INFINEON KP125N4115

N ov e m be r 2 00 7
Absolute Pressure Sensor
K P 1 25 N 41 15
D a ta S h e e t
R e v 1. 0 1
S e ns e & C on t r ol
Edition 2007-11-23
Published by
Infineon Technologies AG
81726 München, Germany
© 2007 Infineon Technologies AG
All Rights Reserved.
Legal Disclaimer
The information given in this document shall in no event be regarded as a guarantee of conditions or
characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any
information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties
and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights
of any third party.
Information
For further information on technology, delivery terms and conditions and prices, please contact the nearest
Infineon Technologies Office (www.infineon.com).
Warnings
Due to technical requirements, components may contain dangerous substances. For information on the types in
question, please contact the nearest Infineon Technologies Office.
Infineon Technologies components may be used in life-support devices or systems only with the express written
approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure
of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support
devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain
and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may
be endangered.
Absolute Pressure Sensor
KP125N4115
1
1.1
1.2
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Product Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2
Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3
Functional Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
4
4.1
4.2
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Transfer Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
5
5.1
5.2
5.3
5.4
5.4.1
5.4.2
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Operating Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Sensor Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Electrical Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Output Voltage versus Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6
6.1
6.2
Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Supply Voltage Influence (Ratiometric Error) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Overall Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
7
Application Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
8
Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
9
9.1
9.2
9.3
Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Package Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Cap dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
10
10.1
10.2
EMC Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
EM Immunity by Direct Power Injection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
EM Immunity by Electrical Fast Transients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
11
Identification Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Data Sheet
3
10
10
11
12
13
13
14
19
19
20
21
Rev 1.01, 2007-11-23
Absolute Pressure Sensor
KP125N4115
Absolute Pressure Sensor
Revision History: 2007-11-23, Rev 1.01
Previous Version: Rev 1.0
Page
Subjects (major changes since last revision)
Page 9
Page 11
Clamping added in operating range and transfer function.
We Listen to Your Comments
Any information within this document that you feel is wrong, unclear or missing at all?
Your feedback will help us to continuously improve the quality of this document.
Please send your proposal (including a reference to this document) to:
[email protected]
Data Sheet
4
Rev 1.01, 2007-11-23
Absolute Pressure Sensor
1
Overview
1.1
Features
•
•
•
•
•
•
KP125N4115
Ratiometric analog output
Calibrated transfer function
High accuracy over a large temperature range
Maximum error ± 1.2 kPa
“Green” 8-pin SMD housing
On Board Diagnostics (OBD) for broken wire detection
1.2
PG-DSOF-8-12
with cap
Product Description
The KP125N4115 is a miniaturized Absolute Pressure Sensor IC based on the capacitive principle. It is surface
micromachined with a monolithic integrated signal conditioning circuit implemented in BiCMOS standard
technology. Because the KP125N4115 is a high-precision IC for cost-critical solutions, the chip is packaged in a
“green” low-cost SMD housing. The sensor is developed for measurement of barometric air pressure (BAP).
High accuracy and high sensitivity enable the deployment of this device in automotive applications as well as in
consumer applications.
The calibrated transfer function converts a pressure range from 15 kPa to 115 kPa into an analog output voltage
between 0.2 V and 4.7 V.
Product Name
Product Type
KP125N4115
Absolute Pressure Sensor SP000313541
Data Sheet
Ordering Code
5
Package
PG-DSOF-8-12
Rev 1.01, 2007-11-23
Absolute Pressure Sensor
KP125N4115
Pin Configuration
2
Pin Configuration
TEST
1
8
GND
CLOCK / VPROG
2
7
VOUT
DATA IN
3
6
GND
DATA OUT
4
5
VDD
Figure 1
Pin Configuration (top view, figure not to scale)
Table 1
Pin Definitions and Functions
Pin No.
Name
Function
1
TEST
Test pin 1)
2
CLOCK / VPROG
External Clock for Communication / Programming Voltage 1)
3
DATA IN
Serial data input pin
4
DATA OUT
Serial data output pin
5
VDD
Supply Voltage
6
GND
0 Volt circuit ground potential 2)
7
VOUT
Analog pressure signal output
8
GND
Alternative ground pin
1)
1)
2)
1) Digital pins are used only during calibration and test. It is recommended to leave these PINs floating.
2) It is recommended to connect both GND PINs.
Data Sheet
6
Rev 1.01, 2007-11-23
Absolute Pressure Sensor
KP125N4115
Functional Block Diagram
3
Functional Block Diagram
CLOCK /
VPROG
VDD
Internal
Reference
Voltage
EEPROM
(90+22 bit)
DATA
IN
DATA
OUT
Test and Programming
Interface
Digital
Control
Temperature
Compensation
VOUT
A
D
1 bit
1 kHz
Linearization
D
Clamping
10 bit
12 bit
10 bit
A
30kHz
V DD
Clock
Generator
OBD
GND
Figure 2
Data Sheet
Block Diagram
7
Rev 1.01, 2007-11-23
Absolute Pressure Sensor
KP125N4115
Functional Description
4
Functional Description
4.1
Sensor
Pressure is detected in a capacitive way by an array of surface micromachined sensor cells.
The sensor cell output is amplified, temperature compensated and linearized to obtain an output voltage that is
proportional to the applied pressure.
The transfer function for linearization is calculated in the digital part of the sensor using third order polynomial
calculation.
The transfer function is given by the following parameters:
•
•
•
•
Minimum and maximum rated pressure
Voltage at minimum rated pressure
Voltage at maximum rated pressure
Sensitivity
The output is analog and ratiometric with respect to the supply voltage.
All parameters needed for the complete calibration algorithm — such as offset, gain, temperature coefficients of
offset and gain, and linearization parameters — are determined after assembly. The parameters are stored in
internal registers in the EEPROM of the chip.
On Board Diagnostics
When the chip is not powered properly, the JFET transistors of the On Board Diagnostics (OBD) stage are selfconducting. For example, if the GND connection is interrupted, the output is drawn strongly to VDD. The
microcontroller can set a limit for valid output signals. In the case of an error, the output voltages will be too close
to the VDD or GND potential.
Data Sheet
8
Rev 1.01, 2007-11-23
Absolute Pressure Sensor
KP125N4115
Functional Description
4.2
Transfer Function
The KP125N4115 device is fully calibrated on delivery. The sensor has a linear transfer function between the
applied pressure and the output signal:
V OUT = VDD x (a x P + b)
The output is ratiometric.
Gain a and Offset b are determined during calibration in order to create the required transfer function.
Standard Transfer Function
The following calibration is adjusted with the parameters a and b:
Table 2
Transfer Function (End Points)
Output Voltage @ VDD = VDD;TYP
Pressure
Symbol
Values
Unit
Symbol
Values
Unit
PIN,MIN
PIN,MAX
15
kPa
VOUT,MIN
VOUT,MAX
0.2
V
V OUT (V)
115
4.7
5
4.85
4
3
2
1
0.1
0
10
30
50
70
90
110
130
150
Input Pressure Range
Maximum Input Pressure Range
Pressure (kPa)
Figure 3
Transfer Function
Note: The application circuitry determines the current driven by the device and thus has an impact on the
diagnostic ranges.
Data Sheet
9
Rev 1.01, 2007-11-23
Absolute Pressure Sensor
KP125N4115
Electrical Characteristics
5
Electrical Characteristics
5.1
Absolute Maximum Ratings
Table 3
Absolute Maximum Ratings
Parameter
Symbol
Supply voltage
VDD
Values
Typ.
Max.
– 0.3
–
6.5
–
16.5
1h @ 70°C
–
–
for max. 5 minutes
–
VDD+ 0.3 V
– 6.5
Maximum ambient
temperature
Storage temperature
Maximum input pressure
range
1)
V
VOUT
TA
– 0.3
– 40
125
°C
TS
PMAX
– 60
150
°C
Voltage at CLOCK / VPROG Pin VCLK
Note / Test Condition
Min.
–
Output voltage
Unit
40
5.8
–
600
87
kPa
psi
40
5.8
–
150
21.75
kPa
psi
–
–
20
V
for max. 5 minutes
Voltage at data pins
(DATA IN, DATA OUT)
VDATA
–
–
5.0
V
ESD robustness 2)
VESD, HBM –
–
±2
kV
Analog pins:
VDD, Vout, GND
–
–
±2
kV
Digital pins:
CLOCK / VPROG,
DATA OUT,
DATA IN
1) Reverse polarity; IDD < 300mA
2) HBM: 1.5kΩ, 100pF; according to EIA/JESD22-A114-B (covers MIL STD 883D)
Attention: Stresses above the max. values listed here may cause permanent damage to the device.
Exposure to absolute maximum rating conditions for extended periods may affect device
reliability. Maximum ratings are absolute ratings; exceeding only one of these values may
cause irreversible damage to the integrated circuit.
Data Sheet
10
Rev 1.01, 2007-11-23
Absolute Pressure Sensor
KP125N4115
Electrical Characteristics
5.2
Operating Range
The following operating conditions must not be exceeded in order to ensure correct operation of the device.
All parameters specified in the following sections refer to these operating conditions, unless otherwise noticed.
Table 4
Operating Range
Parameter
Symbol
Min.
Typ.
Max.
Supply voltage
VDD
4.5
5
Output current1)
IOUT
tLT
TA
PIN
–1
15
Lifetime
Maximum ambient temperature
Input pressure range
Values
Unit
Note / Test Condition
5.5
V
VOUT is ratiometric
to VDD
–
1
mA
–
–
years
– 40
125
°C
40
5.8
115
16.7
kPa
psi
1) Negative values: Current into device (pull-up resistor used).
Positive values: Current out of the device (pull-down resistor used).
Data Sheet
11
Rev 1.01, 2007-11-23
Absolute Pressure Sensor
KP125N4115
Electrical Characteristics
5.3
Sensor Characteristics
Table 5
Sensor Characteristics
Parameter
Symbol
Values
Unit
Note / Test Condition
Output Voltage Range
VOUT_R
0.10
4.85
V
More information in chapter
“Electrical Details” on Page 13
Sensitivity
S
IDD
Err
ERAT
VNOISE
–
45
–
mV/ kPa
–
8
10
mA
1)
–
–
± 1.2
kPa
2)
–25
–
25
mV
3)
–
–
2.5
mVRMS
@ f > 1kHz 4))
–
–
1.8
tR
–
1.8
–
ms
10% to 90% of the final output
value
tS
tUP
tOBD
–
–
10
ms
For full accuracy
–
–
5
ms
90% of the final output value
–
–
1
ms
OBD Transistor On
Resistance
RDSON
–
–
160
Ω
Junction temperature7)
Tj
Rthj-amb
VCL,LOW
VCL,HI
– 30.2
134.8
°C
Min.
Supply current
Overall Accuracy Error
Ratiometric Error
Output referred noise
Response time
5)
Stabilization time 5)
Power up time
5)
Broken wire: diagnosis
response time 6)
Thermal resistance
1)
Lower Clamping level
1)
Upper Clamping level
Clamping level error
1)
Clamping level resolution
1)
Typ.
Max.
245
@ f < 1kHz
VOUT to VDD or VOUT to GND,
@ 25°C
K/W
0.097
0.1
0.13
V
Refer to clamping level error
4.82
4.85
4.88
V
∆VCL
–30
–
30
mV
Upper and lower clamping level.
∆VC,R
–
10
15
mV
@ 25°C 8)
1)
2)
3)
4)
5)
6)
A peak supply current of up to 22 mA is possible during power up.
More details in “Overall Accuracy” on Page 16
More details in “Supply Voltage Influence (Ratiometric Error)” on Page 15
200 measurements in sequence, bandwidth limited to 40kHz
More details in “Timings” on Page 14
In the event of a broken wire (broken VDD line or broken GND line), the output changes to certain voltage levels within the
broken wire response time.
7) Tjunction = Tambient + ∆Tc,j (in steady-state condition, typical operation conditions)
8) Clamping level resolution is included in accuracy.
Data Sheet
12
Rev 1.01, 2007-11-23
Absolute Pressure Sensor
KP125N4115
Electrical Characteristics
5.4
Electrical Details
5.4.1
Output Voltage versus Load
The output voltage limits depend on:
•
•
the value of the external load resistor
the connection mode (pull-up or pull-down)
50
5.00
20
Pull-Down Resistance (k Ω)
10
5
VOUT
4.90
4.85
4.80
4.70
4.60
4.50
0.0
Figure 4
0.1
0.2
0.4
0.6
Source Current (mA)
0.8
1.0
Maximum Output Voltage Limit at Maximum Rated Pressure with Pull-Down Load
20
50
VOUT
Pull-Up Resistance (kΩ)
10
5
0.50
0.40
0.30
0.20
0.10
0
0.0
Figure 5
0.1
0.2
0.4
0.6
Sink Current (mA)
0.8
1.0
Minimum Output Voltage Limit at Minimum Rated Pressure with Pull-Up Load
Note: The values in the diagrams are valid for the entire specified temperature range.
Data Sheet
13
Rev 1.01, 2007-11-23
Absolute Pressure Sensor
KP125N4115
Electrical Characteristics
5.4.2
Timings
Power-up Time
The power-on time tUP is defined as the maximum time between the supply voltage reaching its operating range
and the output voltage reaching 90% of its final value.
Voltage (V)
VDD
Pressure
4
100
80
3
VOUT
90% of Final Value
tUP
2
60
40
1
20
0
0
0
5
10
15
20
25
Pressure (kPa)
120
5
30
Time (msec)
Figure 6
Power-up Time
Response Time and Stabilization Time
The Response Time tR is defined as the time for the incremental output change to go from 10% to 90% of its final
value after a specified pressure step.
The Stabilization Time tS is defined as the time required for the output voltage to meet the specified accuracy after
the pressure has been stabilized.
Voltage (V)
Pressure
tS
within Required Accuracy
4
90% of Final Value
3
VOUT
100
80
60
tR
2
40
10% of Final Value
1
Pressure (kPa)
120
5
20
0
0
0
1
3
2
4
5
Time (msec)
Figure 7
Data Sheet
Response Time and Stabilization Time
14
Rev 1.01, 2007-11-23
Absolute Pressure Sensor
KP125N4115
Accuracy
6
Accuracy
The accuracy of the KP125N4115 sensor is influenced by the supply voltage (ratiometric error) and by pressure,
temperature and aging. The specified value represents the theoretical value, when the actual pressure is
multiplied with the transfer function, see Figure 3. The error equals the deviation between the measured output
voltage value and the specified output voltage value.
6.1
Supply Voltage Influence (Ratiometric Error)
Definition
Ideally, the sensor is ratiometric – the output (VOUT) scales by the same ratio that VDD increases or decreases. The
ratiometric error is defined as the difference between the ratio that VDD changed and the ratio that VOUT changed,
expressed as a percentage:
ERAT (%) =
VOUT(@VDD) - V OUT(@5V) x
5V
VDD
5V
x 100%
The output voltage VOUT is ratiometric to VDD , within the range provided in Table 2.
VDD must be within the operating range specified in Table 4.
Table 6
Ratiometric Error
Supply Voltage (V)
Max. Ratiometric Error (% of VDD,TYP)
VDD,MIN
VDD,TYP
VDD,MAX
± 0.5
0
± 0.5
E RAT (%)
0.5
0
-0.5
VDD,MIN
VDD,TYP
VDD,MAX
VDD
Figure 8
Data Sheet
Ratiometric Error
15
Rev 1.01, 2007-11-23
Absolute Pressure Sensor
KP125N4115
Accuracy
6.2
Overall Accuracy
Overall accuracycovers the entire pressure and temperature range from all sources of error including the following:
•
Pressure:
Output deviation from target transfer function over the specified pressure range.
Temperature:
Output deviation over the temperature range.
Aging
All drifting parameters during operating time.
•
•
Note: Ratiometric signal error is not included in the overall accuracy. For error measurements, the supply voltage
must have the nominal value (VDD = VDD,TYP).
The error band is determined by three continuous lines through four relevant break points:
Table 7
Accuracy
Temperature Point (°C)
Error (kPa)
Error Multiplier
– 40
± 2.4
2
0
± 1.2
1
85
± 1.2
1
125
± 2.4
2
2.5
Error Band (± kPa)
2.0
1.5
1.0
0.5
0.0
-40
0
85
125
T (°C)
Figure 9
Data Sheet
Overall Error Over Temperature
16
Rev 1.01, 2007-11-23
Absolute Pressure Sensor
KP125N4115
Application Circuit
7
Application Circuit
It is recommended to protect the KP125N4115 pressure sensor IC against overload voltage and electro-magnetic
interference (as shown in Figure 10).
The output circuitry acts as a low-pass decoupling filter between the sensor IC output and the A/D input of the
microcontroller.
Figure 10
Application Circuitry for Evaluation
Note: It is recommended to leave digital PINs CLOCK/VPROG, DATA IN and DATA OUT floating. If these PINs are
grounded, it is recommended to connect both GND PINs.
Table 8
Component Values
Component
Symbol
Values
Unit
Note
Min.
Typ.
Max.
Pull-Up Resistor
R1
5
59
100
kΩ
Only 1 resistor allowed
Pull-Down Resistor
R2
5
59
100
kΩ
Low Pass Resistor
R3
3.9
22
100
kΩ
Supply Blocking Capacitor
C1
10
100
100
nF
Output Blocking Capacitor
C2
0
100
100
nF
Low Pass Capacitor
C3
10
100
100
nF
Note: The value of load resistor R1 or R2 determines the current driven by the device.
Data Sheet
17
Rev 1.01, 2007-11-23
Absolute Pressure Sensor
KP125N4115
Package
8
Package
As well as using “green” materials, the PG-DSOF-8-12 package is optimized regarding mechanical stress
influences. The package fulfills the solder conditions for lead-free board assembly.
In the application it is recommended to ensure that the same pressure is applied to the whole package.
The KP125N4115 is supplied with a removable plastic cap (refer to Figure 12). The flat surface of this cap on top
of the package allows handling with standard pick-and-place tools.
After soldering the device to the printed circuit board (PCB), the cap on the PG-DSOF-8-12 may be removed.
When removing the protective cap, care should be taken to avoid damage to the device.
In some applications, such as for barometric measurements, it may be appropriate to leave the protective cap on
the package after the soldering process. Damage to the gel is prevented. The four splits in the cap side allow a
sufficient pressure coupling.
Data Sheet
18
Rev 1.01, 2007-11-23
Absolute Pressure Sensor
KP125N4115
Package Outlines
9
Package Outlines
9.1
Package Dimensions
Figure 11
Package
Data Sheet
19
Rev 1.01, 2007-11-23
Absolute Pressure Sensor
KP125N4115
Package Outlines
9.2
Cap dimensions
Figure 12
Cap Dimensions
Data Sheet
20
Rev 1.01, 2007-11-23
Absolute Pressure Sensor
KP125N4115
Package Outlines
9.3
Footprint
0.8
1.27
1.2
1.2
8.2
Figure 13
Data Sheet
Footprint
21
Rev 1.01, 2007-11-23
Absolute Pressure Sensor
KP125N4115
EMC Requirements
10
EMC Requirements
10.1
EM Immunity by Direct Power Injection
The KP125N4115 test is compliant to EMC requirements for Direct Power Injection (DPI) described in
•
•
ISO 11452-7 11-95
IEC 62132-3 01-00.
10.2
EM Immunity by Electrical Fast Transients
The KP125N4115 test is compliant to EMC requirements for Electrical Fast Transients (EFT) according to the
hardware set up shown in Figure 14, which is based on
•
•
•
ISO 7637-1 08-00
ISO/CD 7637-2 02-99
ISO 7637-3 11-95
Sensor
Figure 14
Data Sheet
Hardware Set Up for Electrical Fast Transients
22
Rev 1.01, 2007-11-23
Absolute Pressure Sensor
KP125N4115
Identification Code
11
Identification Code
Figure 15
1
N 4
Sales Code
Sales Code
1 2 5
K P
1 5
Date Code
Data Matrix Code (Serial Number)
8 x 18 Dots
Dot Size: 0.15 mm x 0.15 mm
Y Y W W
The identification code is provided in a machine-readable format. The date and sales code are provided in humanreadable format.
Sensor Identification Code
The marking for the KP125N4115 is on the same side of the package as pin 8.
Date code definition:
WW: work week (1…53)
YY: year (06…99)
Data Matrix Code: 8 x 18 Dots, Dot Size: 0.15 mm x 0.15 mm
Data Sheet
23
Rev 1.01, 2007-11-23
www.infineon.com
Published by Infineon Technologies AG