FREESCALE MRF6V2300NR1

Freescale Semiconductor
Technical Data
Document Number: MRF6V2300N
Rev. 4, 12/2008
RF Power Field Effect Transistors
N - Channel Enhancement - Mode Lateral MOSFETs
Designed primarily for CW large - signal output and driver applications with
frequencies up to 600 MHz. Devices are unmatched and are suitable for use in
industrial, medical and scientific applications.
• Typical CW Performance: VDD = 50 Volts, IDQ = 900 mA,
Pout = 300 Watts, f = 220 MHz
Power Gain — 25.5 dB
Drain Efficiency — 68%
• Capable of Handling 10:1 VSWR, @ 50 Vdc, 220 MHz, 300 Watts CW
Output Power
MRF6V2300NR1
MRF6V2300NBR1
10 - 600 MHz, 300 W, 50 V
LATERAL N - CHANNEL
SINGLE - ENDED
BROADBAND
RF POWER MOSFETs
Features
• Integrated ESD Protection
• Excellent Thermal Stability
• Facilitates Manual Gain Control, ALC and Modulation Techniques
• 200°C Capable Plastic Package
• RoHS Compliant
• In Tape and Reel. R1 Suffix = 500 Units per 44 mm, 13 inch Reel.
CASE 1486 - 03, STYLE 1
TO - 270 WB - 4
PLASTIC
MRF6V2300NR1
CASE 1484 - 04, STYLE 1
TO - 272 WB - 4
PLASTIC
MRF6V2300NBR1
PARTS ARE SINGLE - ENDED
Table 1. Maximum Ratings
Rating
Symbol
Value
Unit
Drain - Source Voltage
VDSS
- 0.5, +110
Vdc
Gate - Source Voltage
VGS
- 0.5, +10
Vdc
Storage Temperature Range
Tstg
- 65 to +150
°C
Case Operating Temperature
TC
150
°C
Operating Junction Temperature
TJ
200
°C
Table 2. Thermal Characteristics
Characteristic
RFin/VGS
RFout/VDS
RFin/VGS
RFout/VDS
(Top View)
Symbol
Thermal Resistance, Junction to Case
Case Temperature 83°C, 300 W CW
RθJC
Value
(1,2)
0.24
Unit
Note: Exposed backside of the package is
the source terminal for the transistor.
°C/W
Figure 1. Pin Connections
Table 3. ESD Protection Characteristics
Test Methodology
Class
Human Body Model (per JESD22 - A114)
2 (Minimum)
Machine Model (per EIA/JESD22 - A115)
A (Minimum)
Charge Device Model (per JESD22 - C101)
IV (Minimum)
1. MTTF calculator available at http://www.freescale.com/rf. Select Software & Tools/Development Tools/Calculators to access
MTTF calculators by product.
2. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.freescale.com/rf.
Select Documentation/Application Notes - AN1955.
© Freescale Semiconductor, Inc., 2007-2008. All rights reserved.
RF Device Data
Freescale Semiconductor
MRF6V2300NR1 MRF6V2300NBR1
1
Table 4. Moisture Sensitivity Level
Test Methodology
Per JESD22 - A113, IPC/JEDEC J - STD - 020
Rating
Package Peak Temperature
Unit
3
260
°C
Table 5. Electrical Characteristics (TC = 25°C unless otherwise noted)
Characteristic
Symbol
Min
Typ
Max
Unit
Zero Gate Voltage Drain Leakage Current
(VDS = 100 Vdc, VGS = 0 Vdc)
IDSS
—
—
2.5
mA
Zero Gate Voltage Drain Leakage Current
(VDS = 50 Vdc, VGS = 0 Vdc)
IDSS
—
—
50
μAdc
V(BR)DSS
110
—
—
Vdc
IGSS
—
—
10
μAdc
Gate Threshold Voltage
(VDS = 10 Vdc, ID = 800 μAdc)
VGS(th)
1
1.63
3
Vdc
Gate Quiescent Voltage
(VDD = 50 Vdc, ID = 900 mAdc, Measured in Functional Test)
VGS(Q)
1.5
2.6
3.5
Vdc
Drain - Source On - Voltage
(VGS = 10 Vdc, ID = 2 Adc)
VDS(on)
—
0.28
—
Vdc
Reverse Transfer Capacitance
(VDS = 50 Vdc ± 30 mV(rms)ac @ 1 MHz, VGS = 0 Vdc)
Crss
—
2.88
—
pF
Output Capacitance
(VDS = 50 Vdc ± 30 mV(rms)ac @ 1 MHz, VGS = 0 Vdc)
Coss
—
120
—
pF
Input Capacitance
(VDS = 50 Vdc, VGS = 0 Vdc ± 30 mV(rms)ac @ 1 MHz)
Ciss
—
268
—
pF
Off Characteristics
Drain - Source Breakdown Voltage
(ID = 150 mA, VGS = 0 Vdc)
Gate - Source Leakage Current
(VGS = 5 Vdc, VDS = 0 Vdc)
On Characteristics
Dynamic Characteristics
Functional Tests (In Freescale Test Fixture, 50 ohm system) VDD = 50 Vdc, IDQ = 900 mA, Pout = 300 W, f = 220 MHz, CW
Power Gain
Gps
24
25.5
27
dB
Drain Efficiency
ηD
66
68
—
%
Input Return Loss
IRL
—
- 16
-9
dB
Typical Performances (In Freescale 27 MHz and 450 MHz Test Fixtures, 50 ohm system) VDD = 50 Vdc, IDQ = 900 mA, Pout = 300 W CW
Power Gain
f = 27 MHz
f = 450 MHz
Gps
—
—
31.4
21.7
—
—
dB
Drain Efficiency
f = 27 MHz
f = 450 MHz
ηD
—
—
61.5
59.1
—
—
%
Input Return Loss
f = 27 MHz
f = 450 MHz
IRL
—
—
- 17.4
- 24.4
—
—
dB
ATTENTION: The MRF6V2300N and MRF6V2300NB are high power devices and special considerations
must be followed in board design and mounting. Incorrect mounting can lead to internal temperatures which
exceed the maximum allowable operating junction temperature. Refer to Freescale Application Note AN3263
(for bolt down mounting) or AN1907 (for solder reflow mounting) PRIOR TO STARTING SYSTEM DESIGN to
ensure proper mounting of these devices.
MRF6V2300NR1 MRF6V2300NBR1
2
RF Device Data
Freescale Semiconductor
B3
B1
VBIAS
+
+
+
C1
C2
C3
L2
C4
C5
C6
C8
Z1
C9
C10 C11 R2
Z2
Z3
Z4
C18
C19
C20
B2
R1
C7
C17
C14
L1
RF
INPUT
VSUPPLY
+
R3
Z5
Z7
Z8
C15
C16
Z10
Z9
Z11
RF
OUTPUT
C23
Z6
C21
C22
C12
DUT
C13
Z1
Z2
Z3
Z4
Z5
Z6, Z7
0.352″
1.567″
0.857″
0.276″
0.434″
0.298″
x 0.082″
x 0.082″
x 0.082″
x 0.220″
x 0.220″
x 0.630″
Microstrip
Microstrip
Microstrip
Microstrip
Microstrip
Microstrip
Z8
Z9
Z10
Z11
PCB
0.085″ x 0.170″ Microstrip
2.275″ x 0.170″ Microstrip
0.945″ x 0.170″ Microstrip
0.443″ x 0.082″ Microstrip
Arlon CuClad 250GX - 0300 - 55 - 22, 0.030″, εr = 2.55
Figure 2. MRF6V2300NR1(NBR1) Test Circuit Schematic — 220 MHz
Table 6. MRF6V2300NR1(NBR1) Test Circuit Component Designations and Values — 220 MHz
Part
Description
Part Number
Manufacturer
B1, B2
95 Ω, 100 MHz Long Ferrite Beads, Surface Mount
2743021447
Fair - Rite
B3
47 Ω, 100 MHz Short Ferrite Bead, Surface Mount
2743019447
Fair - Rite
C1
47 μF, 50 V Electrolytic Capacitor
476KXM063M
Illinois Capacitor
C2
22 μF, 35 V Tantalum Capacitor
T494X226K035AT
Kemet
C3
10 μF, 35 V Tantalum Capacitor
T491D106K035AT
Kemet
C4, C19
10 K pF Chip Capacitors
ATC200B103KT50XT
ATC
C5, C18
20 K pF Chip Capacitors
ATC200B203KT50XT
ATC
C6, C11, C17
0.1 μF, 50 V Chip Capacitors
CDR33BX104AKYS
AVX
C7, C8, C15, C16
2.2 μF, 50 V Chip Capacitors
C1825C225J5RAC
Kemet
C10
220 nF Chip Capacitor
C1206C224Z5VAC
Kemet
C9, C12, C14, C23
1000 pF Chip Capacitors
ATC100B102JT50XT
ATC
C13
82 pF Chip Capacitor
ATC100B820JT500XT
ATC
C20
470 μF, 63 V Electrolytic Capacitor
477KXM063M
Illinois Capacitor
C21
24 pF Chip Capacitor
ATC100B240JT500XT
ATC
C22
39 pF Chip Capacitor
ATC100B390JT500XT
ATC
L1
4 Turn #18 AWG, 0.18″ ID
None
None
L2
82 nH Inductor
1812SMS - 82NJ
Coilcraft
R1
270 Ω, 1/4 W Chip Resistor
CRCW12062700FKTA
Vishay
R2, R3
4.75 Ω, 1/4 W Chip Resistors
CRCW12064R75FKTA
Vishay
MRF6V2300NR1 MRF6V2300NBR1
RF Device Data
Freescale Semiconductor
3
C2
C1
C3
+
B1
B3
C4
C5
C6
C7
+
C19
C18
C17
C20
R1
C10
B2
C15*
C16*
C8
C11
C14
C9
C12
L2
L1
R2 R3
CUT OUT AREA
C13
C23
C22
C21
MRF6V2300N/NB
Rev. 3
* Stacked
Figure 3. MRF6V2300NR1(NBR1) Test Circuit Component Layout — 220 MHz
MRF6V2300NR1 MRF6V2300NBR1
4
RF Device Data
Freescale Semiconductor
TYPICAL CHARACTERISTICS
1000
100
ID, DRAIN CURRENT (AMPS)
C, CAPACITANCE (pF)
Ciss
Coss
100
Measured with ±30 mV(rms)ac @ 1 MHz
VGS = 0 Vdc
10
Crss
10
TC = 25°C
1
1
0
10
20
30
40
50
1
Figure 4. Capacitance versus Drain - Source Voltage
Figure 5. DC Safe Operating Area
28
9
VGS = 3 V
7
6
2.75 V
5
2.63 V
4
2.5 V
3
IDQ = 1350 mA
27
8
Gps, POWER GAIN (dB)
ID, DRAIN CURRENT (AMPS)
100
VDS, DRAIN−SOURCE VOLTAGE (VOLTS)
10
2
1125 mA
26
900 mA
25
650 mA
24
450 mA
23
1
VDD = 50 Vdc
f1 = 220 MHz
2.25 V
22
10
0
0
20
40
60
80
100
120
100
600
DRAIN VOLTAGE (VOLTS)
Pout, OUTPUT POWER (WATTS) CW
Figure 6. DC Drain Current versus Drain Voltage
Figure 7. CW Power Gain versus Output Power
60
−15
VDD = 50 Vdc, f1 = 220 MHz, f2 = 220.1 MHz
−20 Two−Tone Measurements, 100 kHz Tone Spacing
P3dB = 55.76 dBm (377 W)
Pout, OUTPUT POWER (dBm)
IMD, THIRD ORDER INTERMODULATION
DISTORTION (dBc)
10
VDS, DRAIN−SOURCE VOLTAGE (VOLTS)
−25
IDQ = 450 mA
−30
900 mA
−35
650 mA
−40
1125 mA
−45
58
P1dB = 55.04 dBm (319 W)
56
Actual
54
52
VDD = 50 Vdc, IDQ = 900 mA
f = 220 MHz
−50
1350 mA
−55
1
10
100
600
Ideal
50
24
26
28
30
32
34
Pout, OUTPUT POWER (WATTS) PEP
Pin, INPUT POWER (dBm)
Figure 8. Third Order Intermodulation Distortion
versus Output Power
Figure 9. CW Output Power versus Input Power
MRF6V2300NR1 MRF6V2300NBR1
RF Device Data
Freescale Semiconductor
5
TYPICAL CHARACTERISTICS
28
60
TC = −30_C
Pout, OUTPUT POWER (dBm)
Gps, POWER GAIN (dB)
26
24
50 V
22
45 V
40 V
20
35 V
30 V
18
25 V
IDQ = 900 mA
f = 220 MHz
16
VDD = 20 V
50
100
150
200
250
300
350
25_C
400
85_C
50
45
VDD = 50 Vdc
IDQ = 900 mA
f = 220 MHz
40
35
10
14
0
55
15
20
25
30
Pout, OUTPUT POWER (WATTS) CW
Pin, INPUT POWER (dBm)
Figure 10. Power Gain versus Output Power
Figure 11. Power Output versus Power Input
29
35
80
25_C
70
85_C
−30_C
Gps
27
60
TC = −30_C
26
50
25_C
25
40
85_C
30
24
ηD
23
VDD = 50 Vdc
IDQ = 900 mA
f = 220 MHz
22
5
10
100
ηD, DRAIN EFFICIENCY (%)
Gps, POWER GAIN (dB)
28
20
10
600
Pout, OUTPUT POWER (WATTS) CW
Figure 12. Power Gain and Drain Efficiency
versus CW Output Power
65
60
23
55
Gps
22
50
ηD
21
45
20
40
19
18
35
IMD3
30
17
25
VDD = 50 V, Pout = 300 W (Peak)
IDQ = 1100 mA, Tone−Spacing = 100 kHz
16
15
160
170
180
190
200
210
220
230
−28
−29
−30
−31
20
−32
15
240
−33
IMD3 (dBc)
24
ηD, DRAIN EFFICIENCY (%)
Gps, POWER GAIN (dB)
25
f, FREQUENCY (MHz)
Figure 13. VHF Broadcast Broadband Performance
MRF6V2300NR1 MRF6V2300NBR1
6
RF Device Data
Freescale Semiconductor
TYPICAL CHARACTERISTICS
MTTF (HOURS)
108
107
106
105
90
110
130
150
170
190
210
230
250
TJ, JUNCTION TEMPERATURE (°C)
This above graph displays calculated MTTF in hours when the device
is operated at VDD = 50 Vdc, Pout = 300 W CW, and ηD = 68%.
MTTF calculator available at http:/www.freescale.com/rf. Select
Software & Tools/Development Tools/Calculators to access MTTF
calculators by product.
Figure 14. MTTF versus Junction Temperature
MRF6V2300NR1 MRF6V2300NBR1
RF Device Data
Freescale Semiconductor
7
Zsource
f = 220 MHz
Zo = 5 Ω
Zload
f = 220 MHz
VDD = 50 Vdc, IDQ = 900 mA, Pout = 300 W CW
f
MHz
Zsource
W
Zload
W
220
1.23 + j3.69
2.43 + j2.04
Zsource = Test circuit impedance as measured from
gate to ground.
Zload
= Test circuit impedance as measured
from drain to ground.
Output
Matching
Network
Device
Under
Test
Input
Matching
Network
Z
source
Z
load
Figure 15. Series Equivalent Source and Load Impedance — 220 MHz
MRF6V2300NR1 MRF6V2300NBR1
8
RF Device Data
Freescale Semiconductor
C20 C19
L3*, R4*, **
C24
B3
B1
C18
C17
C16
C15
C22
B2
C25
C23
L2*, R3*, **
C14
C11
C13
C12
C21
C2 C1
T1
C7
C3
C10
L1
C5
C4
C8
C6
CUT OUT AREA
R1
R2
T2
C9
27 MHz
272−WB
Rev. 0
Figure 16. MRF6V2300NR1(NBR1) Test Circuit Component Layout — 27 MHz
Table 7. MRF6V2300NR1(NBR1) Test Circuit Component Designations and Values — 27 MHz
Part
Description
Part Number
Manufacturer
B1, B3
95 Ω, 100 MHz Long Ferrite Beads
2743021447
Fair - Rite
B2
47 Ω, 100 MHz Short Ferrite Bead
2743019447
Fair - Rite
C1
160 pF Chip Capacitor
ATC100B161JT500XT
ATC
C2
620 pF Chip Capacitor
ATC100B621JT100XT
ATC
C3, C4, C5
1000 pF Chip Capacitors
ATC100B102JT50XT
ATC
C6
68 pF Chip Capacitor
ATC100B680JT500XT
ATC
C7, C8
330 pF Chip Capacitors
ATC100B331JT200XT
ATC
C9
51 pF Chip Capacitor
ATC100B510GT500XT
ATC
C10
240 pF Chip Capacitor
ATC100B241JT200XT
ATC
C11, C16, C24
0.1 μF Chip Capacitors
CDR33BX104AKYS
Kemet
C12, C17
22K pF Chip Capacitors
ATC200B223KT50XT
ATC
C13
0.22 μF, 50 V Chip Capacitor
C1812C224K5RAC - TU
Kemet
C14, C15
2.2 μF, 50 V Chip Capacitors
C1825C225J5RAC - TU
Kemet
C18, C21, C22
39K pF Chip Capacitors
ATC200B393KT50XT
ATC
C19
10 μF, 35 V Tantalum Capacitor
T491D106K035AT
Kemet
C20
22 μF, 35 V Tantalum Capacitor
T491X226K035AT
Kemet
C23
0.01 μF, 100 V Chip Capacitor
C1825C103K1GAC - TU
Kemet
C25
470 μF, 63 V Electrolytic Capacitor
MCGPR63V477M13X26 - RH
Multicomp
L1
100 nH Inductor
1812SMS - R10J
Coilcraft
L2*
11 Turn, #16 AWG, Inductor, Hand Wound, 0.375″ ID
Copper Wire
L3*
9 Turn, #16 AWG, Inductor, Hand Wound, 0.375″ ID
Copper Wire
R1, R2
3.3 Ω, 1/4 W Chip Resistors
RK73B2ETTD3R3J
KOA
R3*, **
110 Ω, 1/4 W Carbon Resistor
MCCFR0W4J0111A50
Multicomp
R4*, **
510 Ω, 1/2 W Carbon Resistor
MCRC1/2G511JT - RH
Multicomp
T1
RF600 Transformer 16:1 Impedance Ratio
RF600LF - 16
Comm Concepts
T2
RF1000 Transformer 9:1 Impedance Ratio
RF1000LF - 9
Comm Concepts
* Leaded components mounted over traces.
** Resistor is mounted at center of inductor coil.
MRF6V2300NR1 MRF6V2300NBR1
RF Device Data
Freescale Semiconductor
9
C6 C7 C8
C20 C21 C22
B1
C23
L5
B2
L3
C3
C19
C4 C5
C10
C18
C9
C16
L4
C2
C24
L1
C13 C14
L2
CUT OUT AREA
C1
C11 C12
C15
C17
450 MHz
272−WB
Rev. 2
Figure 17. MRF6V2300NR1(NBR1) Test Circuit Component Layout — 450 MHz
Table 8. MRF6V2300NR1(NBR1) Test Circuit Component Designations and Values — 450 MHz
Part
Description
Part Number
Manufacturer
B1, B2
95 Ω, 100 MHz Long Ferrite Beads
2743021447
Fair - Rite
C1, C9, C17, C18
240 pF Chip Capacitors
ATC100B241JT50XT
ATC
C2
47 pF Chip Capacitor
ATC100B470JT500XT
ATC
C3
47 μF, 50 V Electrolytic Capacitor
476KXM050M
Illinois Capacitor
C4
22 μF, 35 V Tantalum Capacitor
T491X226K035AT
Kemet
C5
10 μF, 35 V Tantalum Capacitor
T491D106K035AT
Kemet
C6, C20
10K pF Chip Capacitors
ATC200B103KT50XT
ATC
C7, C21
20K pF Chip Capacitors
ATC200B203KT50XT
ATC
C8, C22
0.1 μF Chip Capacitors
CDR33BX104AKYS
AVX
C10, C19
2.2 μF, 50 V Chip Capacitors
C1825C225J5RAC - TU
Kemet
C11, C13
15 pF Chip Capacitors
ATC100B150JT500XT
Kemet
C12, C14
6.8 pF Chip Capacitors
ATC100B6R8JT500XT
ATC
C15
9.1 pF Chip Capacitor
ATC100B120JT500XT
ATC
C16
10 pF Chip Capacitor
ATC100B100JT500XT
ATC
C23
470 μF, 63 V Electrolytic Capacitor
MCGPR63V477M13X26 - RH
Multicomp
C24
2 pF Chip Capacitor
ATC100B2R0JT500X
ATC
L1
12.5 nH Inductor
A04TJLC
Coilcraft
L2
8 nH Inductor
A03TKLC
Coilcraft
L3, L5
82 nH, Midi Springs
1812SMS - 82NJLC
Coilcraft
L4
2 Turn, #18 AWG, Inductor, Hand Wound, 0.090″ ID
Copper Wire
PCB
Arlon CuClad 250GX - 0300 - 55 - 22, 0.030″, εr = 2.55
DS2054
DS Electronics
MRF6V2300NR1 MRF6V2300NBR1
10
RF Device Data
Freescale Semiconductor
Zo = 25 Ω
f = 27 MHz
Zsource
f = 450 MHz
Zsource
f = 450 MHz
Zload
f = 27 MHz
Zload
VDD = 50 Vdc, IDQ = 900 mA, Pout = 300 W CW
f
MHz
Zsource
W
Zload
W
27
10.5 + j19.0
3.50 + j0.19
450
0.50 + j1.37
1.25 + j0.99
Zsource = Test circuit impedance as measured from
gate to ground.
Zload
= Test circuit impedance as measured from
drain to ground.
Output
Matching
Network
Device
Under
Test
Input
Matching
Network
Z
source
Z
load
Figure 18. Series Equivalent Source and Load Impedance — 27, 450 MHz
MRF6V2300NR1 MRF6V2300NBR1
RF Device Data
Freescale Semiconductor
11
PACKAGE DIMENSIONS
MRF6V2300NR1 MRF6V2300NBR1
12
RF Device Data
Freescale Semiconductor
MRF6V2300NR1 MRF6V2300NBR1
RF Device Data
Freescale Semiconductor
13
MRF6V2300NR1 MRF6V2300NBR1
14
RF Device Data
Freescale Semiconductor
MRF6V2300NR1 MRF6V2300NBR1
RF Device Data
Freescale Semiconductor
15
MRF6V2300NR1 MRF6V2300NBR1
16
RF Device Data
Freescale Semiconductor
MRF6V2300NR1 MRF6V2300NBR1
RF Device Data
Freescale Semiconductor
17
PRODUCT DOCUMENTATION
Refer to the following documents to aid your design process.
Application Notes
• AN1907: Solder Reflow Attach Method for High Power RF Devices in Plastic Packages
• AN1955: Thermal Measurement Methodology of RF Power Amplifiers
• AN3263: Bolt Down Mounting Method for High Power RF Transistors and RFICs in Over - Molded Plastic Packages
Engineering Bulletins
• EB212: Using Data Sheet Impedances for RF LDMOS Devices
REVISION HISTORY
The following table summarizes revisions to this document.
Revision
Date
Description
0
Feb. 2007
• Initial Release of Data Sheet
1
Feb. 2007
• Added Fig. 1, Pin Connections, p. 1
• Removed footnote references listed for Operating Junction Temperature, Table 1, Maximum Ratings, p. 1
• Added Max value to Power Gain, Table 5, Functional Tests, p. 2
2
May 2007
• Corrected Test Circuit Component part numbers in Table 6, Component Designations and Values for C4,
C19, C5, C18, C9, C12, C14, and C23, p. 3
3
Jan. 2008
• Increased operating frequency to 600 MHz, p. 1
• Added Case Operating Temperature limit to the Maximum Ratings table and set limit to 150°C, p. 1
• Corrected Ciss test condition to indicate AC stimulus on the VGS connection versus the VDS connection,
Dynamic Characteristics table, p. 2
• Updated PCB information to show more specific material details, Fig. 2, Test Circuit Schematic, p. 3
• Replaced Case Outline 1486 - 03, Issue C, with 1486 - 03, Issue D, p. 9 - 11. Added pin numbers 1 through 4
on Sheet 1.
• Replaced Case Outline 1484 - 04, Issue D, with 1484 - 04, Issue E, p. 12 - 14. Added pin numbers 1 through
4 on Sheet 1, replacing Gate and Drain notations with Pin 1 and Pin 2 designations.
4
Dec. 2008
• Added Typical Performances table for 27 MHz, 450 MHz applications, p. 2
• Added Figs. 16 and 17, Test Circuit Component Layout - 27 MHz and 450 MHz, and Tables 7 and 8, Test
Circuit Component Designations and Values - 27 MHz and 450 MHz, p. 9, 10
• Added Fig. 18, Series Equivalent Source and Load Impedance for 27 MHz, 450 MHz, p. 11
MRF6V2300NR1 MRF6V2300NBR1
18
RF Device Data
Freescale Semiconductor
How to Reach Us:
Home Page:
www.freescale.com
Web Support:
http://www.freescale.com/support
USA/Europe or Locations Not Listed:
Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
1 - 800 - 521 - 6274 or +1 - 480 - 768 - 2130
www.freescale.com/support
Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.freescale.com/support
Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1 - 8 - 1, Shimo - Meguro, Meguro - ku,
Tokyo 153 - 0064
Japan
0120 191014 or +81 3 5437 9125
[email protected]
Asia/Pacific:
Freescale Semiconductor China Ltd.
Exchange Building 23F
No. 118 Jianguo Road
Chaoyang District
Beijing 100022
China
+86 10 5879 8000
[email protected]
For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
1 - 800 - 441 - 2447 or +1 - 303 - 675 - 2140
Fax: +1 - 303 - 675 - 2150
[email protected]
Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductor products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any integrated
circuits or integrated circuits based on the information in this document.
Freescale Semiconductor reserves the right to make changes without further notice to
any products herein. Freescale Semiconductor makes no warranty, representation or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of
any product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters that may be
provided in Freescale Semiconductor data sheets and/or specifications can and do
vary in different applications and actual performance may vary over time. All operating
parameters, including “Typicals”, must be validated for each customer application by
customer’s technical experts. Freescale Semiconductor does not convey any license
under its patent rights nor the rights of others. Freescale Semiconductor products are
not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life,
or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.
Freescalet and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.
© Freescale Semiconductor, Inc. 2007-2008. All rights reserved.
MRF6V2300NR1 MRF6V2300NBR1
Document
Number:
RF
Device
Data MRF6V2300N
Rev. 4, 12/2008
Freescale
Semiconductor
19