, 吟动 ••••.•.•.•••••..••••.••••••.•••••.•...•.•..•.........•.........•..•...••...•.....•......•.•......••.... MAXIM <<热门>> IC 数据手册之五十六 56-94.10 lVIAX712jlVIAX713 NicdfNiMH 电池快速充电控制器 -武汉力源单片机技术研究所 .................................................................................................................... 一、概述 1. 1 -般说明 MAX'江2 和 MAX713 控制一个较最高电池电压至少高 1 伏的直流潭,对 Nicd 和 NiMH 电;也进行快 速充电,,--1 到 16 节的串联电池组可用 4C 的速率充电。电压斜率检测模致转换器、定时器和温度 窗口比较器决定充电的完成。 MA.."r712/MAX713 通过桓上 +5V 井联隐压器,由直流;军提供功率,并 且在不充电时,从电池吸取 5μA 的最大电流。当给电池的负载持续提供功率时低电位侧电流 敏感电阻允许对电池充电电流进行调整。 通过检测零电压斜率, MAX712 结束快速充电。而 MAX713 使用负电压斜率检测技术。两种器 件都为 16 脚 DIP 封装和 so 封装。需要的外部元件仅为一个外部功率晶体管、一个阻塞二极管、 三个电阻和三个电容。 对高功率充电要求 I MAX712jMAX713 可构成开关模式电池充电嚣,以减小功耗。 1. 2 应用 *电池供电的设备 膝上、笔记本和掌上计算机 手提式终端 峰窝电话(移动电话) , *便携式消费产品 便携式立体声录放机、 CD 布l lé 绳电话 1. 3 管脚排列 TOPVIEW 百哥哥 I s 一 DIPISO 图1 MAX712jMAX713 管拇排列图 . 191 ‘. , • .1: :i. '.持点 .对 NiMH 或 Nicd 电池快速充电 ·可对 1 到 16 节串联电池充电 拿钱性或开关模式功率控制 *当充电时,提供电池的负载 *从 C/3 到 4C 的速率快速充电: * C/16 涓流充电速率 *由快速充电自动切换到涓流充电 *电压斜率、'温度和定时器快速充电关断 *当不充电时,电池 5μA 的最大泄漏电流 * +5V 并联调整器驱动外部逻辑 订购借患 1. 5 PART TEMP. ftANGE MAX112CPE O'C to +70'C MAX71 2C SE MAX712Ci。 MAX712εPE I PIR-P ACKAGE PART T'EMP.RANGE DIP MAX713CPE o.C to +70.C O'C 10 + 70'C . 16 NarrowSO MAX 7t3CSE o'Cto +70'C 16 NarrowSO O'C to +70'C Dice' MAX713C;。 o.C to +70.C DicS" -40 'C to +8S.C 16 Plastic D1P MAX713EPE 4O'Cto +85.C 16 阴astic MAX712ESE -40'C to +85.C 16 NarrowSO MAX713ESE 4O'Cto +8S'C 16 NarrowS。 MAX712MJE 毛S.C 16CERD1 P- MAX713MJE δS'C 16CεRDIP- PIN-P ACKAGE 16 问 astic to + 12S.C , to + 125.C 16 同âsticOIP *与厂家协商器件技术参数 ~ "与厂家联系,按 MIL-STD-883 处理· 典型工作电路 1. 6 优削 " • 、存在与马挝、 图2 M.AX 712 /MAX713 典型工作电路图 二、特性 2.1 极限参鼓 V. JlJBATT- , F ...;.O.3V , +可V 192 , DIP BATT- 至~GND 士 1V BATT... 至~BAT_T ,... 二一一没有提供功率时一一一一_.- ----…一一 ...-.提供功率时-----…← ι ←0___- 一 士 20 V. -高于王 20V 或者二巨 2VX( 编程电池数) DRY 到 GND 工也--飞二 二0.3V , FASTCHG到 BATT2:一、一一一二-一→-一 -0.3V , +1 2V 其它所有引脚到 GND-←一一'一一一 -0.3V , (V...+O. 3V) V... 电流 100mA DRV 电流♂午一一----…_. 100mA → REF 电流一一一? +20V 10m A 连续功率损艳 (T A 叶 70'C) 塑料 DIP 封装 (+70'C 以上以 10. 53mW(C 递减) 842皿W 牵 so 封装机70'C 以上以 8.7mWrc 递减} - 696mW ' 陶瓷DIP 封装( +70'C 以上以 10.00mWrc 递减) 800mW 工作温度范围 岛iAX71-C- 0'C-+70'C MAX71一E- -40'C-+86'C MAX71-MJE -65 'C -+ 125 'C 贮存温度范围 -66 'C -+150'C 引脚温度(焊接, 10 秒) +300 -C;:: ~ 强度超出上述极限参数可能导致器件的永久性损坏。这些仅仅是极限参数,并不意味着在 这些条件下或在任何其它超出技术规范规定的工作条件的情况下器件筒'自效地工作。延长在极 限参数条件下的工作时间可能影响器件的可靠性。 -2.2 电特性 句~ ". J (Iv...""lOmA, TA=TIOQm. -TlOQax ,除非另有说明。参见典型工作电路。所有测量都是相对于 BATT- ,而不是相对于q.NDo) CONOπ10NS PtRAMETER 5mA<1vφ< 2OmA V.如 ;\/oltage : • 、 τyp , MAX UN 3 A-TT + Leal<age V+ ..OV. BAτf... '" 1 内 SATT + Resistance wi世, PowerOn PGMO.. PGMl .. BATT-. BATT..... 30V ‘ .- 唾← ITIJ电 旨, ~ 5 恤 矗 -拥‘ k!l ,0.5 C1 Capac:tan ce ~-J"" C2 Capac:tan ce . REFVoltage 'Unéervcltage lockout αηA ~. Percell TLO. TEMP !nput Range 补1 1. TLO Cffset Voltage (Note 2) 1.25 CN < TB:I P < 'ZV. TEMP 、10阳ge VUM叮Ac∞ rac:'I rising 咱、-, η;1 , TLO. TEMP. VUMIT Input 6ias Current 工 , 0.35 fnput Range. 将~1. μF :-:'5 1.96 < IREF < l mA .I snA < =lOPRG V < aknA. PGMO = ?GMl .. V+ ^- I~有R ITs l v _5" 一 Iv. (No te 1) ξxt9mal VUMIT MIN- 币 4.5 气, .…A 卢;二--'喃 5.5 与 -气三 nF --:::-:_- 2.04 V ~~' 0.5 V ,>,二丁- 之5 V o 2 V -10. 10 mV 1 j1Ä 组 mV …, 、 -晶田 .1 (也 "晶苟, .哑严, -30 • 忖二:气 .• 193 , ,再 续上表 CONCπlONS MIN TYP 1.6 1.55 1.7 V 225 250 275 mV PGM3 疆、'1+ 1. S 3.9 7.0 PGM3 =- ooen 4.5 7.8 12.0 PARAMETER 字~ IntemaJ Cðll Vcl 恒geümit Fast毛h缸geVSENSE 1 VUM !T =V+ '. Trickl e-C:"I arge VSENSE PGM3 = REF I PGM3=- BA了T- 12.0 15.6 20.0 26.0 31.3 38.0 . mV -2.5 V(Nooittaag3H) lope sem后Vlty o MAX712 percell TimerAc∞racy .电,、5 lS Baiwttdeeryr-Avoccltaugrz e to ceti-Voltage Divider Accuracy -1.5 1.5 % , I Vc阳 =10V OAV SJnk Current FASiC衬G UNπ's MAX Low Current VFÄSTC l-1 G = Q.4V FASTCHG High Current VFASfCHG = 10V 扭 rnA 2 mA 1.4 AJD IncutR甜伊 % JO μA 1.9 v Z Ti攻击f 京et生 t雪 'aah汪 L1531fzL曹 位 f T古 E a--2·r' ' 4dj 、v 户丘吉F笔 注 1: V+端给 MAXπ2月{AX'丸3 提供功率。因为 V:... 并联调整到+5V, R1 必;#j足梅小以允许至少 5mA的 电流进入 V+ 端。 注 2: THI 和 TLO 比较器的偏移电压以 TEMP 为参考 a 注 3: t A 为 A/D 采样的间隔时间(见表 3) 。 典型工作特性 2.3 .. (T A =+25'C ,除非另有说明) , 20 20 10 10 {ES 莲Z 。 {咀 )雹 z 主白 〈咀 在飞 -fi-F < M 。 -10 -120 1蚀∞k 1M 10M fRfOUENCY !Hzl 图 3( a) 电流敏感放大吉普频率响应 (使用 15pF 电容) -20 10 1∞ :k ~lÆNCY(~ 图 3(b) 电流敏感的大梧频率响应 (使用 10nF 哇容) , 194 、-, ~ 气司工富立 ι.. - -~ s.a 1∞ __ 缸 - - - - - -- ~ ~-→.-凹 吉 -f 雪p SUMZ主 A主运 1. 5 :5 1.4 Jl主 ε11 1.0 <S~ 5.且 丘4 au 唁ε u 量 E司4J -34S ‘ υ, 22g 当 .二注:白 I .l W 巳3 IS :;:; 主 :巳接.,4.4 口 '1 "'t ::::s 主 A.c. :0 9 5 至 :~~~j~斗 ;Ji二2 』 4.0 III 1~ 1.97 v 图 3( c) .1.到LØ1 2.Øl咱 m a lQ o 飞三, 岱20 3口创 50 m 8l CURß四T INTO V+ P!N (mAl 明孔TNiE ()f CC PII (v)、 J 图 3(dL 并联稳压器电压随电流图 3(e) ALPHA 热敏电阻 电流误差放大器跨导 手 J的变化特性、- 飞、 (型号: 3AI002) 与电池温度的关系 "句- ~ ..→--.一千 1!刃 s;- p 革运至1.45 主呈 3主 3 ... 1.40 ':; <..> S·山 )主写SLZFdzu 40 写到三 1.&l 40 <..> 1.40 2s 。 II &l 。 90 α-w程古眨('-'INUTES) 30 &l CHNIGE TIME (1.4刷UTES) . 0 90 50ω150 CHAAGEπME (MIH UTES1 图 3(η MAX713 在 C 速率时对图 3(g) MAX713 在 C 速率时对 NiMH 图 3(h)MAXπ3 在 C/2速率时 电池充电特性 Nicd 电池充电特性 对 Nicd 电池充电特性. " 、A 1.65 1 且5 35;;-ε 艺 1 .50 二:> 316 g ... 也" .... -'ιa 23 也3 也J 7 1.40 25 E 50 ∞ 150 CliNa TIJ.IE (MN1TES) 王 苟言 :1到 3531m 二 <=:- 当罢王 1.55 当坦 1 .55 当 剑 ιa t.... -u去 ·--2 运主』 448 40 1 回 也~ 勾当羽唱" 抱 a 5 10 .~ g 20 15 -'1.45 5 10 15 20 0协阳王T1ME (MlNU1t5l 0协RGé TIME (MIHUl5) 图 3(i)MAXπ3 在 C/2 速率时对图 3(J)MAX713 对充满电的 NiMH 图 3(k)MAX713 对充满电 NiMH NiMH 电池充电特性 .i 电池的克电特性 今…一 电池的充电特性 τ. 嘻,. .~ ‘ .. 195 , 霄卸说明 2.4 τ』 二名 -引脚 称 置最大电;也电压。如果 VL 1 M.门连接到 L 端,电;也端电压 lBATT.-BATTJ VL IMIT 户口斗, 将不能超过l. 65VX (电池的个数); -否则, 电;也端 sv电.除压非将连不接能到 超过 V Ll Y 门 X( 电池的个数)。飞不允许 YLI14 门超过 +2. SV. ~~F~~!~ v. 端。 -- - - - 自B :r:1J 矗-、 3. 4 电 - - .~"":i占 BAH.:"-- 电池的正端 ι PGMO PGM. O 和 PGMI 决或定者串使 联充电电池的数目。通过连接 PGYO ~.-PGW1 到飞、 lE F 或 BA TT - l _ ~W f!: PGMO 、_ PGMI 开路(见表 2) .决定 i 到"节的电池; 二 PGM 1.--- , - 目。 -啕' THI 过温度比较器的跳转点。如果 TE14P 端电压上升超过 THI 端电压,快速 TLO 温度不量电够压比时较上器电的, 跳转点。如果刘AX7121MAX7 门在 TEYP 端上电压小于 TLO 端 , 快速充电充被禁器止的,并最且小直工到作 TE M. P 上升到高于 TLO 时 充电结束。 才开始。 TLO 必须被置为低于电 11 FASTCHG 揭极开路快速充电状态当快输速出充端! 。当 MAX712/ M. AXì 门对电池快速充电时, FASTCHG 吸入电流。当 吸入电流。 电结束并且涓流充电开始, FASTCH~停止 PGM. 2 使和 PGM. 3 置允许快速充电的最大时间。通过连接到 L 、 REF出或时3A间 TT。 或者 PGMl 、 PGM3 开路(见表 3) .可置 J 3 分钟到 164 分钟的输 PGM3 还决定快速充电到涓流充电的电流比例。 cc 恒定电流调整环路补偿输入端 BATL 电池的负端 ' 系统地。在 BATL 和 GND 之间接一个电阻,用于监槐进入电池的电流。 DRV 驱动外部 PNP 电流源的电流吸入端。 15 Y. 并联稳压器。 L 端的电压调整到相对于 BATL 端的.. 5V. 驱动 MAX7121YAX713o 16 .-UF 14 . 由热敏电阻得到的眩赖温度的感应电压输入端。 .GND 13 " TE M.P PGM. 2 PG143 9. I 0 温度。 • 2. 0V 基在源输出。提供 并且分流电流 I I! A 输出。 三、应用步骤 MAX;12lMAX713 使用起来很简单。完整的电池充电器电路可按以下步骤设计 a 1.根据电池使用说明推荐的最大充电电流,决定在你的应用中特定电池充电结束的方法。 表 1 提供了一般的指南。 表1 充电速率 >2C 2C 到 C I2 <C I2 快速充电的结束方法 NiMH 电池 6V/6t 和温度 IMAX 712 或 MAX713) 6V/6t 和/或者温度 (14AX7 t 2 或 MAX7 6V/6t 和/或者温度 (14AX712) Ni e d 电池 t 3) 6vt6t 和温度 tMAX713) 6V/6t 和/威者温度 (MAXìI3) 6V/6t 和/威者温度 (MAX113) 2. 决定充电速率。 C/3 速率对电池充电大约需三小时。以这个速率充电时,要求的电流 (mA) 可通过下式计算 , R IFAs-r=(电;也容量 mAh) /(充电时间的个时数) ‘ 196 . , ι 付 , ‘呵 对于不同的电池 i 充电效率可低于 30%~二所以 C/3 快速充电可进行 3 小时 45 分钟。这不代表 MAX712/MAX713 的效率, 72 它反映 7 电能量转换为电池的化学能量的姓率。 3. 选择外部 DC 功率濡(例如:插头状的 AC-DC 转换器。它的最小输出电压(包括纹波)必须 高于远 V._:- 并且至少比量重大电池电压高 I 伏 4 4. 用以下公式计算是坏情况下功率 PNP 管和二极管(典型工作电路中 Q1 和 Dl}的功链,以瓦 .... 为单位二二;、IC:1ιi ' "二:P D~p~-~( 负载最小电池电压条件下是大 AC-DC 转换器电 ffi) X (-充电电流) 5_ 如果在你的应用中超过了最大功起;如果你的电池组超过了 11 节电池仁或者允许电 流超过了600mA,查阅"详细说明"一节。另外,应用典型工作电路,并计算 R1 和 RSENSE 的电 阻值。 6. 按以下方程选择 R1 ,单位为 kQo R1=( 插头状 AC-DC 转换器的最小电压 -5V)j5mA 7. 用以下公式选择 RSENSË: ~2 .ð833 RSENSE=O.25V/ (I FAST) 1 巧s- 0_( 气 I扩。俨 0,> A 2F..f之 8. 查阅表 2 和表 3 ,决定管脚连接。例如:以 C/2 的速率快速充电,置输出时间为1. 5X 或 2 ×充电周期之间,即 3--4 小时之间。 表2 电池数 1 电池数量的搞程 表3 PGM1 连接 PGMO 连接 V+ V+ 事 (min) open V+ 3 REF V+ 2 V+ 33 33 4s (sec) (tA) 21 21 _ 21 21 42 42 22 BATT- 5 v+ open 6 open open 7 REF open 8 9 10 BATT- 4s 66 66 open V+ REF open REF 11 REF REF 12 BATT- REF 13 V+ BATT- 14 open BATT- 15 REF BATTJ- 16 BATT- BATT- cSLhIi。ammpiet- TIm回ut SI翻 ntneprviianig 2 4 革大充电时间的编程 Disabled Enabted Disabled Enabled DiSabled 42 由 84 84 αsa创ed V+ BATTopen . AEF - V+ RE严 BATTooen REF -8、abled 。isabl甜| 8A廿. V+ Enabled 8ATT- BATT- Disabled Enabled I V+ AEF' I AEF REF 8ATT8ATT- …Enabled . 84 132 168 180 180 - --188 188 264 264. I … t88 - V+ open open open open 后1abled 84. 一 132 乏 V+ Disabled 9ö open AEF V+ |岛也i时 42 PGM2 PGM3 Connec刽。" Conn缸刽。" Di础刷 V+ 8ATT。 pen REF .,乌龟‘ 飞、、电 -,.-....,._"""一…~.、一………、 .....y.二 自- "-""、俗一 管-,白、也 k...._. ... ...‘ . _、吨 9 ~ "也.龟四 . ~ - . 1 、_... 197 , . 囚、详细说明 通过迫使恒定电流混入电 i毡 I MAXπ.2JrvL-\X713对 NiMH 或 Nicd 电池快迫充电。MAX'π2/MAX713 ,总是处于两种状态之一:快速充电状态或者涓流充电状态。在快速充电跑间,电流较大。一旦 检测到电池己充满电,电流减小到涓流充电。器件通过监视三个变量来夜定电池是否充满电: 电压斜率、:二电池温度和充电时间。 MAX712jM AX713 的方框图如图 4 所示。定时器、电压斜率撞测、温度比较器用于决定充满电 状态。电压和电流调节器控制输出电压和电流,并且感知电池的存在 n 在加上电海以前,电池已接好的典型充电情况如图 5 所示。在时间 1 , MAX'π2{M AX713 从电 池吸取微不足道的能量。当电源加到民因端{时间 2) ,上电复位电路(见困 4 中 POW且:.R-ON-RF.S囚' 信号)保持 MAX712fMAXπ3 处于涓流充电状态。一旦 POWER-ON-RESEí'变为高,只要电池电压高于 欠压锁定 (UVLO) 电压(每节电池 0.4吟,器件进入快速充电状态(时间 3) 。只有(电池电压) /(电 池数量)大于 0.4V 时,快速充电才开始。 只要电池电压斜率变为负,快速充电立即结束,并且 MAX712/M AX713 转换到涓流充电状态 (时间 4) 。当电源关闭(时间 5) 时,器件从电池吸取很微小的电流。 使用温度憧查是否充满电的典型充电情况如图 6 所示。图中所示情况,是电池很冷的快速 充电情况(例如:外部环境很冷造成的)。在时间 2 期间 , MAX712/MAX713 保持涓流充电。一旦达 到安全温度(时间 3 ),开始进行快速充电。当电池温度超过 THI 端所置的极限温度, MAX712 /MAX713 回到涓流充电状态(时间 4) 。 M AX712/MAX713 可通过电压斜率检测电池是否充满电,也可通过温度憧测电池是否充满电。 在 MAX712jMAX713 已经上电的情况下,插入电池的充电情况如图 7 所示。在时间 1 匍间,充 电器输出电压调整为电池的数量乘以 VLIMIT 0 MAX712f.岛1AX713 处于涓 t庵先电状态。依据电池的 插入(时间匀, MAX712甩在AXπ3 检测流入电池中的电流,并且进入到快迫充电状态。一旦检测到 电池充满电器件转入涓流充电状态(时间 3) 。如果电池已经拿开(时间 4) , MAX712{MAÏ113 保 持涓流充电状态.输出电压再次象时间 1 期间一样进行调整。 , 内阳 内M2 .. t→哥姐一 ωD !-4%v 丁a 叹 d咆 Jhz ,' 一 -VFKrtzghJ~ T BA"πI POWER_,)N且正丁 FASíC!1G ORV 内M2 cc 陀阳 BAπ GHO 况浏仔 mwm BAπ+ 陀M PGMl s .• 图4 198 MAX712/MAX713 方握国 , 旧宝』〈L 国E 旧--duu 1.5 、 南军~ 当f.4 量 1 .3 岂也4b ='"~铲雪、 7 归去干干专 F?牛寺兰 , '兰工兰~;!"f,..:;~,g" 妇、 d 、...咛 iõ 11蛐机J 可 ζ宇, ¥川 1':tiL 5 4 二 μ ,'< .t'Ná-P画面To Q创llER '~nlÆ 2. CI王1. VOlTME l.ESS TMM o.4V lE必汀 C!锁血革 ìRlC犯正CliAAGE 4. 』 12叩伊~.~ 一..-图 5 ←使用电压斜率判断时典型充电情况 一……斗,号二‘… 使用温度判断时典型充电情况 一一 4. iRI以l.f岱倒GE 乱。iAIIiãI何加回 R酬。周 4.1 一 1 FAST CHARGE 图6 ., 5 zαll Ta4民到ATURETOOωw • 一一 4 一一 1. 00 何W回 TO C!恼RGC到 3 TlME -MM-dp 2 町臼 』雪aue·-48』 0芸芸量 3 Jεw〈q 」 Z =细注20 望三星泣军国pdgu 4482'』 M """- 2 3 4 TIM毫 1. 2. 1 4. BAmRYOOT 剧5811四 FAST C!认阳革 ìRlC旺。认眠 BAπHIY 应Mα延。 图7 电池插入时的典型充电情况 MAX712/MAX713 的电源 在无ACLDC转换器电压的条件下. MAX明MAX713不工作i 从电池吸取量大为5队的电流。 二极管 D1( 旦典型工作电路)防止由选入 DRV 端的导通电流提供的对Q1集电极偏重。当 Aι.DC转换 器电源被连接上,通过 R1 对 Cl 充电。一旦α充电达到 5V,!自部并联调堕?牛入电流.将 V+调整到 +5Va 并且快速充电开始进行。 如果 DCIN 超过 20V,在 DRV 端加接串联共射共基三极管如图 8所示,以防止 DRV端电压超过 极限参数。 一 γ- 一 选择R1 的阻值,使得在最小的 DCIN 电压时.流过1悍的奥革为 ~A( 见?应用步骤"一节中 的第 6 步)。最大 DC IN 电压和是小 DC IN 电压的差决EEZMA乒712lMAX713 的功耗。 进入 V+ 的最大电流..(最大 DC IN 电压 :-~~>.~tL 二: 由于并联稳压器引起的功耗 =5¥X( 进入飞的最太电事〉i£吕"7 ζ二 DRV 端的吸入电流也引起功艳。不要让息的要彗理过34革限~J!~:~中~1~ 出的J 参致。 i?i 199 , 。1 ... 口1 oc 削 , 户-、用 干 \J :.__....c.;....,-_.I 一二L工气吧? 飞-- /一 ORV .MAXLIM ‘ 、v协 4ι- MAXl12 MAXl13 毛 图8 DRV 端共射共基连接{针对高 DC IN 电压或者减小 MAX712/MAX713 的功艳) EιrJ 苟f 表4 MAX712/M AX713 充电状态转换表+ POWER 。N_RES~ IN_ UNDER_ VOLTAGE REGULATl ON x x COLD 同时 x x Set 了ricklel x No change o No o X' T 1 T x - t x x T o o O SetFast o N。 o o o No ι '1 1 o o α, ange , α1部 ge α1 自'ge SetFast ι o i Se tFast ? SetF臼俨 Trickle to Fast 1 x x o T尼nsition 1 T o x Set Trickfe 1 o ? X ! SetTrickle lnhibited 、 .. +仅存在两种状态:快速充电状态和涓流充电状态。 *无论其f逻辑垒的状态如何, HδT上的任何下降沿、暂停,或者电底斜率捡测,接定涓流克 电。 "如果在上电时电池温度较低, Cδtu端上的第一个上升沿将触发快速充电,当然第二个上升沿 将无效。 4.2 快速充电 '在以下条件中之一 l MAX712 /M AX713 进入快速充电状态: 。)依据使用的电前进行电庄电流检测(例如: GND 电压低于 BATr-电压), ,因MP 高于 Tω , 并且电池电压高于 UVLO 电压。 (2) 依据接入的电池 TEMP 道于 TLO,低于 THI,并且电池电压高于 UVL0.电压。 Rs&NBE决定流入到电池中的快速充电电流。在快速充电时, BATr-fnGND 墙之间的电压差被 200 要 ., }三1 聋:;~苓悲喜必 在 250mV 。如果电压差小于250mV , DRV 端增加吸入电流,如果电压差大于250mV ,则减也吸 入电施。. 快速充电电流 (1"AST)-C.25V/R S B: NS B: 4.3 渭流充电 选择 C/2 、 C 、 2C 或化的快速充电电流 (I FAST ) 保证 C/16 的涓流充电电流。其它速率的快速 充电也可使用,但涓流充电电流将不是准确的 C/160 :;..号 MâX7Î.2/MAX713 通过增加电流放大器的增益(见图的,调整ReB:N81G上电压(见电特性表中涓 流充电 VS B: NS B:),在内部决定了涓流充电电流。 ' .‘毛一 川, 民1M ι - ....----正………---…--…一一'丁 创口. Cl刷刷下面旺 AMPUfIER 陀阳 FAST_CIW也E Av 4如 ,. O G I CC 71...C2 o :I o :I!Äπ. :‘ GNO , -吨 F咽、町、 --•-. . .-. ‘--…--------……--……___..J 户二句悔 e ""11- .If TI唱E VUMIT !'IM 15 n臼 TO V+ THeH t.~. 吗 、怕 TliIS HαlEloCn川口臼U他.5 1 田 , 图9 表5 PGM3 电流和电压稳压器 由 PGM3 决定涓流充电电流的大小 也TaEwtcw剿时e-C忻MRICrg也,正} Fast-Charge Rata V+ 4c IFAST/64 。PEN 2C IFASTf3 2 REF C IFASi/16 C尼 IF.必汀18 8Aπ. .. 201 , .. • 4.4 非标准涓流充电电流举例 ...,结裕仁 , 711t价、":;" ,-宁、 典型工作电路 2 个松下 P-50AA 500mAh AA Nicd 电池 C/3 快速充电速率 翻翻摒珩同输出 -、 J 负电压斜率关闭使能 片 '飞"、- 箩"'.~絮'于-''N. ~乡,斗.~; t氧气‘ ~V 的最小 DC IN 电压 v 决定参数: 使用 MAX713 民MO=V啊 PG1vU=开路. PG1f2,:BA'IT-. PGM3=BA'IT-, ~晒g=L5Q( 快速充电电流IFA田· ..167mA) , R1={ 6V -5V) /5皿A=200Q 因为 PGM3=BATr-, RsENSB:上电压在涓流充电期间将被调整到乱3mV. 电混得为 20.7皿A。此 涓流实际为 C/25 ,而不是 C/16o 4.5 对 NiMH 电池进一步浦小涓流充电电流 使用图 10 所示电路,可捋涓流充电电流减小到小子 C/16 。在涓流充电期间因为 Q2 导通, 一些电流将绕过电池被分流。按下式选择 R7 的值: R7-{V BATT...O_4V) !(ITRICKL B: -IsATT) 这里 V BATT = 充电时的电池电压 ITRICKL B:", MAX712/MAX713 涓流充电电流值 ' I sATT = 要求的电池充电电流 γ v. DRV AILÐCJAII MÞX112 品以Xl13 , ‘ F."一- FASiC罔 GNO 图 10 4.6 对 NiMH 电池减小涓流 调节环路 调节环路控制 BAIT... 和 BAIT- 墙之间的输出电压,和自 BA1T-与 GND 之间的电压导致的流经电 池的电流。当输出电压超过电池的数目乘以 VLIMIT ,或者电池电流超过编程的充电电流, DRV 端的吸入电流减小。这个环路提供以下功能 z (1) 当充电器已经上电,电池可以移走 z 而不需要中断负载上电流。 (2) 如果负载象典型 ZL作电路那样连接,电池电流被调节,而不考虑负载电流{提供输入 功率的源可向两者提供电漂)。 202 , .如 勺于 4.7 电压环路! ι , ......'"':" 气干三 r山喃p 半' .-.-....-...... 严 '--- e←-、 -',.- 町民二~"'" J ..,冒险 叮. --、一-一 .-白,-,电牛, 电压环路置 BATT+ 和 BATT- 竭之间的最大输出电庄。如果 VLIMIT 被置得小于 !!.5V,则: 最大 BATT+ 电压(以 BATT- 为参考点 )-VLIMITX( 由 PGMO , PGM1 决定的电池数目)。 ;如马果 VILIMIT 连接到 γ;远(跑芋于毛-' - fg天 BATT~~电EiaE丘于二五气参考J品马;白?文(由 PGMO , PGM1 决定的电池数自)。 把电池移开, MAX712/-~AX引3 不提供恒定电施,它调整 BATT+ 到.以上决定的最大电压。 法载运波器捻-cf毡寿路稳定q 仅在学少-负电站 ;'-MAX712/MAX713 对负载提吻气 :彭 的情况下,需要较大的滤波器电容。在这种情况下, ".C3 可置为 C3( 法拉)啊 XILo~D)/(VoUTXBWYRd 这里 BWY R. L"" 环路带宽,单位为 Hzo (推荐值为 10 , d ~l工等问泻仄/仰 C\1Y ~-Yl 町、 U. OOOHz) ,-- 川、争气、a 毒 扣 ,T O帽 C3>10μF ILo ....-i:,;;;'先部负载电流单位为安培 Voirr= 编程输出电压 (VLIMITX 电池的数目) 4.8 电流环路、 平二 电流环路如图 g 所示二字为保证环路稳定,必须使电流调整环路的带宽 (BWCRd 低于晶体管 Q1 的极点频率 (f ~)。选择 C2 决定 BWCRLO BW CRL(Hz) 吁国 IC 2 C :.z的单位为法拉 I g_=0.0018 西门子。 PNP 晶体管 Q1 的极点频率,可通过假定单极点电流增益响应来得到。对于使用的特定晶体 管 Q1 ,其 f-r和 f~ 在数据手册中都有详细说明。 f~(Hz) ,.. fT/ßO , f T 单位为 Hz , 电流调节环路的稳定条件 t ß 0= 直流电流增益。~ BWCRL<f fS 在 DRV端产生的电流和电压,会引起 MAX712!MAX713 的础。不自吕允许功耗超过极限锁。 托 !; 通过使用图 8 中所示的共射共基连接,可减小 DRV 端的功耗。~. DRV 墙吸入电流引起的功耗刊进入到 DRV 端的电流) X(DRV 端上电压) 4.9 町 判断电压斜率关黯缺速充电 M:AX712t1víAX713 模数转换器具有 2.5mV 的分辨率。在 t A 期间(见表 3) ,它存贮电池电压。在 舍两个 t A 期间,得到在 t A 期间的不同电压,从而决定电池电压随时间变化的斜率。每次 A/D转换 被平均,超过 5mS 滤除一次输出噪声。因为电流调节环路使电池电流值定(甚至在外部负载变化 的条件下),转换结果较精确。 当转换的结果等于和小于它的原有值 J MAX7í2 结束快速充电。当转换结果至少小于它原有 结果值 2.5mV 时 4.10 MAX713 才结束快速充电。这是 MAX712 和 MAX713 之间仅有的不同。 温度判断关断快速充电 在图l1 (a) 中示出了 MAX712βfAX713 使用一个负温度系致的热敏电阻,来撞测电池超温条件 和温度不足条件。 T1 和 T2 使用相同类型的热敏电阻,以便使它们具有相同的标称电阻值。当电 池为环境温度, TEMP 端电压为 lV( 参考点为 BATT- 端)。 T囚的门限选择置快速充电的结束点。只要 TMEP 端电在-超过 THI 端电压,快速充电就结束。 TEMP 端电压下降到低于 THI 端电压后,快速充电不会重新开始。 TLO 门限选择决定不启动快速充电的低温度。如果当 M1也712/MAX713启动时, 则快速充电将不会进行.除非到 TLO 低于 TEMP 时。 TLO>TEMP , . 一-. -203 i 通过去掉 R5 , T3 和 0.022μF 的电容,将 TLO 端连接到 BATT-- 端,低温充电启动无效。 去掉旦、T2、 T3 、阳、阳、郎和它们的辅助电容,并按以下连接: TEMP=REF 、四=飞、 .,2·TLhBATT-,整个温度比较器充电关断装置无效。 看些工电池的一封生内有一个温度检测热敏电阻连接在电池的负极性端。这种情况中,使用图 ll(b) 所示的结构,如果绝对温度充电关断可以接受,热敏电阻 T2 和 T3 可被标准的电阻替代。 副'ftOMAl AM8lEN T CONTACTwmt p EIATTERY … TEM民RATURE REF n咽 m R5 πMP n.o OT-- AIIAXJ.翩 翩Xl12 MAX713 BATT !!ATT- E?wJ 则1E FOR 础SOlUTCi四陀RATURECHA剧芷 CUTOFF, 眨到.ACED W1Tl1 STANONIO 陆:slSTORS 图l1 (a) T2 ANO 1'3 MAY BE !NTH CONTACT Wl TH 8A frtRY NOπ: FOR A8S 0LU lC !ThI PE!lATURE CHARGE CUTO仔. T2 ANOηMAYBE REP U\C ED Wl TH STANOARO RES1STORS 图l1 (b) 另一种温度比较器结构 温度比较器 11 11 10 {〉4凶 =。 02250 z 2 ' ~、.r ~ -à g 7 l I I I I I I I , 2D目~ 51羽田x) 注目 αx) 4泪 600 800 1αm l.OAD CURI四T(I响 ωÞDCURf剧T(mA) 图口索尼收音机 AιDC 转换器 Aι190 负载特性,图 13 索尼∞唱机 Aιoc 转换器 Aι96N 负载 9V 直流 800mA 输出 特性, 9V DC 600~A 输出 旱。 帽 ag EF30 εωSZO 〉』 罢 38 4且 4.7 :H 呈 4.6 4.5 国 4.4 -< 响剧组 >a: l::. {U边 ·去} H军 〈国运主主 ZW』 4.9 ε 40 AV =CUTOFF At ..;) :m ~旺xl • 800 ωÞD CURRENT (mA)' . 图 14 24 30 60 90 TIJ..IE(M削UTES) 松下调制解调器 AC-DC 转换器 KX-All 负载图 15 MAX712 对三节 N iM H 电池充电特性 特性, 204 12V DC 500mA 输出 , 5. 0 .!() H 3a 4.8 36 ε 当飞71 g 4.6 4.4 2 组 3专z j E 5 ... 、 3日电?臼 A 4 ~ -JIIf"'.;.呻 A'IAXLNI ~品创X712 MAXl13 、~TlME (M削UTES) MAX713 对三节 NiMH 电池充电特性 图 17 提供多节电池充电的共射共基连接 图 16 .. 。1 :U • .JMAXlAIt MAX712 MAX7:3 WX7 12 WX7 13 V+~农村二 v OV.N。同lWeR ~.i'OWER V+ A'lI缸XlJ例 ?γ POSI1'J宣 T回MIPW.. 言 , t~-~"'-'\ -=:气 , 世纪p兰主斗〉 -Q F二与乱 正 TQ - !!A TTERY • 孤三 fft字斗右忙专军在叫 , 毛., ~主 32 " --:.1'''""7 二三三1 a 之,;F- 口1 。1 34 宝 运 队二气层唱←,~ :í. ... DC:N 气军瓜E • lOWAIJN LOGìC Lf任L N‘ CHANNEl POWER MOSÆT l Ok 。V.FAST Vc::霉 TRICKl.E OR - NOPOW回 同~商 图 19 并联 RSENSE 提高效率 图 18 Vc:: 输出逻辑电平状态 .,. ∞ :N v+ 号c阴阳 mmm r.tTP1 2P!l5 4 7OQr.t刷 .NIAXJAII WX712 MAX713 原~ ~ 图 20 连接 LED 指示输出状态… • BAπφ N.C. u BAπ. ~/di'f OV V笠NSC GNO 2mnV 2OOmVl!l!v 2.OV 图 22 CC 、 5∞mVldrv 是简单的开关模式充电器羁形图 DC '-IN=12~OV 冉一- l ..ð 瓦。 ---一- 图 21 最简单的开关模式充电器 哺 、,、~ . •一 3 205 , 三 J 应用说明 5.1 气开美模式工作- ·在晶体管的功耗不能容忍的应用中(例如:散热不可行或者太昂贵) .可设计开关模式充电 器。 开关模式工作可使用图组所示电路实现。图 21 所示电路在 CC 端使用误差放大器作为比较器, 此比较器用 33pf 的争夺增加滞后 J图 2 所示的结构对两节电池以1A电流元电?通过改变 RSENSE 和 PGMO 到 PGM3 的连接;二可得到更大的充电电流,以及对更多的电池充电。使用图 2 所示电路的 开关注形图如图 22 所示。增加连接在 cc 端和 BATT.... 端之间电容的值,可降低开关频率。必须注 意,连接在 CC 端的两个电容,应尽量靠近 MAX也jMAX713 CC 管脚放置,并使它们的引线是短, cc 节点为高阻挠点,所以不要使逻辑线靠近 cc 端。图 21 所示电路在充电时,不能接负载。在固 定频率开关模式工作条件下 I MAX712/MAX713与低价格的 ICM7弱6 和 MAX738 的接口如图坦和图 24 所示。:":'~二^ Sl99530Y (SlUCCN IX) OC iN PUT 1.3 lOVTO 16V 一丁E 王 l Ok s. a 叫 't i 也lf 6-<:El.1 8AπcRY NiCd GR 47 奇、 L可''也、 寄UA ω-mL 则「 辛苦'1% 一 d 图 23 • 、 NIMH TJ 使用 ICM7556 的开关模式充电器 OCIN {剧盯囚l e 3 主品 E ,. 。1 ss. 电思- > A , l' T I cc 阳π; 古2.0玛d 困 24 在L Jd ZEA 穹q -iJJ二J 』~ 寸 JPVJ ;叫: 斗 #eaee--4~ι' J 二-屹 :3 到百 使用 MAX73S 的开关模式充电器 206 eι , AC-DC 变换器 5.2 交流到直流变换器可直接插入交流电中,它的典型组成为:一个变压器、-个全波替式整 流器和一个电容器。图 12 、图 14 示出了三种消费产品 AC-DC 变换器的特性。所育三种变换器都 存在 120Hz 1皆波的输出纹波电压。当选择 MAX'π21MAX713 使用的变换器时,必须注意,对快速充 电负载,适配器的最低输出电压至少应比电池的最高电压高 1 伏。 电池充电举例 5.3 使用 MAX7l2和MAX7l3,以1A的电流对3节 AA l1XX>mAh NiMH电池(型号 GP1COOAAH)充电的结 果如图 15 和图 16 所示。在典型工作电路中使用图 11( 的所示的热敏电阻连接形式。 DC IN- 索尼 AC-190 , +9V DC 800mA 输出 AC-DC 变换器 PGMO-V... , PGMl...REF , PGM2=REF , PGM3=REF , Rl-200Q , R2罩 150 Q , RSICNSIC-O. 25 Q , Cl=1μF , C2=O.01μF , C3-10μF , VLIMIT REF , ", R3 ,.,10k Q , R4=15k Q T2 型号 13AI002( Alpha 热敏电阻 800-235-5445) Tl , R5 省略. 5.4 T3 省略. TLO==BATT- 多节串联电池情况 当 MAX712/M AX713 上电时, BATI'...端的极限参数提高。如果对口节以上的电池进行充电,当 、 DC IN.没有使用时, 5.5 BATT... 端输入电压必须由外部电路限制(旦因 17) 。 不充电期间效率 电流敏感电阻 RSICNàIC 在电池使用期间,引起较小的效率损失 3 如果 RSICNSÈ:较电;也组的内阻 大很多,效率的损失才会较大。无论电濡是否加在充电器上,使用并联感应电盟的电路如图 18 所示。 5.6 状态输出 用逻辑电平指示充电器状态的电路如图 19 所示。图 20 所示电路可用于蕴动 LED ,指示上电 和充电器状态。 • ,1' 飞 $1111 MAX712/713 快速充电控制芯片在小型 后备电源设计中的应用 哈尔滨工业大学 (150001) 摘要 张东来 王晓冬徐殿国 文章介绍了美国 MAXIM 公司的 MAX712/713 快这龙也控制AZ片在小哩!后备电源尤 龟电路中伪应用,给出了铅政免锥护蓄电池,和妹铺蓄电池的尤电电路参款和对两种充电免池的充电特 性曲线检圳的实验结果。结果表明:该充电电路的应用对象不仅是练铺蓄电池,还可以是铅段先锥护蓄 电池,并得出结论:空载时,对铅段先维护蓄电池,充电最好选用 MAX712; 带载时,最好选用 MAX7130 关键词快速元电 , 铅酸免维护蓄电池媒锅蓄电池 涓流充电 在便携式仪器中,经常需要设计小型后备电源,以 路完成过欠压监控,从电网供电切换到涓流充电的电 便在有交流电网供电时可从电网中摄取能量直接供给 位差消除和 DC/DC 变换等功能.因而,该电源设计 负载,同时给蓄电池充电;另一方面又可随身携带至野 中,充电电路的性能是比较关键的o 我们采用 MAX 外作、屯,电源原理框图见图 1. 图 1 中,监控及辅助电 712/713 快速充电控制芯片,设计了一个性能稳定、可 表1 引脚 称 l 名 班 AX712/713 管脚说明 功 能 d V过L设(1I定.M6最 5ITv大连×电接电池池到电j数V压目+,端)若:,否V不则L允1许M电IVT池L连端1M接电I到T压V端不+超端能过,超+电过2池.5端(VV血L.压IM(BITA×EF 电-池BA数?目?))。不能除非超 1 VLIMIT 2 BA片L'T+ 3 4 PGMO PGMl BAP凹 GM-,O或和者PPGGMM1O决、P定G串m 联充开路电电(见池表的剖数,目决,定通1过到连1接 6节 PG的M粤0池、P数G。M1 到 V+、 RE:F'或 5 THI 过温度比较器的跳转点,如果 TEMP 端电庄上升超过 THI 端电压,快速充电结束。 6 TLO ' 电池的正端。 ' -- 电温被禁度止不小,够工并作比且温较直稽度到的。T跳E转 M点 P ,端如压果上芯升片到在高T于EMTPLO端时电才压开小始子, TTLLOO端必电须压被时置上为电低,快于充速充 电 4 嚣的最 " " 7 TEMP 8 FASTCHG • 9 10 PGM2 P G-M3 11 CC 自热敏电阻得到的依赖温度的感应电压输入端。 海极开结路涓快流速充充电电开状始态时输,出F端 A,当芯片对停电止池吸快入速电充流电。时, FASTCHG 吸入电流; 当快 速充电柬 STCHG - 使速P充PGG电MM到22涓和、P流PG充 GMM3电3开的置路电允〈流见卉比快表例剖速。,充可电置的从最3大3 时分间钟,到通2过64连分接钟到的P 输出、m 时F间,求PGBMAT3还-决,定或者 快 恒定电流调整环路孙偿输入端。 •• 电池的负端。 12 BATT- 13 GND 系统地,在 BAT!'-和 GND 之间接一个电阻,用于监视进入电池的电流。 14 DRV 驱动外部-PNP 电流源的电流吸入端。 15 V+ 并联稳压器, V+ 端的电压调整到相对于 BATT- 端的+町,并且分流电流驱动 MAX 7J2 - /713. , 16" REF 2.0V 基准挥,提供 1mA 电流输出。 哩吓 -,-、- 《电子技术址-年第 12 期 . • ',..~"".蝠,句- {M7)-19 一 }一'弓~雯雯""" "阳画画画画} 表s 最大充电时间编程表 输出时间 IA/D采样间隔|斜率检测 IPGM3 连接IPGM2 连接 (min) \ (8) ? 因 11飞型锵电电源设计原理图 .22 靠的快速充电电路。该电路的主要优点是: (1) 可完成 对大容量铅酸免维护电池 (12Y6.5AH) 充电 (2) 充 21 1 效 1 y+ : 1, 开路 :l2 1.21 使能 v+ RE]T 电效率高、速度快,充电速率可达 4C;(3) 可自动完成从 3 33 1 21 无效 v+ v+ 快速充电到涓流充电的转换3 因而提高了控制的自动 33 I 21 使能 v+ 电池负端 45 I 42 无效 l 开路 ! 开路 42 |使能 '1 开路 I REF 化程度和充电过程峭安全性沃的较高的性能价格比。 与伊、:MAX712/'11S 概述?‘ 岳fí" | :〈一〉管脚功能及特点 66 142 无效 -i 开路 也MA军7~~1:71~_ 管脚排列如图 2 所示。各管脚说飞 66 I 42 使能 开路 钮 84 无效 明见表 1 所列. 佣 9 o VLIMIT~飞广Ill REF 俨 ,. \ •• Úl.~二--,阳时,?!, 、; THr~ 呻←-BATT T飞hJ斗了气;二 FASTCHG -Jl.f '~CC 飞 l?GM1 连接 1 v+ v+ 2 开路‘ v+ 3 REF ' -, v+ "5 1、 v+ 开路 6 开路 , 无效 |电池负端 使能 |电池负端 β t<,;F v+ l 电池负端‘ 自动壳成由快速充电到涓流充电的切换;当不充电时, 电池的最大泄漏电流为 5μA: 可同时对工到 16 节串 联电池充电cLMAXr12 和 MAX713 的唯-不同点是 MAX712 是以当转换结果等于和小于它的原有值〈即 零电压斜率检测〉来结束快速1ê电,而 M4X713 则以 开路 v+ RE J:<' 开路 REF s 12 电池正端 REF V+ 电池负端 开路 电池负端 -=-L~O.寸i饵' I |电池负端| 电池负端 啊' REF 16 , -气 使能 开路 h REF 工5' 气 r.;.: 、-一吧宁-啊-\-四唱-而嘲-, ;BE Jr '同年 11 14 , 咀 1 兰辛艺 U _1 电池瞅负此此| 一 开稍晓 . -,---,-\--, 当转换结果至少小于它的原有值〈即负电压斜率检测? i 13 REF 来结束快速充电。 9"、 t电; ~ -: .且、 10 RJ:tJF 二",1 俨I 父 电;由电压斜率、温度和定时器决定快速充电的关断, ~ ι. 、‘ 168 开路 开路 7 8 168- I REF 量;可完成从 013 到 40 的快速充电及。/岛的涓流充 一 v+ 电池正端 …… 264 电池负端 该芯片的特点是充电时p 可给电池的负载提供能 PGMO 连·接! 电池数 --'4 168 264 电池数目编程表 a 180 1 l l 百?÷下 南 J,一E 函卢;;-1 , 'v+ 币i汇τηI 盯 酣 RB即:F 事池负端 i MAX712/713 管脚排列俯视图 J 表 2' 钮 归 84 ~O_J_16臼8 -PGM3 FιPGM2 DIP/SO 1 ' 8 4 4 1 使能 丁z 町l 丁z 町 卜 GN[) .., 'TEMP'; . . ! . f • 图 2 9ωo •, DRV 4 ~, p倒1 升, Mf,X712l7 13 , ",:- v BATT+ | v+ if RRF '电\'. 电池负端. . ' 电怆负端 电池负端 〈二〉对电池数目和最大充电时间的编程 MAX7正2/713 在使用前要对电池数目和最大充 电时间进行编程‘所谓电池数目的编程即是依据被充 (,'电电池串联的总电压而定,具体计算如下: 1 当 VL;I:M;IT 接 y+ 端时P N=lNT(U总 /1.6号)+工 当 VLIMIT 接 REF 端时p N 二I:Nr,r CQ 且 1 2 )+1 式中 N 为编程数, "U边为所要充电电池串联的总电压 • l 〈单位为 V)? 函数 f(a;) ~ì茸叭的为:取整函数〈仅取结 果的整数部分〉。 电池编程数目按表 2 通i在连接 EGMt.. PGMO 到 近电F票热号则在第月期 守 相应端口市完成;最大充电时昭则依据充电速率而定, 关断。一般按如下方式连接: TEMP "", R~F, 'THI= 按表 3 通过连接飞P:GM3.. PGNI2 ~U,相应端同而完成。 V 勺 TLO 二IfATT"':,使整个温度比较器充电关断装 其中, PQ-M 3.决定涓流充;也电流的大小〈如表功。 置无效F 充电的状态由电压斜率和定时器来决定。 h 表" (3) M冉孚7正2/n3 的外部;DC 功率:~其最小输 出电压〈包括纹波〉必须高于 6γ,且至少比最大电池 'PGMB 决定涓流充电电珑的大小 PGM13;1 快速充电速率 ‘ E | 涓流充电电流 电压高 lV,否则将不工作或工作不正常,如若外部电 ‘坠,.,. V i: 4c 1 1 .. s也 /64 源电压小于(最大电池电压 +lV)" 则会导致工作到 t 开路 20 1f8st/132 某段时间时芯片发热等现象。 REF C 1 f8st /16 0/2 I 18•t/8 (4) B 1 参数由下式选择 电池负端 R 1 =(DC 电源最小电 压 ~5V)/5mA(单位为 kO) 。 国 (5) R,向脚由下式选择 R., n ..-O.25 Vl1t酬,其 一一一二 MAX712/713 典型军作电路如图 3(的。其中 PGMO、 PGM1, PGM2、 PGM3 的连接由电池数目和 最大充电时间编理决定"在应用中 3 充电状态一般应 有所指示 F 指示电路如图 3(的,当快速充电时,发光二 中 If:ult Ý5J快速充电电流, Iìast= 电池容置之IDA)I充电 小时数 (h) 。 三、对铅酸免维妒曹电池和锦铺蓄电池 究电特性曲线的检测和分析工 极管亮;进入涓流充电时,发光二极管熄灭。 我们采用 ~AX712/713 的典型电路3 如表 5 所 列设定参数及充电初始状态j 两种芯片对两种电池带 ,直流 .b,,,..; 载和空载情况下的充电特性曲线如图垒。所示。由于镶 丘主叩 、 v 、 .. 、/ 锯电池在充电过程中,先经恒流快速充电,电池前压升 高,至饱和眉p 端压出现负斜率;~AK712/7妇在带载 和空载的情况下均可迅速从快速充电状态切换至1月流 充电状态〈如图旬, 4c); 而铅酸免维护蓄电池的特性 则不同 F 在快速充电过程中 P 无论是否带载端压始终不 会出现零斜率增长p 故用 MAX713 充电时ι 充电电流 从电压曲线的拐点处开始以指数规律衰减〈如图 4町, 电 路 叫作 工 h型 鸣。 ,典 ,、、'。且 4 呼 ‘用一 川 WJ MA X"' 而 MA~7~2 则在检测到零斜率增长时便迅拉切换至 泪流充电状态〈女口图 4哟,这也是两者不同之处@ 另外,由于充电时,一般采用全浮克运行方式,即 外部 DC 功率源一宙给负载供电,一面对蓄电池浮充, 表b V卢 e 镖锡、铅酸兔维护蓄电池充电电路参数配置 2k MAX712/713 I 飞 ·、 ‘-曹 、. ...'.、 Jι ~ • 电池 镇铺蓄电池 图 3 '.. ~AX;112/1时型立作电路及快速充电指示电路 充电电路|最大充电时间半部分错!最大注电时间 ~264 分钟 ι-v i I 电池编程安fr~1 11h=4∞ 0:; ^; IRseu 剧目 0.250 吨 阳镜 =80 IUi~=1V , IR1=:, 2 凶 JSsen归 =0.1[:)" JR~.-200 巾↑ U in -15V 二、宽电电醋的设计步骤及钳选择 一-1'VL'IMIT= REr 充电电路的设计步骤及参数选择如下= 充电初拚l 充足电的同节家用五号|充足于电的主密封铅酸 ':(均选择电池编程数「目及最大充电时间. ,;, 铅酸免维护蓄电池 | 参数配置|电池编程数 =2 FAS 'rCHG ⑦)快速充电揭示电路 可 及充电初始状态 … (2); 选择电池'充电结束方法.决定电池充电结束 最重要的参数是电池电压、内压力和温度øMAX 712 1713 是由电压僻、温度和定时器来对快速充电的 状态|锦铺蓄电池 (500 皿A!h)!免维护蓄电'i<~ Pan~吨io' 也|以 lA 放电 10 分掉-, l~o耳边 V6. , ;P (平{飞: "':.:', 、 ~ ι 、二、?.弘:h/到百乃以 3~5'A放 ! , ) , . . , '}.窗'sl1分钟 二 :UL: f! LG电子技术址蹦年第手2 期 • • • 审 ,、啕鼠也. . .司面.......画画- .............恤,仲咱-町~句民 IVLIMÌT二F.EF 一…一←…户、一一 • f f二二J . ~ ~9)一引? ι←工产二工之二刊号辙萨塌画面 醺醺瞌 2 1. 8 '‘- 4 0.8 ..... 琼 O. 6 1!p 1!p 0.4 民 15 充电时间( 注:叫〉一带载电压 』兮毛-带载电流 、& 20 25 30 Yê 电时间( min) • 一←细晖' min) 泣:一0→带载也压 一十一空载电压 -争等-带载电流 -...…3~我咆ÌllC -:;Å-空我也流 (b) M.AX713 对铅酸免维护蓄电池充电特性曲线 (α:) M'AX713 对镰铺蓄电池充电特性曲线 3.6 2.4 14 13.8 0.2 \2.6 AU 0 5 10 15 20 25 充电时间( min > 位;一O一带裁电压 二争毛一带载电流 命 30 确吨", 2.4 CJ 0 60 20 80 o 究电时间( min) 注:-0一带载电压...;二十一空载电压 一十一空毒量也应 i F叮~~运载电流 一善毛一带载电流 。i) MAX712 对镰铺蓄电池充电特性曲线 图 4. 12.4 -企「主载电流 (à) MAX712 对铅酸免维护蓄电池充电特性曲线 MAX712/713 对镰铺蓄电池和铅酸免维护蓄电池充电特性曲线 DC/DC 变换或采用稳压装置加以消除,如图 5 所示。, 4mH Vòút 四、 到负辑. ..... #舍 论 由上述实验可知F 对镰铺蓄电池充电,无论是带载 还是空载 P 选用 MAX712/713 均可.对铅酸免维护 蓄电池来说p 空载充电时由于电池电压最终产生零斜 率增长 3 故最好选用 MAX712; 而带载充电时p 若用 1μ 困 5 MAX712 当由充电状态切换至涓流充电时p 负载的部 全浮充运行方式电压 DC/DC 调整 图中 V o 的 =;5.05x (1 + R:t!R2) ,单位为 V 分能量将由电池提供p 此时电池端压将始终成下降趋 以补偿蓄电池自放电和独立供电时消耗的能量.但蓄 势,且不能自动复充电p 而 MAX713 则可以自动解决 离地由浮充转入独立供电或由独立供电转入浮充供 这个问题,还能自行完成从垣流到恒压的均衡充电过 也加之从快速充电切换至涓流充电时p 电池端庄都将 程F 这正是充电过程的最佳方式.基于上述 p 我们最后ι 发生变化咽此必绩调整:在后级采用宽范国输入的 -22 一〈刷〉 选用了性能/价格比较高的 M .aX713~ . 与电子技术组栅年第 U 期 !is} 电动自行车充电器方案 在我国一些大中城市,为弥补公共交通能力的不足,流行着一种燃油助动车。这种车辆使 用单缸二充程然油机,污染排放极大,严重影响了城市环境卫生和城市居民的健康。为此,开 发一种无污染排放的短程、轻便电动自行车,以逐渐取代目前使用的燃油助动车,不仅在防止 环境污染和节约自然资源方面有着重大的实际意义,而且也是目前城市市民普遍关心和急待解 决的问题。 80 年代曾一度兴起的电动自行车开发研究,因电机效率过低,充电设备落后,电油寿命过 短等原因而冷落下来。目前,供电动自行车配套的各种辅助部件的性能相继有重大突破。例如, 新型变频式低速(~24km/h) 无刷永磁电机,其效率提高到 85% 以上,充电器开始智能化,传动 和控制系统更加轻便可靠。从整车开发的技术难度而言,欲取得商业上的成功,最为关键的仍 然是其动力部分,尽管一些新型化学电源,例如镇氢电池、理离子电池已大量进入市场,但铅 酸电池、镇铺电池仍以价格低、技术成熟的优势被公认为是电动自行车中最为现实的动力电源, 特别是镰铺电池,其低内阻特性对于这种需大电流放电的应用更具吸引力。 目前,电动自行车主要配备的电池是 12V 或 24V 、 17Ah - 22Ah 铅酸电池或镇铺电池,另 外,一些短程轻便型电动助力车大多使用 6V 、 悦嗣 6Ah--8Ah 铅酸电池或镰铺电池。电池节数低于 16 节时,选用 MAX713 较为方便(如图所示)。 利用 MAX713 可对电池进行快速充电,充电速率 为: C/4一-4 ,快充终止方式为:电压斜率检测、 8AfT.φ 温度检测、超时检测、最大电压限制,快充终 且fF .-.AX1Ao帽 止后可自动转换成涓流充电,设计电路如图一 品fAX7I2 MAX713 所示。 对于 17Ah--22Ah 铅酸电池或银锅电池的 充电器设计大多采用图二所示方案,降压型 DC-DC 转换器用于为充电控制器提供合适的供 电电压,开关电源将 WALL CUBE 的输出转换成 图一、 1-16.节lI 1cd电池充电器 电池快速充电所要求的电流,充电 WALl 控制器大多选用 MAX200挝、 BQ2003 、 口JBf BQ2031 等充电控制芯片或用微处理 器。 图三所示电路,提供了一种直 开央电菁、 接用控制器控制 AC-DC ,实现大电池 (即-oc) 组充电的方案。图中, AC一DC 采用反 激式无工频开关电源,具有体积小、 重量轻,功耗低、效率高等特点。 通过 A 、 B 连接与否满足不同输入电 忽阳 压的要求。即在 220V 工作时,可单 相桥式整流, 110V 工作时,可单向 倍压整流,两种情况下,均得到约 300V 的直流电压。此直流电压接向原边绕组 Lpo 在反激式变换器中,由于开关关断时,漏电感引起开关集电极电压突然升高:或负载线不 够合理,会造成较高的开关应力(导致开关管损坏 7 。为抑制开关应力有两个办法:一是靠工艺 减小漏电感,二是依靠与电感线圈荐联的 Rc 、 C2 缓冲器耗散过电压能量,通过附加线圈和定向 二极管将能量反馈回电源。 . CHA自GE 叫t 椒 - i! TM1. .凰" MAX.í\'lJ3A.ÐlS lJIi 品销Xæo3 ~I l 况报ö .,,~V._ rs ~豆 lk 自1 19 部SI 提2 IlATU 在3 图三、大电池组充电方案 e 充电控制器选用 MAX2003A ,外部元件的选择可参考一下步骤: ①、直流电源:电池节数 x 最大节电压+ 1 (V) ②、按照充电速率确定充电电流 I FAsT ,最大充电时间。应注意充电效率不是 100% ,实际 ,充电时间应比理论值多出 30%左右。 ③、由快充电流确定电流检测电阻 RSN~ = 0.235/ IFAsT ④、有电池节数确定 RB l' RB2 : RB1 、 RB2 之和应在 100k 与 500k 之间 RB2 =RB/ (电池节数-1) ⑤、根据需要选择温度控制元件等 图三中的充电控制器也可以用 MAX713 替代,注意选用 MAJÇ713 时应将电池电压分压后 连接到 MAX713 的 BATT+ 引脚。 MAX713 相对 MAX2003A 价格较低。 以上推荐的方案也可用于为其它应用的大电池组充电,例如:电信系统的 48V 电池组、 叉车配备的大电池组等。 4 P .. 19-0100; Rev 6; 12/08 KIT ATION EVALU E L B A IL AVA NiCd/NiMH Battery Fast-Charge Controllers The MAX712/MAX713 fast-charge Nickel Metal Hydride (NiMH) and Nickel Cadmium (NiCd) batteries from a DC source at least 1.5V higher than the maximum battery voltage. 1 to 16 series cells can be charged at rates up to 4C. A voltage-slope detecting analog-to-digital converter, timer, and temperature window comparator determine charge completion. The MAX712/MAX713 are powered by the DC source via an on-board +5V shunt regulator. They draw a maximum of 5µA from the battery when not charging. A low-side current-sense resistor allows the battery charge current to be regulated while still supplying power to the battery’s load. The MAX712 terminates fast charge by detecting zero voltage slope, while the MAX713 uses a negative voltage-slope detection scheme. Both parts come in 16pin DIP and SO packages. An external power PNP transistor, blocking diode, three resistors, and three capacitors are the only required external components. The evaluation kit is available: Order the MAX712EVKITDIP for quick evaluation of the linear charger. ________________________Applications Battery-Powered Equipment Laptop, Notebook, and Palmtop Computers Handy-Terminals Cellular Phones Portable Consumer Products Portable Stereos Cordless Phones Features ♦ Fast-Charge NiMH or NiCd Batteries ♦ Voltage Slope, Temperature, and Timer Fast-Charge Cutoff ♦ Charge 1 to 16 Series Cells ♦ Supply Battery’s Load While Charging (Linear Mode) ♦ Fast Charge from C/4 to 4C Rate ♦ C/16 Trickle-Charge Rate ♦ Automatically Switch from Fast to Trickle Charge ♦ Linear Mode Power Control ♦ 5µA (max) Drain on Battery when Not Charging ♦ 5V Shunt Regulator Powers External Logic Ordering Information PART TEMP RANGE 0°C to +70°C 16 Plastic DIP MAX712CSE MAX712C/D MAX712EPE 0°C to +70°C 0°C to +70°C -40°C to +85°C 16 Narrow SO Dice* 16 Plastic DIP MAX712ESE MAX712MJE -40°C to +85°C -55°C to +125°C 16 Narrow SO 16 CERDIP** Ordering Information continued at end of data sheet. *Contact factory for dice specifications. **Contact factory for availability and processing to MIL-STD-883. Typical Operating Circuit Q1 2N6109 DC IN VLIMIT 1 16 REF BATT+ 2 15 V+ D1 1N4001 V+ C1 1μF VLIMIT BATT+ REF 14 DRV PGM0 3 THI 5 DRV THI WALL CUBE TOP VIEW R2 150Ω C4 0.01μF R1 Pin Configuration PGM1 4 PIN-PACKAGE MAX712CPE MAX712 MAX713 12 BATT11 CC TLO 6 R3 68kΩ 13 GND MAX712 MAX713 BATTERY C3 10μF TEMP 10μF R4 22kΩ LOAD CC BATT- TLO GND 10 PGM3 TEMP 7 9 FASTCHG 8 PGM2 C2 0.01μF RSENSE DIP/SO ________________________________________________________________ Maxim Integrated Products For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim's website at www.maxim-ic.com. 1 MAX712/MAX713 General Description MAX712/MAX713 NiCd/NiMH Battery Fast-Charge Controllers ABSOLUTE MAXIMUM RATINGS V+ to BATT- .................................................................-0.3V, +7V BATT- to GND ........................................................................±1V BATT+ to BATTPower Not Applied............................................................±20V With Power Applied ................................The higher of ±20V or ±2V x (programmed cells) DRV to GND ..............................................................-0.3V, +20V FASTCHG to BATT- ...................................................-0.3V, +12V All Other Pins to GND......................................-0.3V, (V+ + 0.3V) V+ Current.........................................................................100mA DRV Current. .....................................................................100mA REF Current.........................................................................10mA Continuous Power Dissipation (TA = +70°C) Plastic DIP (derate 10.53mW/°C above +70°C............842mW Narrow SO (derate 8.70mW/°C above +70°C .............696mW CERDIP (derate 10.00mW/°C above +70°C ................800mW Operating Temperature Ranges MAX71_C_E .......................................................0°C to +70°C MAX71_E_E .................................................... -40°C to +85°C MAX71_MJE ................................................. -55°C to +125°C Storage Temperature Range .............................-65°C to +150°C Lead Temperature (soldering, 10s) .................................+300°C Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. ELECTRICAL CHARACTERISTICS (IV+ = 10mA, TA = TMIN to TMAX, unless otherwise noted. Refer to the Typical Operating Circuit. All measurements are with respect to BATT-, not GND.) PARAMETER V+ Voltage CONDITIONS 5mA < IV+ < 20mA IV+ (Note 1) MIN TYP 4.5 MAX 5.5 5 BATT+ Leakage V+ = 0V, BATT+ = 17V BATT+ Resistance with Power On PGM0 = PGM1 = BATT-, BATT+ = 30V UNITS V mA 5 µA 30 kΩ C1 Capacitance 0.5 µF C2 Capacitance 5 nF REF Voltage 0mA < IREF < 1mA 1.96 2.04 V Undervoltage Lockout Per cell 0.35 0.50 V External VLIMIT Input Range 1.25 2.50 V THI, TLO, TEMP Input Range 0 2 V -10 10 mV THI, TLO Offset Voltage (Note 2) 0V < TEMP < 2V, TEMP voltage rising THI, TLO, TEMP, VLIMIT Input Bias Current -1 1 µA VLIMIT Accuracy 1.2V < VLIMIT < 2.5V, 5mA < IDRV < 20mA, PGM0 = PGM1 = V+ -30 30 mV Internal Cell Voltage Limit VLIMIT = V+ 1.6 1.65 1.7 V mV Fast-Charge VSENSE Trickle-Charge VSENSE Voltage-Slope Sensitivity (Note 3) 225 250 275 PGM3 = V+ 1.5 3.9 7.0 PGM3 = open 4.5 7.8 12.0 PGM3 = REF 12.0 15.6 20.0 PGM3 = BATT- 26.0 31.3 38.0 MAX713 -2.5 MAX712 0 mV mV/tA per cell Timer Accuracy -15 15 % Battery-Voltage to Cell-Voltage Divider Accuracy -1.5 1.5 % DRV Sink Current 2 VDRV = 10V 30 _______________________________________________________________________________________ mA NiCd/NiMH Battery Fast-Charge Controllers (IV+ = 10mA, TA = TMIN to TMAX, unless otherwise noted. Refer to the Typical Operating Circuit. All measurements are with respect to BATT-, not GND.) PARAMETER CONDITIONS MIN FASTCHG Low Current V FASTCHG = 0.4V FASTCHG High Current V FASTCHG = 10V A/D Input Range (Note 4) Battery voltage ÷ number of cells programmed TYP MAX UNITS 2 mA 1.4 10 µA 1.9 V Note 1: The MAX712/MAX713 are powered from the V+ pin. Since V+ shunt regulates to +5V, R1 must be small enough to allow at least 5mA of current into the V+ pin. Note 2: Offset voltage of THI and TLO comparators referred to TEMP. Note 3: tA is the A/D sampling interval (Table 3). Note 4: This specification can be violated when attempting to charge more or fewer cells than the number programmed. To ensure proper voltage-slope fast-charge termination, the (maximum battery voltage) ÷ (number of cells programmed) must fall within the A/D input range. Typical Operating Characteristics (TA = +25°C, unless otherwise noted.) CURRENT-SENSE AMPLIFIER FREQUENCY RESPONSE (with 15pF) CURRENT-SENSE AMPLIFIER FREQUENCY RESPONSE (with 10nF) MAX712/13 toc01 40 MAX712/13 toc02 20 C2 = 15pF FASTCHG = 0V 0 10 + VIN - CC + CURRENTSENSE AMP GND -40 Φ -80 -10 -120 -20 -80 VOUT - BATT- -20 1k 0 100k 10k 1M 10M -120 10 FREQUENCY (Hz) SHUNT-REGULATOR VOLTAGE vs. CURRENT 1 5.2 5.0 DRV SINKING CURRENT 4.8 4.6 MAX712/13 toc05 1.6 TEMP PIN VOLTAGE (V) 5.4 V+ VOLTAGE (V) 10 DRV NOT SINKING CURRENT 5.6 ALPHA SENSORS PART No. 14A1002 STEINHART-HART INTERPOLATION MAX712/13 toc04 5.8 MAX712/13 toc03 DRV PIN SINK CURRENT(mA) FASTCHG = 0V, V+ = 5V 10k FREQUENCY (Hz) CURRENT ERROR-AMPLIFIER TRANSCONDUCTANCE 100 1k 100 35 1.4 30 1.2 25 1.0 20 0.8 15 0.6 10 0.4 5 4.4 4.2 0.1 1.95 4.0 1.97 1.99 2.01 VOLTAGE ON CC PIN (V) 2.03 2.05 0.2 0 10 20 30 40 CURRENT INTO V+ PIN (mA) 50 60 BATTERY THERMISTOR RESISTANCE (kΩ) BATT- -10 -40 0 AV GAIN (dB) AV Φ PHASE (DEGREES) GAIN (dB) 10 0 40 C2 = 10nF FASTCHG = 0V PHASE (DEGREES) 20 0 0 10 20 30 40 50 60 BATTERY TEMPERATURE(°C) _______________________________________________________________________________________ 3 MAX712/MAX713 ELECTRICAL CHARACTERISTICS (continued) Typical Operating Characteristics (continued) (TA = +25°C, unless otherwise noted.) MAX713 NiCd BATTERY CHARGING CHARACTERISTICS AT C RATE MAX713 NiMH BATTERY CHARGING CHARACTERISTICS AT C RATE MAX712/13 toc06 30 25 1.40 30 60 30 1.50 T 25 1.45 90 0 30 60 CHARGE TIME (MINUTES) MAX713 NiCd BATTERY-CHARGING CHARACTERISTICS AT C/2 RATE MAX713 NiMH BATTERY CHARGING CHARACTERISTICS AT C/2 RATE MAX712/13 toc09 V 30 T 25 1.40 0 50 100 CELL VOLTAGE (V) 1.45 35 CELL TEMPERATURE (°C) CELL VOLTAGE (V) 1.55 ΔV CUTOFF Δt 1.50 1.50 35 V 1.45 30 T 1.40 0 150 MAX713 CHARGING CHARACTERISTICS OF A FULLY-CHARGED NiMH BATTERY 40 1.55 35 30 T 1.45 4 MAX712/13 toc11 25 5 10 15 20 V 1.60 CELL VOLTAGE (V) ΔV CUTOFF Δt CELL TEMPERATURE (°C) 1.60 CHARGE TIME (MINUTES) 100 50 150 CHARGE TIME (MINUTES) 1.65 5 MINUTE REST BETWEEN CHARGES V 25 MAX713 CHARGING CHARACTERISTICS OF A FULLY CHARGED NiMH BATTERY MAX712/13 toc10 1.65 40 ΔV CUTOFF Δt CHARGE TIME (MINUTES) 0 90 CHARGE TIME (MINUTES) MAX712/13 toc08 1.50 35 40 ΔV CUTOFF Δt 1.55 35 5-HOUR REST BETWEEN CHARGES 1.50 30 T 25 1.45 0 5 10 15 CHARGE TIME (MINUTES) 20 _______________________________________________________________________________________ CELL TEMPERATURE (°C) 0 ΔV CUTOFF Δt V CELL TEMPERATURE (°C) T 1.45 1.55 CELL TEMPERATURE (°C) 35 40 1.60 CELL VOLTAGE (V) ΔV CUTOFF Δt V 1.50 CELL TEMPERATURE (°C) CELL VOLTAGE (V) MAX712/13 toc07 40 1.55 CELL VOLTAGE (V) MAX712/MAX713 NiCd/NiMH Battery Fast-Charge Controllers NiCd/NiMH Battery Fast-Charge Controllers PIN NAME FUNCTION 1 VLIMIT Sets the maximum cell voltage. The battery terminal voltage (BATT+ - BATT-) will not exceed VLIMIT x (number of cells). Do not allow VLIMIT to exceed 2.5V. Connect VLIMIT to VREF for normal operation. 2 BATT+ Positive terminal of battery 3, 4 PGM0, PGM1 PGM0 and PGM1 set the number of series cells to be charged. The number of cells can be set from 1 to 16 by connecting PGM0 and PGM1 to any of V+, REF, or BATT-, or by leaving the pin unconnected (Table 2). For cell counts greater than 11, see the Linear-Mode, High Series Cell Count section. Charging more or fewer cells than the number programmed may inhibit ΔV fast-charge termination. 5 THI Trip point for the over-temperature comparator. If the voltage-on TEMP rises above THI, fast charge ends. 6 TLO Trip point for the under-temperature comparator. If the MAX712/MAX713 power on with the voltage-on TEMP less than TLO, fast charge is inhibited and will not start until TEMP rises above TLO. 7 TEMP 8 FASTCHG Open-drain, fast-charge status output. While the MAX712/MAX713 fast charge the battery, FASTCHG sinks current. When charge ends and trickle charge begins, FASTCHG stops sinking current. 9, 10 PGM2, PGM3 PGM2 and PGM3 set the maximum time allowed for fast charging. Timeouts from 33 minutes to 264 minutes can be set by connecting to any of V+, REF, or BATT-, or by leaving the pin unconnected (Table 3). PGM3 also sets the fast-charge to trickle-charge current ratio (Table 5). 11 CC 12 BATT- Negative terminal of battery 13 GND System ground. The resistor placed between BATT- and GND monitors the current into the battery. 14 DRV Current sink for driving the external PNP current source 15 V+ Shunt regulator. The voltage on V+ is regulated to +5V with respect to BATT-, and the shunt current powers the MAX712/MAX713. 16 REF 2V reference output Sense input for temperature-dependent voltage from thermistors. Compensation input for constant current regulation loop _______________________________________________________________________________________ 5 MAX712/MAX713 Pin Description MAX712/MAX713 NiCd/NiMH Battery Fast-Charge Controllers Getting Started The MAX712/MAX713 are simple to use. A complete linear-mode fast-charge circuit can be designed in a few easy steps. A linear-mode design uses the fewest components and supplies a load while charging. 1) Follow the battery manufacturer’s recommendations on maximum charge currents and charge-termination methods for the specific batteries in your application. Table 1 provides general guidelines. Table 1. Fast-Charge Termination Methods Charge Rate NiMH Batteries NiCd Batteries > 2C ΔV/Δt and temperature, MAX712 or MAX713 ΔV/Δt and/or temperature, MAX713 2C to C/2 ΔV/Δt and/or temperature, MAX712 or MAX713 ΔV/Δt and/or temperature, MAX713 < C/2 ΔV/Δt and/or temperature, MAX712 ΔV/Δt and/or temperature, MAX713 2) Decide on a charge rate (Tables 3 and 5). The slowest fast-charge rate for the MAX712/MAX713 is C/4, because the maximum fast-charge timeout period is 264 minutes. A C/3 rate charges the battery in about three hours. The current in mA required to charge at this rate is calculated as follows: IFAST = (capacity of battery in mAh) ––––––––––––––––––––––––– (charge time in hours) Depending on the battery, charging efficiency can be as low as 80%, so a C/3 fast charge could take 3 hours and 45 minutes. This reflects the efficiency with which electrical energy is converted to chemical energy within the battery, and is not the same as the powerconversion efficiency of the MAX712/MAX713. 3) Decide on the number of cells to be charged (Table 2). If your battery stack exceeds 11 cells, see the LinearMode High Series Cell Count section. Whenever changing the number of cells to be charged, PGM0 6 4) 5) 6) 7) and PGM1 must be adjusted accordingly. Attempting to charge more or fewer cells than the number programmed can disable the voltage-slope fast-charge termination circuitry. The internal ADC’s input voltage range is limited to between 1.4V and 1.9V (see the Electrical Characteristics), and is equal to the voltage across the battery divided by the number of cells programmed (using PGM0 and PGM1, as in Table 2). When the ADC’s input voltage falls out of its specified range, the voltage-slope termination circuitry can be disabled. Choose an external DC power source (e.g., wall cube). Its minimum output voltage (including ripple) must be greater than 6V and at least 1.5V higher than the maximum battery voltage while charging. This specification is critical because normal fastcharge termination is ensured only if this requirement is maintained (see Powering the MAX712/MAX713 section for more details). For linear-mode designs, calculate the worst-case power dissipation of the power PNP and diode (Q1 and D1 in the Typical Operating Circuit) in watts, using the following formula: PD PNP = (maximum wall-cube voltage under load - minimum battery voltage) x (charge current in amps) Limit current into V+ to between 5mA and 20mA. For a fixed or narrow-range input voltage, choose R1 in the Typical Operation Circuit using the following formula: R1 = (minimum wall-cube voltage - 5V)/5mA Choose RSENSE using the following formula: RSENSE = 0.25V/(IFAST) 8) Consult Tables 2 and 3 to set pin-straps before applying power. For example, to fast charge at a rate of C/2, set the timeout to between 1.5x or 2x the charge period, three or four hours, respectively. _______________________________________________________________________________________ NiCd/NiMH Battery Fast-Charge Controllers Table 3. Programming the Maximum Charge Time NUMBER OF CELLS PGM1 CONNECTION PGM0 CONNECTION 1 V+ V+ 2 Open V+ 3 REF V+ 4 BATT- 5 TIMEOUT (min) A/D SAMPLING INTERVAL (s) (tA) VOLTAGESLOPE TERMINATION PGM3 CONN PGM2 CONN 22 21 Disabled V+ Open 22 21 Enabled V+ REF V+ 33 21 Disabled V+ V+ V+ Open 33 21 Enabled V+ BATT- 6 Open Open 45 42 Disabled Open Open 7 REF Open 45 42 Enabled Open REF 8 BATT- Open 66 42 Disabled Open V+ 9 V+ REF 66 42 Enabled Open BATT- 10 Open REF 90 84 Disabled REF Open REF 90 84 Enabled REF REF 84 Disabled REF V+ 11 REF 12 BATT- REF 132 13 V+ BATT- 132 84 Enabled REF BATT- 180 168 Disabled BATT- Open 180 168 Enabled BATT- REF 264 168 Disabled BATT- V+ 264 168 Enabled BATT- BATT- 14 Open MAX712/MAX713 Table 2. Programming the Number of Cells BATT- 15 REF BATT- 16 BATT- BATT- V+ +5V SHUNT REGULATOR PGM2 GND PGM3 FASTCHG TIMED_OUT BATT- N POWER_ON_RESET TIMER BATTFAST_CHARGE PGM2 PGM3 THI TEMP TLO ΔV DETECTION ΔV_DETECT CONTROL LOGIC IN_REGULATION DRV CC V+ BATT100kΩ GND VLIMIT BATT+ UNDER_VOLTAGE HOT TEMPERATURE COMPARATORS CURRENT AND VOLTAGE REGULATOR PGMx 100kΩ COLD PGM0 CELL_VOLTAGE MAX712 MAX713 0.4V BATT- REF PGM1 BATT- INTERNAL IMPEDANCE OF PGM0–PGM3 PINS Figure 1. Block Diagram _______________________________________________________________________________________ 7 Detailed Description CURRENT INTO CELL 1.5 1.4 CELL TEMPERATURE CELL VOLTAGE (V) The MAX712/MAX713 fast charge NiMH or NiCd batteries by forcing a constant current into the battery. The MAX712/MAX713 are always in one of two states: fast charge or trickle charge. During fast charge, the current level is high; once full charge is detected, the current reduces to trickle charge. The device monitors three variables to determine when the battery reaches full charge: voltage slope, battery temperature, and charge time. VOLTAGE 1.3 TEMPERATURE 0.4 0 A mA μA 1 2 1. NO POWER TO CHARGER 2. CELL VOLTAGE LESS THAN 0.4V 3. FAST CHARGE 4. TRICKLE CHARGE 5. CHARGER POWER REMOVED 3 4 5 TIME When the cell voltage slope becomes negative, fast charge is terminated and the MAX712/MAX713 revert to trickle-charge state (time 4). When power is removed (time 5), the device draws negligible current from the battery. Figure 3 shows a typical charging event using temperature full-charge detection. In the case shown, the battery pack is too cold for fast charging (for instance, brought in from a cold outside environment). During time 2, the MAX712/MAX713 remain in trickle-charge state. Once a safe temperature is reached (time 3), fast charge starts. When the battery temperature exceeds the limit set by THI, the MAX712/MAX713 revert to trickle charge (time 4). CELL VOLTAGE (V) VREF = VLIMIT THI TLO A mA μA 2 1 1. NO POWER TO CHARGER 2. CELL TEMPERATURE TOO LOW 3. FAST CHARGE 4. TRICKLE CHARGE 3 TIME Figure 3. Typical Charging Using Temperature 8 Figure 1 shows the block diagram for the MAX712/ MAX713. The timer, voltage-slope detection, and temperature comparators are used to determine full charge state. The voltage and current regulator controls output voltage and current, and senses battery presence. Figure 2 shows a typical charging scenario with batteries already inserted before power is applied. At time 1, the MAX712/MAX713 draw negligible power from the battery. When power is applied to DC IN (time 2), the power-on reset circuit (see the POWER_ON_RESET signal in Figure 1) holds- the- MAX712/MAX713 in trickle charge. Once POWER_ON_RESET goes high, the device enters the fast-charge state (time 3) as long as the cell voltage is above the undervoltage lockout (UVLO) voltage (0.4V per cell). Fast charging cannot start until (battery voltage)/(number of cells) exceeds 0.4V. CURRENT INTO CELL CELL TEMPERATURE Figure 2. Typical Charging Using Voltage Slope CURRENT INTO CELL MAX712/MAX713 NiCd/NiMH Battery Fast-Charge Controllers 4 1.5 1.4 1.3 A mA μA 1 1. BATTERY NOT INSERTED 2. FAST CHARGE 3. TRICKLE CHARGE 4. BATTERY REMOVED 2 3 TIME Figure 4. Typical Charging with Battery Insertion _______________________________________________________________________________________ 4 NiCd/NiMH Battery Fast-Charge Controllers Figure 4 shows a charging event in which a battery is inserted into an already powered-up MAX712/MAX713. During time 1, the charger’s output voltage is regulated at the number of cells times VLIMIT. Upon insertion of the battery (time 2), the MAX712/MAX713 detect current flow into the battery and switch to fast-charge state. Once full charge is detected, the device reverts to trickle charge (time 3). If the battery is removed (time 4), the MAX712/MAX713 remain in trickle charge and the output voltage is once again regulated as in time 1. battery pack is higher during a fast-charge cycle than while in trickle charge or while supplying a load. The voltage across some battery packs may approach 1.9V/cell. The 1.5V of overhead is needed to allow for worst-case voltage drops across the pass transistor (Q1 of Typical Q1 R2 R1 2N3904 Powering the MAX712/MAX713 AC-to-DC wall-cube adapters typically consist of a transformer, a full-wave bridge rectifier, and a capacitor. Figures 10–12 show the characteristics of three consumer product wall cubes. All three exhibit substantial 120Hz output voltage ripple. When choosing an adapter for use with the MAX712/MAX713, make sure the lowest wall-cube voltage level during fast charge and full load is at least 1.5V higher than the maximum battery voltage while being fast charged. Typically, the voltage on the D1 DC IN V+ DRV MAX712 MAX713 Figure 5. DRV Pin Cascode Connection (for high DC IN voltage or to reduce MAX712/MAX713 power dissipation in linear mode) Table 4. MAX712/MAX713 Charge-State Transition Table† POWER_ON_RESET UNDER_VOLTAGE IN_REGULATION COLD HOT 0 x x x x Set trickle ↑ 1 x x x No change ↑ x 1 x x No change ↑ x x 0 x No change ↑ x x x 0 No change*** ↑ 0 0 1 1 Set fast 1 0 0 1 1 No change 1 0 0 ↓ 1 No change 1 ↓ 0 1 1 Set fast 1 0 ↓ 1 1 Set fast 1 0 0 1 ↑ No change*** 1 0 0 ↑ 1 Set fast** 1 x x 0 x Trickle to fast transition inhibited 1 x x x 0 Trickle to fast transition inhibited 1 ↑ 0 x x Set trickle 1 0 ↑ x x Set trickle 1 x x x ↓ Set trickle RESULT* † Only two states exist: fast charge and trickle charge. * Regardless of the status of the other logic lines, a timeout or a voltage-slope detection will set trickle charge. ** If the battery is cold at power-up, the first rising edge on COLD will trigger fast charge; however, a second rising edge will have no effect. *** Batteries that are too hot when inserted (or when circuit is powered up) will not enter fast charge until they cool and power is recycled. _______________________________________________________________________________________ 9 MAX712/MAX713 The MAX712/MAX713 can be configured so that voltage slope and/or battery temperature detects full charge. MAX712/MAX713 NiCd/NiMH Battery Fast-Charge Controllers charge until one of the three fast-charge terminating conditions is triggered. If DC IN exceeds 20V, add a cascode connection in series with the DRV pin as shown in Figure 5 to prevent exceeding DRV’s absolute maximum ratings. Select the current-limiting component (R1 or D4) to pass at least 5mA at the minimum DC IN voltage (see step 6 in the Getting Started section). The maximum current into V+ determines power dissipation in the MAX712/MAX713. DC IN V+ REF DRV VLIMIT D1 maximum current into V+ = (maximum DC IN voltage - 5V)/R1 power dissipation due to shunt regulator = 5V x (maximum current into V+) CELL_VOLTAGE GND CURRENT-SENSE AMPLIFIER Sink current into the DRV pin also causes power dissipation. Do not allow the total power dissipation to exceed the specifications shown in the Absolute Maximum Ratings. PGM3 FAST_CHARGE Av BATT- RSENSE GND X V+ OPEN REF BATT- 1 0 0 0 0 8 512 256 128 64 CC BATT- BATTIN_REGULATION 1.25V BATT- Figure 6. Current and Voltage Regulator (linear mode) Operating Circuit), the diode (D1), and the sense resistor (RSENSE). This minimum input voltage requirement is critical, because violating it can inhibit proper termination of the fast-charge cycle. A safe rule of thumb is to choose a source that has a minimum input voltage = 1.5V + (1.9V x the maximum number of cells to be charged). When the input voltage at DC IN drops below the 1.5V + (1.9V x number of cells), the part oscillates between fast charge and trickle charge and might never completely terminate fast-charge. The MAX712/MAX713 are inactive without the wall cube attached, drawing 5µA (max) from the battery. Diode D1 prevents current conduction into the DRV pin. When the wall cube is connected, it charges C1 through R1 (see Typical Operating Circuit) or the current-limiting diode (Figure 19). Once C1 charges to 5V, the internal shunt regulator sinks current to regulate V+ to 5V, and fast charge commences. The MAX712/MAX713 fast 10 Fast Charge C2 The MAX712/MAX713 enter the fast-charge state under one of the following conditions: 1) Upon application of power (batteries already installed), with battery current detection (i.e., GND voltage is less than BATT- voltage), and TEMP higher than TLO and less than THI and cell voltage higher than the UVLO voltage. 2) Upon insertion of a battery, with TEMP higher than TLO and lower than THI and cell voltage higher than the UVLO voltage. RSENSE sets the fast-charge current into the battery. In fast charge, the voltage difference between the BATTand GND pins is regulated to 250mV. DRV current increases its sink current if this voltage difference falls below 250mV, and decreases its sink current if the voltage difference exceeds 250mV. fast-charge current (IFAST) = 0.25V/RSENSE Trickle Charge Selecting a fast-charge current (IFAST) of C/2, C, 2C, or 4C ensures a C/16 trickle-charge current. Other fastcharge rates can be used, but the trickle-charge current will not be exactly C/16. The MAX712/MAX713 internally set the trickle-charge current by increasing the current amplifier gain (Figure 6), which adjusts the voltage across R SENSE (see Trickle-Charge VSENSE in the Electrical Characteristics table). ______________________________________________________________________________________ NiCd/NiMH Battery Fast-Charge Controllers PGM3 FAST-CHARGE RATE TRICKLE-CHARGE CURRENT (ITRICKLE) V+ 4C IFAST/64 OPEN 2C IFAST/32 REF C IFAST/16 BATT- C/2 Q1 V+ Configuration: Typical Operating Circuit 2 x Panasonic P-50AA 500mAh AA NiCd batteries C/3 fast-charge rate 264-minute timeout Negative voltage-slope cutoff enabled Minimum DC IN voltage of 6V Settings: Use MAX713 PGM0 = V+, PGM1 = open, PGM2 = BATT-, PGM3 = BATT-, RSENSE = 1.5Ω (fast-charge current, IFAST = 167mA), R1 = (6V - 5V)/5mA = 200Ω Since PGM3 = BATT-, the voltage on RSENSE is regulated to 31.3mV during trickle charge, and the current is 20.7mA. Thus the trickle current is actually C/25, not C/16. Further Reduction of Trickle-Charge Current for NiMH Batteries The trickle-charge current can be reduced to less than C/16 using the circuit in Figure 7. In trickle charge, some of the current will be shunted around the battery, since Q2 is turned on. Select the value of R7 as follows: R7 = (VBATT + 0.4V)/(lTRlCKLE - IBATT) where V BATT = battery voltage when charged ITRlCKLE = MAX712/MAX713 trickle-charge current setting IBATT = desired battery trickle-charge current Regulation Loop The regulation loop controls the output voltage between the BATT+ and BATT- terminals and the current through the battery via the voltage between BATT- and GND. The sink current from DRV is reduced when the R7 DRV 10k MAX712 MAX713 BATTERY Q2 FASTCHG 10k IFAST/8 Nonstandard Trickle-Charge Current Example D1 DC IN RSENSE GND Figure 7. Reduction of Trickle Current for NiMH Batteries (Linear Mode) output voltage exceeds the number of cells times VLIMIT, or when the battery current exceeds the programmed charging current. For a linear-mode circuit, this loop provides the following functions: 1) When the charger is powered, the battery can be removed without interrupting power to the load. 2) If the load is connected as shown in the Typical Operating Circuit, the battery current is regulated regardless of the load current (provided the input power source can supply both). Voltage Loop The voltage loop sets the maximum output voltage between BATT+ and BATT-. If VLIMIT is set to less than 2.5V, then: Maximum BATT+ voltage (referred to BATT-) = VLIMIT x (number of cells as determined by PGM0, PGM1) VLIMIT should be set between 1.9V and 2.5V. If VLIMIT is set below the maximum cell voltage, proper termination of the fast-charge cycle might not occur. Cell voltage can approach 1.9V/cell, under fast charge, in some battery packs. Tie VLIMIT to VREF for normal operation. With the battery removed, the MAX712/MAX713 do not provide constant current; they regulate BATT+ to the maximum voltage as determined above. ______________________________________________________________________________________ 11 MAX712/MAX713 Table 5. Trickle-Charge Current Determination from PGM3 The voltage loop is stabilized by the output filter capacitor. A large filter capacitor is required only if the load is going to be supplied by the MAX712/MAX713 in the absence of a battery. In this case, set COUT as: COUT (in farads) = (50 x ILOAD)/(VOUT x BWVRL) where BWVRL = loop bandwidth in Hz (10,000 recommended) COUT > 10µF ILOAD = external load current in amps VOUT = programmed output voltage (VLIMIT x number of cells) Current Loop Figure 6 shows the current-regulation loop for a linearmode circuit. To ensure loop stability, make sure that the bandwidth of the current regulation loop (BWCRL) is lower than the pole frequency of transistor Q1 (fB). Set BWCRL by selecting C2. BWCRL in Hz = gm/C2, C2 in farads, gm = 0.0018 Siemens The pole frequency of the PNP pass transistor, Q1, can be determined by assuming a single-pole current gain response. Both fT and Bo should be specified on the data sheet for the particular transistor used for Q1. fB in Hz = fT/Bo, fT in Hz, Bo = DC current gain Condition for Stability of Current-Regulation Loop: BWCRL < fB The MAX712/MAX713 dissipate power due to the current-voltage product at DRV. Do not allow the power dissipation to exceed the specifications shown in the Absolute Maximum Ratings. DRV power dissipation can be reduced by using the cascode connection shown in Figure 5. Power dissipation due to DRV sink current = (current into DRV) x (voltage on DRV) Voltage-Slope Cutoff The MAX712/MAX713’s internal analog-to-digital converter has 2.5mV of resolution. It determines if the battery voltage is rising, falling, or unchanging by comparing the battery’s voltage at two different times. After power-up, a time interval of tA ranging from 21sec to 168sec passes (see Table 3 and Figure 8), then a battery voltage measurement is taken. It takes 5ms to perform a measurement. After the first measurement is complete, another t A interval passes, and then a second measurement is taken. The two measurements are compared, and a decision whether to terminate charge is made. If charge is not terminated, another full two-measurement cycle is repeated until charge is 12 terminated. Note that each cycle has two tA intervals and two voltage measurements. The MAX712 terminates fast charge when a comparison shows that the battery voltage is unchanging. The MAX713 terminates when a conversion shows the battery voltage has fallen by at least 2.5mV per cell. This is the only difference between the MAX712 and MAX713. Temperature Charge Cutoff Figure 9a shows how the MAX712/MAX713 detect overand under-temperature battery conditions using negative temperature coefficient thermistors. Use the same model thermistor for T1 and T2 so that both have the same nominal resistance. The voltage at TEMP is 1V (referred to BATT-) when the battery is at ambient temperature. The threshold chosen for THI sets the point at which fast charging terminates. As soon as the voltage-on TEMP rises above THI, fast charge ends, and does not restart after TEMP falls below THI. The threshold chosen for TLO determines the temperature below which fast charging will be inhibited. If TLO > TEMP when the MAX712/MAX713 start up, fast charge will not start until TLO goes below TEMP. The cold temperature charge inhibition can be disabled by removing R5, T3, and the 0.022μF capacitor; and by tying TLO to BATT-. To disable the entire temperature comparator chargecutoff mechanism, remove T1, T2, T3, R3, R4, and R5, and their associated capacitors, and connect THI to V+ and TLO to BATT-. Also, place a 68kQ resistor from REF to TEMP, and a 22kΩ resistor from BATT- to TEMP. COUNTS MAX712/MAX713 NiCd/NiMH Battery Fast-Charge Controllers VOLTAGE RISES NEGATIVE ZERO VOLTAGE VOLTAGE SLOPE SLOPE CUTOFF FOR MAX712 CUTOFF FOR MAX712 OR MAX713 ZERO RESIDUAL NEGATIVE RESIDUAL 0 POSITIVE RESIDUAL 5 5 5 5 5 5 tA ms tA ms tA ms tA ms tA ms tA ms INTERVAL INTERVAL INTERVAL INTERVAL INTERVAL INTERVAL NOTE: SLOPE PROPORTIONAL TO VBATT Figure 8. Voltage Slope Detection ______________________________________________________________________________________ t NiCd/NiMH Battery Fast-Charge Controllers REF R3 THI T1 HOT R4 0.022μF TEMP +2.0V AMBIENT TEMPERATURE Some battery packs come with a temperature-detecting thermistor connected to the battery pack’s negative terminal. In this case, use the configuration shown in Figure 9b. Thermistors T2 and T3 can be replaced by standard resistors if absolute temperature charge cutoff is acceptable. All resistance values in Figures 9a and 9b should be chosen in the 10kΩ to 500kΩ range. __________Applications Information Battery-Charging Examples R5 COLD T2 TLO MAX712 MAX713 T3 0.022μF 1μF BATTAMBIENT TEMPERATURE NOTE: FOR ABSOLUTE TEMPERATURE CHARGE CUTOFF, T2 AND T3 CAN BE REPLACED BY STANDARD RESISTORS. Figures 13 and 14 show the results of charging 3 AA, 1000mAh, NiMH batteries from Gold Peak (part no. GP1000AAH, GP Batteries (619) 438-2202) at a 1A rate using the MAX712 and MAX713, respectively. The Typical Operating Circuit is used with Figure 9a’s thermistor configuration . DC IN = Sony AC-190 +9VDC at 800mA AC-DC adapter PGM0 = V+, PGM1 = REF, PGM2 = REF, PGM3 = REF R1 = 200Ω, R2 = 150Ω, RSENSE = 0.25Ω C1 = 1µF, C2 = 0.01µF, C3 = 10µF, VLIMIT = REF R3 = 10kΩ, R4 = 15kΩ T1, T2 = part #14A1002 (Alpha Sensors: 858-549-4660) R5 omitted, T3 omitted, TLO = BATT- Figure 9a. Temperature Comparators REF AMBIENT TEMPERATURE MAX712/713 11 T2 THI R5 +2.0V R3 TEMP 1μF COLD OUTPUT VOLTAGE (V) 10 HOT HIGH PEAK 9 120Hz RIPPLE 8 TLO 0.022μF 0.022μF MAX712 MAX713 T1 R4 T3 LOW PEAK 7 6 0 BATTIN THERMAL CONTACT WITH BATTERY AMBIENT TEMPERATURE 200 400 600 800 1000 LOAD CURRENT (mA) NOTE: FOR ABSOLUTE TEMPERATURE CHARGE CUTOFF, T2 AND T3 CAN BE REPLACED BY STANDARD RESISTORS. Figure 9b. Alternative Temperature Comparator Configuration Figure 10. Sony Radio AC Adapter AC-190 Load Characteristic, 9VDC 800mA ______________________________________________________________________________________ 13 MAX712/MAX713 IN THERMAL CONTACT WITH BATTERY Linear-Mode, High Series Cell Count The absolute maximum voltage rating for the BATT+ pin is higher when the MAX712/MAX713 are powered on. If more than 11 cells are used in the battery, the BATT+ input voltage must be limited by external circuitry when DC IN is not applied (Figure 15). Efficiency During Discharge The current-sense resistor, R SENSE, causes a small efficiency loss during battery use. The efficiency loss is significant only if R SENSE is much greater than the 10 Status Outputs Figure 17 shows a circuit that can be used to indicate charger status with logic levels. Figure 18 shows a circuit that can be used to drive LEDs for power and charger status. 16 HIGH PEAK 9 8 120Hz RIPPLE 7 LOW PEAK 14 HIGH PEAK 12 LOW PEAK 10 6 120Hz RIPPLE 8 5 400 800 600 LOAD CURRENT (mA) 0 1000 Figure 11. Sony CD Player AC Adapter AC-96N Load Characteristic, 9VDC 600mA ΔV CUTOFF Δt 4.9 4.8 5.0 38 4.9 36 4.7 34 V 4.6 32 4.5 30 T 4.4 28 34 V 32 30 4.5 T 4.4 28 26 4.3 24 4.2 Figure 13. 3 NiMH Cells Charged with MAX712 36 4.6 26 90 40 38 4.7 4.2 60 30 TIME (MINUTES) MAX712/713 ΔV CUTOFF Δt 4.8 4.3 0 800 Figure 12. Panasonic Modem AC Adapter KX-A11 Load Characteristic, 12VDC 500mA 40 BATTERY TEMPERATURE (°C) MAX712/713 5.0 200 600 400 LOAD CURRENT (mA) 24 0 60 30 TIME (MINUTES) Figure 14. NiMH Cells Charged with MAX713 ______________________________________________________________________________________ 90 BATTERY TEMPERATURE (°C) 200 BATTERY VOLTAGE (V) 0 14 MAX712/713 18 OUTPUT VOLTAGE (V) OUTPUT VOLTAGE (V) battery stack’s internal resistance. The circuit in Figure 16 can be used to shunt the sense resistor whenever power is removed from the charger. MAX712/713 11 BATTERY VOLTAGE (V) MAX712/MAX713 NiCd/NiMH Battery Fast-Charge Controllers NiCd/NiMH Battery Fast-Charge Controllers MAX712/MAX713 Q1 D1 DC IN TO BATTERY POSITIVE TERMINAL R2 150Ω OV = NO POWER 5V = POWER V+ 33kΩ Q2 VCC MAX712 MAX713 10kΩ 500Ω OV = FAST VCC = TRICKLE OR NO POWER FASTCHG DRV BATT+ MAX712 MAX713 Figure 15. Cascoding to Accommodate High Cell Counts for Linear-Mode Circuits Figure 17. Logic-Level Status Outputs DC IN D1 R1 >4 CELLS MAX712 MAX713 CHARGE POWER 100kΩ V+ * 100kΩ RSENSE V+ * LOW RON LOGIC LEVEL N-CHANNEL POWER MOSFET GND Figure 16. Shunting RSENSE for Efficiency Improvement 470ΩMIN MAX712 MAX713 FAST CHARGE FASTCHG Figure 18. LED Connection for Status Outputs ______________________________________________________________________________________ 15 MAX712/MAX713 NiCd/NiMH Battery Fast-Charge Controllers Ordering Information (continued) PART TEMP RANGE ___________________Chip Topography PIN-PACKAGE MAX713CPE 0°C to +70°C 16 Plastic DIP MAX713CSE MAX713C/D MAX713EPE 0°C to +70°C 0°C to +70°C -40°C to +85°C 16 Narrow SO Dice* 16 Plastic DIP MAX713ESE MAX713MJE -40°C to +85°C -55°C to +125°C 16 Narrow SO 16 CERDIP** BATT+ VLIMIT REF V+ DRV PGM0 PGM1 *Contact factory for dice specifications. **Contact factory for availability and processing to MIL-STD-883. GND Package Information 0.126 (3.200mm) (For the latest package outline information and land patterns, go to www.maxim-ic.com/packages.) BATT- PACKAGE TYPE PACKAGE CODE DOCUMENT NO. 16 Plastic DIP P16-1 21-0043 16 Narrow SO S16-1 21-0041 16 CERDIP J16-3 21-0045 THI CC TLO PGM3 TEMP FASTCHG PGM2 0.80" (2.032mm) TRANSISTOR COUNT: 2193 SUBSTRATE CONNECTED TO V+ 16 ______________________________________________________________________________________ NiCd/NiMH Battery Fast-Charge Controllers REVISION NUMBER REVISION DATE 6 12/08 DESCRIPTION Removed switch mode power control and added missing package information PAGES CHANGED 1, 5, 6, 9, 10, 12, 13, 14, 16, 17 Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time. Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________ 17 © 2008 Maxim Integrated Products is a registered trademark of Maxim Integrated Products, Inc. MAX712/MAX713 Revision History MAX713 Switch-Mode Evaluation Kit ______________Ordering Information PART MAX713SWEVKIT-SO TEMP. RANGE 0°C to +70°C BOARD TYPE Surface Mount ____________________Component List DESIGNATION QTY C1 1 C2 1 C3, C5, C6 3 C4 1 D1, D2 2 D3 1 D4 1 J1, J2 2 L1 1 M1 1 Q1, Q3, Q4 3 Q2 1 R1, R6 R2 0 1 R3 1 R4 R5 R7 R8 U1 None None 1 1 1 1 1 1 1 DESCRIPTION 1µF, 25V capacitor Sprague 595D105X0025A 220pF, 50V capacitor 10µF, 50V capacitors Sprague 595D106X0050R 0.1µF, 50V capacitor 3A, 40V Schottky diodes Motorola MBRS340T3 Red LED 8.2mA, 50V current-limiting diode Central Semiconductor CCLHM080 2-pin power connectors 220µH, 1.5A inductor CoilCraft DO3340-224 0.3Ω, 50V P-channel MOSFET International Rectifier IRFR9024 50V NPN transistors Central Semiconductor CMPTA06 or Motorola MMBTA06LT1 50V PNP transistor Central Semiconductor CMPT2907A or Motorola MMBT2907ALT1 Reserved for optional resistors 5.1kΩ, 5% resistor 0.25Ω, 1/2W resistor Dale WSL-2512-R250-J or IRC LR2010-01-R250-K 1.5kΩ, 5% resistor 470Ω, 5% resistor 68kΩ, 5% resistor 22kΩ, 5% resistor Maxim MAX713CSE IC MAX712/MAX713 data sheet 3.0" x 3.0" printed circuit board ____________________________Features ♦ Up to 1A Charge Current ♦ 45V Peak Input Voltage Range ♦ Switch-Mode Operation Reduces Heat Dissipation ♦ Surface-Mount Components ♦ Charges 1 to 16 Series Cells ______________Component Suppliers SUPPLIER PHONE FAX Tantalum Capacitors AVX Sprague (207) 282-5111 (603) 224-1961 (207) 283-1941 (603) 224-1430 Low-Value Resistors Dale-Vishay IRC (402) 564-3131 (512) 992-7900 (402) 563-1841 (512) 992-3377 High-Current Inductor CoilCraft (708) 241-7876 (708) 639-1469 (516) 435-1110 (516) 435-1824 (310) 322-3331 (310) 322-3332 (602) 244-3576 (805) 867-2555 81-3-3494-7411 (602) 244-4015 (805) 867-2556 81-3-3494-7414 Semiconductors Central Semiconductor International Rectifier Motorola Nihon: USA Nihon: Japan Please indicate that you are using these parts with the MAX713 when contacting the above vendors. ______________________________EV Kit ________________________________________________________________ Maxim Integrated Products Call toll free 1-800-998-8800 for free samples or literature. 1 Evaluates: MAX712/MAX713 _______________General Description The MAX713SWEVKIT-SO is a fully assembled and tested surface-mount board. The MAX713 high-current, switchmode battery charger controls a P-channel power MOSFET, allowing charge currents up to 1A. Switch-mode operation typically provides 75%-efficient conversion, reducing heat compared to linear-regulator solutions. The MAX713SWEVKIT can also be used to evaluate the MAX712 just by replacing the MAX713CSE with a MAX712CSE. Evaluates: MAX712/7MAX13 MAX713 Switch-Mode Evaluation Kit _________________________Quick Start The MAX713 Switch-Mode EV kit is a fully assembled and tested surface-mount board. Follow these steps to verify board operation. Do not turn on the power until all connections are completed. 1) Set the charging parameters to match the charge current and number of cells of the battery being charged. Refer to the section Setting the Charging Parameters and to the MAX712/MAX713 data sheet for instructions. The board is shipped configured for six cells and 1A of charge current. 2) Connect the input power source (14V to 16V, 1.3A as configured) to the 2-pin power connector. Observe the polarity indicated next to the connector. The input supply must be 2V greater than the maximum battery charging voltage, and capable of providing the charge current. 3) Connect the battery to the 2-pin battery terminal. Observe the polarity markings. 4) Turn on the power to the board and use a DVM to confirm the voltage across the battery and the sense resistor. _______________Detailed Description Input Supply Range The input power supply must be at least 2V greater than the peak battery voltage. The upper limit is determined by the breakdown voltage of the P-channel power MOSFET and the capacitors across the input supply. When choosing an adapter for use with the MAX712/MAX713 switch-mode circuit, make sure that the lowest wall-cube voltage level during fast charge and full load is a least 2V higher than the maximum battery voltage while being fast charged. Typically, the voltage on the battery pack is higher during a fast-charge cycle than while in trickle charge or while supplying a load. The voltage across some battery packs may approach 1.9V/cell. This minimum input voltage requirement is critical, because its violation may inhibit proper termination of the fast-charge cycle. A safe rule of thumb is to choose a source that has a minimum input voltage = 2V + (1.9V x the maximum number of cells to be charged). The components included in this kit are rated at 50V, so the input source must never exceed 50V. Depending on your application, you can substitute capacitors and other components with different ratings. The EV kit is shipped with all programming inputs (PGM0-PGM3) open. This sets the MAX713 for six cells, 1A of charging current, 45 minutes maximum charge 2 time, and 42 seconds between battery voltage measurements. The default conditions require an input source greater than 14V and capable of greater than 1.3A. Be sure to read the section titled Setting the Charging Parameters before connecting any battery. A current-limiting diode (D4) on the EV kit allows a wide input voltage range. This diode provides a fixed 8mA of current to the MAX713 shunt regulator. For applications with a narrow input voltage range, you can replace the diode with a resistor selected for the same current flow between the input source and the V+ pin. Setting the Charging Parameters For each battery type connected, the EV kit must be set for the proper number of cells, the proper maximum charging time and sampling intervals, and the proper charging current. Select the number of cells by connecting the PGM0 and PGM1 pins per Table 1. Whenever changing the number of cells to be charged, PGM0 and PGM1 need to be adjusted accordingly. Attempting to charge more or fewer cells than the number programmed may disable the voltage-slope fast-charge termination circuitry. The EV kit is shipped with PGM0 and PGM1 open, which sets the number of cells at six. You can alter the programmed number of cells by installing jumper wires across the holes provided on the board. For example, to configure the board for four cells, solder wires between pins 1 & 4 of SW1 (PGM0) and pins 1 & 2 of SW2 (PGM1). Table 1. Programming the Number of Cells NUMBER PGM0 SW1 PGM1 SW2 OF CELLS CONNECTION JUMPER CONNECTION JUMPER 1 V+ 1–4 V+ 2 V+ 1–4 Open — 3 V+ 1–4 REF 1–3 4 V+ 1–4 BATT- 1–2 5 Open — V+ 1–4 6 Open — Open — 7 Open — REF 1–3 8 Open — BATT- 1–2 9 REF 1–3 V+ 1–4 10 REF 1–3 Open — 11 REF 1–3 REF 1–3 12 REF 1–3 BATT- 1–2 13 BATT- 1–2 V+ 1–4 14 BATT- 1–2 Open — 15 BATT- 1–2 REF 1–3 16 BATT- 1–2 BATT- 1–2 _______________________________________________________________________________________ 1–4 MAX713 Switch-Mode Evaluation Kit D3 LED RED R1 OPEN R2 5.1k 1 Q1 CMPTA06 1 2 2 Q2 2N2907 1 JU1 JUMPER 1 Q3 CMPTA06 1 2 3 3 JU2 CUT HERE 2 R4 1.5k 11 14 5 REF 4 3 2 SW1 4 3 2 SW2 SW3 4 3 2 SW4 R5 470Ω 15 1 4 3 2 3 4 1 1 DRV C2 220pF CC THI V+ U1 BATT+ BATT– TLO 12 6 1 VLIMIT R6 OPEN 16 REF 1 C4 0.1µF R8 22k GND 7 C3 10µF 50V MAX713 9 PGM2 REF BATT+ 2 PGM0 PGM1 10 PGM3 R7 68k C1 1µF 10V 220µH D1 D2 MBRS340T3 MBRS340T3 3 D4 CCLHM080 (8mA CURRENTLIMITING DIODE) 3 Q4 CMPTA06 2 C6 10µF 50V C5 10µF 50V Evaluates: MAX712/MAX713 FAST CHARGE L1 DO3340 M1 IRFR9024 DCIN R3 0.25Ω CURRENTSENSE RESISTOR BATT- 13 GND TEMP FASTCHG 8 Figure 1. MAX713 Switch-Mode EV Kit Schematic Table 2. Programming the Timing Functions TIMEOUT (MINUTES) 22 22 33 33 45 45 66 66 90 90 132 132 180 180 264 264 SAMPLE INTERVAL (SECONDS) 21 21 21 21 42 42 42 42 84 84 84 84 168 168 168 168 SLOPE LIMIT Off On Off On Off On Off On Off On Off On Off On Off On TRICKLE VOLTAGE (mV) 4 4 4 4 8 8 8 8 16 16 16 16 32 32 32 32 PGM2 CONNECTION SW3 JUMPER PGM3 CONNECTION SW4 JUMPER Open REF V+ BATTOpen REF V+ BATTOpen REF V+ BATTOpen REF V+ BATT- — 1–3 1–4 1–2 — 1–3 1–4 1–2 — 1–3 1–4 1–2 — 1–3 1–4 1–2 V+ V+ V+ V+ Open Open Open Open REF REF REF REF BATTBATTBATTBATT- 1–4 1–4 1–4 1–4 — — — — 1–3 1–3 1–3 1–3 1–2 1–2 1–2 1–2 _______________________________________________________________________________________ 3 Evaluates: MAX712/MAX713 MAX713 Switch-Mode Evaluation Kit This jumper configuration connects PGM0 to V+ and PGM1 to BATT-. Select the maximum charging time and the time interval between cell voltage readings for delta-slope termination by connecting the PGM2 and PGM3 pins per Table 2. Refer to the MAX712/MAX713 data sheet for detailed information on the operation of these pins. The charge current is determined by the value of the current-sense resistor (R3) and the fixed 250mV across the resistor during fast-charge. To change the charge current, calculate the new current-sense resistor value and install that value in the position provided (R8), then remove the factory-installed R3. Choose RSENSE using the following formula: RSENSE = 0.25V/IFAST See the MAX712/MAX713 data sheet for detailed information on setting the fast-charge and trickle-charge currents. Transistors Q1 and Q2 provide a low-impedance drive to the gate. If the DCIN voltage is less than 15V, the MAX713 DRV pin can be directly connected to Q1 and Q2. For DCIN voltages greater than 15V, a transistor level shifter (Q3, R4) is inserted to provide the proper voltage swing to Q1 and Q2. Q3 is mounted on the evaluation board, but it is not used in the standard configuration. If Q3 is needed, then cut the trace across JU2 and solder a jumper across JU1. Inductor Selection The inductor value is not critical to circuit operation. However, the greater its value, the lower the output ripple current. The CoilCraft inductor used on the evaluation board was chosen because it is the highest value (220µH) surface-mount inductor with a 1.5A rating currently available. Larger inductors, such as toroids, may be used for lower output ripple current or higher current-charge rates. Gate-Drive Current The voltage swing on the gate of the power MOSFET (M1) must be greater than 8V and less than 15V. Figure 2. MAX713 EV Kit Component Placement Guide— Component Side Figure 3. MAX713 EV Kit PC Board Layout—Component Side Figure 4. MAX713 EV Kit PC Board Layout—Solder Side Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time. 4 ___________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 (408) 737-7600 © 1995 Maxim Integrated Products Printed USA is a registered trademark of Maxim Integrated Products. Maxim > App Notes > Battery Management Power-Supply Circuits Keywords: switchmode battery chargers, NiMH/NiCd battery chargers, stepdown regulators, constant-current supplies, dV/dt termination Aug 09, 2010 APPLICATION NOTE 4496 NiMH/NiCd Switchmode Battery Charger Has dV/dt Charge Termination Abstract: This circuit includes a battery charger (MAX712) and step-down switching regulator (MAX5089) for handling the power portion of the charger. By controlling the regulator the MAX712 acts as a battery-charge controller, producing outputs of 7V to 16V. It operates from any DC source capable of delivering the desired fast-charge current, with this condition: the output voltage must equal 1.7V multiplied by the sum of (two plus the number of batteries to be charged in series). A similar version of this article appeared in the December 17, 2008 issue of Portable Design magazine. All battery chargers can be regarded as constant-current power supplies, but they differ from power supplies in two important respects: battery chargers (by design) block all discharge paths from battery to charger, under any conditions. They also include circuitry that decides when the battery has taken a full charge (signaling when the full-charge current must be reduced), and when the charging process should be terminated. Several techniques are available for deciding when a NiCd or NiMh battery is fully charged. The most common of these relies on terminating the charge when the battery terminals reach a particular voltage level, based on a characteristic increase in the positive slope of voltage versus time. This is not the best method, because the absolute value of termination voltage depends strongly on the ambient temperature and the charge rate (the "C" rate). The final result can therefore be an under- or over-charged battery. Overcharging a NiCd or NiMh battery is not as serious as for lithium batteries, which are much more sensitive to damage. NiCd and NiMh batteries are more rugged devices. Undercharging is a problem, simply because the store of charge will be less than expected. Most of the better termination methods rely on the fact that charging transforms electrical energy into stored (potential) chemical energy. Charging is an endothermic process. That means the battery temperature not only doesn't rise; it actually falls slightly during a charge. When a battery reaches full charge, the reactions that transform electrical energy to chemical energy cease. Any further electrical energy forced into the battery by the charger transforms to heat, which increases the battery temperature. At that point charging should stop, because the battery has stored 100% of its capacity. You can sense this temperature increase and use it as a signal for termination of charging, but that measurement implies a thermal sensor in intimate contact with the battery—not always a feasible arrangement. You can also sense the temperature increase by changes in the battery's terminal voltage, which is a sensitive indicator of internal temperature changes. Thus, charging a battery produces a positive slope in the plot of voltage versus time. The positive slope turns negative when a NiCd battery reaches full charge, and goes to zero (flat) when a NiMh battery reaches full charge. Figure 1 shows the terminal voltage vs. time for a NiCd battery under charge. The time scale for change of slope, which can range from minutes to tens of minutes according to the battery size, depends on the thermal time constant of the battery and its enclosure. It also depends on the charge rate (i.e., the charging current), because the temperature increase and its rate of increase are functions of the battery's thermal capacity and of power delivered (which, in turn, is a function of charging current). Page 1 of 3 Figure 1. These curves show the voltage and temperature characteristics of a NiCd cell as it approaches and passes the fully charged condition. To detect slope changes, the charge controller must run a detection algorithm that makes sequenced voltage measurements at long time intervals and then stores the results for comparison. This capability, which cannot be implemented in analog form, must be performed by a combination of ADC, memory, timer, and sequencer. IC battery chargers such as the MAX712 (for NiMh batteries) and MAX713 (for NiCd batteries) run dV/dt slope-sensing chargetermination algorithms. The power section of these devices is linear and has limited efficiency, but is adequate for smaller-capacity batteries. The circuit of Figure 2 includes a MAX712 or MAX713 battery charger, and also a switching regulator (MAX5089) that handles the power portion of the charger. This regulator operates at higher efficiency and a higher switching frequency (2MHz), which in turn enables construction of smaller-size chargers capable of higher fast-charge rates, yet with little need for heat-sinking. Figure 2. This switchmode charger for NiCd and NiMh batteries uses their dV/dt behavior as an indicator for charge termination. Page 2 of 3 The MAX5089 step-down regulator is controlled by the MAX712 or MAX713, acting as a battery-charge controller. It produces outputs of 7V to 16V and operates from any DC source capable of delivering the desired fast-charge current, with this condition: the output voltage must equal 1.7V multiplied by the sum of (two plus the number of batteries to be charged in series). The Figure 2 circuit charges a pack of 1 to 8 cells with fast-charge currents as high as 2.5A, and retains all programmable features described in the MAX712/MAX713 data sheets. When charging is complete, the MAX712/MAX713 devices go to a state called "trickle charge," in which they inject a small fraction of the full charge current (to compensate for the self-discharge always present). You can therefore leave the battery connected to the charger, and find it charged to +100% when needed. Data sheets for the MAX712/MAX713 and MAX5089 are available at www.maxim-ic.com. Related Parts MAX5089 2.2MHz, 2A Buck Converters with an Integrated High-Side Switch -- Free Samples MAX712 NiCd/NiMH Battery Fast-Charge Controllers Automatic Updates Would you like to be automatically notified when new application notes are published in your areas of interest? Sign up for EEMail™. Application note 4496: www.maxim-ic.com/an4496 More Information For technical support: www.maxim-ic.com/support For samples: www.maxim-ic.com/samples Other questions and comments: www.maxim-ic.com/contact AN4496, AN 4496, APP4496, Appnote4496, Appnote 4496 Copyright © by Maxim Integrated Products Additional legal notices: www.maxim-ic.com/legal Page 3 of 3 Maxim > Design support > App notes > Battery Management > APP 680 Maxim > Design support > App notes > Power-Supply Circuits > APP 680 Keywords: linear, switch-mode, battery charger, microcontroller, current source, switching dc-dc converter, notebook computer, lithium-ion, Li+, lithium, 8051, NiCd, NiMH, Nickel Metal Hydride, Microchip PIC, voltage regulator, current regulators APPLICATION NOTE 680 Jul 22, 2002 How to Design Battery Charger Applications that Require External Microcontrollers and Related System-Level Issues Abstract: Notebook computers increasingly require complex battery charging algorithms and systems. This article provides information and background on lithium-ion (Li+), nickel-cadmium (NiCd), and nickel-metal-hydride (NiMH) batteries and related system-level switch-mode and linear battery chargers. These voltage regulators and current regulators are controlled by external microprocessors like the 8051 or Microchip PIC, and examples are provided with these controllers. An overview of requirements for charging common battery chemistries with Maxim battery charger ICs is provided, along with a discussion of system-level trade-offs and firmware design tips, and a list of World Wide Web engineering resources. The previous issue of Maxim's Engineering Journal (Vol. 27) discussed new developments in stand-alone battery chargers. This second article of a two-part series explores the system-level issues in applying battery-charger ICs. Over the past five years, market pressures on portable equipment have transformed the simple battery charger into a sophisticated switch-mode device capable of charging an advanced battery in 30 minutes. This development also marks a departure from the selfcontained, stand-alone charger ICs of only a few years ago. Some of those ICs included considerable intelligence: enough to handle the complex task of fast charging advanced batteries. Maxim still manufactures stand-alone charger ICs, but market demand has changed recently. Today's battery-charger subsystems regulate charging voltage and current using the intelligence of an external microcontroller (µC), usually available elsewhere in the system. This approach achieves low cost in high-volume applications and allows the greatest flexibility in tailoring the charger to a specific application. All necessary intelligence once resided in the battery-charger controller IC itself, but now the system designer must implement a charging algorithm and write the associated firmware. This article provides the information and background necessary to implement charger systems based on Maxim's wide range of battery-charger ICs for all popular chemistries. The following discussion presents an overview of the requirements for charging common battery chemistries with Maxim batterycharger ICs. It addresses system-level trade-offs and firmware design tips, and lists World Wide Web resources available to designers. The discussion closes with design examples based on two common µCs: the 8051 and the Microchip PIC. Either example can serve as a base for further development of custom charger circuitry. Overview of Battery-Charging Techniques Four rechargeable battery chemistries are in practical use today: nickel cadmium (NiCd), nickel metal hydride (NiMH), gelled leadacid (PbSO4), and lithium-ion (Li+). The trade-offs to be made among these chemistries are beyond the scope of this article, but the References section provides access to such information. Caution: consult the battery manufacturer for specific recommendations. The information presented here is intended only as an overview of charging requirements for various cell chemistries. This section describes general charging techniques and limitations for the four common chemistries. For additional details and background, see the Maxim data sheets and other reference material cited at the end of the article. Fast battery charging has several phases, as explained in the text and by the state diagram for a generic charger (Figure 1). Page 1 of 13 Figure 1. Generic charger-state diagram. Initialization Though not a part of the actual charging procedure, initialization is an important stage in the process. The charger initializes itself and performs its own self-test. A charge can be interrupted by a power failure and consequent reinitialization. Without a smart battery or some type of time-stamped, nonvolatile storage, such events can occur unnoticed. Most chargers reinitialize themselves fully after a power failure. If overcharging is an issue, the charger can then execute a special self-test sequence to determine if the battery is already charged. A battery present on power-up, for example, should trigger such an action. Several circumstances can allow this initialization to cause charging problems. A fixed-time charger, for example, applies charge to a battery for a fixed interval of four hours. If a power failure occurs three hours and 59 minutes into the charge, the charger starts another four-hour charge, giving the battery a four-hour overcharge. This treatment can damage the battery, and it is one reason fixed-time charging is seldom used. The example also shows why the charger should monitor battery temperature or use other termination methods as a backup measure. Cell Qualification This phase of the charging procedure detects when a battery is installed and whether it can be charged. Cell detection is usually accomplished by looking for voltage on the charger terminals while the charger source is off, but that method can pose a problem if the cells have been deeply cycled and are producing little voltage. As an alternative, the charger often looks for a thermistor or shorting jumper rather than the cell itself. The presence of this hardware can also serve to identify the battery pack. Smart batteries, on the other hand, conduct a rich exchange of serial data with the battery pack, usually providing all the necessary charging parameters over a specialized I²C-like protocol called the System Management Bus (SMBus™). Page 2 of 13 Once the charger determines that a cell is installed, it must determine if the cell is good. During this subphase (qualification), the cell is checked for basic functioning: open, shorted, hot, or cold. To test whether or not a cell is chargeable, some chargers-lead-acid types especially-apply a light charging current (about one-fifth of the fast rate) and allow the cell a fixed amount of time to reach a specified voltage. This technique avoids the problem of false rejects for deeply cycled PbSO4 batteries, and with the battery manufacturer's approval, it can be used for other chemistries as well. A check of the ambient and cell temperatures is also a part of the qualification phase. When a charger detects high or low temperature, it usually waits a predetermined interval for the temperature to return to nominal. If this doesn't happen within the allotted time, the charger reduces the charging current. This action in turn reduces battery temperature, which increases efficiency. Finally, the cells are checked for opens and shorts. Open cells are easily detected, but a shorted-cell indication requires confirmation in order to avoid false failure indications. If all of these checks are satisfactory, the cell can be charged, and the state is advanced as shown in Figure 1. Preconditioning Phase (Optional) Some chargers (primarily those for NiCd batteries) include an optional preconditioning phase in which the battery is fully discharged before recharging. Full discharge reduces each battery's voltage level to 1V per cell and eliminates dendritic formations in the electrolyte, which cause what is often falsely labeled the memory effect. This so-called memory effect refers to the presence of dendritic formations that can reduce the run life of a cell, but a complete charge and discharge cycle sometimes eliminates the problem. Preconditioning can be accomplished before each charge, or it can follow an indication (by load test or other operation) that more than half of the cell's charge remains. Preconditioning can last from one to ten hours. Discharging a battery in less than one hour is not generally recommended. Fast preconditioning raises the practical problem of what to do with heat dissipated by the load resistor. Nor is preconditioning for longer than ten hours usually recommended unless it can be initiated manually upon detection of reduced capacity. Confusion and misunderstanding surround the NiCd "memory effect," so the designer should avoid putting a button on the charger to counteract it. Fast-Charge Phase and Termination Fast-charge and termination methods used depend on cell chemistry and other design factors. The following discussion covers fastcharging techniques widely used for today's common battery chemistries. For specific guidelines and recommendations, consult the battery manufacturer's applications department. NiCd and NiMH Cells Fast-charging procedures for NiCd and NiMH batteries are very similar; they differ primarily in the termination method used. In each case, the charger applies a constant current while monitoring battery voltage and other variables to determine when to terminate the charge. Fast-charge rates in excess of 2C are possible, but the most common rate is about C/2. Because charging efficiency is somewhat less than 100%, a full charge at the C/2 rate requires slightly more than two hours. While constant current is applied, the cell voltage rises slowly and eventually reaches a peak (a point of zero slope). NiMH charging should be terminated at this peak (the 0ΔV point). NiCd charging, on the other hand, should terminate at a point past the peak: when the battery voltage first shows a slight decline (-ΔV) (Figure 2). Cell damage can result if fast charge continues past either battery's termination point. Page 3 of 13 Figure 2. NiCd battery-charging characteristics at C/2 rate. At rates exceeding C/2 (resulting in a charge time of no more than two hours), the charger also monitors the cell's temperature and voltage. Because cell temperature rises rapidly when a cell reaches full charge, the temperature monitor enables another termination technique. Termination on this positive temperature slope is called ΔT termination. Other factors that can trigger termination include charging time and maximum cell voltage. Well-designed chargers rely on a combination of these factors. Note: Because certain effects that appear when a cell first begins charging can imitate termination conditions, chargers usually introduce a delay of one to five minutes before activating slope-detection termination modes. Also, charge-termination conditions are difficult to detect for rates below C/8, because the voltage and temperature slopes of interest (ΔV/Δt and ΔT/Δt) are small and comparable to other system effects. For safety during a fast charge, the hardware and software in these systems should always err on the side of earlytermination. Lithium-Ion Cells Li+ battery charging differs from the nickel-chemistry charging schemes. A top-off charge can follow to ensure maximum energy storage in a safe manner. Li+ chargers regulate their charging voltage to an accuracy better than 0.75%, and their maximum charging rate is set with a current limit, much like that of a bench power supply (Figure 3). When fast charging begins, the cell voltage is low, and charging current assumes the current-limit value. Figure 3. Li+ battery voltage vs. charging current. Battery voltage rises slowly during the charge. Eventually, the current tapers down, and the voltage rises to a float-voltage level of 4.2V per cell (Figure 4). Page 4 of 13 Figure 4. Li+ battery-charging profile. The charger can terminate charging when the battery reaches its float voltage, but that approach neglects the topping-off operation. One variation is to start a timer when float voltage is reached, and then terminate charging after a fixed delay. Another method is to monitor the charging current, and terminate at a low level (typically 5% of the limit value; some manufacturers recommend a higher minimum of 100mA). A top-off cycle often follows this technique, as well. The past few years have yielded improvements in Li+ batteries, the chargers, and our understanding of this battery chemistry. The earliest Li+ batteries for consumer applications had shortcomings that affected safety, but those problems cannot occur in today's well-designed systems. Manufacturers' recommendations are neither static nor totally consistent, and Li+ batteries continue to evolve. Lead-Acid Cells PbSO4 batteries are usually charged either by the current-limited method or by the more common and generally simpler voltagelimited method. The voltage-limited charging method is similar to that used for Li+ cells, but high precision isn't as critical. It requires a current-limited voltage source set at a level somewhat higher than the cell's float voltage (about 2.45V). After a preconditioning operation that ensures that the battery will take a charge, the charger begins the fast charge and continues until it reaches a minimum charging current. (This procedure is similar to that of a Li+ charger). Fast charge is then terminated, and the charger applies a maintenance charge of VFLOAT (usually about 2.2V). PbSO4 cells allow this float-voltage maintenance for indefinite periods (Figure 5). Figure 5. PbSO4 battery-charging profile. At higher temperatures, the fast-charge current for PbSO4 batteries should be reduced according to the typical temperature coefficient of 0.3% per degree centigrade. The maximum temperature recommended for fast charging is about 50°C, but maintenance charging can generally proceed above that temperature. Page 5 of 13 Optional Top-Off Charge (All Chemistries) Chargers for all chemistries often include an optional top-off phase. This phase occurs after fast-charge termination and applies a moderate charging current that boosts the battery up to its full-charge level. (The operation is analogous to topping off a car's gas tank after the pump has stopped automatically.) The top-off charge is terminated on reaching a limit with respect to cell voltage, temperature, or time. In some cases, top-off charge can provide a run life of 5% or even 10% above that of a standard fast charge. Extra care is advisable here: the battery is at or near full charge and is therefore subject to damage from overcharging. Optional Trickle Charge (All Chemistries Except Li+) Chargers for all chemistries often include an optional trickle-charge phase. This phase compensates for self-discharge in a battery. PbSO4 batteries have the highest rate of self-discharge (a few percent per day), and Li+ cells have the lowest. The Li+ rate is so low that trickle charging is not required or recommended. NiCds, however, can usually accept a C/16 trickle charge indefinitely. For NiMH cells, a safe continuous current is usually around C/50, but trickle charging for NiMH cells is not universally recommended. Pulsed trickle is a variation in which the charger provides brief pulses of approximately C/8 magnitude, with a low duty cycle that provides a typical average trickle current of C/512. Because pulsed-trickle charging applies to both nickel chemistries and lends itself well to the on/off type of microprocessor (µP) control, it is used almost universally. Generic Charging System Before looking at specific circuit implementations, designers should become familiar with generic blocks and features (Figure 6). All fast chargers should include these block functions in some form. The bulk power source provides raw dc power, usually from a wall cube or brick. The current and voltage controls regulate current and voltage applied to the battery. For less-expensive chargers, the regulator is usually a power transistor or other linear-pass element that dissipates power as heat. It can also be a buck switching supply that includes a standard freewheeling diode for average efficiency or a synchronous rectifier for highest efficiency. Figure 6. Generic charging-system block diagram. The blocks on the right in Figure 6 represent various measurement and control functions. An analog current-control loop limits the maximum current delivered to the battery, and a voltage loop maintains a constant voltage on the cell. (Note that Li+ cells require a high level of precision in the applied charging voltage.) A charger's current-voltage (I-V) characteristic can be fully programmable, or it can be programmable in current only, with a voltage limit (or vice versa). Cell temperature is always measured, and charge termination can be based either on the level or the slope of this measurement. Chargers also measure charging time, usually as a calculation in the intelligence block. Page 6 of 13 This block provides intelligence for the system and implements the state machine previously described. It knows how and when to terminate a fast charge. Intelligence is internal to the chip in stand-alone charger ICs. Otherwise, it resides in a host µC, and the other hardware blocks reside in the charger IC. As mentioned previously, this latter architecture is the one preferred today. Overview of Maxim's Charger Offerings Maxim manufactures a broad selection of stand-alone and controller-type battery-charger ICs. The variety enables a system designer to make tradeoffs in performance, features, and cost. Table 1 lists these ICs by the battery chemistry supported, in their order of introduction, with the most recent models at the top. Table 1. Overview of Maxim's Standard Control Part Regulation Method Mode** µC Synchronous MAX1647 control, switching SMBus Synchronous MAX1648 User switching DAC or Synchronous MAX745 standswitching alone DAC or MAX846A standLinear alone DAC or Synchronous MAX1540 standswitching alone Battery-Charger ICs Features Chemistry Smart-battery system, level 2 compliant, smartbattery charger with SMBus, Li+, independent I- All V control Analog-controlled version of MAX1647, highAll accuracy switching, I/V source: Li+ Advanced, low-cost, switch-mode Li+ charger, stand-alone, Li+ only Li+ Low-cost, universal charger, accurate reference for Li+, external CPU support, reset and All regulator Analog-controlled, switch-mode current source, Li+ or universal Li+, NiCd, NiMH Charge Rate Charge Termination Method Programmed Programmed Programmed Programmed Constant voltage, Li+ Constant voltage, Li+, programmed Fast, trickle, pulse-trickle, top-off MAX712 Standalone Linear Complete, low-cost NiMH with termination modes, max times, LED outputs. No Li+. NiMH Fast, trickle MAX713 Standalone Linear Complete, low-cost NiCd with termination modes, max times, LED outputs. No Li+. NiCd Fast, trickle Li+ float Li+ float or programmed Programmed or Li+ stand-alone 0ΔV, max voltage, max temperature, max time 0ΔV, max voltage, max temperature max time *The use of a DAC and µC is also possible with the DAC-input types. **All linear types can be used in a hysteretic switching mode for higher efficiency. The choice between linear and switch-mode regulation constitutes a major design decision. Linear mode is less costly, but it dissipates power and gets hot. Heat may not be a problem in large desktop chargers, but it can be unacceptable in smaller systems such as a notebook PC. Synchronous switching regulators offer the highest efficiency (in the mid-90% range), which makes them suitable for the smallest systems, including cell phones. Some of the nonsynchronous switch-mode circuits listed also offer reasonable efficiency. In addition, most of the linear parts can be used in a moderately efficient hysteretic switching mode. (For details, consult the appropriate data sheet.) The charger's level of autonomy poses another design decision. Stand-alone chargers, for example, are completely self-contained. The MAX712/MAX713 have LED-control outputs for the user's end equipment as well. Other devices can stand alone or can operate with a digital-to-analog converter (DAC) and µP. They include the MAX1640/MAX1641, MAX846A, and MAX745. The MAX1640, a voltage-limited current source intended primarily for charging nickelchemistry batteries, includes a charge timer and pulse-trickle circuitry. It has stand-alone features and operates with a high-efficiency synchronous switching regulator or (for lower cost applications) a standard switcher. The MAX846A and MAX745 are both capable of stand-alone operation in charging Li+ batteries, and they include the high-accuracy reference and independent voltage and current control necessary for universal controllers. The MAX846A is a linear type, and the MAX745 is a synchronous-switching type. Though either can stand alone, they usually operate with a µC that provides limited control of the charging process. LED illumination and fast-charge termination are usually initiated by the software. The MAX846A includes a linear regulator and a CPU-reset output for the µC. Page 7 of 13 The least autonomous and most flexible devices are the MAX1647 and MAX1648. They are similar, except the MAX1647 has built-in DACs and an SMBus serial port, and the MAX1648 has analog inputs for voltage and current control. The MAX1647 is a complete, serially controlled dc power supply with independent voltage and current registers. Capable of SMBus communications with a smart battery, it provides Level 2 compliance with the Intel/Duracell smart-battery specification. µC Design Tips These charger ICs typically operate with a low-cost 8-bit controller such as the 8051, PIC, 68HC11, or 68HC05. The firmware can be written in assembly language or in C, either of which feature ready availability, low cost, and free tools. Third parties and manufacturers of these devices have assembled an impressive array of compilers, assemblers, emulators, and code libraries. Much of this source code is available on the World Wide Web, especially the toolbox routines for assembly language. The Tips for charger program structure section provides further information on these resources. All common 8-bit µCs are suitable, but the selection of a specific µC is beyond the scope of this article. Peripherals such as analogto-digital converters (ADCs), DACs, and the SMBus serial interface are available in these µCs, and simpler µC versions that require external ADCs or DACs are also useful. Often, simpler µC versions that require external ADCs or DACs are more flexible and ultimately more useful. The ROM and RAM requirements for charger applications are modest. In general, you can implement a single-chemistry charger in less than 0.5kbytes of code and 32 bytes of RAM (simple requirements for even a low-end PIC). With some ingenuity, you can implement a multi-chemistry charger with about 50% more code. The simplest way to develop µC code is to start with a skeleton or a piece of similar code, and modify it to suit your needs. This approach gets a prototype working quickly by overcoming a lot of the blank-page, compiler/assembler- syntax problems. Unfortunately, only a limited amount of battery-charger firmware exists on the Web and in standard application notes. However, two design examples in the Hardware and Software Examples section provide a starting point. See the Resources and references section for more information on some of the more difficult toolbox routines, such as SMBus communications and math routines, and for examples of program designs that illustrate approaches to these designs. Tips for Charger-Program Structure Writing battery-charger software is straightforward and best implemented with a state machine. Define a state variable or series of flags that represents the current state. The code then tends to be a large case statement that acts according to this state variable. The code modules modify the state variable according to the current conditions. Disallowed and undecodable states pose the only potential problems. All case statements must have a default case that picks up these disallowed or "impossible" states and corrects them. Always include a mechanism that detects these conditions and then takes intelligent action, such as stopping the charger. Keep the code simple: avoid multiple interrupts and complex multitasking or queuing structures where possible. Using a single timertick interrupt is a very effective way to keep time. If the CPU has a timer with an interrupt, use it to maintain system-timer flags. This powerful technique is an exception to the no-interrupts rule. If no timer interrupt is available (as in the PIC16C5x), use the system timer (RTC) and poll it. Design the code so the timer cannot overflow between polls. Avoid hardware interrupts. Instead, poll the hardware inputs at regular intervals set by the timer tick. Code execution takes place in real time, but it doesn't have to react immediately to stimuli. The 100ms required to determine whether the battery is installed is acceptable, considering that battery charging takes an hour. Typical performance for stand-alone chargers is usually one calculation per minute for termination. A simple and workable structure for these programs is a paced loop. The main program is a loop that looks at timer flags set by a timer interrupt-service routine or the loop itself, and calls subroutines that perform the multiple tasks required. Some routines run on each pass, and others run on every "nth" loop or tick. The basic tick time might be 100ms, for example. A blinking-light subroutine with a half-second period would be called to complement the LED every five ticks, and the temperature-limit detector would be checked on each pass through the loop. The result is a very robust structure. For controllers that lack a timer interrupt, the paced loop can be implemented by the routines themselves, using their own execution times to maintain system timing. This technique is implemented in the next section by the code example for an 8-pin PIC controller. A simple flow chart of this structure (Figure 7) is described in greater detail in Reference 7. Page 8 of 13 Figure 7. Main paced-loop flow chart. Hardware Fail-Safe Reminder Before exploring some examples, one final recommendation is to consider the use of a µP supervisor with a watchdog timer and a hardware fail-safe system. The supervisor's reset function provides a clean system reset when the power comes up, and the watchdog timer can catch a stalled CPU or errant firmware stuck in a loop. Maxim also makes some simple temperaturemeasurement/control products. The MAX6501 temperature switches make an especially good backup system. They are SOT23 devices that change their output level when a fixed temperature threshold is crossed. Supervisors are especially important in charger applications, because the constant application and removal of power to the charger can confuse the CPU. If, for example, the processor stalls and fails to terminate a fast charge, the results can be catastrophic. The system should also include a temperature sensor or other hardware override that can end the fast charge without software intervention. Some of Maxim's SOT23-reset supervisors include a watchdog (see the MAX823). Hardware and software examples 1. MAX846A Li+ charger with charge timer and LED-status outputs, controlled by an 8-pin PIC In this example, a small external µP enhances the MAX846A, forming a complete desktop-charger system that includes userinterface functions such as the LEDs in Figure 8 (to indicate the charge process and status). The MAX846A is designed for this type of operation. Its auxiliary linear regulator and µP-reset circuit (to support the external µC) reduces the cost of a typical desktop-charger application. Page 9 of 13 Figure 8. Li+ desk charger with LED status indicator. 2. MAX1647-based, 2A Li+ charger with 8051 µC The full-featured MAX1647 charger and 8051 µC form a full-featured Li+ charger (Figure 9). The Atmel 80C2051 controller shown (a nonexpandable 8051 in a small package) is typical of the controllers usually available in systems requiring a highend charger. Source code for the application includes SMBus communications, a general state-machine structure, and other useful routines. Look for LI1647.doc and PIC846.doc under "Other Software." The charger status can be read out from the UART or by additional software residing in the µP. Page 10 of 13 Figure 9. Full-featured Li+ charger. 3. Software examples for the MAX1647 and MAX846A chargers Software for the MAX1647 and MAX846A examples (Figure 9) is available at Maxim's web site. MAX846A software for the 8pin PIC12C508 controller is written in Microchip PIC assembly language. It implements an LED user interface and a timer that terminates the fast charge five minutes after reaching the Li+ voltage limit. This simple example does not include the state machine or the complexities of a full charger, because much of that capability is available in the nearly stand-alone MAX846A. The example does rely on the paced-loop structure without interrupts, as described earlier. The MAX1647 example is written in 8051 assembly code for Atmel's ATM80C2051, a 20-pin version of the 8051. This code includes a general state-machine structure and SMBus-driver routines for communicating with the MAX1647 internal registers. It also incorporates a paced-loop structure, but employs the 80C2051's timer interrupt to create a timer-tick basis for all timing. For further details, see the source-code documents at Maxim's web site. Resources and References The following is a brief sampling of application notes and other resources available on the World Wide Web and from vendors. Most vendors publish their application notes on the web for easy access. Simply accessing the web and entering a µC part number into the AltaVista search engine usually yields more than 50 documents. Page 11 of 13 8051-Derivative Application Notes Philips Semiconductors: Web site and CD-ROM AN422: Using the 8XC751 Microcontroller as an I²C Bus Master AN428: Using the ADC and PWM of the 83C752/87C752 AN439: 87C751 Fast NiCd Charger EIE/AN92001: Low RF-Emission Applications with a P83CE654 Microcontroller Intel Corp.: Web site and CD-ROM Atmel Corp.: Web site and CD-ROM A Digital Thermometer Using the AT89C2051 Microcontroller Interfacing 24CXXX Serial EEPROMs with AT89CX051 MCU 68HC05 Application Notes AN1263: Designing for Electromagnetic Compatibility with Single-Chip Microcontrollers AN1262: Simple Real-Time Kernels for HC05 MCUs AN1256: Interfacing the HC05 MCU to a Multichannel D/A Converter AN1241: Interfacing the HC05 MCU to Serial EEPROMs AN1227: Using Serial EEPROMs with HC05 MCUs AN477: Simple A/D Conversion for MCUs Without Built-In ADCs PIC Application Notes Microchip: Web site and CD-ROM AN541: AN546: AN554: AN577: AN552: AN585: AN606: AN520: Using a PIC16C5X as a Smart I2C Peripheral Using the A/D Converter in the PIC 16C73 Software Implementation of I2C Bus Master PIC16C54A EMI Results Implementing Wake-Up on Keystroke for the 16C54 A Real-Time Operating System for PIC16/17 Low-Power Design Using PIC16/17 A Comparison of Low-End 8-bit Microcontrollers Parallax: Third-party web site and tools References 1. 2. 3. 4. 5. 6. 7. How to Implement an SMBus controller using the 80C51SL KBC, Intel Corp. application note, November 1994. Handbook of Batteries, by David Linden (Editor), 2nd Edition, McGraw Hill text, January 1995, ISBN: 0070379211 The System Management Bus specification, Versions 0.95a and 1.0, Intel Corp., February 1995. The Smart-Battery Data specification, Version 1.0, Duracell Inc. and Intel Corp., February 1995. The SMBus BIOS specification, Version 1.0, Intel Corp., February 1995. Smart-Battery Selector specification, Version 0.9, Intel Corp., April 1995. Understanding Small Microcontrollers, by James Sibigtroth. Published by Motorola Inc., CSIC Division, circa 1990. Related Parts MAX1640 Adjustable-Output, Switch-Mode Current Sources with Synchronous Rectifier MAX1926 Switch-Mode 1-Cell Li+ Chargers MAX6501 Low-Cost, +2.7V to +5.5V, Micropower Temperature Switches in SOT23 MAX712 NiCd/NiMH Battery Fast-Charge Controllers MAX713 NiCd/NiMH Battery Fast-Charge Controllers MAX745 Switch-Mode Lithium-Ion Battery-Charger MAX846A Cost-Saving, Multichemistry, Battery Charger System -- Free samples -- Free samples -- Free samples -- Free samples -- Free samples Page 12 of 13 Automatic Updates Would you like to be automatically notified when new application notes are published in your areas of interest? Sign up for EEMail™. More Information For technical support: http://www.maxim-ic.com/support For samples: http://www.maxim-ic.com/samples Other questions and comments: http://www.maxim-ic.com/contact Application note 680: http://www.maxim-ic.com/an680 AN680, AN 680, APP680, Appnote680, Appnote 680 Copyright © by Maxim Integrated Products Additional legal notices: http://www.maxim-ic.com/legal Page 13 of 13 Nicd 电池充电器 Nicd 电池充电器 镍镉 Nicd 电池是最早应用的可充电电池 其能量密度和重量密度相对较低 但是 由于成本 较低 目前仍在许多产品中被选用 如无绳电话 便携式仪表等 Nicd 电池充电终止检测方式一般采 用 - V 检测 超时检测 电池温度检测和电池温度上升率检测 快充方式下 通常选用- V 检测 与超时 温度检测相配合的方式 图一 Nicd 电池充电器 图一为利用 MAX713 构成的 Nicd 电池单机充电器 可充 1 至 16 节电池 图中 MAX713 内置充电 终止检测算法 - V 检测 超时检测 电池温度检测 快速充电结束后自动切换到涓流充电 以补 充 Nicd 电池的自放电 DCIN 接墙上适配器的输出 墙上适配器的最低输出电压应高于 2V+ 1.9V x 电池节数 最高电压取决于 P 沟道 MOSFET 的击穿电压和输入旁路电容的耐压值 当 DCIN 低于 15V 时 MAX713 的 DRV 引脚直接与 Q1 Q2 连接 DCIN 高于 15V 时 接入 Q3 R4 为 Q1 Q2 提供适当的电 压摆幅 限流二极管 D4 扩大了输入电压范围 为 MAX713 内部并联稳压源提供固定的 8mA 电流 如果 Nicd 电池充电器 墙上适配器提供的输出电压范围较窄 可以用电阻替代 D4 根据所要求的充电速率和电池容量可算出 所要求的充电电流 IFAST 由公式 RSENSE=0.25V/IFAST 确定限流电阻 RSENSE 的大小 改变 PGM0--PGM4 的接 法可设置电池节数和充电限制时间 参考表一 表二 图一中 L1 的电感量为 220 H 饱和电流为 1.5A 对电感值的要求并不严格 电感值越大 电流纹波越小 为 Nicd 电池充电时 不完全放电会使隔阳极变为镉氢氧化物 造成电池端电压下降 为消除电 池的记忆效应 图一种虚线框内的预处理电路能够使电池充电前完全放电 用 MAX712 替代 MAX713 去掉虚线框内电路 图一可用于 NiMH 电池的充电