Freescale Semiconductor Technical Data Document Number: MRF6V2300N Rev. 4, 12/2008 RF Power Field Effect Transistors N - Channel Enhancement - Mode Lateral MOSFETs Designed primarily for CW large - signal output and driver applications with frequencies up to 600 MHz. Devices are unmatched and are suitable for use in industrial, medical and scientific applications. • Typical CW Performance: VDD = 50 Volts, IDQ = 900 mA, Pout = 300 Watts, f = 220 MHz Power Gain — 25.5 dB Drain Efficiency — 68% • Capable of Handling 10:1 VSWR, @ 50 Vdc, 220 MHz, 300 Watts CW Output Power MRF6V2300NR1 MRF6V2300NBR1 10 - 600 MHz, 300 W, 50 V LATERAL N - CHANNEL SINGLE - ENDED BROADBAND RF POWER MOSFETs Features • Integrated ESD Protection • Excellent Thermal Stability • Facilitates Manual Gain Control, ALC and Modulation Techniques • 200°C Capable Plastic Package • RoHS Compliant • In Tape and Reel. R1 Suffix = 500 Units per 44 mm, 13 inch Reel. CASE 1486 - 03, STYLE 1 TO - 270 WB - 4 PLASTIC MRF6V2300NR1 CASE 1484 - 04, STYLE 1 TO - 272 WB - 4 PLASTIC MRF6V2300NBR1 PARTS ARE SINGLE - ENDED Table 1. Maximum Ratings Rating Symbol Value Unit Drain - Source Voltage VDSS - 0.5, +110 Vdc Gate - Source Voltage VGS - 0.5, +10 Vdc Storage Temperature Range Tstg - 65 to +150 °C Case Operating Temperature TC 150 °C Operating Junction Temperature TJ 200 °C Table 2. Thermal Characteristics Characteristic RFin/VGS RFout/VDS RFin/VGS RFout/VDS (Top View) Symbol Thermal Resistance, Junction to Case Case Temperature 83°C, 300 W CW RθJC Value (1,2) 0.24 Unit Note: Exposed backside of the package is the source terminal for the transistor. °C/W Figure 1. Pin Connections Table 3. ESD Protection Characteristics Test Methodology Class Human Body Model (per JESD22 - A114) 2 (Minimum) Machine Model (per EIA/JESD22 - A115) A (Minimum) Charge Device Model (per JESD22 - C101) IV (Minimum) 1. MTTF calculator available at http://www.freescale.com/rf. Select Software & Tools/Development Tools/Calculators to access MTTF calculators by product. 2. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.freescale.com/rf. Select Documentation/Application Notes - AN1955. © Freescale Semiconductor, Inc., 2007-2008. All rights reserved. RF Device Data Freescale Semiconductor MRF6V2300NR1 MRF6V2300NBR1 1 Table 4. Moisture Sensitivity Level Test Methodology Per JESD22 - A113, IPC/JEDEC J - STD - 020 Rating Package Peak Temperature Unit 3 260 °C Table 5. Electrical Characteristics (TC = 25°C unless otherwise noted) Characteristic Symbol Min Typ Max Unit Zero Gate Voltage Drain Leakage Current (VDS = 100 Vdc, VGS = 0 Vdc) IDSS — — 2.5 mA Zero Gate Voltage Drain Leakage Current (VDS = 50 Vdc, VGS = 0 Vdc) IDSS — — 50 μAdc V(BR)DSS 110 — — Vdc IGSS — — 10 μAdc Gate Threshold Voltage (VDS = 10 Vdc, ID = 800 μAdc) VGS(th) 1 1.63 3 Vdc Gate Quiescent Voltage (VDD = 50 Vdc, ID = 900 mAdc, Measured in Functional Test) VGS(Q) 1.5 2.6 3.5 Vdc Drain - Source On - Voltage (VGS = 10 Vdc, ID = 2 Adc) VDS(on) — 0.28 — Vdc Reverse Transfer Capacitance (VDS = 50 Vdc ± 30 mV(rms)ac @ 1 MHz, VGS = 0 Vdc) Crss — 2.88 — pF Output Capacitance (VDS = 50 Vdc ± 30 mV(rms)ac @ 1 MHz, VGS = 0 Vdc) Coss — 120 — pF Input Capacitance (VDS = 50 Vdc, VGS = 0 Vdc ± 30 mV(rms)ac @ 1 MHz) Ciss — 268 — pF Off Characteristics Drain - Source Breakdown Voltage (ID = 150 mA, VGS = 0 Vdc) Gate - Source Leakage Current (VGS = 5 Vdc, VDS = 0 Vdc) On Characteristics Dynamic Characteristics Functional Tests (In Freescale Test Fixture, 50 ohm system) VDD = 50 Vdc, IDQ = 900 mA, Pout = 300 W, f = 220 MHz, CW Power Gain Gps 24 25.5 27 dB Drain Efficiency ηD 66 68 — % Input Return Loss IRL — - 16 -9 dB Typical Performances (In Freescale 27 MHz and 450 MHz Test Fixtures, 50 ohm system) VDD = 50 Vdc, IDQ = 900 mA, Pout = 300 W CW Power Gain f = 27 MHz f = 450 MHz Gps — — 31.4 21.7 — — dB Drain Efficiency f = 27 MHz f = 450 MHz ηD — — 61.5 59.1 — — % Input Return Loss f = 27 MHz f = 450 MHz IRL — — - 17.4 - 24.4 — — dB ATTENTION: The MRF6V2300N and MRF6V2300NB are high power devices and special considerations must be followed in board design and mounting. Incorrect mounting can lead to internal temperatures which exceed the maximum allowable operating junction temperature. Refer to Freescale Application Note AN3263 (for bolt down mounting) or AN1907 (for solder reflow mounting) PRIOR TO STARTING SYSTEM DESIGN to ensure proper mounting of these devices. MRF6V2300NR1 MRF6V2300NBR1 2 RF Device Data Freescale Semiconductor B3 B1 VBIAS + + + C1 C2 C3 L2 C4 C5 C6 C8 Z1 C9 C10 C11 R2 Z2 Z3 Z4 C18 C19 C20 B2 R1 C7 C17 C14 L1 RF INPUT VSUPPLY + R3 Z5 Z7 Z8 C15 C16 Z10 Z9 Z11 RF OUTPUT C23 Z6 C21 C22 C12 DUT C13 Z1 Z2 Z3 Z4 Z5 Z6, Z7 0.352″ 1.567″ 0.857″ 0.276″ 0.434″ 0.298″ x 0.082″ x 0.082″ x 0.082″ x 0.220″ x 0.220″ x 0.630″ Microstrip Microstrip Microstrip Microstrip Microstrip Microstrip Z8 Z9 Z10 Z11 PCB 0.085″ x 0.170″ Microstrip 2.275″ x 0.170″ Microstrip 0.945″ x 0.170″ Microstrip 0.443″ x 0.082″ Microstrip Arlon CuClad 250GX - 0300 - 55 - 22, 0.030″, εr = 2.55 Figure 2. MRF6V2300NR1(NBR1) Test Circuit Schematic — 220 MHz Table 6. MRF6V2300NR1(NBR1) Test Circuit Component Designations and Values — 220 MHz Part Description Part Number Manufacturer B1, B2 95 Ω, 100 MHz Long Ferrite Beads, Surface Mount 2743021447 Fair - Rite B3 47 Ω, 100 MHz Short Ferrite Bead, Surface Mount 2743019447 Fair - Rite C1 47 μF, 50 V Electrolytic Capacitor 476KXM063M Illinois Capacitor C2 22 μF, 35 V Tantalum Capacitor T494X226K035AT Kemet C3 10 μF, 35 V Tantalum Capacitor T491D106K035AT Kemet C4, C19 10 K pF Chip Capacitors ATC200B103KT50XT ATC C5, C18 20 K pF Chip Capacitors ATC200B203KT50XT ATC C6, C11, C17 0.1 μF, 50 V Chip Capacitors CDR33BX104AKYS AVX C7, C8, C15, C16 2.2 μF, 50 V Chip Capacitors C1825C225J5RAC Kemet C10 220 nF Chip Capacitor C1206C224Z5VAC Kemet C9, C12, C14, C23 1000 pF Chip Capacitors ATC100B102JT50XT ATC C13 82 pF Chip Capacitor ATC100B820JT500XT ATC C20 470 μF, 63 V Electrolytic Capacitor 477KXM063M Illinois Capacitor C21 24 pF Chip Capacitor ATC100B240JT500XT ATC C22 39 pF Chip Capacitor ATC100B390JT500XT ATC L1 4 Turn #18 AWG, 0.18″ ID None None L2 82 nH Inductor 1812SMS - 82NJ Coilcraft R1 270 Ω, 1/4 W Chip Resistor CRCW12062700FKTA Vishay R2, R3 4.75 Ω, 1/4 W Chip Resistors CRCW12064R75FKTA Vishay MRF6V2300NR1 MRF6V2300NBR1 RF Device Data Freescale Semiconductor 3 C2 C1 C3 + B1 B3 C4 C5 C6 C7 + C19 C18 C17 C20 R1 C10 B2 C15* C16* C8 C11 C14 C9 C12 L2 L1 R2 R3 CUT OUT AREA C13 C23 C22 C21 MRF6V2300N/NB Rev. 3 * Stacked Figure 3. MRF6V2300NR1(NBR1) Test Circuit Component Layout — 220 MHz MRF6V2300NR1 MRF6V2300NBR1 4 RF Device Data Freescale Semiconductor TYPICAL CHARACTERISTICS 1000 100 ID, DRAIN CURRENT (AMPS) C, CAPACITANCE (pF) Ciss Coss 100 Measured with ±30 mV(rms)ac @ 1 MHz VGS = 0 Vdc 10 Crss 10 TC = 25°C 1 1 0 10 20 30 40 50 1 Figure 4. Capacitance versus Drain - Source Voltage Figure 5. DC Safe Operating Area 28 9 VGS = 3 V 7 6 2.75 V 5 2.63 V 4 2.5 V 3 IDQ = 1350 mA 27 8 Gps, POWER GAIN (dB) ID, DRAIN CURRENT (AMPS) 100 VDS, DRAIN−SOURCE VOLTAGE (VOLTS) 10 2 1125 mA 26 900 mA 25 650 mA 24 450 mA 23 1 VDD = 50 Vdc f1 = 220 MHz 2.25 V 22 10 0 0 20 40 60 80 100 120 100 600 DRAIN VOLTAGE (VOLTS) Pout, OUTPUT POWER (WATTS) CW Figure 6. DC Drain Current versus Drain Voltage Figure 7. CW Power Gain versus Output Power 60 −15 VDD = 50 Vdc, f1 = 220 MHz, f2 = 220.1 MHz −20 Two−Tone Measurements, 100 kHz Tone Spacing P3dB = 55.76 dBm (377 W) Pout, OUTPUT POWER (dBm) IMD, THIRD ORDER INTERMODULATION DISTORTION (dBc) 10 VDS, DRAIN−SOURCE VOLTAGE (VOLTS) −25 IDQ = 450 mA −30 900 mA −35 650 mA −40 1125 mA −45 58 P1dB = 55.04 dBm (319 W) 56 Actual 54 52 VDD = 50 Vdc, IDQ = 900 mA f = 220 MHz −50 1350 mA −55 1 10 100 600 Ideal 50 24 26 28 30 32 34 Pout, OUTPUT POWER (WATTS) PEP Pin, INPUT POWER (dBm) Figure 8. Third Order Intermodulation Distortion versus Output Power Figure 9. CW Output Power versus Input Power MRF6V2300NR1 MRF6V2300NBR1 RF Device Data Freescale Semiconductor 5 TYPICAL CHARACTERISTICS 28 60 TC = −30_C Pout, OUTPUT POWER (dBm) Gps, POWER GAIN (dB) 26 24 50 V 22 45 V 40 V 20 35 V 30 V 18 25 V IDQ = 900 mA f = 220 MHz 16 VDD = 20 V 50 100 150 200 250 300 350 25_C 400 85_C 50 45 VDD = 50 Vdc IDQ = 900 mA f = 220 MHz 40 35 10 14 0 55 15 20 25 30 Pout, OUTPUT POWER (WATTS) CW Pin, INPUT POWER (dBm) Figure 10. Power Gain versus Output Power Figure 11. Power Output versus Power Input 29 35 80 25_C 70 85_C −30_C Gps 27 60 TC = −30_C 26 50 25_C 25 40 85_C 30 24 ηD 23 VDD = 50 Vdc IDQ = 900 mA f = 220 MHz 22 5 10 100 ηD, DRAIN EFFICIENCY (%) Gps, POWER GAIN (dB) 28 20 10 600 Pout, OUTPUT POWER (WATTS) CW Figure 12. Power Gain and Drain Efficiency versus CW Output Power 65 60 23 55 Gps 22 50 ηD 21 45 20 40 19 18 35 IMD3 30 17 25 VDD = 50 V, Pout = 300 W (Peak) IDQ = 1100 mA, Tone−Spacing = 100 kHz 16 15 160 170 180 190 200 210 220 230 −28 −29 −30 −31 20 −32 15 240 −33 IMD3 (dBc) 24 ηD, DRAIN EFFICIENCY (%) Gps, POWER GAIN (dB) 25 f, FREQUENCY (MHz) Figure 13. VHF Broadcast Broadband Performance MRF6V2300NR1 MRF6V2300NBR1 6 RF Device Data Freescale Semiconductor TYPICAL CHARACTERISTICS MTTF (HOURS) 108 107 106 105 90 110 130 150 170 190 210 230 250 TJ, JUNCTION TEMPERATURE (°C) This above graph displays calculated MTTF in hours when the device is operated at VDD = 50 Vdc, Pout = 300 W CW, and ηD = 68%. MTTF calculator available at http:/www.freescale.com/rf. Select Software & Tools/Development Tools/Calculators to access MTTF calculators by product. Figure 14. MTTF versus Junction Temperature MRF6V2300NR1 MRF6V2300NBR1 RF Device Data Freescale Semiconductor 7 Zsource f = 220 MHz Zo = 5 Ω Zload f = 220 MHz VDD = 50 Vdc, IDQ = 900 mA, Pout = 300 W CW f MHz Zsource W Zload W 220 1.23 + j3.69 2.43 + j2.04 Zsource = Test circuit impedance as measured from gate to ground. Zload = Test circuit impedance as measured from drain to ground. Output Matching Network Device Under Test Input Matching Network Z source Z load Figure 15. Series Equivalent Source and Load Impedance — 220 MHz MRF6V2300NR1 MRF6V2300NBR1 8 RF Device Data Freescale Semiconductor C20 C19 L3*, R4*, ** C24 B3 B1 C18 C17 C16 C15 C22 B2 C25 C23 L2*, R3*, ** C14 C11 C13 C12 C21 C2 C1 T1 C7 C3 C10 L1 C5 C4 C8 C6 CUT OUT AREA R1 R2 T2 C9 27 MHz 272−WB Rev. 0 Figure 16. MRF6V2300NR1(NBR1) Test Circuit Component Layout — 27 MHz Table 7. MRF6V2300NR1(NBR1) Test Circuit Component Designations and Values — 27 MHz Part Description Part Number Manufacturer B1, B3 95 Ω, 100 MHz Long Ferrite Beads 2743021447 Fair - Rite B2 47 Ω, 100 MHz Short Ferrite Bead 2743019447 Fair - Rite C1 160 pF Chip Capacitor ATC100B161JT500XT ATC C2 620 pF Chip Capacitor ATC100B621JT100XT ATC C3, C4, C5 1000 pF Chip Capacitors ATC100B102JT50XT ATC C6 68 pF Chip Capacitor ATC100B680JT500XT ATC C7, C8 330 pF Chip Capacitors ATC100B331JT200XT ATC C9 51 pF Chip Capacitor ATC100B510GT500XT ATC C10 240 pF Chip Capacitor ATC100B241JT200XT ATC C11, C16, C24 0.1 μF Chip Capacitors CDR33BX104AKYS Kemet C12, C17 22K pF Chip Capacitors ATC200B223KT50XT ATC C13 0.22 μF, 50 V Chip Capacitor C1812C224K5RAC - TU Kemet C14, C15 2.2 μF, 50 V Chip Capacitors C1825C225J5RAC - TU Kemet C18, C21, C22 39K pF Chip Capacitors ATC200B393KT50XT ATC C19 10 μF, 35 V Tantalum Capacitor T491D106K035AT Kemet C20 22 μF, 35 V Tantalum Capacitor T491X226K035AT Kemet C23 0.01 μF, 100 V Chip Capacitor C1825C103K1GAC - TU Kemet C25 470 μF, 63 V Electrolytic Capacitor MCGPR63V477M13X26 - RH Multicomp L1 100 nH Inductor 1812SMS - R10J Coilcraft L2* 11 Turn, #16 AWG, Inductor, Hand Wound, 0.375″ ID Copper Wire L3* 9 Turn, #16 AWG, Inductor, Hand Wound, 0.375″ ID Copper Wire R1, R2 3.3 Ω, 1/4 W Chip Resistors RK73B2ETTD3R3J KOA R3*, ** 110 Ω, 1/4 W Carbon Resistor MCCFR0W4J0111A50 Multicomp R4*, ** 510 Ω, 1/2 W Carbon Resistor MCRC1/2G511JT - RH Multicomp T1 RF600 Transformer 16:1 Impedance Ratio RF600LF - 16 Comm Concepts T2 RF1000 Transformer 9:1 Impedance Ratio RF1000LF - 9 Comm Concepts * Leaded components mounted over traces. ** Resistor is mounted at center of inductor coil. MRF6V2300NR1 MRF6V2300NBR1 RF Device Data Freescale Semiconductor 9 C6 C7 C8 C20 C21 C22 B1 C23 L5 B2 L3 C3 C19 C4 C5 C10 C18 C9 C16 L4 C2 C24 L1 C13 C14 L2 CUT OUT AREA C1 C11 C12 C15 C17 450 MHz 272−WB Rev. 2 Figure 17. MRF6V2300NR1(NBR1) Test Circuit Component Layout — 450 MHz Table 8. MRF6V2300NR1(NBR1) Test Circuit Component Designations and Values — 450 MHz Part Description Part Number Manufacturer B1, B2 95 Ω, 100 MHz Long Ferrite Beads 2743021447 Fair - Rite C1, C9, C17, C18 240 pF Chip Capacitors ATC100B241JT50XT ATC C2 47 pF Chip Capacitor ATC100B470JT500XT ATC C3 47 μF, 50 V Electrolytic Capacitor 476KXM050M Illinois Capacitor C4 22 μF, 35 V Tantalum Capacitor T491X226K035AT Kemet C5 10 μF, 35 V Tantalum Capacitor T491D106K035AT Kemet C6, C20 10K pF Chip Capacitors ATC200B103KT50XT ATC C7, C21 20K pF Chip Capacitors ATC200B203KT50XT ATC C8, C22 0.1 μF Chip Capacitors CDR33BX104AKYS AVX C10, C19 2.2 μF, 50 V Chip Capacitors C1825C225J5RAC - TU Kemet C11, C13 15 pF Chip Capacitors ATC100B150JT500XT Kemet C12, C14 6.8 pF Chip Capacitors ATC100B6R8JT500XT ATC C15 9.1 pF Chip Capacitor ATC100B120JT500XT ATC C16 10 pF Chip Capacitor ATC100B100JT500XT ATC C23 470 μF, 63 V Electrolytic Capacitor MCGPR63V477M13X26 - RH Multicomp C24 2 pF Chip Capacitor ATC100B2R0JT500X ATC L1 12.5 nH Inductor A04TJLC Coilcraft L2 8 nH Inductor A03TKLC Coilcraft L3, L5 82 nH, Midi Springs 1812SMS - 82NJLC Coilcraft L4 2 Turn, #18 AWG, Inductor, Hand Wound, 0.090″ ID Copper Wire PCB Arlon CuClad 250GX - 0300 - 55 - 22, 0.030″, εr = 2.55 DS2054 DS Electronics MRF6V2300NR1 MRF6V2300NBR1 10 RF Device Data Freescale Semiconductor Zo = 25 Ω f = 27 MHz Zsource f = 450 MHz Zsource f = 450 MHz Zload f = 27 MHz Zload VDD = 50 Vdc, IDQ = 900 mA, Pout = 300 W CW f MHz Zsource W Zload W 27 10.5 + j19.0 3.50 + j0.19 450 0.50 + j1.37 1.25 + j0.99 Zsource = Test circuit impedance as measured from gate to ground. Zload = Test circuit impedance as measured from drain to ground. Output Matching Network Device Under Test Input Matching Network Z source Z load Figure 18. Series Equivalent Source and Load Impedance — 27, 450 MHz MRF6V2300NR1 MRF6V2300NBR1 RF Device Data Freescale Semiconductor 11 PACKAGE DIMENSIONS MRF6V2300NR1 MRF6V2300NBR1 12 RF Device Data Freescale Semiconductor MRF6V2300NR1 MRF6V2300NBR1 RF Device Data Freescale Semiconductor 13 MRF6V2300NR1 MRF6V2300NBR1 14 RF Device Data Freescale Semiconductor MRF6V2300NR1 MRF6V2300NBR1 RF Device Data Freescale Semiconductor 15 MRF6V2300NR1 MRF6V2300NBR1 16 RF Device Data Freescale Semiconductor MRF6V2300NR1 MRF6V2300NBR1 RF Device Data Freescale Semiconductor 17 PRODUCT DOCUMENTATION Refer to the following documents to aid your design process. Application Notes • AN1907: Solder Reflow Attach Method for High Power RF Devices in Plastic Packages • AN1955: Thermal Measurement Methodology of RF Power Amplifiers • AN3263: Bolt Down Mounting Method for High Power RF Transistors and RFICs in Over - Molded Plastic Packages Engineering Bulletins • EB212: Using Data Sheet Impedances for RF LDMOS Devices REVISION HISTORY The following table summarizes revisions to this document. Revision Date Description 0 Feb. 2007 • Initial Release of Data Sheet 1 Feb. 2007 • Added Fig. 1, Pin Connections, p. 1 • Removed footnote references listed for Operating Junction Temperature, Table 1, Maximum Ratings, p. 1 • Added Max value to Power Gain, Table 5, Functional Tests, p. 2 2 May 2007 • Corrected Test Circuit Component part numbers in Table 6, Component Designations and Values for C4, C19, C5, C18, C9, C12, C14, and C23, p. 3 3 Jan. 2008 • Increased operating frequency to 600 MHz, p. 1 • Added Case Operating Temperature limit to the Maximum Ratings table and set limit to 150°C, p. 1 • Corrected Ciss test condition to indicate AC stimulus on the VGS connection versus the VDS connection, Dynamic Characteristics table, p. 2 • Updated PCB information to show more specific material details, Fig. 2, Test Circuit Schematic, p. 3 • Replaced Case Outline 1486 - 03, Issue C, with 1486 - 03, Issue D, p. 9 - 11. Added pin numbers 1 through 4 on Sheet 1. • Replaced Case Outline 1484 - 04, Issue D, with 1484 - 04, Issue E, p. 12 - 14. Added pin numbers 1 through 4 on Sheet 1, replacing Gate and Drain notations with Pin 1 and Pin 2 designations. 4 Dec. 2008 • Added Typical Performances table for 27 MHz, 450 MHz applications, p. 2 • Added Figs. 16 and 17, Test Circuit Component Layout - 27 MHz and 450 MHz, and Tables 7 and 8, Test Circuit Component Designations and Values - 27 MHz and 450 MHz, p. 9, 10 • Added Fig. 18, Series Equivalent Source and Load Impedance for 27 MHz, 450 MHz, p. 11 MRF6V2300NR1 MRF6V2300NBR1 18 RF Device Data Freescale Semiconductor How to Reach Us: Home Page: www.freescale.com Web Support: http://www.freescale.com/support USA/Europe or Locations Not Listed: Freescale Semiconductor, Inc. Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 1 - 800 - 521 - 6274 or +1 - 480 - 768 - 2130 www.freescale.com/support Europe, Middle East, and Africa: Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support Japan: Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1 - 8 - 1, Shimo - Meguro, Meguro - ku, Tokyo 153 - 0064 Japan 0120 191014 or +81 3 5437 9125 [email protected] Asia/Pacific: Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China +86 10 5879 8000 [email protected] For Literature Requests Only: Freescale Semiconductor Literature Distribution Center P.O. Box 5405 Denver, Colorado 80217 1 - 800 - 441 - 2447 or +1 - 303 - 675 - 2140 Fax: +1 - 303 - 675 - 2150 [email protected] Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document. Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals”, must be validated for each customer application by customer’s technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part. Freescalet and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2007-2008. All rights reserved. MRF6V2300NR1 MRF6V2300NBR1 Document Number: RF Device Data MRF6V2300N Rev. 4, 12/2008 Freescale Semiconductor 19