼ࢟ঢᒋଢ଼ࢅၒ߲࢟ኹ ᆬ݆ăݧჿࠣ࢟ྏLjᏴᓞધఎਈຫൈሆถ৫ࡻ୷ ࢅࡼFTSਜ਼FTMăݧჿࠣ࢟ྏဟLjᎅ᎖FTMჅࡼᆬ ݆࢟ኹభጲݙଐă ঌᏲၾზሰ።ጞ౷᎖Ⴥኡᐋࡼၒ߲࢟ྏăᏴঌᏲၾზሰ ።໐ମLjၒ߲ၾମܤછᆐFTS y ΔJMPBEăᏴ఼ᒜᔪ߲ न።ᒄ༄Ljၒ߲ມތጙݛ౫ࡍLjན᎖࢟ঢਜ਼ၒ߲ ࢟ྏᒋăႲઁLj఼ᒜᔫ߲ሰ።Ljࢯஂၒ߲࢟ኹᒗᎾ ࡼ࢟ኹᒋă఼ᒜሰ።ဟମན᎖ܕણࡒăৎࡼࡒ ᎌৎࡼሰ።ဟମLjܜ࢟ኹਭࣶມಭᆮኹᒋăሮ ᇼดྏݬޡݗଐݝॊă ၒྜྷ࢟ྏኡᐋ ኡᐋၒྜྷ࢟ྏᎌᓐ᎖ଢ଼ࢅᔈၒྜྷ࢟Ꮞࡼ࢟ഗख़ᒋLjି ೫ JD ᒦࡼఎਈᐅဉăᔐၒྜྷ࢟ྏܘኍࢀ᎖ࡍ᎖ሆ ࢀါ߲ࡼᒋLjጲۣߒၒྜྷᆬ݆࢟ኹᏴᒎܪपᆍดLj݀ ༦ဧनౣᒗၒྜྷ࢟Ꮞࡼຫᆬ݆࢟ഗᔢቃǖ CIN _ MIN = 14 fP1_ LC = fP2 _ LC = 1 ⎛ R + ESR ⎞ 2π x L x C O x ⎜ O ⎟ ⎝ R O + RL ⎠ f Z _ ESR = 1 2π x ESR x C O ᒦLjS M ᆐၒ߲࢟ঢࡼ EDS )ᒇഗ࢟ᔜ*ਜ਼ดݝఎਈ࢟ᔜ SET)PO*ࡼᔐਜ਼ăSET)PO*ࡼ࢜ቯᒋᆐ35nΩ )ࢅܟNPTGFU* ਜ਼42nΩ )ܟNPTGFU*ăSP ᆐၒ߲ঌᏲ࢟ᔜLjᒋࢀ᎖ ऄࢾၒ߲࢟ኹ߹ጲऄࢾၒ߲࢟ഗăFTSᆐၒ߲݆࢟ྏࡼ ᔐࢀࠈೊ࢟ᔜăྙਫᎌࣶৈᄴጙቯࡼၒ߲࢟ྏ݀ೊLj ါᒦFTSࢀ᎖ৈၒ߲࢟ྏࡼFTS߹ጲၒ߲࢟ྏࡼၫă NBY26149ఎਈຫൈᏤݧჿࠣၒ߲࢟ྏăᎅ᎖ჿࠣ ࢟ྏࡼFTSᄰޟ੪ࢅLj࣪።ࠅၒၫഃ࢛ࡼຫൈ᎖ᆡ ᐐፄຫൈgDLj݀༦কഃ࢛ݙถޡݗᎅ݆࢟ঢਜ਼ၒ߲࢟ྏ ޘညࡼၷ࢛ăၷ࢛ޘည51eC0လ۶ຫ߈ࡼᐐፄၱିਜ਼ 291°ሤጤăᇙތहࡍܘኍޡݗকᐐፄၱିਜ਼ሤጤLjጲ D x TS x IOUT VIN − RIPPLE ______________________________________________________________________________________ 5BĂ3NI{Ăଢ଼ኹቯࢯஂLj ดᒙఎਈ f Z1_ EA = 1 2π × R1 × C1 Ᏼ࣪NBY26149ቲᅪ߈ܠݝᒙဟ)ᅄ4b*Ljၒ߲࢟ኹᎅ ሆါࢾǖ 1 f Z2 _ EA = 2π × R3 × C3 fP3 _ EA = 1 2π × R1 × C2 fP2 _ EA = 1 2π × R2 × C3 R4 = R4 = L VOUT COUT R3 OUT R2 C3 FB CTL1 COMP VIN VP −P C1 = R 2 x π x R3 x (1 + L ) × fC RO 2.5 x R4 a) EXTERNAL RESISTIVE DIVIDER L ᒦLjWQ.Q ᆐख़ख़ᒋ࢟ኹ)࢜ቯᒋ2W*ă VOUT LX COUT MAX15038 R2 OUT R3 8kΩ CTL2 ᎅ᎖ၒ߲MDၷ࢛ࡼ་ᔜปᄂቶLjJJJቯࡼޡݗೝৈഃ ࢛ຫൈᒙᆐࢅ᎖MDၷ࢛ຫൈLjጲܣᄋᔗ৫ࡼሤᆡ ᄋဍăೝৈഃ࢛ຫൈᒙᏴ MD ၷ࢛ຫൈࡼ 91&Ljభ ጲࡻࡵǖ R1 = 1 x 0 . 8 x C1 L x C O x (R O + ESR) RL + R O C3 = 1 x 0 . 8 x R3 L x C O x (R O + ESR) RL + R O C3 FB VOLTAGE SELECT (VREFIN × R3) VOUT - VREFIN ࣪᎖1/7Wၒ߲ᑗࡩWPVU > WSFGJO ဟLjᏴGCਜ਼WPVU ᒄ ମೌጙৈ 9/17lΩ ࢟ᔜăܕણࡼਭഃຫൈ g D ።Ᏼఎਈຫ ൈgT ࡼ21&ᒗ31&ᒄମă୷ࡼਭഃຫൈభጲࡻࡵৎࡼ ၾზሰ።ăጙࡡgD ኡࢾLjD2োሆऱ߈ቲଐႯǖ C2 CTL1 R1 ࡩ ྙਫဧᅪݝWSFGJOLj݀༦WPVU ?! WSFGJOă C1 R1 CTL2 0.6 × R3 VOUT - 0.6 ᑗǖ LX MAX15038 ၤऱ߈᎖D2! ??! D3ਜ਼S4! ??! S3ࡼଣLjকଣᏴࣶ ၫ።ᒦ߅ೂăᑚቋ࢛ਜ਼ഃ࢛ࡼᆡᒙᎅ࢟Ꮞࠅၒၫ ࡼၷ࢛ਜ਼FTSഃ࢛ࡼຫൈࢾăથဵჅ໐ᆃࡼܕણࡒ ࡼၫăሆෂดྏগၤ೫ଐႯNBY26149ޡݗᏄୈࡼሮ ᇼݛᒾăࡩNBY26149ၒ߲࢟ኹۻᒙᆐᎾ࢟ኹဟLjS4 ᆐJDด࢟ݝᔜLjS5ࡀݙᏴ)ᅄ4c*ă C1 COMP C2 औৈ࢛ޡݗgQ3`FB ᒙࡵg[`FTSLjభࡻࡵǖ b) INTERNAL PRESET VOLTAGES ᅄ4/! JJJቯޡݗᆀ ______________________________________________________________________________________ 15 NBY26149 ࡻጙৈᆮࢾࡼࡒܕણᇹᄻăፐࠥLjݧᅄ4ਜ਼ᅄ 5ᒦჅ ာࡼJJJቯޡݗᆀăJJJቯޡݗᎌྯৈ࢛ਜ਼ೝৈഃ࢛Lj ᒦጙৈ࢛gQ2`FB ࠀ᎖ഃຫ)ᒇഗ*ăJJJቯࡼޡݗ ࢛ਜ਼ഃ࢛ᆡᒙᎅሆါ߲ǖ NBY26149 5BĂ3NI{Ăଢ଼ኹቯࢯஂLj ดᒙఎਈ R2 = ܭ3/! ෝါኡᐋ C O x ESR C3 MODE CONNECTION ྯৈ࢛ޡݗᒙࡵఎਈຫൈࡼ203ăږᑍሆါଐႯ D3ǖ 1 C2 = π × R1 × fS ࡩਭഃຫൈීመ᎖ၷ࢛ຫൈဟLjၤऱ߈భᄋ። ޡݗăࡩਭഃຫൈத႒ࢀ᎖ၷ࢛ຫൈဟLjဣଔࡼਭ ഃຫൈገ᎖ଐႯࡻ߲ࡼຫൈᒋăᏴᑚᒬ༽ౚሆLjଢ଼ࢅ S2 ࡼ࢟ᔜᒋభିቃਭഃຫൈăࠥᅪLjྙਫਭഃຫൈࡍ᎖ 311lI{ဟLjJJJቯྯࡼޡݗৈ࢛ᒙᏴణதఎਈຫ ൈࠀLjጲᐐଝሤᆡᎽăS4ࡼᅎୀᒋᆐ3lΩᒗ21lΩăᓖ ፀLjྙਫᒑখ ܤS5ᔜᒋᒙݙᄴၒ߲Ljણവߒۣޡݗ ܤݙă ``````````````````````````````` ෝါኡᐋ NBY26149 ᎌጙৈෝါኡᐋၒྜྷ)NPEF*Ljభઓኡ ᐋୈࡼถෝါ)ݬܭ3*ă GND ࠭ጙৈ QXN ࣅᔫఎဪLjᇢ၃࢟ഗඡሢᄰਭด ݝ5 EBDᐐLjᏴ239ৈဟᒩᒲ໐ᒄઁࡉࡵ8Bࡼ࢟ഗඡሢăᑚ ዹLj૾߲ܣሚፀᅪࡼᎾມᒙၒ߲Ljጐభጲຳᆮૂআᆮኹ ၒ߲Lj༦Ꭷఎဪኡᒦࡼ༓ᒜQXNෝါᇄਈă ྟࣅྜྷᎾມᒙၒ߲ෝါ)ࢯࣅ* ࡩNPEF୭ॳహມᒙᒗW EE03ဟLjNBY26149ளਭྟ ࣅਭ߈ઁྜྷᎾມᒙၒ߲Ljၒ߲࢟ྏݙह࢟ăᑚᒬ ᔫऱါጐ߂ᆐࢯࣅLjሤਈာಿ༿ݬఠ ࢜ቯᔫᄂቶ ᒦTubsujoh Joup Qsfcjbtfe Pvuqvu݆ተă 16 Forced PWM Unconnected or VDD/2 Forced PWM. Soft-startup into a prebiased output (monotonic startup). Skip Mode. Soft-startup into a prebiased output (monotonic startup). VDD COMPENSATION TRANSFER FUNCTION OPEN-LOOP GAIN THIRD POLE DOUBLE POLE GAIN (dB) POWER-STAGE TRANSFER FUNCTION ༓ᒜQXNෝါ NPEF୭ೌᒗHOELjኡᒦ༓ᒜQXNෝါăᏴ༓ᒜ QXN ෝါሆLjNBY26149 ᔫᏴৼࢾࡼఎਈຫൈ)ᄰਭ GSFR࣡ࡼ࢟ᔜᒙ*Ljᇄᄢ൴ߡăࡩFOᒙဟLjளਭ ࡼೂဟମਭઁఎဪQXNᔫăࢅܟఎਈ၅ሌࡌఎLj ᔈ࢟ྏߠ࢟Ljጲܣܟఎਈᄋᐜདࣅ࢟ኹă Ᏼဟᒩᒲ໐உၦጙࡡࢅܟఎਈᇢ၃ިਭ1/986B࢟ഗ)࢜ ቯᒋ*ဟLjݙ൙ၤ༽ౚࡼ߲ሚࠨኔྙੜLjࢅܟఎਈ્ ਈࣥăྙਫࢅܟఎਈᏴဟᒩᒲ໐உၦᒄ༄ۻਈࣥLjᐌ ܟఎਈᏴဟମମࡼထဟମดࡌఎLjᒇࡵ࢟ঢ࢟ഗࡉ ࡵ1/69Bࡵဟᒩᒲ໐உၦဟᆐᒏă OPERATION MODE SECOND POLE FIRST AND SECOND ZEROS ᅄ5/! JJJቯޡݗာಿ ᏴࢯࣅෝါᒦLjࢅܟఎਈਜ਼ܟఎਈۣߒਈࣥLj ጲܜ࣪Ꮎມᒙၒ߲ह࢟ăࡩ GC ࢟ኹࡉࡵ TT ࢟ኹဟLj QXNݷᔫఎဪăਜ਼༓ᒜQXNෝါಢ႒LjQXNࣅᔫఎဪLj ࢅܟఎਈ၅ሌࡌఎLjᔈ࢟ྏߠ࢟ă NBY26149થถ৫ࣅྜྷᎾມᒙLjၒ߲᎖࢟߂ܪኹऎ ᇄኊᆐၒ߲ᅃह࢟Ljᑚਙ᎖Ᏼ239ৈဟᒩᒲ໐ดᄰਭ 5 EBD ဣሚࡼࢅܟఎਈࡼᇢ࢟ഗ఼ᒜăࡩ GC ࢟ኹި߲ WSFGJO y! :3/6&ጲઁLjࢯࣅෝါᏴ51:7ৈဟᒩᒲ໐ዓ ဟઁᔈࣅ༤ધࡵ༓ᒜQXNෝါăࡩᅪݝSFGJO࢟ኹࡼ ࢟ဟମޟၫ୷ࡍဟLjऄᅪࡼዓߕဟମభऴᒏࢯࣅᏴ ྟࣅ໐ମਭᐁྜྷ༓ᒜQXNෝါă ࡩᏴSFGJOᔫᅪݝᓰLjྟࣅྜྷᎾມᒙෝါဟLjჅ Ꮴࡼᔢࡍྟࣅဟମᆐ3ntă ______________________________________________________________________________________ 5BĂ3NI{Ăଢ଼ኹቯࢯஂLj ดᒙఎਈ QDCݚఠਜ਼ེᄂቶ NPEF୭ೌᒗWEELjኡᒦᄢ൴ߡෝါăᏴᄢ൴ߡෝ ါᒦLjNBY26149ఎਈᒑኊۣߒᏴ༵ঌᏲሆࡼၒ߲)ݙถ࠭ ၒ߲ᇢ၃࢟ഗ*LjࡣᏴᒦࢀঌᏲᒮঌᏲሆLj྆భᔫᏴ ৼࢾຫൈQXNෝါ)ᄰਭGSFR࣡ࡼ࢟ᔜᒙ*ăᑚᔢࡍሢ ࣞᄋ೫༵ঌᏲൈ݀ଢ଼ࢅ೫ၒྜྷஸზ࢟ഗă றᇼࡼQDCݚ࣪ࡻࢅᐅĂᆮࢾࡼᔫᓨზऻޟᒮገă ᅎୀݬᑍNBY26149ຶৰݚࡼۇࡻᔢଛቶถăᆐࡉ ࡵᔢଛࡼQDCݚLjኍᔥክሆਖᐌǖ ྙਫ߲ሚݾఎਈޠ໐ࠀ᎖హሔࣅ)ި߲9ৈဟᒩᒲ໐* ࡼ༽ౚLjࢅݾఎਈۻࡌఎLjᏴܟఎਈࡼሆጙৈࡴ ᄰᒲ໐༄ᒮᔈ࢟ྏႼပࡼ࢟ă 3* WEEĂJOਜ਼TTࡼ࢟ྏభถణதJDहᒙLj݀༦ ሤ።ࡼ୭ݧᒇᔓሣăۣߒൈ)ೌᒗQHOE*ਜ਼ ቧ)ೌᒗHOE*ಭă Ᏼᄢ൴ߡෝါᒦLjࡩ࢟ঢ࢟ഗሆଢ଼ࡵ1/3B! )࢜ቯᒋ*ဟLjࢅ ܟఎਈۻਈࣥLjጲཀྵۣၒ߲࢟ྏ્ݙഗ߲नሶ࢟ഗጲ ૺۣᑺᔢଛࡼᓞધൈ0ᔢቃ࢟Ꮞ࢟ഗă 4* భถۣߒ༦ࡼࡍ࢟ഗവăჁఎਈ࢟ഗവ Lj݀భถჁቃᎅMYĂၒ߲࢟ྏਜ਼ၒྜྷ࢟ྏተ߅ ࡼૄവă ܟఎਈࡼᔢቃࡴᄰဟମ၊఼Ljཀྵۣభࡉࡵ 1/69B ࢟ഗLj ጲܜహᏲᄟୈሆ߲ሚຫᅃख൴ߡ݀భถᎅ᎖ऄᅪࡼ ఎਈႼࡒ࢟Ꮞ࢟ഗኸႥဍă 5* JOĂMYਜ਼ QHOEॊܰೌᒗጙৈ୷ࡍࡼ१ᄵෂLjጲ ۑᓐJDྲེLjጙݛᄋൈਜ਼ޠ໐భణቶă ૾ဧᏴୈఎဟኡᐋ೫ᄢ൴ߡෝါLjᏴྟࣅ໐ମ྆ ᎅดݝኡࢾࢯࣅෝါăࡩGC࢟ኹިਭWSFGJO y! :3/6& ᒄઁளਭ 51:7 ৈဟᒩᒲ໐ဟLjୈᔈࣅᓞધᒗᄢ൴ߡ ෝါă 2* ၒྜྷਜ਼ၒ߲࢟ྏೌᒗൈǗჅᎌ࢟ྏೌ ᒗቧă 6* ཀྵۣჅᎌࡼनౣೌሣ༦ᒇLjनౣ࢟ᔜਜ਼ޡݗᏄୈ። భถణதJDहᒙă 7* ຫఎਈஂ࢛ࡼᔓሣ)ྙ MY*።কᏐಭැঢࡼෝผཌᎮ )GCĂDPNQ*ă ྀੜဟ࣒భጲ࠭ᄢ൴ߡෝါᓞધࡵ༓ᒜQXNෝါLjन ᒄጾăၒ߲࢟ྏ።ᔗ৫ࡍLjጲܣᏴᒙဟମࡉࡵ༓ᒜ QXNෝါਜ਼༵Ᏺሆᄢ൴ߡෝါჅ࣪።ࡼݙᄴᐴహ܈ඡሢ ဟLjሢᒜ࢟ኹࡼਭߡ0ሆߡă ______________________________________________________________________________________ 17 NBY26149 ᄢ൴ߡෝါ ``````````````````````````````` ୭ᒙ ``````````````````````````````` በຢቧᇦ 16 BST 17 LX LX 18 LX PGND TOP VIEW PGND PROCESS: BiCMOS 15 14 13 PGND 19 12 PWRGD ``````````````````````````````` ॖᓤቧᇦ PGND 20 11 FREQ ྙኊᔢதࡼॖᓤᅪተቧᇦਜ਼ݚLj༿އኯ china.maxim-ic. com/packagesă༿ᓖፀLjॖᓤܠ൩ᒦࡼĐ,đĂĐ$đĐ.đஞܭာ SpITᓨზăॖᓤᅄᒦభถ۞ݙᄴࡼᆘᓮᔊ९LjࡣॖᓤᅄᒑᎧॖ ᓤᎌਈLjᎧSpITᓨზᇄਈă IN 21 10 OUT MAX15038 IN 22 IN 23 4 5 6 SS 3 CTL2 2 CTL1 1 REFIN + VDD EN 24 EP MODE NBY26149 5BĂ3NI{Ăଢ଼ኹቯࢯஂLj ดᒙఎਈ 9 FB 8 COMP 7 GND ॖᓤಢቯ ॖᓤܠ൩ ᅪተܠ ݚܠ 24 TQFN-EP T2444-4 21-0139 90-0022 THIN QFN 18 ______________________________________________________________________________________ 5BĂ3NI{Ăଢ଼ኹቯࢯஂLj ดᒙఎਈ ኀࢿ ኀࢿ྇໐ ႁී ኀখ 0 10/08 ᔢ߱۾ۈă 1 12/09 ৎቤ೫࢜ቯᔫᄂቶă 2 5/10 ৎቤ೫ Fmfdusjdbm! Dibsbdufsjtujdt ܭĂܭ2ጲૺޡݗଐݝॊă — 3, 13, 15 Nbyjn ۱யࠀူێ ۱ய 9439ቧረ ᎆᑶܠ൩ 211194 ॅ࢟જǖ911!921!1421 ࢟જǖ121.7322 62:: ࠅᑞǖ121.7322 63:: Nbyjn࣪ݙNbyjnޘອጲᅪࡼྀੜ࢟വဧঌᐊLjጐݙᄋᓜಽభăNbyjnۣഔᏴྀੜဟମĂᎌྀੜᄰۨࡼ༄ᄋሆኀখޘອᓾ೯ਜ਼ਖৃࡼཚಽă Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ______________________ 19 © 2010 Maxim Integrated Products Nbyjn ဵ Nbyjn!Joufhsbufe!Qspevdut-!Jod/ ࡼᓖݿܪă NBY26149 ```````````````````````````````````````````````````````````````````````````` ኀࢿ಼ဥ MAX15038 4A、2MHz、降压型调节器,内置开关 - 概述 ENGLISH • 简体中文 • 日本語 • 한국어 • РУССКИЙ Login | Register 最新内容 产品 方案 设计 应用 技术支持 销售联络 公司简介 Maxim > 产品 > 电源和电池管理 > MAX15038 MAX15038 4A、2MHz、降压型调节器,内置开关 尺寸最小、效率最高、4A降压调节器,开关频率高达2MHz 概述 技术文档 定购信息 相关产品 用户说明 (0) 所有内容 状况 状况:生产中。 概述 数据资料 创建原理图或仿真器件,请使用EE-Sim (English only): [MAX15038] 完整的数据资料 提供更新的英文版数据资料 MAX15038是一款高效开关稳压器,输出电压范围为0.6V至VIN的90%,可提供高达4A的负载电流。器 件工作电压为2.9V至5.5V,非常适合负载点和后续稳压应用。在整个负载、输入电压和温度变化范围 内,器件输出电压总误差低于±1%。 英文 下载 Rev. 3 (PDF, 456kB) 中文 下载 Rev. 2 (PDF, 884kB) MAX15038采用固定频率PWM工作模式,开关频率可通过外部电阻设置在500kHz至2MHz范围 内。MAX15038提供可选择的跳脉冲模式,以提高轻载效率。较高的工作频率允许全陶瓷电容设计, 同时也允许采用小尺寸外部元件。 片内低导通电阻的nMOS保证在较重负载下提供高效率,并可保持极低的寄生电感,与分离方案相比大 大简化了电路板布局。简单的电路布局和引脚配置确保新设计的一次通过率。 MAX15038内部集成了宽带(28MHz)电压误差放大器。电压模式控制结构和误差放大器允许使用III类补 偿方案,使环路带宽可以达到开关频率的20%。较宽的环路带宽能够保证快速瞬态响应,从而减小所 需的输出电容,允许全陶瓷电容设计。 MAX15038具有两个三态逻辑输入,用于选择9种不同的输出电压。这些预置输出电压为客户提 供±1%的输出电压精度,无需使用昂贵的0.1%精密电阻。另外,可以通过连接在反馈端的两个外部电 阻,配合0.6V内部基准电压或REFIN的外部输入基准电压,将输出电压设置在任何用户所需要的数 值。MAX15038通过外部电容设置软启动时间,以降低输入浪涌电流。 现备有评估板:MAX15038EVKIT 关键特性 内置31mΩ R DS(ON) 的高边MOSFET和24mΩ R DS(ON) 的低边MOSFET 整个温度范围内能够保证4A的连续输出电流 在整个负载、输入电压和温度范围内提供±1%的输出精度 工作在2.9V至5.5V VIN电压 输出电压在0.6V至(0.9 x VIN)之间可调 软启动可有效抑制输入浪涌电流 500kHz至2MHz可调开关频率 输出允许使用陶瓷、聚合物以及电解电容 9种预置输出并可调节输出电压 0.6V、0.7V、0.8V、1.0V、1.2V、1.5V、1.8V、2.0V、2.5V和可调 安全启动进入预偏置输出状态 可选择强制PWM或轻载下的跳脉冲模式 过流、过热保护 输出具有吸收/源出电流能力,提供逐周期保护 漏极开路电源就绪输出 24引脚、4mm x 4mm薄型QFN无铅封装 图表 http://china.maxim-ic.com/datasheet/index.mvp/id/5829[2011-1-14 6:34:26] 应用/使用 ASIC/CPU/DSP核与I/O供电 基站电源 DDR电源 POL RAID控制电源 服务器电源 电信与网络电源 我的Maxim MAX15038 4A、2MHz、降压型调节器,内置开关 - 概述 典型工作电路 更多信息 新品发布 [ 2009-05-13 ] 没有找到你需要的产品吗? 应用工程师帮助选型,下个工作日回复 参数搜索 应用帮助 概述 技术文档 定购信息 相关产品 概述 关键特性 应用/ 使用 关键指标 图表 注释、注解 数据资料 应用笔记 评估板 设计指南 可靠性报告 软件/ 模型 价格与供货 样品 在线订购 封装信息 无铅信息 类似功能器件 类似应用器件 评估板 类似型号器件 配合该器件使用的产品 参考文献: 19- 4320 Rev. 3; 2011- 01- 12 本页最后一次更新: 2011- 01- 12 联络我们:信息反馈、提出问题 • 对该网页的评价 • 发送本网页 • 隐私权政策 • 法律声明 © 2011 Maxim Integrated Products版权所有 http://china.maxim-ic.com/datasheet/index.mvp/id/5829[2011-1-14 6:34:26] 19-4320; Rev 3; 12/10 KIT ATION EVALU E L B AVAILA 4A, 2MHz Step-Down Regulator with Integrated Switches Features The MAX15038 high-efficiency switching regulator delivers up to 4A load current at output voltages from 0.6V to 90% of VIN. The IC operates from 2.9V to 5.5V, making it ideal for on-board point-of-load and postregulation applications. Total output error is less than ±1% over load, line, and temperature ranges. The MAX15038 features fixed-frequency PWM mode operation with a switching frequency range of 500kHz to 2MHz set by an external resistor. The MAX15038 provides the option of operating in a skip mode to improve light-load efficiency. High-frequency operation allows for an all-ceramic capacitor design. The high operating frequency also allows for small-size external components. The low-resistance on-chip nMOS switches ensure high efficiency at heavy loads while minimizing critical inductances, making the layout a much simpler task with respect to discrete solutions. Following a simple layout and footprint ensures first-pass success in new designs. The MAX15038 comes with a high bandwidth (28MHz) voltage-error amplifier. The voltage-mode control architecture and the voltage-error amplifier permit a type III compensation scheme to be utilized to achieve maximum loop bandwidth, up to 20% of the switching frequency. High loop bandwidth provides fast transient response, resulting in less required output capacitance and allowing for all-ceramic-capacitor designs. The MAX15038 provides two three-state logic inputs to select one of nine preset output voltages. The preset output voltages allow customers to achieve ±1% output-voltage accuracy without using expensive 0.1% resistors. In addition, the output voltage can be set to any customer value by either using two external resistors at the feedback with a 0.6V internal reference or applying an external reference voltage to the REFIN input. The MAX15038 offers programmable soft-start time using one capacitor to reduce input inrush current. ♦ Internal 31mΩ RDS(ON) High-Side and 24mΩ RDS(ON) Low-Side MOSFETs ♦ Continuous 4A Output Current Over Temperature ♦ ±1% Output Accuracy Over Load, Line, and Temperature ♦ Operates from 2.9V to 5.5V VIN Supply ♦ Adjustable Output from 0.6V to (0.9 x VIN) ♦ Soft-Start Reduces Inrush Supply Current ♦ 500kHz to 2MHz Adjustable Switching Frequency ♦ Compatible with Ceramic, Polymer, and Electrolytic Output Capacitors ♦ Nine Preset and Adjustable Output Voltages 0.6V, 0.7V, 0.8V, 1.0V, 1.2V, 1.5V, 1.8V, 2.0V, 2.5V, and Adjustable ♦ Monotonic Startup for Safe-Start into Prebiased Outputs ♦ Selectable Forced PWM or Skip Mode for Light Load Efficiency ♦ Overcurrent and Overtemperature Protection ♦ Output Current Sink/Source Capable with Cycleby-Cycle Protection ♦ Open-Drain Power-Good Output ♦ Lead-Free, 4mm x 4mm, 24-Pin Thin QFN Package Ordering Information PART TEMP RANGE PIN-PACKAGE MAX15038ETG+ -40°C to +85°C 24 Thin QFN-EP* +Denotes a lead(Pb)-free/RoHS-compliant package. *EP = Exposed pad. Typical Operating Circuit INPUT 2.9V TO 5.5V IN EN BST LX VDD OUT Applications Server Power Supplies POLs ASIC/CPU/DSP Core and I/O Voltages DDR Power Supplies Base-Station Power Supplies Telecom and Networking Power Supplies RAID Control Power Supplies OUTPUT 1.8V, 4A MAX15038 PGND CTL2 FB CTL1 FREQ REFIN SS COMP VDD MODE GND PWRGD Pin Configuration appears at end of data sheet. ________________________________________________________________ Maxim Integrated Products For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com. 1 MAX15038 General Description MAX15038 4A, 2MHz Step-Down Regulator with Integrated Switches ABSOLUTE MAXIMUM RATINGS IN, PWRGD to GND..................................................-0.3V to +6V VDD to GND ..................-0.3V to the lower of +4V or (VIN + 0.3V) COMP, FB, MODE, REFIN, CTL1, CTL2, SS, FREQ to GND ..........................................-0.3V to (VDD + 0.3V) OUT, EN to GND ......................................................-0.3V to +6V BST to LX..................................................................-0.3V to +6V BST to GND ............................................................-0.3V to +12V PGND to GND .......................................................-0.3V to +0.3V LX to PGND ..................-0.3V to the lower of +6V or (VIN + 0.3V) LX to PGND ..........-1V to the lower of +6V or (VIN + 1V) for 50ns ILX(RMS) (Note 1) ......................................................................4A VDD Output Short-Circuit Duration .............................Continuous Converter Output Short-Circuit Duration ....................Continuous Continuous Power Dissipation (TA = +70°C) 24-Pin TQFN (derate 27.8mW/°C above +70°C) ........2222mW Thermal Resistance (Note 2) θJA.................................................................................36°C/W θJC ..................................................................................6°C/W Operating Temperature Range ...........................-40°C to +85°C Junction Temperature ......................................................+150°C Storage Temperature Range .............................-65°C to +150°C Lead Temperature (soldering, 10s) .................................+300°C Soldering Temperature (reflow) .......................................+260°C Note 1: LX has internal clamp diodes to PGND and IN. Applications that forward bias these diodes should take care not to exceed the IC’s package power dissipation limits. Note 2: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a fourlayer board. For detailed information on package thermal considerations, refer to www.maxim-ic.com/thermal-tutorial. Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. ELECTRICAL CHARACTERISTICS (VIN = VEN = 5V, CVDD = 2.2μF, TA = TJ = -40°C to +85°C, typical values are at TA = +25°C, circuit of Figure 1, unless otherwise noted.) (Note 3) PARAMETER CONDITIONS MIN TYP MAX UNITS 5.5 V IN IN Voltage Range IN Supply Current Total Shutdown Current from IN 2.9 4.7 8 5 8.5 VIN = 5V, VEN = 0V 10 20 VIN = VDD = 3.3V, VEN = 0V 45 fS = 1MHz, no load VIN = 3.3V VIN = 5V mA μA 3.3V LDO (VDD) VDD rising VDD Undervoltage Lockout Threshold LX starts/stops switching VDD falling 2.6 2.35 Minimum glitch-width rejection VDD Output Voltage VIN = 5V, IVDD = 0 to 10mA VDD Dropout VIN = 2.9V, IVDD = 10mA VDD Current Limit VIN = 5V, VDD = 0V 2.8 2.55 10 V μs 3.1 3.3 3.5 25 40 mA 0.025 μA 20 ns 1 V 0.8 V 0.08 V V BST BST Supply Current VBST = VIN = 5V, VLX = 0 or 5V, VEN = 0V PWM COMPARATOR PWM Comparator Propagation Delay PWM Peak-to-Peak Ramp Amplitude PWM Valley Amplitude 2 10mV overdrive _______________________________________________________________________________________ 4A, 2MHz Step-Down Regulator with Integrated Switches (VIN = VEN = 5V, CVDD = 2.2μF, TA = TJ = -40°C to +85°C, typical values are at TA = +25°C, circuit of Figure 1, unless otherwise noted.) (Note 3) PARAMETER CONDITIONS MIN TYP MAX UNITS ERROR AMPLIFIER COMP Clamp Voltage, High VIN = 2.9V to 5V, VFB = 0.5V, VREFIN = 0.6V 2 COMP Clamp Voltage, Low VIN = 2.9V to 5V, VFB = 0.7V, VREFIN = 0.6V 0.7 V COMP Slew Rate VFB step from 0.5V to 0.7V in 10ns 1.6 V/μs COMP Shutdown Resistance From COMP to GND, VIN = 3.3V, VCOMP = 100mV, VEN = VSS = 0V 6 Ω Internally Preset Output Voltage Accuracy VREFIN = VSS, MODE = GND FB Set Point Value CTL1 = CTL2 = GND, MODE = GND FB to OUT Resistor All VID settings except CTL1 = CTL2 = GND -1 V +1 % 0.594 0.6 0.606 V 5.5 8 10.5 kΩ Open-Loop Voltage Gain 115 dB Error-Amplifier Unity-Gain Bandwidth 28 MHz Error-Amplifier and REFIN Common-Mode Input Range VDD = 2.9V to 3.5V Error-Amplifier Maximum Output Current VCOMP = 1V, VREFIN = 0.6V FB Input Bias Current CTL1 = CTL2 = GND -125 VCTL_ = 0V -7.2 VCTL_ = VDD +7.2 0 VFB = 0.7V, sinking 1 VFB = 0.5V, sourcing -1 VDD - 2 V mA nA CTL_ CTL_ Input Bias Current Low, falling CTL_ Input Threshold Hysteresis μA 0.8 Open VDD/2 High, rising VDD 0.8 All VID transitions V 50 mV REFIN REFIN Input Bias Current VREFIN = 0.6V REFIN Offset Voltage VREFIN = 0.9V, FB shorted to COMP -185 -4.5 nA +4.5 mV LX (All Pins Combined) LX On-Resistance, High-Side ILX = -2A LX On-Resistance, Low-Side ILX = 2A VIN = VBST - VLX = 3.3V 42 VIN = VBST - VLX = 5V 31 VIN = 3.3V 30 VIN = 5V 24 High-side sourcing LX Current-Limit Threshold 5.7 Low-side sinking LX Leakage Current VIN = 5V, VEN = 0V 42 mΩ mΩ 7 7 Zero-crossing current threshold, MODE = VDD 54 A 0.2 VLX = 0V -0.01 VLX = 5V +0.01 μA _______________________________________________________________________________________ 3 MAX15038 ELECTRICAL CHARACTERISTICS (continued) MAX15038 4A, 2MHz Step-Down Regulator with Integrated Switches ELECTRICAL CHARACTERISTICS (continued) (VIN = VEN = 5V, CVDD = 2.2μF, TA = TJ = -40°C to +85°C, typical values are at TA = +25°C, circuit of Figure 1, unless otherwise noted.) (Note 3) PARAMETER LX Switching Frequency CONDITIONS VIN = 2.9V to 5V MIN TYP MAX RFREQ = 49.9kΩ 0.9 1 1.1 RFREQ = 23.6kΩ 1.8 2 2.2 Switching Frequency Range 500 LX Minimum Off-Time LX Maximum Duty Cycle RFREQ = 49.9kΩ LX Minimum Duty Cycle RFREQ = 49.9kΩ Average Short-Circuit IN Supply Current OUT connected to GND, VIN = 5V RMS LX Output Current 92 MHz 2000 kHz 78 ns 95 5 UNITS % 15 0.15 % A 4 A ENABLE EN Input Logic-Low Threshold EN falling EN Input Logic-High Threshold EN rising EN Input Current VEN = 0 or 5V, VIN = 5V 0.9 1.5 V V 0.01 μA MODE MODE Input-Logic Threshold MODE Input-Logic Hysteresis MODE Input Bias Current Logic-low, falling 26 Logic VDD/2 or open, rising 50 Logic-high, rising 74 MODE falling 5 MODE = GND -5 MODE = VDD 5 %VDD %VDD μA SS SS Current VSS = 0.45V, VREFIN = 0.6V, sourcing 6.7 8 9.3 μA THERMAL SHUTDOWN Thermal-Shutdown Threshold Rising Thermal-Shutdown Hysteresis 165 °C 25 °C POWER-GOOD (PWRGD) Power-Good Threshold Voltage VFB falling, VREFIN = 0.6V VFB rising, VREFIN = 0.6V 88 90 92 92.5 % VREFIN Clock cycles Power-Good Edge Deglitch VFB rising or falling 48 PWRGD Output Voltage Low IPWRGD = 4mA 0.03 PWRGD Leakage Current VIN = VPWRGD = 5V, VFB = 0.7V, VREFIN = 0.6V 0.01 μA Current-Limit Startup Blanking 112 Clock cycles Autoretry Restart Time 896 Clock cycles 0.1 V HICCUP OVERCURRENT LIMIT 4 _______________________________________________________________________________________ 4A, 2MHz Step-Down Regulator with Integrated Switches (VIN = VEN = 5V, CVDD = 2.2μF, TA = TJ = -40°C to +85°C, typical values are at TA = +25°C, circuit of Figure 1, unless otherwise noted.) (Note 3) PARAMETER CONDITIONS MIN TYP MAX UNITS FB Hiccup Threshold VFB falling 70 % VREFIN Hiccup Threshold Blanking Time VFB falling 28 μs Note 3: Specifications are 100% production tested at TA = +25°C. Limits over the operating temperature range are guaranteed by design. Typical Operating Characteristics (Typical values are VIN = VEN = 5V, VOUT = 1.8V, RFREQ = 49.9kΩ, IOUT = 4A, TA = +25°C, circuit of Figure 1, unless otherwise noted.) FREQUENCY vs. INPUT VOLTAGE EFFICIENCY vs. OUTPUT CURRENT 90 2.20 MAX15038 toc02 100 MAX15038 toc01 100 90 MAX15038 toc03 EFFICIENCY vs. OUTPUT CURRENT 2.15 70 VOUT = 1.8V 60 VOUT = 2.5V VOUT = 1.8V 70 VOUT = 1.2V 60 VOUT = 1.2V 50 PWM SKIP 40 10.0 1.0 0.1 1.05 1.00 TA = +85°C TA = +25°C TA = -40°C MAX15038 toc05a -0.10 -0.15 -0.20 VOUT = 1.2V -0.30 VOUT = 1.8V -0.35 VOUT = 2.5V -0.40 4.5 INPUT VOLTAGE (V) 5.0 5.5 4.5 5.0 5.5 VOUT = 2.5V -0.02 VOUT = 1.8V -0.04 -0.06 -0.08 -0.10 VOUT = 1.2V -0.12 -0.50 0.80 4.0 4.0 LINE REGULATION (LOAD = 4A) -0.05 -0.25 3.5 -0.45 RFREQ = 49.9kΩ 3.5 3.0 0 OUTPUT-VOLTAGE CHANGE (%) FREQUENCY (MHz) 1.10 3.0 2.5 INPUT VOLTAGE (V) 0 OUTPUT-VOLTAGE CHANGE (%) MAX15038 toc04 1.15 0.95 RFREQ = 23.2kΩ 1.80 10.0 1.0 TA = +25°C TA = -40°C LOAD REGULATION 1.20 2.5 TA = +85°C OUTPUT CURRENT (A) FREQUENCY vs. INPUT VOLTAGE 0.85 1.95 1.85 PWM SKIP VIN = 3.3V 40 OUTPUT CURRENT (A) 0.90 2.00 1.90 50 0.1 2.05 MAX15038 toc05b VOUT = 2.5V 80 FREQUENCY (MHz) EFFICIENCY (%) EFFICIENCY (%) 2.10 80 0 1 2 LOAD CURRENT (A) 3 4 2.5 3.0 3.5 4.0 4.5 5.0 5.5 INPUT VOLTAGE (V) _______________________________________________________________________________________ 5 MAX15038 ELECTRICAL CHARACTERISTICS (continued) Typical Operating Characteristics (continued) (Typical values are VIN = VEN = 5V, VOUT = 1.8V, RFREQ = 49.9kΩ, IOUT = 4A, TA = +25°C, circuit of Figure 1, unless otherwise noted.) SWITCHING WAVEFORMS (FORCED PWM, 2A LOAD) LOAD TRANSIENT SWITCHING WAVEFORMS (SKIP MODE, NO LOAD) MAX15038 toc07 MAX15038 toc06 VOUT AC-COUPLED 100mV/div MAX15038 toc08 AC-COUPLED 50mV/div VOUT AC-COUPLED 100mV/div VOUT 1A/div 2A/div ILX 2A ILX 0A 0A 5V/div IOUT VLX 5V/div 0A VLX 0V 400ns/div 40μs/div 2μs/div SHUTDOWN WAVEFORM (RLOAD = 0.5Ω) SOFT-START WAVEFORM (RLOAD = 0.5Ω) MAX15038 toc10 MAX15038 toc09 VEN 5V/div VEN 5V/div VOUT 1V/div VOUT 1V/div 0V 0V 400μs/div 10μs/div INPUT SHUTDOWN CURRENT vs. INPUT VOLTAGE MAXIMUM OUTPUT CURRENT vs. OUTPUT VOLTAGE 10 9 8 7 6 MAX15038 toc12 11 10 MAXIMUM OUTPUT CURRENT (A) MAX15038 toc11 12 INPUT SHUTDOWN CURRENT (μA) MAX15038 4A, 2MHz Step-Down Regulator with Integrated Switches 9 8 7 6 5 4 3 VEN = 0V 2 5 2.5 3.0 3.5 4.0 4.5 INPUT VOLTAGE (V) 6 5.0 5.5 0.5 1.0 1.5 2.0 OUTPUT VOLTAGE (V) _______________________________________________________________________________________ 2.5 4A, 2MHz Step-Down Regulator with Integrated Switches EXPOSED PAD TEMPERATURE vs. AMBIENT TEMPERATURE RMS INPUT CURRENT DURING SHORT CIRCUIT vs. INPUT VOLTAGE MAX15038 toc14 0.5 RMS INPUT CURRENT (A) 1V/div VOUT 0V 5A/div IOUT 0A IIN 1A/div 0.4 0.3 0.2 0.1 0A 90 80 70 60 50 40 4A LOAD 30 20 10 VOUT = 0V 0 MEASURED ON A MAX15038EVKIT 0 2.5 400μs/div 3.0 3.5 4.0 4.5 5.0 5.5 INPUT VOLTAGE (V) 0 20 40 60 80 100 AMBIENT TEMPERATURE (°C) FEEDBACK VOLTAGE vs. TEMPERATURE SOFT-START WITH REFIN MAX15038 toc17 MAX15038 toc16 0.64 0.63 FEEDBACK VOLTAGE (V) 100 MAX15038 toc15 MAX15038 toc13 EXPOSED PAD TEMPERATURE (°C) HICCUP CURRENT LIMIT 1A/div IIN 0.62 0A 0.61 0.5V/div VREFIN 0V 0.60 0.59 1V/div VOUT 0V 0.58 VPWRGD 0.57 2V/div 0V 0.56 -40 -15 10 35 60 85 200μs/div TEMPERATURE (°C) STARTING INTO PREBIASED OUTPUT (MODE = VDD/2, VOUT = 2.5V, 2A LOAD) STARTING INTO PREBIASED OUTPUT (MODE = VDD, VOUT = 2.5V, 2A LOAD) MAX15038 toc19 MAX15038 toc18 5V/div VEN 5V/div VEN 0V 0V 1V/div 1V/div VOUT VOUT 0V 0V 2A IOUT 2A IOUT 0A 0A 5V/div VPWRGD 5V/div VPWRGD 0V 0V 200μs/div 200μs/div _______________________________________________________________________________________ 7 MAX15038 Typical Operating Characteristics (continued) (Typical values are VIN = VEN = 5V, VOUT = 1.8V, RFREQ = 49.9kΩ, IOUT = 4A, TA = +25°C, circuit of Figure 1, unless otherwise noted.) MAX15038 4A, 2MHz Step-Down Regulator with Integrated Switches Typical Operating Characteristics (continued) (Typical values are VIN = VEN = 5V, VOUT = 1.8V, RFREQ = 49.9kΩ, IOUT = 4A, TA = +25°C, circuit of Figure 1, unless otherwise noted.) STARTING INTO PREBIASED OUTPUT (MODE = VDD/2, VOUT = 2.5V, NO LOAD) STARTING INTO PREBIASED OUTPUT (MODE = VDD, VOUT = 2.5V, NO LOAD) MAX15038 toc21 MAX15038 toc20 VEN 2V/div VEN 2V/div 0V 0V VOUT 1V/div VOUT 1V/div 0V 0V VPWRGD 2V/div VPWRGD 2V/div 0V 0V 200μs/div 200μs/div STARTING INTO PREBIASED OUTPUT ABOVE NOMINAL SETPOINT (VOUT = 1.5V) STARTING INTO PREBIASED OUTPUT ABOVE NOMINAL SETPOINT (VOUT = 1.5V) MAX15038 toc22 MAX15038 toc23 VEN 2V/div VEN 2V/div 0V 0V VOUT 1V/div VMODE = VDD, NO LOAD VOUT 1V/div 0V 0V VPWRGD 2V/div VPWRGD 2V/div VMODE = VDD/2, NO LOAD 0V 1ms/div 1ms/div TRANSITION FROM FORCED PWM MODE TO SKIP MODE TRANSITION FROM SKIP MODE TO FORCED PWM MODE MAX15038 toc25 MAX15038 toc24 VMODE 5V/div VMODE 5V/div VLX 5V/div VLX 5V/div VOUT 0.5V/div VOUT 0.5V/div 0V 0V 2ms/div 8 0V 4ms/div _______________________________________________________________________________________ 4A, 2MHz Step-Down Regulator with Integrated Switches PIN NAME 1 MODE FUNCTION Functional MODE Selection Input. See the MODE Selection section for more information. 3.3V LDO Output. Supply input for the internal analog core. Connect a low-ESR, ceramic capacitor with a minimum value of 2.2μF from VDD to GND. 2 VDD 3 CTL1 4 CTL2 5 REFIN 6 SS 7 GND 8 COMP Voltage Error-Amplifier Output. Connect the necessary compensation network from COMP to FB and OUT. COMP is internally pulled to GND when the IC is in shutdown/hiccup mode. 9 FB Feedback Input. Connect FB to the center tap of an external resistive divider from the output to GND to set the output voltage from 0.6V to 90% of VIN. Connect FB through an RC network to the output when using CTL1 and CTL2 to select any of nine preset voltages. 10 OUT Output-Voltage Sense. Connect to the converter output. Leave OUT unconnected when an external resistive divider is used. 11 FREQ Oscillator Frequency Select. Connect a precision resistor from FREQ to GND to select the switching frequency. See the Frequency Select (FREQ) section. Preset Output-Voltage Selection Inputs. CTL1 and CTL2 set the output voltage to one of nine preset voltages. See Table 1 and the Programming the Output Voltage (CTL1, CTL2) section for preset voltages. External Reference Input. Connect REFIN to SS to use the internal 0.6V reference. Connecting REFIN to an external voltage forces FB to regulate to the voltage applied to REFIN. REFIN is internally pulled to GND when the IC is in shutdown/hiccup mode. Soft-Start Input. Connect a capacitor from SS to GND to set the startup time. Use a capacitor with a 1nF minimum value. See the Soft-Start and REFIN section for details on setting the soft-start time. Analog Ground Connection. Connect GND and PGND together at one point near the input bypass capacitor return terminal. Open-Drain, Power-Good Output. PWRGD is high impedance when VFB rises above 92.5% (typ) of VREFIN and VREFIN is above 0.54V. PWRGD is internally pulled low when VFB falls below 90% (typ) of VREFIN or VREFIN is below 0.54V. PWRGD is internally pulled low when the IC is in shutdown mode, VDD is below the internal UVLO threshold, or the IC is in thermal shutdown. 12 PWRGD 13 BST 14, 15, 16 LX 17–20 PGND Power Ground. Connect all PGND pins externally to the power ground plane. Connect all PGND pins together near the IC. 21, 22, 23 IN Input Power Supply. Input supply range is from 2.9V to 5.5V. Bypass IN to PGND with a 22μF ceramic capacitor. 24 EN Enable Input. Logic input to enable/disable the MAX15038. — EP Exposed Pad. Solder EP to a large contiguous copper plane connected to PGND to optimize thermal performance. Do not use EP as a ground connection for the device. High-Side MOSFET Driver Supply. Internally connected to IN through a pMOS switch. Bypass BST to LX with a 0.1μF capacitor. Inductor Connection. All LX pins are internally shorted together. Connect all LX pins to the switched side of the inductor. LX is high impedance when the IC is in shutdown mode. _______________________________________________________________________________________ 9 MAX15038 Pin Description 4A, 2MHz Step-Down Regulator with Integrated Switches MAX15038 Block Diagram VDD MAX15038 3.3V LDO UVLO CIRCUITRY SHUTDOWN CONTROL EN BST CURRENT-LIMIT COMPARATOR BST SWITCH IN BIAS GENERATOR VOLTAGE REFERENCE THERMAL SHUTDOWN CONTROL LOGIC LX IN SS SOFT-START PGND CURRENT-LIMIT COMPARATOR REFIN OUT ERROR AMPLIFIER 8kΩ PWM COMPARATOR MODE FB CTL1 CTL2 VID VOLTAGECONTROL CIRCUITRY FREQ 1VP-P OSCILLATOR COMP PWRGD SHDN FB COMP CLAMPS 0.9 x VREFIN 10 ______________________________________________________________________________________ GND 4A, 2MHz Step-Down Regulator with Integrated Switches 2.2Ω INPUT 2.9V TO 5.5V OPTIONAL IN C6 22μF C7 0.1μF BST C15 1000pF C10 0.1μF L1 0.47μH MAX15038 OUTPUT 1.8V, 4A LX VDD C5 2.2μF OUT C8 22μF C3 560pF CTL2 C9 0.01μF R3 158Ω CTL1 PGND EN FB FREQ C2 1500pF R2 2.67kΩ REFIN R4 49.9kΩ SS C1 33pF C4 0.022μF COMP MODE GND VDD R1 20kΩ PWRGD Figure 1. 1MHz, All-Ceramic-Capacitor Design with VIN = 2.9V to 5.5V and VOUT = 1.8V Detailed Description The MAX15038 high-efficiency, voltage-mode switching regulator delivers up to 4A of output current. The MAX15038 provides output voltages from 0.6V to 0.9 x VIN from 2.9V to 5.5V input supplies, making it ideal for on-board point-of-load applications. The output voltage accuracy is better than ±1% over load, line, and temperature. The MAX15038 features a wide switching frequency range, allowing the user to achieve all-ceramic-capacitor designs and fast transient responses (see Figure 1). The high operating frequency minimizes the size of external components. The MAX15038 is available in a small (4mm x 4mm), lead-free, 24-pin thin QFN package. The REFIN function makes the MAX15038 an ideal candidate for DDR and tracking power supplies. Using internal low-RDS(ON) (24mΩ for the low-side n-channel MOSFET and 31mΩ for the high-side n-channel MOSFET) maintains high efficiency at both heavy-load and high-switching frequencies. The MAX15038 employs voltage-mode control architecture with a high bandwidth (28MHz) error amplifier. The voltage-mode control architecture allows up to 2MHz switching frequency, reducing board area. The op-amp voltage-error amplifier works with type III compensation to fully utilize the bandwidth of the high-frequency switching to obtain fast transient response. Adjustable soft-start time provides flexibilities to minimize input startup inrush current. An open-drain, power-good (PWRGD) output goes high when VFB reaches 92.5% of VREFIN and VREFIN is greater than 0.54V. The MAX15038 provides option for three modes of operation: regular PWM, PWM mode with monotonic startup into prebiased output, or skip mode with monotonic startup into prebiased output. ______________________________________________________________________________________ 11 MAX15038 Typical Application Circuit MAX15038 4A, 2MHz Step-Down Regulator with Integrated Switches Controller Function The controller logic block is the central processor that determines the duty cycle of the high-side MOSFET under different line, load, and temperature conditions. Under normal operation, where the current-limit and temperature protection are not triggered, the controller logic block takes the output from the PWM comparator and generates the driver signals for both high-side and low-side MOSFETs. The break-before-make logic and the timing for charging the bootstrap capacitors are calculated by the controller logic block. The error signal from the voltage-error amplifier is compared with the ramp signal generated by the oscillator at the PWM comparator and, thus, the required PWM signal is produced. The high-side switch is turned on at the beginning of the oscillator cycle and turns off when the ramp voltage exceeds the VCOMP signal or the current-limit threshold is exceeded. The low-side switch is then turned on for the remainder of the oscillator cycle. Current Limit The internal, high-side MOSFET has a typical 7A peak current-limit threshold. When current flowing out of LX exceeds this limit, the high-side MOSFET turns off and the synchronous rectifier turns on. The synchronous rectifier remains on until the inductor current falls below the low-side current limit. This lowers the duty cycle and causes the output voltage to drop until the current limit is no longer exceeded. The MAX15038 uses a hiccup mode to prevent overheating during short-circuit output conditions. During current limit, if VFB drops below 70% of VREFIN and stays below this level for 12μs or more, the MAX15038 enters hiccup mode. The high-side MOSFET and the synchronous rectifier are turned off and both COMP and REFIN are internally pulled low. If REFIN and SS are connected together, both are pulled low. The part remains in this state for 896 clock cycles and then attempts to restart for 112 clock cycles. If the fault causing current limit has cleared, the part resumes normal operation. Otherwise, the part reenters hiccup mode again. external capacitor from SS to GND. The required capacitance value is determined as: 8μA × tSS C= 0.6V where tSS is the required soft-start time in seconds. The MAX15038 also features an external reference input (REFIN). The IC regulates FB to the voltage applied to REFIN. The internal soft-start is not available when using an external reference. A method of soft-start when using an external reference is shown in Figure 2. Connect REFIN to SS to use the internal 0.6V reference. Use a capacitor of 1nF minimum value at SS. Undervoltage Lockout (UVLO) The UVLO circuitry inhibits switching when VDD is below 2.55V (typ). Once VDD rises above 2.6V (typ), UVLO clears and the soft-start function activates. A 50mV hysteresis is built in for glitch immunity. BST The gate-drive voltage for the high-side, n-channel switch is generated by a flying-capacitor boost circuit. The capacitor between BST and LX is charged from the VIN supply while the low-side MOSFET is on. When the low-side MOSFET is switched off, the voltage of the capacitor is stacked above LX to provide the necessary turn-on voltage for the high-side internal MOSFET. Frequency Select (FREQ) The switching frequency is resistor programmable from 500kHz to 2MHz. Set the switching frequency of the IC with a resistor (RFREQ) connected from FREQ to GND. RFREQ is calculated as: RFREQ = 50kΩ 1 × ( − 0.05μs) 0.95μs fS where fS is the desired switching frequency in Hertz. R1 Soft-Start and REFIN The MAX15038 utilizes an adjustable soft-start function to limit inrush current during startup. An 8μA (typ) current source charges an external capacitor connected to SS. The soft-start time is adjusted by the value of the REFIN R2 C MAX15038 Figure 2. Typical Soft-Start Implementation with External Reference 12 ______________________________________________________________________________________ 4A, 2MHz Step-Down Regulator with Integrated Switches Programming the Output Voltage (CTL1, CTL2) As shown in Table 1, the output voltage is pin programmable by the logic states of CTL1 and CTL2. CTL1 and CTL2 are trilevel inputs: VDD, unconnected, and GND. An 8.06kΩ resistor must be connected between VOUT and FB when CTL1 and CTL2 are connected to GND. The logic states of CTL1 and CTL2 should be programmed only before power-up. Once the part is enabled, CTL1 and CTL2 should not be changed. If the output voltage needs to be reprogrammed, cycle power or EN and reprogram before enabling. The output voltage can be programmed continuously from 0.6V to 90% of VIN by using a resistor-divider network from VOUT to FB to GND as shown in Figure 3a. CTL1 and CTL2 must be connected to GND. Shutdown Mode Drive EN to GND to shut down the IC and reduce quiescent current to a typical value of 10µA. During shutdown, the LX is high impedance. Drive EN high to enable the MAX15038. Thermal Protection Thermal-overload protection limits total power dissipation in the device. When the junction temperature exceeds TJ = +165°C, a thermal sensor forces the device into shutdown, allowing the die to cool. The thermal sensor turns the device on again after the junction temperature cools by 20°C, causing a pulsed output during continuous overload conditions. The soft-start sequence begins after recovery from a thermal-shutdown condition. Applications Information IN and VDD Decoupling To decrease the noise effects due to the high switching frequency and maximize the output accuracy of the MAX15038, decouple IN with a 22µF capacitor from IN to PGND. Also, decouple V DD with a 2.2µF low-ESR ceramic capacitor from VDD to GND. Place these capacitors as close as possible to the IC. Table 1. CTL1 and CTL2 Output Voltage Selection CTL1 CTL2 VOUT (V) VOUT WHEN USING EXTERNAL VREFIN (V) GND GND 0.6* or 0.6 < V OUT 0.9 x VIN** VREFIN* or VREFIN < VOUT 0.9 x VIN** VDD VDD 0.7 VREFIN x (7/6) GND Unconnected 0.8 VREFIN x (4/3) GND VDD 1.0 VREFIN x (5/3) Unconnected GND 1.2 VREFIN x 2 Unconnected Unconnected 1.5 VREFIN x 2.5 Unconnected 1.8 VREFIN x 3 VDD VDD GND 2.0 VREFIN x (10/3) VDD Unconnected 2.5 VREFIN x (25/6) *Install an 8.06kΩ resistor at R3 and do not install a resistor at R4. **Install R3 and R4 following the equation in the Compensation Design section (see Figure 3a). Inductor Selection Choose an inductor with the following equation: L= VOUT × (VIN − VOUT ) fS × VIN × LIR × IOUT(MAX) where LIR is the ratio of the inductor ripple current to full load current at the minimum duty cycle. Choose LIR between 20% to 40% for best performance and stability. Use an inductor with the lowest possible DC resistance that fits in the allotted dimensions. Powdered iron ferrite core types are often the best choice for performance. With any core material, the core must be large enough not to saturate at the current limit of the MAX15038. Output-Capacitor Selection The key selection parameters for the output capacitor are capacitance, ESR, ESL, and voltage-rating requirements. These affect the overall stability, output ripple voltage, and transient response of the DC-DC converter. The output ripple occurs due to variations in the charge stored in the output capacitor, the voltage drop due to the capacitor’s ESR, and the voltage drop due to the capacitor’s ESL. Estimate the output-voltage ripple due to the output capacitance, ESR, and ESL: VRIPPLE = VRIPPLE(C) + VRIPPLE(ESR) + VRIPPLE(ESL) ______________________________________________________________________________________ 13 MAX15038 Power-Good Output (PWRGD) PWRGD is an open-drain output that goes high impedance when VFB is above 0.925 x VREFIN and VREFIN is above 0.54V for at least 48 clock cycles. PWRGD pulls low when V FB is below 90% of V REFIN or V REFIN is below 0.54V for at least 48 clock cycles. PWRGD is low when the IC is in shutdown mode, VDD is below the internal UVLO threshold, or the IC is in thermal shutdown mode. MAX15038 4A, 2MHz Step-Down Regulator with Integrated Switches where the output ripple due to output capacitance, ESR, and ESL is: VRIPPLE(C) = IP −P 8 x COUT x fS VRIPPLE(ESR) = IP −P x ESR I VRIPPLE(ESL) = P −P x ESL tON or: I VRIPPLE(ESL) = P −P x ESL tOFF or whichever is larger. The peak-to-peak inductor current (IP-P) is: IP −P = VIN − VOUT V x OUT fS × L VIN Use these equations for initial output capacitor selection. Determine final values by testing a prototype or an evaluation circuit. A smaller ripple current results in less output-voltage ripple. Since the inductor ripple current is a factor of the inductor value, the output-voltage ripple decreases with larger inductance. Use ceramic capacitors for low ESR and low ESL at the switching frequency of the converter. The ripple voltage due to ESL is negligible when using ceramic capacitors. Load-transient response depends on the selected output capacitance. During a load transient, the output instantly changes by ESR x ΔILOAD. Before the controller can respond, the output deviates further, depending on the inductor and output capacitor values. After a short time, the controller responds by regulating the output voltage back to its predetermined value. The controller response time depends on the closed-loop bandwidth. A higher bandwidth yields a faster response time, preventing the output from deviating further from its regulating value. See the Compensation Design section for more details. Input-Capacitor Selection The input capacitor reduces the current peaks drawn from the input power supply and reduces switching noise in the IC. The total input capacitance must be equal or greater than the value given by the following equation to keep the input-ripple voltage within specification and minimize the high-frequency ripple current being fed back to the input source: CIN _ MIN = 14 D x TS x IOUT VIN − RIPPLE where VIN-RIPPLE is the maximum allowed input ripple voltage across the input capacitors and is recommended to be less than 2% of the minimum input voltage. D is the duty cycle (VOUT/VIN) and TS is the switching period (1/fS). The impedance of the input capacitor at the switching frequency should be less than that of the input source so high-frequency switching currents do not pass through the input source, but are instead shunted through the input capacitor. The input capacitor must meet the ripple current requirement imposed by the switching currents. The RMS input ripple current is given by: IRIPPLE = ILOAD × VOUT × (VIN − VOUT ) VIN where IRIPPLE is the input RMS ripple current. Compensation Design The power transfer function consists of one double pole and one zero. The double pole is introduced by the inductor L and the output capacitor CO. The ESR of the output capacitor determines the zero. The double pole and zero frequencies are given as follows: fP1_ LC = fP2 _ LC = 1 ⎛ R + ESR ⎞ 2π x L x C O x ⎜ O ⎟ ⎝ R O + RL ⎠ f Z _ ESR = 1 2π x ESR x C O where RL is equal to the sum of the output inductor’s DCR (DC resistance) and the internal switch resistance, RDS(ON). A typical value for RDS(ON) is 24mΩ (low-side MOSFET) and 31mΩ (high-side MOSFET). RO is the output load resistance, which is equal to the rated output voltage divided by the rated output current. ESR is the total equivalent series resistance of the output capacitor. If there is more than one output capacitor of the same type in parallel, the value of the ESR in the above equation is equal to that of the ESR of a single output capacitor divided by the total number of output capacitors. The high switching frequency range of the MAX15038 allows the use of ceramic output capacitors. Since the ESR of ceramic capacitors is typically very low, the frequency of the associated transfer function zero is higher than the unity-gain crossover frequency, fC, and the zero cannot be used to compensate for the double pole created by the output filtering inductor and capacitor. The double pole produces a gain drop of 40dB/decade and a phase shift of 180°. The compensation network error ______________________________________________________________________________________ 4A, 2MHz Step-Down Regulator with Integrated Switches f Z1_ EA = 1 2π × R1 × C1 f Z2 _ EA = 1 2π × R3 × C3 fP3 _ EA = 1 2π × R1 × C2 fP2 _ EA = 1 2π × R2 × C3 The above equations are based on the assumptions that C1 >> C2 and R3 >> R2 are true in most applications. Placements of these poles and zeros are determined by the frequencies of the double pole and ESR zero of the power transfer function. It is also a function of the desired close-loop bandwidth. The following section outlines the step-by-step design procedure to calculate the required compensation components for the MAX15038. When the output voltage of the MAX15038 is programmed to a preset voltage, R3 is internal to the IC and R4 does not exist (Figure 3b). When externally programming the MAX15038 (Figure 3a), the output voltage is determined by: R4 = 0.6 × R3 (for VOUT > 0.6V) ( VOUT - 0.6) or: R4 = L VOUT LX COUT MAX15038 R3 OUT R2 C3 FB CTL1 C1 R1 CTL2 COMP R4 (VREFIN × R3) ( VOUT - VREFIN ) if using an external VREFIN, and VOUT > VREFIN. For a 0.6V output or for VOUT = VREFIN, connect an 8.06kΩ resistor from FB to VOUT. The zero-cross frequency of the close-loop, fC, should be between 10% and 20% of the switching frequency, fS. A higher zerocross frequency results in faster transient response. Once fC is chosen, C1 is calculated from the following equation: C2 1.5625 × C1 = a) EXTERNAL RESISTIVE DIVIDER L VOUT LX COUT MAX15038 R2 OUT R3 8kΩ VOLTAGE SELECT CTL1 CTL2 R1 R 2 × π × fC × R3 × (1 + L ) RO where VP-P is the ramp peak-to-peak voltage (1V typ). Due to the underdamped nature of the output LC double pole, set the two zero frequencies of the type III compensation less than the LC double-pole frequency to provide adequate phase boost. Set the two zero frequencies to 80% of the LC double-pole frequency. Hence: C3 FB VIN VP −P R1 = 1 x 0. 8 x C1 L x C O x (R O + ESR) RL + R O C3 = 1 x 0. 8 x R3 L x C O x (R O + ESR) RL + R O C1 COMP C2 b) INTERNAL PRESET VOLTAGES Figure 3. Type III Compensation Network Setting the second compensation pole, f P2_EA , at fZ_ESR yields: ______________________________________________________________________________________ 15 MAX15038 amplifier must compensate for this gain drop and phase shift to achieve a stable high-bandwidth closed-loop system. Therefore, use type III compensation as shown in Figures 3 and 4. Type III compensation possesses three poles and two zeros with the first pole, fP1_EA, located at zero frequency (DC). Locations of other poles and zeros of the type III compensation are given by: MAX15038 4A, 2MHz Step-Down Regulator with Integrated Switches R2 = C O x ESR C3 Set the third compensation pole at 1/2 of the switching frequency. Calculate C2 as follows: 1 C2 = π × R1 × fS The above equations provide application compensation when the zero-cross frequency is significantly higher than the double-pole frequency. When the zero-cross frequency is near the double-pole frequency, the actual zero-cross frequency is higher than the calculated frequency. In this case, lowering the value of R1 reduces the zero-cross frequency. Also, set the third pole of the type III compensation close to the switching frequency if the zero-cross frequency is above 200kHz to boost the phase margin. The recommended range for R3 is 2kΩ to 10kΩ. Note that the loop compensation remains unchanged if only R4’s resistance is altered to set different outputs. MODE Selection The MAX15038 features a mode selection input (MODE) that users can select a functional mode for the device (see Table 2). Forced-PWM Mode Connect MODE to GND to select forced-PWM mode. In forced-PWM mode, the MAX15038 operates at a constant switching frequency (set by the resistor at FREQ terminal) with no pulse skipping. PWM operation starts after a brief settling time when EN goes high. The lowside switch turns on first, charging the bootstrap capacitor to provide the gate-drive voltage for the high-side switch. The low-side switch turns off either at the end of the clock period or once the low-side switch sinks 0.875A current (typ), whichever occurs first. If the lowside switch is turned off before the end of the clock period, the high-side switch is turned on for the remaining part of the time interval until the inductor current reaches 0.58A, or the end of clock cycle is encountered. Starting from the first PWM activity, the sink current threshold is increased through an internal 4-step DAC to reach the current limit of 7A after 128 clock periods. This is done to help a smooth recovery of the regulated voltage even in case of accidental prebiased output in spite of the initial forced-PWM mode selection. 16 Table 2. Mode Selection MODE CONNECTION GND OPERATION MODE Forced PWM Unconnected or VDD/2 Forced PWM. Soft-startup into a prebiased output (monotonic startup). Skip Mode. Soft-startup into a prebiased output (monotonic startup). VDD COMPENSATION TRANSFER FUNCTION OPEN-LOOP GAIN THIRD POLE DOUBLE POLE GAIN (dB) POWER-STAGE TRANSFER FUNCTION SECOND POLE FIRST AND SECOND ZEROS Figure 4. Type III Compensation Illustration Soft-Starting into a Prebiased Output Mode (Monotonic Startup) When MODE is left unconnected or biased to VDD/2, the MAX15038 soft-starts into a prebiased output without discharging the output capacitor. This type of operation is also termed monotonic startup. See the Starting Into Prebiased Output waveforms in the Typical Operating Characteristics section for an example. In monotonic startup mode, both low-side and highside switches remain off to avoid discharging the prebiased output. PWM operation starts when the FB voltage crosses the SS voltage. As in forced-PWM mode, the PWM activity starts with the low-side switch turning on first to build the bootstrap capacitor charge. The MAX15038 is also able to start into prebiased with the output above the nominal set point without abruptly discharging the output, thanks to the sink current control of the low-side switch through a 4-step DAC in 128 clock cycles. Monotonic startup mode automatically switches to forced-PWM mode 4096 clock cycles delay ______________________________________________________________________________________ 4A, 2MHz Step-Down Regulator with Integrated Switches Changing from skip mode to forced-PWM mode and vice-versa can be done at any time. The output capacitor should be large enough to limit the output-voltage overshoot/undershoot due to the settling times to reach different duty-cycle set points corresponding to forcedPWM mode and skip mode at light loads. Skip Mode Careful PCB layout is critical to achieve clean and stable operation. It is highly recommended to duplicate the MAX15038 EV kit layout for optimum performance. If deviation is necessary, follow these guidelines for good PCB layout: Connect MODE to VDD to select skip mode. In skip mode, the MAX15038 switches only as necessary to maintain the output at light loads (not capable of sinking current from the output), but still operates with fixed-frequency (set by the resistor at FREQ terminal) PWM at medium and heavy loads. This maximizes light-load efficiency and reduces the input quiescent current. In case of prolonged high-side idle activity (beyond eight clock cycles), the low-side switch is turned on briefly to rebuild the charge lost in the bootstrap capacitor before the next on-cycle of the high-side switch. In skip mode, the low-side switch is turned off when the inductor current decreases to 0.2A (typ) to ensure no reverse current flowing from the output capacitor and the best conversion efficiency/minimum supply current. The high-side switch minimum on-time is controlled to guarantee that 0.58A current is reached to avoid high frequency bursts at no load conditions and that might cause a rapid increase of the supply current caused by additional switching losses. Even if skip mode is selected at the device turn-on, the monotonic startup mode is internally selected during soft-start. The transition to skip mode is automatically achieved 4096 clock cycles after the voltage at FB increases above 92.5% of VREFIN. PCB Layout Considerations and Thermal Performance 1) Connect input and output capacitors to the power ground plane; connect all other capacitors to the signal ground plane. 2) Place capacitors on VDD, IN, and SS as close as possible to the IC and its corresponding pin using direct traces. Keep power ground plane (connected to PGND) and signal ground plane (connected to GND) separate. 3) Keep the high-current paths as short and wide as possible. Keep the path of switching current short and minimize the loop area formed by LX, the output capacitors, and the input capacitors. 4) Connect IN, LX, and PGND separately to a large copper area to help cool the IC to further improve efficiency and long-term reliability. 5) Ensure all feedback connections are short and direct. Place the feedback resistors and compensation components as close as possible to the IC. 6) Route high-speed switching nodes, such as LX, away from sensitive analog areas (FB, COMP). ______________________________________________________________________________________ 17 MAX15038 after the voltage at FB increases above 92.5% of VREFIN. The additional delay prevents an early transition from monotonic startup to forced-PWM mode during soft-start when a prolonged time constant external REFIN voltage is applied. The maximum allowed soft-start time is 2ms when an external reference is applied at REFIN in the case of starting up into prebiased output. Pin Configuration Chip Information PGND PGND LX LX LX BST PROCESS: BiCMOS TOP VIEW 18 17 16 15 14 13 Package Information PGND 19 12 PWRGD PGND 20 11 FREQ IN 21 10 OUT MAX15038 IN 22 IN 23 3 4 5 6 REFIN SS 2 CTL2 1 CTL1 + VDD EN 24 EP MODE MAX15038 4A, 2MHz Step-Down Regulator with Integrated Switches 9 FB 8 COMP 7 GND For the latest package outline information and land patterns, go to www.maxim-ic.com/packages. Note that a “+”, “#”, or “-” in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status. PACKAGE TYPE PACKAGE CODE OUTLINE NO. LAND PATTERN NO. 24 TQFN-EP T2444+4 21-0139 90-0022 THIN QFN 18 ______________________________________________________________________________________ 4A, 2MHz Step-Down Regulator with Integrated Switches REVISION NUMBER REVISION DATE 0 10/08 1 12/09 2 5/10 3 12/10 DESCRIPTION PAGES CHANGED Initial release — Updated the Typical Operating Characteristics 5 Updated the Electrical Characteristics table, Table 1, and updated the Compensation Design section Corrected the C1 equation in the Compensation Design section (changed 2.5 to 1.5625) 3, 13, 15 15 Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time. Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________ 19 © 2010 Maxim Integrated Products Maxim is a registered trademark of Maxim Integrated Products, Inc. MAX15038 Revision History