SSP4N60B/SSS4N60B SSP4N60B/SSS4N60B 600V N-Channel MOSFET General Description Features These N-Channel enhancement mode power field effect transistors are produced using Fairchild’s proprietary, planar, DMOS technology. This advanced technology has been especially tailored to minimize on-state resistance, provide superior switching performance, and withstand high energy pulse in the avalanche and commutation mode. These devices are well suited for high efficiency switch mode power supplies. • • • • • • • 4.0A, 600V, RDS(on) = 2.5Ω @VGS = 10 V Low gate charge ( typical 22 nC) Low Crss ( typical 14 pF) Fast switching 100% avalanche tested Improved dv/dt capability TO-220F package isolation = 4.0kV (Note 6) D G TO-220 G DS GD S SSP Series TO-220F SSS Series S Absolute Maximum Ratings Symbol VDSS ID TC = 25°C unless otherwise noted Parameter Drain-Source Voltage - Continuous (TC = 25°C) Drain Current SSP4N60B SSS4N60B Units V 4.0 4.0 * A 2.5 2.5 * A 16 16 * A 600 - Continuous (TC = 100°C) IDM Drain Current VGSS Gate-Source Voltage ± 30 V EAS Single Pulsed Avalanche Energy (Note 2) 240 mJ IAR Avalanche Current (Note 1) 4.0 A EAR Repetitive Avalanche Energy Peak Diode Recovery dv/dt Power Dissipation (TC = 25°C) (Note 1) 10 5.5 -55 to +150 mJ V/ns W W/°C °C 300 °C dv/dt PD TJ, TSTG TL - Pulsed (Note 1) (Note 3) - Derate above 25°C Operating and Storage Temperature Range Maximum lead temperature for soldering purposes, 1/8" from case for 5 seconds 100 0.8 33 0.26 * Drain current limited by maximum junction temperature Thermal Characteristics Symbol RθJC Parameter Thermal Resistance, Junction-to-Case Max. RθCS Thermal Resistance, Case-to-Sink Typ. 0.5 -- °C/W RθJA Thermal Resistance, Junction-to-Ambient Max. 62.5 62.5 °C/W ©2002 Fairchild Semiconductor Corporation SSP4N60B 1.25 SSS4N60B 3.79 Units °C/W Rev. B, June 2002 Symbol TC = 25°C unless otherwise noted Parameter Test Conditions Min Typ Max Units 600 -- -- V -- 0.65 -- V/°C VDS = 600 V, VGS = 0 V -- -- 10 µA VDS = 480 V, TC = 125°C -- -- 100 µA Gate-Body Leakage Current, Forward VGS = 30 V, VDS = 0 V -- -- 100 nA Gate-Body Leakage Current, Reverse VGS = -30 V, VDS = 0 V -- -- -100 nA 2.0 -- 4.0 V -- 2.0 2.5 Ω -- 4.7 -- S -- 710 920 pF -- 65 85 pF -- 14 19 pF -- 20 50 ns -- 55 120 ns -- 70 150 ns -- 55 120 ns -- 22 29 nC Off Characteristics BVDSS Drain-Source Breakdown Voltage VGS = 0 V, ID = 250 µA ∆BVDSS / ∆TJ Breakdown Voltage Temperature Coefficient ID = 250 µA, Referenced to 25°C IDSS IGSSF IGSSR Zero Gate Voltage Drain Current On Characteristics VGS(th) Gate Threshold Voltage VDS = VGS, ID = 250 µA RDS(on) Static Drain-Source On-Resistance VGS = 10 V, ID = 2.0 A gFS Forward Transconductance VDS = 40 V, ID = 2.0 A (Note 4) Dynamic Characteristics Ciss Input Capacitance Coss Output Capacitance Crss Reverse Transfer Capacitance VDS = 25 V, VGS = 0 V, f = 1.0 MHz Switching Characteristics td(on) Turn-On Delay Time tr Turn-On Rise Time td(off) Turn-Off Delay Time tf Turn-Off Fall Time Qg Total Gate Charge Qgs Gate-Source Charge Qgd Gate-Drain Charge VDD = 300 V, ID = 4.0 A, RG = 25 Ω (Note 4, 5) VDS = 480 V, ID = 4.0 A, VGS = 10 V (Note 4, 5) -- 4.8 -- nC -- 8.5 -- nC Drain-Source Diode Characteristics and Maximum Ratings IS Maximum Continuous Drain-Source Diode Forward Current -- -- 4.0 A ISM -- -- 16 A VSD Maximum Pulsed Drain-Source Diode Forward Current VGS = 0 V, IS = 4.0 A Drain-Source Diode Forward Voltage -- -- 1.4 V trr Reverse Recovery Time Qrr Reverse Recovery Charge VGS = 0 V, IS = 4.0 A, dIF / dt = 100 A/µs (Note 4) -- 330 -- ns -- 2.67 -- µC Notes: 1. Repetitive Rating : Pulse width limited by maximum junction temperature 2. L = 27.5mH, IAS = 4.0A, VDD = 50V, RG = 25 Ω, Starting TJ = 25°C 3. ISD ≤ 4.0A, di/dt ≤ 300A/µs, VDD ≤ BVDSS, Starting TJ = 25°C 4. Pulse Test : Pulse width ≤ 300µs, Duty cycle ≤ 2% 5. Essentially independent of operating temperature 6. Only for back side in Viso = 4.0kV and t = 0.3s ©2002 Fairchild Semiconductor Corporation Rev. B, June 2002 SSP4N60B/SSS4N60B Electrical Characteristics SSP4N60B/SSS4N60B Typical Characteristics VGS 15.0 V 10.0 V 8.0 V 7.0 V 6.5 V 6.0 V 5.5 V Bottom : 5.0 V 1 Top : 1 10 ID, Drain Current [A] ID, Drain Current [A] 10 0 10 -1 10 o 150 C 0 10 o 25 C o -55 C ※ Notes : 1. 250μ s Pulse Test 2. TC = 25℃ ※ Notes : 1. VDS = 40V 2. 250μ s Pulse Test -1 10 -1 0 10 2 1 10 10 4 6 8 10 VGS, Gate-Source Voltage [V] VDS, Drain-Source Voltage [V] Figure 1. On-Region Characteristics Figure 2. Transfer Characteristics 12 1 10 VGS = 10V IDR, Reverse Drain Current [A] RDS(ON) [Ω ], Drain-Source On-Resistance 10 8 VGS = 20V 6 4 2 0 10 150℃ 25℃ ※ Notes : 1. VGS = 0V 2. 250μ s Pulse Test ※ Note : TJ = 25℃ -1 0 0 2 4 6 8 10 12 10 0.2 0.4 0.6 1.0 1.2 1.4 VSD, Source-Drain voltage [V] Figure 3. On-Resistance Variation vs Drain Current and Gate Voltage Figure 4. Body Diode Forward Voltage Variation with Source Current and Temperature 1500 Ciss = Cgs + Cgd (Cds = shorted) Coss = Cds + Cgd Crss = Cgd 12 VDS = 120V 1000 Ciss Coss 500 ※ Notes : 1. VGS = 0 V 2. f = 1 MHz Crss VGS, Gate-Source Voltage [V] 10 Capacitance [pF] 0.8 ID, Drain Current [A] VDS = 300V 8 VDS = 480V 6 4 2 ※ Note : ID = 4.0 A 0 0 -1 10 0 10 1 10 0 4 8 12 16 20 24 VDS, Drain-Source Voltage [V] QG, Total Gate Charge [nC] Figure 5. Capacitance Characteristics Figure 6. Gate Charge Characteristics ©2002 Fairchild Semiconductor Corporation Rev. B, June 2002 SSP4N60B/SSS4N60B Typical Characteristics (Continued) 1.2 3.0 RDS(ON) , (Normalized) Drain-Source On-Resistance BV DSS , (Normalized) Drain-Source Breakdown Voltage 2.5 1.1 1.0 ※ Notes : 1. VGS = 0 V 2. ID = 250 μ A 0.9 0.8 -100 -50 0 50 100 2.0 1.5 1.0 ※ Notes : 1. VGS = 10 V 2. ID = 2.0 A 0.5 150 0.0 -100 200 -50 0 50 100 150 200 o o TJ, Junction Temperature [ C] TJ, Junction Temperature [ C] Figure 7. Breakdown Voltage Variation vs Temperature Figure 8. On-Resistance Variation 2 10 Operation in This Area is Limited by R DS(on) Operation in This Area is Limited by R DS(on) 1 10 1 100 µs 1 ms ID, Drain Current [A] ID, Drain Current [A] 10 10 ms DC 0 10 ※ Notes : DC -1 ※ Notes : o o 1. TC = 25 C o 2. TJ = 150 C 3. Single Pulse 1. TC = 25 C o 2. TJ = 150 C 3. Single Pulse -2 -2 10 100 µs 100 ms 0 10 10 -1 10 1 ms 10 ms 10 0 1 10 2 10 3 10 0 10 10 1 10 2 10 3 10 VDS, Drain-Source Voltage [V] VDS, Drain-Source Voltage [V] Figure 9-1. Maximum Safe Operating Area for SSP4N60B Figure 9-2. Maximum Safe Operating Area for SSS4N60B 4 ID, Drain Current [A] 3 2 1 0 25 50 75 100 125 150 TC, Case Temperature [℃] Figure 10. Maximum Drain Current vs Case Temperature ©2002 Fairchild Semiconductor Corporation Rev. B, June 2002 (t), T h e rm a l R e s p o n s e 10 SSP4N60B/SSS4N60B Typical Characteristics (Continued) 0 D = 0 .5 ※ N o te s : 1 . Z θ J C (t) = 1 .2 5 ℃ /W M a x . 2 . D u ty F a c to r, D = t 1 /t 2 3 . T J M - T C = P D M * Z θ J C (t) 0 .2 0 .1 10 -1 0 .0 5 PDM Z θ JC 0 .0 2 0 .0 1 t1 t2 s in g le p u ls e 10 -2 10 -5 10 -4 10 -3 10 -2 10 -1 10 0 10 1 t 1 , S q u a re W a v e P u ls e D u ra tio n [s e c ] D = 0 .5 10 0 0 .2 ※ N o te s : 1 . Z θ J C (t) = 3 .7 9 ℃ /W M a x . 2 . D u ty F a c to r, D = t 1 /t 2 3 . T J M - T C = P D M * Z θ J C (t) 0 .1 0 .0 5 10 -1 0 .0 2 PDM 0 .0 1 θ JC (t), T h e rm a l R e s p o n s e Figure 11-1. Transient Thermal Response Curve for SSP4N60B Z t1 t2 s in g le p u ls e 10 -2 10 -5 10 -4 10 -3 10 -2 10 -1 10 0 10 1 t 1 , S q u a re W a v e P u ls e D u ra tio n [s e c ] Figure 11-2. Transient Thermal Response Curve for SSS4N60B ©2002 Fairchild Semiconductor Corporation Rev. B, June 2002 SSP4N60B/SSS4N60B Gate Charge Test Circuit & Waveform VGS Same Type as DUT 50KΩ Qg 200nF 12V 10V 300nF VDS VGS Qgs Qgd DUT 3mA Charge Resistive Switching Test Circuit & Waveforms VDS RL VDS 90% VDD VGS RG VGS DUT 10V 10% td(on) tr td(off) t on tf t off Unclamped Inductive Switching Test Circuit & Waveforms BVDSS 1 EAS = ---- L IAS2 -------------------2 BVDSS - VDD L VDS BVDSS IAS ID RG VDD DUT 10V tp ©2002 Fairchild Semiconductor Corporation ID (t) VDS (t) VDD tp Time Rev. B, June 2002 SSP4N60B/SSS4N60B Peak Diode Recovery dv/dt Test Circuit & Waveforms DUT + VDS _ I SD L Driver RG VGS VGS ( Driver ) Same Type as DUT VDD • dv/dt controlled by RG • ISD controlled by pulse period Gate Pulse Width D = -------------------------Gate Pulse Period 10V IFM , Body Diode Forward Current I SD ( DUT ) di/dt IRM Body Diode Reverse Current VDS ( DUT ) Body Diode Recovery dv/dt VSD VDD Body Diode Forward Voltage Drop ©2002 Fairchild Semiconductor Corporation Rev. B, June 2002 TO-220 4.50 ±0.20 2.80 ±0.10 (3.00) +0.10 1.30 –0.05 18.95MAX. (3.70) ø3.60 ±0.10 15.90 ±0.20 1.30 ±0.10 (8.70) (1.46) 9.20 ±0.20 (1.70) 9.90 ±0.20 1.52 ±0.10 0.80 ±0.10 2.54TYP [2.54 ±0.20] 10.08 ±0.30 (1.00) 13.08 ±0.20 ) (45° 1.27 ±0.10 +0.10 0.50 –0.05 2.40 ±0.20 2.54TYP [2.54 ±0.20] 10.00 ±0.20 Dimensions in Millimeters ©2002 Fairchild Semiconductor Corporation Rev. B, June 2002 SSP4N60B/SSS4N60B Package Dimensions (Continued) 3.30 ±0.10 TO-220F 10.16 ±0.20 2.54 ±0.20 ø3.18 ±0.10 (7.00) (1.00x45°) 15.87 ±0.20 15.80 ±0.20 6.68 ±0.20 (0.70) 0.80 ±0.10 ) 0° (3 9.75 ±0.30 MAX1.47 #1 +0.10 0.50 –0.05 2.54TYP [2.54 ±0.20] 2.76 ±0.20 2.54TYP [2.54 ±0.20] 9.40 ±0.20 4.70 ±0.20 0.35 ±0.10 Dimensions in Millimeters ©2002 Fairchild Semiconductor Corporation Rev. B, June 2002 SSP4N60B/SSS4N60B Package Dimensions TRADEMARKS The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks. ACEx™ Bottomless™ CoolFET™ CROSSVOLT™ DOME™ EcoSPARK™ E2CMOSTM EnSignaTM FACT™ FACT Quiet Series™ FAST FASTr™ FRFET™ GlobalOptoisolator™ GTO™ HiSeC™ I2C™ ISOPLANAR™ LittleFET™ MicroFET™ MicroPak™ MICROWIRE™ OPTOLOGIC OPTOPLANAR™ PACMAN™ POP™ Power247™ PowerTrench QFET™ QS™ QT Optoelectronics™ Quiet Series™ SILENT SWITCHER SMART START™ SPM™ Stealth™ SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SyncFET™ TinyLogic™ TruTranslation™ UHC™ UltraFET VCX™ DISCLAIMER FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. LIFE SUPPORT POLICY FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein: 1. Life support devices or systems are devices or 2. A critical component is any component of a life systems which, (a) are intended for surgical implant into support device or system whose failure to perform can the body, or (b) support or sustain life, or (c) whose be reasonably expected to cause the failure of the life failure to perform when properly used in accordance support device or system, or to affect its safety or with instructions for use provided in the labeling, can be effectiveness. reasonably expected to result in significant injury to the user. PRODUCT STATUS DEFINITIONS Definition of Terms Datasheet Identification Product Status Definition Advance Information Formative or In Design This datasheet contains the design specifications for product development. Specifications may change in any manner without notice. Preliminary First Production This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design. No Identification Needed Full Production This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design. Obsolete Not In Production This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only. Rev. H7