N ov e m be r 2 00 7 Absolute Pressure Sensor K P 1 26 N 61 65 D a ta S h e e t R e v 1. 0 2 S e ns e & C on t r ol Edition 2007-11-23 Published by Infineon Technologies AG 81726 München, Germany © 2007 Infineon Technologies AG All Rights Reserved. Legal Disclaimer The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party. Information For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com). Warnings Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office. Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered. Absolute Pressure Sensor KP126N6165 1 1.1 1.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Product Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2 Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 3 Functional Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 4 4.1 4.2 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Transfer Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 5 5.1 5.2 5.3 5.4 5.4.1 5.4.2 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Operating Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Sensor Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Electrical Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Output Voltage versus Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 6.1 6.2 Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Supply Voltage Influence (Ratiometric Error) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Overall Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 7 Application Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 8 Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 9 9.1 9.2 9.3 Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Package Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Cap dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 10.1 10.2 EMC Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 EM Immunity by Direct Power Injection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 EM Immunity by Electrical Fast Transients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 11 Identification Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Data Sheet 3 10 10 11 12 14 14 15 20 20 21 22 Rev 1.02, 2007-11-23 Absolute Pressure Sensor KP126N6165 Absolute Pressure Sensor Revision History: 2007-11-23, Rev 1.02 Previous Version: Rev 0.1 Page Subjects (major changes since last revision) Page 5 Paragraph about pressure range rephrased. Page 15 KP126N6165 input pressure range increased. Page 16 Definition ratiometric error rephrased. Formula added. Previous Version: Rev 0.9 Page 10 KP126N6165 input pressure range increased in figure. Page 18 Changes in recommended application circuit. Page 19 Page 20 Reorganization of chapters package outlines and cap. Previous Version: Rev 1.0 Page 6 Changes according to application circuit for GND connection and digital PINs. Previous Version: Rev 1.01 Page 12 Correction of sensor characteristics output referred noise. We Listen to Your Comments Any information within this document that you feel is wrong, unclear or missing at all? Your feedback will help us to continuously improve the quality of this document. Please send your proposal (including a reference to this document) to: [email protected] Data Sheet 4 Rev 1.02, 2007-11-23 Absolute Pressure Sensor 1 Overview 1.1 Features • • • • • • KP126N6165 Ratiometric analog output Calibrated transfer function High accuracy over a large temperature range Maximum error ± 1.0 kPa “Green” 8-pin SMD housing On Board Diagnostics (OBD) for broken wire detection 1.2 PG-DSOF-8-12 with cap Product Description The KP126N6165 is a miniaturized Absolute Pressure Sensor IC based on the capacitive principle. It is surface micromachined with a monolithic integrated signal conditioning circuit implemented in BiCMOS standard technology. Because the KP126N6165 is a high-precision IC for cost-critical solutions, the chip is packaged in a “green” low-cost SMD housing. The sensor is developed for measurement of barometric air pressure (BAP). High accuracy and high sensitivity enable the deployment of this device in automotive applications as well as in consumer applications. The calibrated transfer function converts a pressure range from 60 kPa to 165 kPa into an analog output voltage between 0.2 V and 4.8 V. Product Name Product Type KP126N6165 Absolute Pressure Sensor SP000264887 Data Sheet Ordering Code 5 Package PG-DSOF-8-12 Rev 1.02, 2007-11-23 Absolute Pressure Sensor KP126N6165 Pin Configuration 2 Pin Configuration TEST 1 8 GND CLOCK / VPROG 2 7 VOUT DATA IN 3 6 GND DATA OUT 4 5 VDD Figure 1 Pin Configuration (top view, figure not to scale) Table 1 Pin Definitions and Functions Pin No. Name Function 1 TEST Test pin 1) 2 CLOCK / VPROG External Clock for Communication / Programming Voltage 1) 3 DATA IN Serial data input pin 4 DATA OUT Serial data output pin 5 VDD Supply Voltage 6 GND 0 Volt circuit ground potential 2) 7 VOUT Analog pressure signal output 8 GND Alternative ground pin 1) 1) 2) 1) Digital pins are used only during calibration and test. It is recommended to leave these PINs floating. 2) It is recommended to connect both GND PINs. Data Sheet 6 Rev 1.02, 2007-11-23 Absolute Pressure Sensor KP126N6165 Functional Block Diagram 3 Functional Block Diagram CLOCK / VPROG VDD Internal Reference Voltage EEPROM (90+22 bit) DATA IN DATA OUT Test and Programming Interface Digital Control Temperature Compensation VOUT A D 1 bit 1 kHz D Linearization 10 bit 12 bit 10 bit A 30kHz V DD Clock Generator OBD GND Figure 2 Data Sheet Block Diagram 7 Rev 1.02, 2007-11-23 Absolute Pressure Sensor KP126N6165 Functional Description 4 Functional Description 4.1 Sensor Pressure is detected in a capacitive way by an array of surface micromachined sensor cells. The sensor cell output is amplified, temperature compensated and linearized to obtain an output voltage that is proportional to the applied pressure. The transfer function for linearization is calculated in the digital part of the sensor using third order polynomial calculation. The transfer function is given by the following parameters: • • • • Minimum and maximum rated pressure Voltage at minimum rated pressure Voltage at maximum rated pressure Sensitivity The output is analog and ratiometric with respect to the supply voltage. All parameters needed for the complete calibration algorithm — such as offset, gain, temperature coefficients of offset and gain, and linearization parameters — are determined after assembly. The parameters are stored in internal registers in the EEPROM of the chip. On Board Diagnostics When the chip is not powered properly, the JFET transistors of the On Board Diagnostics (OBD) stage are selfconducting. For example, if the GND connection is interrupted, the output is drawn strongly to VDD. The microcontroller can set a limit for valid output signals. In the case of an error, the output voltages will be too close to the VDD or GND potential. Data Sheet 8 Rev 1.02, 2007-11-23 Absolute Pressure Sensor KP126N6165 Functional Description 4.2 Transfer Function The KP126N6165 device is fully calibrated on delivery. The sensor has a linear transfer function between the applied pressure and the output signal: V OUT = VDD x (a x P + b) The output is ratiometric. Gain a and Offset b are determined during calibration in order to create the required transfer function. Standard Transfer Function The following calibration is adjusted with the parameters a and b: Table 2 Transfer Function (End Points) Output Voltage @ VDD = VDD;TYP Pressure Symbol Values Unit Symbol Values Unit PIN,MIN PIN,MAX 60 kPa VOUT,MIN VOUT,MAX 0.2 V V OUT (V) 165 4.8 5 4 3 2 1 0 10 30 50 70 90 110 130 150 170 Input Pressure Range Maximum Input Pressure Range Pressure (kPa) Figure 3 Transfer Function Note: The application circuitry determines the current driven by the device and thus has an impact on the diagnostic ranges. Data Sheet 9 Rev 1.02, 2007-11-23 Absolute Pressure Sensor KP126N6165 Electrical Characteristics 5 Electrical Characteristics 5.1 Absolute Maximum Ratings Table 3 Absolute Maximum Ratings Parameter Symbol Supply voltage VDD Values Typ. Max. – 0.3 – 6.5 – 16.5 1h @ 70°C – – for max. 5 minutes – VDD+ 0.3 V – 6.5 Maximum ambient temperature Storage temperature Maximum input pressure range 1) V VOUT TA – 0.3 – 40 125 °C TS PMAX – 60 150 °C Voltage at CLOCK / VPROG Pin VCLK Note / Test Condition Min. – Output voltage Unit 40 5.8 – 600 87 kPa psi 40 5.8 – 165 23.93 kPa psi – – 20 V for max. 5 minutes Voltage at data pins (DATA IN, DATA OUT) VDATA – – 5.0 V ESD robustness 2) VESD, HBM – – ±2 kV Analog pins: VDD, Vout, GND – – ±2 kV Digital pins: CLOCK / VPROG, DATA OUT, DATA IN 1) Reverse polarity; IDD < 300mA 2) HBM: 1.5kΩ, 100pF; according to EIA/JESD22-A114-B (covers MIL STD 883D) Attention: Stresses above the max. values listed here may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Maximum ratings are absolute ratings; exceeding only one of these values may cause irreversible damage to the integrated circuit. Data Sheet 10 Rev 1.02, 2007-11-23 Absolute Pressure Sensor KP126N6165 Electrical Characteristics 5.2 Operating Range The following operating conditions must not be exceeded in order to ensure correct operation of the device. All parameters specified in the following sections refer to these operating conditions, unless otherwise noticed. Table 4 Operating Range Parameter Symbol Min. Typ. Max. Supply voltage VDD 4.5 5 Output current1) IOUT tLT TA PIN –1 15 Lifetime Maximum ambient temperature Input pressure range Values Unit Note / Test Condition 5.5 V VOUT is ratiometric to VDD – 1 mA – – years – 40 125 °C 60 8.7 165 23.93 kPa psi 1) Negative values: Current into device (pull-up resistor used). Positive values: Current out of the device (pull-down resistor used). Data Sheet 11 Rev 1.02, 2007-11-23 Absolute Pressure Sensor KP126N6165 Electrical Characteristics 5.3 Sensor Characteristics Table 5 Sensor Characteristics Parameter Symbol Values Unit Note / Test Condition Output Voltage Range VOUT_R 0.10 4.85 V More information in chapter “Electrical Details” on Page 14 Sensitivity – Supply current S IDD 43.8 – mV/ kPa – 8 10 mA 1) Overall Accuracy Error Err – – ± 1.0 kPa 2) Ratiometric Error ERAT VNOISE –25 – 25 mV 3) – – 2.5 mVRMS @ f > 1kHz 4)) – – 1.8 tR – 1.8 – ms 10% to 90% of the final output value tS tUP tOBD – – 10 ms For full accuracy – – 5 ms 90% of the final output value – – 1 ms OBD Transistor On Resistance RDSON – – 160 Ω Junction temperature7) Tj Rthj-amb – 30.2 134.8 °C Min. Output referred noise Response time 5) Stabilization time 10) Power up time 10) Broken wire: diagnosis response time 6) Thermal resistance Typ. 245 Max. @ f < 1kHz VOUT to VDD or VOUT to GND, @ 25°C K/W 1) 2) 3) 4) 5) 6) A peak supply current of up to 22 mA is possible during power up. More details in chapter “Overall Accuracy” on Page 17 More details in “Supply Voltage Influence (Ratiometric Error)” on Page 16 200 measurements in sequence, bandwidth limited to 40kHz More details in “Timings” on Page 15 In the event of a broken wire (broken VDD line or broken GND line), the output changes to certain voltage levels within the broken wire response time. 7) Tjunction = Tambient + ∆Tc,j (in steady-state condition, typical operation conditions) Data Sheet 12 Rev 1.02, 2007-11-23 Absolute Pressure Sensor KP126N6165 Electrical Characteristics 5.4 Electrical Details 5.4.1 Output Voltage versus Load The output voltage limits depend on: • • the value of the external load resistor the connection mode (pull-up or pull-down) 50 5.00 20 Pull-Down Resistance (k Ω) 10 5 VOUT 4.90 4.85 4.80 4.70 4.60 4.50 0.0 Figure 4 0.1 0.2 0.4 0.6 Source Current (mA) 0.8 1.0 Maximum Output Voltage Limit at Maximum Rated Pressure with Pull-Down Load 20 50 VOUT Pull-Up Resistance (kΩ) 10 5 0.50 0.40 0.30 0.20 0.10 0 0.0 Figure 5 0.1 0.2 0.4 0.6 Sink Current (mA) 0.8 1.0 Minimum Output Voltage Limit at Minimum Rated Pressure with Pull-Up Load Note: The values in the diagrams are valid for the entire specified temperature range. Data Sheet 13 Rev 1.02, 2007-11-23 Absolute Pressure Sensor KP126N6165 Electrical Characteristics 5.4.2 Timings Power-up Time The power-on time tUP is defined as the maximum time between the supply voltage reaching its operating range and the output voltage reaching 90% of its final value. Voltage (V) VDD Pressure 4 100 80 3 VOUT 90% of Final Value tUP 2 60 40 1 20 0 0 0 5 10 15 20 25 Pressure (kPa) 120 5 30 Time (msec) Figure 6 Power-up Time Response Time and Stabilization Time The Response Time tR is defined as the time for the incremental output change to go from 10% to 90% of its final value after a specified pressure step. The Stabilization Time tS is defined as the time required for the output voltage to meet the specified accuracy after the pressure has been stabilized. Voltage (V) Pressure tS within Required Accuracy 4 90% of Final Value 3 VOUT 100 80 60 tR 2 40 10% of Final Value 1 Pressure (kPa) 120 5 20 0 0 0 1 3 2 4 5 Time (msec) Figure 7 Data Sheet Response Time and Stabilization Time 14 Rev 1.02, 2007-11-23 Absolute Pressure Sensor KP126N6165 Accuracy 6 Accuracy The accuracy of the KP126N6165 sensor is influenced by the supply voltage (ratiometric error) and by pressure, temperature and aging. The specified value represents the theoretical value, when the actual pressure is multiplied with the transfer function, see Figure 8. The error equals the deviation between the measured output voltage value and the specified output voltage value. 6.1 Supply Voltage Influence (Ratiometric Error) Definition Ideally, the sensor is ratiometric – the output (VOUT) scales by the same ratio that VDD increases or decreases. The ratiometric error is defined as the difference between the ratio that VDD changed and the ratio that VOUT changed, expressed as a percentage: ERAT (%) = VOUT(@VDD) - V OUT(@5V) x 5V VDD 5V x 100% The output voltage VOUT is ratiometric to VDD , within the range provided in Table 5. VDD must be within the operating range specified in Table 4. Table 6 Ratiometric Error Supply Voltage (V) Max. Ratiometric Error (% of VDD,TYP) VDD,MIN VDD,TYP VDD,MAX ± 0.5 0 ± 0.5 E RAT (%) 0.5 0 -0.5 VDD,MIN VDD,TYP VDD,MAX VDD Figure 8 Data Sheet Ratiometric Error 15 Rev 1.02, 2007-11-23 Absolute Pressure Sensor KP126N6165 Accuracy 6.2 Overall Accuracy Overall accuracy covers the entire pressure and temperature range from all sources of error including the following: • Pressure: Output deviation from target transfer function over the specified pressure range. Temperature: Output deviation over the temperature range. Aging All drifting parameters during operating time. • • Note: Ratiometric signal error is not included in the overall accuracy. For error measurements, the supply voltage must have the nominal value (VDD = VDD,TYP). The error band is determined by three continuous lines through four relevant break points: Table 7 Accuracy Temperature Point (°C) Error (kPa) Error Multiplier – 40 ± 2.0 2 0 ± 1.0 1 85 ± 1.0 1 125 ± 2.0 2 2.5 Error Band (± kPa) 2.0 1.5 1.0 0.5 0.0 -40 0 85 125 T (°C) Figure 9 Data Sheet Overall Error Over Temperature 16 Rev 1.02, 2007-11-23 Absolute Pressure Sensor KP126N6165 Application Circuit 7 Application Circuit It is recommended to protect the KP126N6165 pressure sensor IC against overload voltage and electro-magnetic interference (as shown in Figure 10). The output circuitry acts as a low-pass decoupling filter between the sensor IC output and the A/D input of the microcontroller. Figure 10 Application Circuitry for Evaluation Note: It is recommended to leave digital PINs CLOCK/VPROG, DATA IN and DATA OUT floating. If these PINs are grounded, it is recommended to connect both GND PINs. Table 8 Component Values Component Symbol Values Unit Note Min. Typ. Max. Pull-Up Resistor R1 5 59 100 kΩ Only 1 resistor allowed Pull-Down Resistor R2 5 59 100 kΩ Low Pass Resistor R3 3.9 22 100 kΩ Supply Blocking Capacitor C1 10 100 100 nF Output Blocking Capacitor C2 0 100 100 nF Low Pass Capacitor C3 10 100 100 nF Note: The value of load resistor R1 or R2 determines the current driven by the device. Data Sheet 17 Rev 1.02, 2007-11-23 Absolute Pressure Sensor KP126N6165 Package 8 Package As well as using “green” materials, the PG-DSOF-8-12 package is optimized regarding mechanical stress influences. The package fulfills the solder conditions for lead-free board assembly. In the application it is recommended to ensure that the same pressure is applied to the whole package. The KP126N6165 is supplied with a removable plastic cap (refer to Figure 12). The flat surface of this cap on top of the package allows handling with standard pick-and-place tools. After soldering the device to the printed circuit board (PCB), the cap on the PG-DSOF-8-12 may be removed. When removing the protective cap, care should be taken to avoid damage to the device. In some applications, such as for barometric measurements, it may be appropriate to leave the protective cap on the package after the soldering process. Damage to the gel is prevented. The four splits in the cap side allow a sufficient pressure coupling. Data Sheet 18 Rev 1.02, 2007-11-23 Absolute Pressure Sensor KP126N6165 Package Outlines 9 Package Outlines 9.1 Package Dimensions Figure 11 Package Data Sheet 19 Rev 1.02, 2007-11-23 Absolute Pressure Sensor KP126N6165 Package Outlines 9.2 Cap dimensions Figure 12 Cap Dimensions Data Sheet 20 Rev 1.02, 2007-11-23 Absolute Pressure Sensor KP126N6165 Package Outlines 9.3 Footprint 0.8 1.27 1.2 1.2 8.2 Figure 13 Data Sheet Footprint 21 Rev 1.02, 2007-11-23 Absolute Pressure Sensor KP126N6165 EMC Requirements 10 EMC Requirements 10.1 EM Immunity by Direct Power Injection The KP126N6165 test is compliant to EMC requirements for Direct Power Injection (DPI) described in • • ISO 11452-7 11-95 IEC 62132-3 01-00. 10.2 EM Immunity by Electrical Fast Transients The KP126N6165 test is compliant to EMC requirements for Electrical Fast Transients (EFT) according to the hardware set up shown in Figure 14, which is based on • • • ISO 7637-1 08-00 ISO/CD 7637-2 02-99 ISO 7637-3 11-95 Sensor Figure 14 Data Sheet Hardware Set Up for Electrical Fast Transients 22 Rev 1.02, 2007-11-23 Absolute Pressure Sensor KP126N6165 Identification Code 11 Identification Code Figure 15 1 N 6 Sales Code Sales Code 1 2 6 K P 6 5 Date Code Data Matrix Code (Serial Number) 8 x 18 Dots Dot Size: 0.15 mm x 0.15 mm Y Y W W The identification code is provided in a machine-readable format. The date and sales code are provided in humanreadable format. Sensor Identification Code The marking for the KP126N6165 is on the same side of the package as pin 8. Date code definition: WW: work week (1…53) YY: year (06…99) Data Matrix Code: 8 x 18 Dots, Dot Size: 0.15 mm x 0.15 mm Data Sheet 23 Rev 1.02, 2007-11-23 www.infineon.com Published by Infineon Technologies AG