VISHAY IL250/ 251/ 252/ ILD250/ 251/ 252 Vishay Semiconductors Optocoupler, Phototransistor Output, AC Input, With Base Connection Single Channel Features • • • • AC or Polarity Insensitive Input Built-in Reverse Polarity Input Protection Improved CTR Symmetry Industry Standard DIP Package • DIN EN 60747-5-2(VDE0884) DIN EN 60747-5-5 pending Available with Option 1 Applications Ideal for AC signal detection and monitoring. Description The IL250/ 251/ 252/ ILD250/ 251/ 252 are bidirectional input optically coupled isolators consisting of two Gallium Arsenide infrared LEDs coupled to a silicon NPN phototransistor per channel. The IL250/ ILD/250 has a minimum CTR of 50 %, the IL251/ ILD251 has a minimum CTR of 20 %, and the IL252/ ILD252 has a minimum CTR of 100 %. The IL250/ IL251/ IL252 are single channel optocouplers. The ILD250/ ILD251/ ILD252 has two isolated channels in a single DIP package. 6 B C/A 2 5 C NC 3 4 E Dual Channel 1 8 E C 2 7 C A 3 6 C C 4 5 E A Agency Approvals • UL File #E52744 System Code H or J • CSA 93751 • BSI IEC60950 IEC60965 A/C 1 i179024 Order Information Part Remarks IL250 CTR > 50 %, Single Channel DIP-6 IL251 CTR > 20 %, Single Channel DIP-6 IL252 CTR > 100 %, Single Channel DIP-6 ILD250 CTR > 50 %, Dual Channel DIP-8 ILD251 CTR > 20 %, Dual Channel DIP-8 ILD252 CTR > 100 %, Dual Channel DIP-8 IL250-X007 CTR > 50 %, Single Channel SMD-6 (option 7) IL250-X009 CTR > 50 %, Single Channel SMD-6 (option 9) IL251-X009 CTR > 20 %, Single Channel SMD-6 (option 9) IL252-X007 CTR > 100 %, Single Channel SMD-6 (option 7) IL252-X009 CTR > 100 %, Single Channel SMD-6 (option 9) ILD250-X009 CTR > 50 %, Dual Channel SMD-6 (option 9) ILD251-X006 CTR > 20 %, Dual Channel DIP-8 400 mil (option 6) ILD251-X007 CTR > 20 %, Dual Channel SMD-6 (option 7) ILD251-X009 CTR > 20 %, Dual Channel SMD-6 (option 9) ILD252-X009 CTR > 100 %, Dual Channel SMD-6 (option 9) For additional information on the available options refer to Option Information. Document Number 83618 Rev. 1.3, 20-Apr-04 www.vishay.com 1 IL250/ 251/ 252/ ILD250/ 251/ 252 VISHAY Vishay Semiconductors Absolute Maximum Ratings Tamb = 25 °C, unless otherwise specified Stresses in excess of the absolute Maximum Ratings can cause permanent damage to the device. Functional operation of the device is not implied at these or any other conditions in excess of those given in the operational sections of this document. Exposure to absolute Maximum Rating for extended periods of the time can adversely affect reliability. Input Parameter Test condition Symbol Value IF 60 mA Pdiss 100 mW 1.33 mw/°C Symbol Value Unit BVCEO 30 V Emitter-base breakdown voltage BVEBO 5.0 V Collector-base breakdown voltage BVCBO 70 V Power dissipation single channel Pdiss 200 mW Power dissipation dual channel Pdiss Forward continuous current Power dissipation Derate linearly from 25 °C Unit Output Parameter Test condition Collector-emitter breakdown voltage 150 mW Derate linearly from 25 °C single channel 2.6 mW/°C Derate linearly from 25 °C dual channel 2.0 mW/°C Coupler Parameter Test condition Symbol Value Unit VISO 5300 VRMS Creepage ≥ 7.0 mm Clearance ≥ 7.0 mm Isolation test voltage (between emitter and detector referred to standard climate 23 °C/50 %RH, DIN 50014) VIO = 500 V, Tamb = 25 °C RIO 1012 Ω VIO = 500 V, Tamb = 100 °C RIO 1011 Ω Total dissipation single channel Ptot 250 mW Total dissipation dual channel Ptot 400 mW Derate linearly from 25 °C single channel 3.3 mW/°C Derate linearly from 25 °C dual channel 5.3 mW/°C °C Isolation resistance Storage temperature Tstg - 55 to + 150 Operating temperature Tamb - 55 to + 100 °C 10 sec. Lead soldering time at 260 °C www.vishay.com 2 Document Number 83618 Rev. 1.3, 20-Apr-04 IL250/ 251/ 252/ ILD250/ 251/ 252 VISHAY Vishay Semiconductors Electrical Characteristics Tamb = 25 °C, unless otherwise specified Minimum and maximum values are testing requirements. Typical values are characteristics of the device and are the result of engineering evaluation. Typical values are for information only and are not part of the testing requirements. Input Parameter Test condition Symbol IF = ± 10 mA Forward voltage Min VF Typ. Max Unit 1.2 1.5 V Max Unit Output Parameter Test condition Collector-emitter breakdown voltage IC = 1.0 mA Symbol Min Typ. BVCEO 30 50 V Emitter-base breakdown voltage IE = 100 µA BVEBO 7.0 10 V Collector-base breakdown voltage IC = 10 µA BVCBO 70 90 V Collector-emitter leakage current VCE = 10 V ICEO 5.0 50 nA Typ. Max Unit 0.4 V Coupler Parameter Test condition Collector-emitter saturation voltage IF = ± 16 mA, IC = 2.0 mA Symbol Min VCEsat Current Transfer Ratio Parameter Test condition IF = ± 10 mA, VCE = 10 V DC Current Transfer Ratio Part Symbol Min ILD250 CTRDC 50 % ILD251 CTRDC 20 % ILD252 CTRDC 100 % Symmetry (CTR @ + 10 mA)/ (CTR @ -10 mA) 0.50 Typ. Max 1.0 Unit 2.0 Typical Characteristics (Tamb = 25 °C unless otherwise specified) 1.5 40 NCTR - Normalized CTR IF - LED Forward Current - mA 60 -55°C 20 25°C 0 85°C -20 -40 -60 -1.5 Normalized to: VCE = 10 V, IF = 10 mA TA= 25°C CTRce(sat) VCE = 0.4 V 1.0 0.5 NCTR(SAT) NCTR 0.0 -1.0 -0.5 0.0 0.5 1.0 1.5 .1 VF - LED Forward Voltage - V iil250_01 Fig. 1 LED Forward Current vs.Forward Voltage Document Number 83618 Rev. 1.3, 20-Apr-04 1 10 100 I F - LED Current - mA iil250_02 Fig. 2 Normalized Non-Saturated and Saturated CTR vs. LED Current www.vishay.com 3 IL250/ 251/ 252/ ILD250/ 251/ 252 VISHAY Vishay Semiconductors 35 Normalized to: VCE = 10 V, IF = 10 mA, TA= 25°C ˇ CTRce(sat) VCE = 0.4 V 1.0 ICE - Collector Current - mA NCTR - Normalized CTR 1.5 TA= 50°C 0.5 NCTR(SAT) NCTR 30 25 50°C 20 15 85°C 10 5 0 0.0 .1 1 10 100 0 10 I F - LED Current - mA iil250_03 50 60 10 5 Normalized to: VCE = 10 V, IF = 10 mA TA= 25°C ICEO - Collector-Emitter - nA NCTR - Normalized CTR 40 30 Fig. 6 Collector-Emitter Current vs. Temperature and LED Current 1.5 1.0 CTRce(sat) VCE = 0.4 V TA= 70°C 0.5 NCTR(SAT) NCTR 0.0 .1 1 10 I F - LED Current - mA 100 iil250_04 10 4 10 3 10 2 VCE = 10 V 10 1 TYPICAL 10 0 10 -1 10 -2 -20 0 20 40 60 80 100 TA - Ambient Temperature - °C iil250_07 Fig. 4 Normalized Non-saturated and saturated CTR vs. LED Current Fig. 7 Collector-Emitter Leakage Current vs.Temp. 1.5 1.5 Normalized to: V CE = 10 V, I F = 10 mA, TA = 25°C CTRce(sat) VCE = 0.4 V 1.0 TA = 85°C 0.5 NCTR(SAT) NCTR 0.0 .1 1 10 IF - LED Current - mA 100 iil250_05 Fig. 5 Normalized Non-saturated and saturated CTR vs. LED Current www.vishay.com NCTRcb - Normalized CTRcb NCTR - Normalized CTR 20 IF - LED Current - mA iil250_06 Fig. 3 Normalized Non-saturated and Saturated CTR vs. LED Current 4 70°C 25°C Normalized to: IF =10 mA VCB = 9.3 V TA = 25°C 1.0 0.5 25°C 50°C 70°C 0.0 .1 iil250_08 1 10 100 IF - LED Current - mA Fig. 8 Normalized CTRcb vs. LED Current and Temperature Document Number 83618 Rev. 1.3, 20-Apr-04 IL250/ 251/ 252/ ILD250/ 251/ 252 VISHAY Vishay Semiconductors 1000 1.5 70°C ICB = 1.0357 *IF ^1.3631 10 1 .1 .01 .1 iil250_09 V CE = 0.4 V 1 10 10 100 1000 I B - Base Current - (µA) 2.5 1000 tpLH - Propagation Delay µs Normalized to: IF = 10 mA, T = 25°C Normalized Photocurrent TA = 25°C Fig. 12 Normalized Saturated HFE vs. Base Current and Temperature Fig. 9 Collector-Base Photocurrent vs. LED Current 1 NIB-TA = -20°C NIb, TA = 25°C NIb, TA = 50°C NIb, TA = 70°C TA = 25°C, IF = 10 mA VCC = 5 V, Vth = 1.5 V tpHL 2.0 100 10 1.5 tpLH 1 .01 1.0 .1 .1 1 10 70°C 1.0 25°C -20°C 100 RL - Collector Load Resistor - kΩ Fig. 13 Propagation Delay vs. Collector Load Resistor Normalized to: I B= 20 µA VCE = 10 V TA = 25°C 50°C 10 iil250_13 Fig. 10 Normalized Photocurrent vs. IF and Temp. 1.2 1 100 F I - LED Current - mA iil250_10 NHFE - Normalized HFE -20°C 0.5 iil250_12 .1 Normalized to: VCE = 10 V I B = 20 µA 0.0 100 1 10 IF - LED Current - mA 1.0 50°C 25°C tpHL - Propagation Delay µs ICB - Collector Base Photocurrent - µA 100 NHFE(sat) -Normalized Saturated HFE TA = 25°C IF 0.8 VO tD tR tPLH 0.6 VTH = 1.5 V tPHL 0.4 1 iil250_11 10 100 Fig. 11 Normalized Non-saturated HFE vs. Base Current and Temperature Rev. 1.3, 20-Apr-04 tF 1000 IB - Base Current - µA Document Number 83618 tS iil250_14 Fig. 14 Switching Timing www.vishay.com 5 IL250/ 251/ 252/ ILD250/ 251/ 252 VISHAY Vishay Semiconductors VCC = 5 V F=10 KHz, DF=50% RL VO IF=10 mA iil250_15 Fig. 15 Switching Schematic Package Dimensions in Inches (mm) 3 2 1 4 5 6 pin one ID .248 (6.30) .256 (6.50) ISO Method A .335 (8.50) .343 (8.70) .039 (1.00) Min. 4° typ. .018 (0.45) .022 (0.55) .300 (7.62) typ. .048 (0.45) .022 (0.55) .130 (3.30) .150 (3.81) 18° .031 (0.80) min. .031 (0.80) .035 (0.90) .100 (2.54) typ. 3°–9° .010 (.25) typ. .300–.347 (7.62–8.81) .114 (2.90) .130 (3.0) i178004 www.vishay.com 6 Document Number 83618 Rev. 1.3, 20-Apr-04 IL250/ 251/ 252/ ILD250/ 251/ 252 VISHAY Vishay Semiconductors Package Dimensions in Inches (mm) pin one ID 4 3 2 1 5 6 7 8 .255 (6.48) .268 (6.81) ISO Method A .379 (9.63) .390 (9.91) .030 (0.76) .045 (1.14) 4° typ. .300 (7.62) typ. .031 (0.79) .130 (3.30) .150 (3.81) .050 (1.27) .018 (.46) .022 (.56) i178006 .020 (.51 ) .035 (.89 ) .100 (2.54) typ. Option 6 Option 7 .407 (10.36) .391 (9.96) .307 (7.8) .291 (7.4) .300 (7.62) TYP. Rev. 1.3, 20-Apr-04 Option 9 .375 (9.53) .395 (10.03) .180 (4.6) .160 (4.1) .0040 (.102) .315 (8.0) MIN. Document Number 83618 3°–9° .008 (.20) .012 (.30) .230(5.84) .110 (2.79) .250(6.35) .130 (3.30) .300 (7.62) ref. .028 (0.7) MIN. .014 (0.35) .010 (0.25) .400 (10.16) .430 (10.92) 10° .331 (8.4) MIN. .406 (10.3) MAX. .0098 (.249) .012 (.30) typ. .020 (.51) .040 (1.02) .315 (8.00) min. 15° max. 18450 www.vishay.com 7 IL250/ 251/ 252/ ILD250/ 251/ 252 VISHAY Vishay Semiconductors Ozone Depleting Substances Policy Statement It is the policy of Vishay Semiconductor GmbH to 1. Meet all present and future national and international statutory requirements. 2. Regularly and continuously improve the performance of our products, processes, distribution and operatingsystems with respect to their impact on the health and safety of our employees and the public, as well as their impact on the environment. It is particular concern to control or eliminate releases of those substances into the atmosphere which are known as ozone depleting substances (ODSs). The Montreal Protocol (1987) and its London Amendments (1990) intend to severely restrict the use of ODSs and forbid their use within the next ten years. Various national and international initiatives are pressing for an earlier ban on these substances. Vishay Semiconductor GmbH has been able to use its policy of continuous improvements to eliminate the use of ODSs listed in the following documents. 1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively 2. Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental Protection Agency (EPA) in the USA 3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively. Vishay Semiconductor GmbH can certify that our semiconductors are not manufactured with ozone depleting substances and do not contain such substances. We reserve the right to make changes to improve technical design and may do so without further notice. Parameters can vary in different applications. All operating parameters must be validated for each customer application by the customer. Should the buyer use Vishay Semiconductors products for any unintended or unauthorized application, the buyer shall indemnify Vishay Semiconductors against all claims, costs, damages, and expenses, arising out of, directly or indirectly, any claim of personal damage, injury or death associated with such unintended or unauthorized use. Vishay Semiconductor GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany Telephone: 49 (0)7131 67 2831, Fax number: 49 (0)7131 67 2423 www.vishay.com 8 Document Number 83618 Rev. 1.3, 20-Apr-04