VISHAY SIHFZ24S

IRFZ24S, IRFZ24L, SiHFZ24S, SiHFZ24S
Vishay Siliconix
Power MOSFET
FEATURES
PRODUCT SUMMARY
VDS (V)
RDS(on) ()
VGS = 10 V
0.10
Qg (Max.) (nC)
25
Qgs (nC)
5.8
Qgd (nC)
11
Configuration
I2PAK
• Halogen-free According to IEC 61249-2-21
Definition
• Advanced Process Technology
• Surface Mount (IRFZ24S, SiHFZ24S)
• Low-ProfileThrough-Hole (IRFZ24L, SiHFZ24L)
• 175 °C Operating Temperature
• Fast Switching
• Compliant to RoHS Directive 2002/95/EC
60
DESCRIPTION
Single
D2PAK
(TO-262)
G
G
D
S
Third generation Power MOSFETs from Vishay utilize
advanced processing techniques to achieve extremely low
on-resistance per silicon area. This benefit, combined with
the fast switching speed and ruggedized device design that
Power MOSFETs are well known for, provides the designer
with an extremely efficient and reliable device for use in a
wide variety of applications.
The D2PAK is a surface mount power package capable of
accommodating die size up to HEX-4. It provides the highest
power capability and the last lowest possible on-resistance
in any existing surface mount package. The D2PAK is
suitable for high current applications because of its low
internal connection resistance and can dissipate up to 2.0 W
in a typical surface mount application. The through-hole
version (IRFZ24L, SiHFZ24L) is available for low-profile
applications.
D
(TO-263)
G
D
S
S
N-Channel MOSFET
ORDERING INFORMATION
Package
Lead (Pb)-free and Halogen-free
Lead (Pb)-free
D2PAK (TO-263)
SiHFZ24S-GE3
IRFZ24SPbF
SiHFZ24S-E3
D2PAK (TO-263)
SiHFZ24STRR-GE3
-
I2PAK (TO-262)
IRFZ24LPbF
SiHFZ24L-E3
Note
a. See device orientation.
ABSOLUTE MAXIMUM RATINGS (TC = 25 °C, unless otherwise noted)
PARAMETER
Drain-Source Voltage
Gate-Source Voltage
Continuous Drain Current
SYMBOL
VDS
VGS
VGS at 10 V
TC = 25 °C
TC = 100 °C
Pulsed Drain Currenta, e
Linear Derating Factor
Single Pulse Avalanche Energyb, e
Maximum Power Dissipation
Peak Diode Recovery dV/dtc, e
Operating Junction and Storage Temperature Range
Soldering Recommendations (Peak Temperature)
ID
IDM
EAS
TC = 25 °C
TA = 25 °C
PD
dV/dt
TJ, Tstg
for 10 s
LIMIT
60
± 20
17
12
68
0.40
100
60
3.7
4.5
- 55 to + 175
300d
UNIT
V
A
W/°C
mJ
W
V/ns
°C
Notes
a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11).
b. VDD = 25 V, starting TJ = 25 °C, L = 400 μH, Rg = 25 , IAS = 17 A (see fig. 12).
c. ISD  17 A, dI/dt  140 A/μs, VDD  VDS, TJ  175 °C.
d. 1.6 mm from case.
e. Uses IRFZ24, SiHFZ24 data and test conditions.
* Pb containing terminations are not RoHS compliant, exemptions may apply
Document Number: 90366
S11-1063-Rev. C, 30-May-11
www.vishay.com
1
This document is subject to change without notice.
THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
IRFZ24S, IRFZ24L, SiHFZ24S, SiHFZ24S
Vishay Siliconix
THERMAL RESISTANCE RATINGS
SYMBOL
TYP.
MAX.
Maximum Junction-to-Ambient
(PCB Mounted, Steady-State)a
PARAMETER
RthJA
-
40
Maximum Junction-to-Case (Drain)
RthJC
-
2.5
UNIT
°C/W
Note
a. When mounted on 1" square PCB (FR-4 or G-10 material).
SPECIFICATIONS (TJ = 25 °C, unless otherwise noted)
PARAMETER
SYMBOL
TEST CONDITIONS
MIN.
TYP.
MAX.
UNIT
Static
Drain-Source Breakdown Voltage
VDS Temperature Coefficient
Gate-Source Threshold Voltage
VDS
VGS = 0, ID = 250 μA
60
-
-
V
VDS/TJ
Reference to 25 °C, ID = 1 mAc
-
0.061
-
V/°C
VGS(th)
VDS = VGS, ID = 250 μA
2.0
-
4.0
V
Gate-Source Leakage
IGSS
VGS = ± 20 V
-
-
± 100
nA
Zero Gate Voltage Drain Current
IDSS
VDS = 60 V, VGS = 0 V
-
-
25
VDS = 48 V, VGS = 0 V, TJ = 150 °C
-
-
250
-
-
0.10

5.5
-
-
S
-
640
-
-
360
-
-
79
-
-
-
25
Drain-Source On-State Resistance
Forward Transconductance
RDS(on)
gfs
ID = 10 Ab
VGS = 10 V
VDS = 25 V, ID = 10
Ad
μA
Dynamic
Input Capacitance
Ciss
Output Capacitance
Coss
VGS = 0 V,
VDS = 25 V,
f = 1.0 MHz, see fig. 5d
Reverse Transfer Capacitance
Crss
Total Gate Charge
Qg
Gate-Source Charge
Qgs
-
-
5.8
Gate-Drain Charge
Qgd
-
-
11
Turn-On Delay Time
td(on)
-
13
-
tr
-
58
-
-
25
-
-
42
-
-
7.5
-
-
-
17
-
-
68
Rise Time
Turn-Off Delay Time
td(off)
Fall Time
tf
Internal Source Inductance
LS
VGS = 10 V
ID = 17 A, VDS = 48 V,
see fig. 6 and 13b, c
VDD = 30 V, ID = 17 A,
Rg = 18 , RD = 1.7 , see fig. 10b, c
Between lead, and center of die contact
pF
nC
ns
nH
Drain-Source Body Diode Characteristics
Continuous Source-Drain Diode Current
Pulsed Diode Forward Currenta
Body Diode Voltage
IS
ISM
VSD
Body Diode Reverse Recovery Time
trr
Body Diode Reverse Recovery Charge
Qrr
Forward Turn-On Time
ton
MOSFET symbol
showing the
integral reverse
p - n junction diode
D
A
G
TJ = 25 °C, IS = 17 A, VGS = 0
S
Vb
TJ = 25 °C, IF = 17 A, dI/dt = 100 A/μsb, c
-
-
1.5
V
-
88
180
ns
-
290
640
μC
Intrinsic turn-on time is negligible (turn-on is dominated by LS and LD)
Notes
a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11).
b. Pulse width  300 μs; duty cycle  2 %.
c. Uses IRFZ24/SiHFZ24 data and test conditions.
www.vishay.com
2
Document Number: 90366
S11-1063-Rev. C, 30-May-11
This document is subject to change without notice.
THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
IRFZ24S, IRFZ24L, SiHFZ24S, SiHFZ24S
Vishay Siliconix
TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)
Fig. 1 - Typical Output Characteristics, TC = 25 °C
Fig. 3 - Typical Transfer Characteristics
Fig. 2 - Typical Output Characteristics, TC = 175 °C
Fig. 4 - Normalized On-Resistance vs. Temperature
Document Number: 90366
S11-1063-Rev. C, 30-May-11
www.vishay.com
3
This document is subject to change without notice.
THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
IRFZ24S, IRFZ24L, SiHFZ24S, SiHFZ24S
Vishay Siliconix
Fig. 5 - Typical Capacitance vs. Drain-to-Source Voltage
Fig. 6 - Typical Gate Charge vs. Gate-to-Source Voltage
www.vishay.com
4
Fig. 7 - Typical Source-Drain Diode Forward Voltage
Fig. 8 - Maximum Safe Operating Area
Document Number: 90366
S11-1063-Rev. C, 30-May-11
This document is subject to change without notice.
THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
IRFZ24S, IRFZ24L, SiHFZ24S, SiHFZ24S
Vishay Siliconix
RD
VDS
VGS
D.U.T.
Rg
+
- VDD
10 V
Pulse width ≤ 1 µs
Duty factor ≤ 0.1 %
Fig. 10a - Switching Time Test Circuit
VDS
90 %
10 %
VGS
td(on)
Fig. 9 - Maximum Drain Current vs. Case Temperature
td(off) tf
tr
Fig. 10b - Switching Time Waveforms
Fig. 11 - Maximum Effective Transient Thermal Impedance, Junction-to-Case
L
Vary tp to obtain
required IAS
VDS
VDS
tp
VDD
Rg
D.U.T.
+
-
I AS
V DD
VDS
10 V
tp
0.01 W
Fig. 12a - Unclamped Inductive Test Circuit
Document Number: 90366
S11-1063-Rev. C, 30-May-11
IAS
Fig. 12b - Unclamped Inductive Waveforms
www.vishay.com
5
This document is subject to change without notice.
THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
IRFZ24S, IRFZ24L, SiHFZ24S, SiHFZ24S
Vishay Siliconix
Fig. 12c - Maximum Avalanche Energy vs. Drain Current
Current regulator
Same type as D.U.T.
50 kΩ
QG
10 V
12 V
0.2 µF
0.3 µF
QGS
QGD
+
D.U.T.
VG
-
VDS
VGS
3 mA
Charge
IG
ID
Current sampling resistors
Fig. 13a - Basic Gate Charge Waveform
www.vishay.com
6
Fig. 13b - Gate Charge Test Circuit
Document Number: 90366
S11-1063-Rev. C, 30-May-11
This document is subject to change without notice.
THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
IRFZ24S, IRFZ24L, SiHFZ24S, SiHFZ24S
Vishay Siliconix
Peak Diode Recovery dV/dt Test Circuit
+
D.U.T.
Circuit layout considerations
• Low stray inductance
• Ground plane
• Low leakage inductance
current transformer
+
-
-
Rg
•
•
•
•
+
dV/dt controlled by Rg
Driver same type as D.U.T.
ISD controlled by duty factor “D”
D.U.T. - device under test
+
-
VDD
Driver gate drive
P.W.
Period
D=
P.W.
Period
VGS = 10 Va
D.U.T. lSD waveform
Reverse
recovery
current
Body diode forward
current
dI/dt
D.U.T. VDS waveform
Diode recovery
dV/dt
Re-applied
voltage
Inductor current
VDD
Body diode forward drop
Ripple ≤ 5 %
ISD
Note
a. VGS = 5 V for logic level devices
Fig. 14 - For N-Channel
Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon
Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and
reliability data, see www.vishay.com/ppg?90366.
Document Number: 90366
S11-1063-Rev. C, 30-May-11
www.vishay.com
7
This document is subject to change without notice.
THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
Package Information
Vishay Siliconix
TO-220AB
MILLIMETERS
A
E
F
D
H(1)
Q
ØP
3
2
L(1)
1
*M
DIM.
MIN.
MAX.
MIN.
MAX.
A
4.25
4.65
0.167
0.183
b
0.69
1.01
0.027
0.040
b(1)
1.20
1.73
0.047
0.068
c
0.36
0.61
0.014
0.024
D
14.85
15.49
0.585
0.610
E
10.04
10.51
0.395
0.414
e
2.41
2.67
0.095
0.105
e(1)
4.88
5.28
0.192
0.208
0.055
F
1.14
1.40
0.045
H(1)
6.09
6.48
0.240
0.255
J(1)
2.41
2.92
0.095
0.115
0.552
L
13.35
14.02
0.526
L(1)
3.32
3.82
0.131
0.150
ØP
3.54
3.94
0.139
0.155
Q
2.60
3.00
0.102
0.118
ECN: X10-0416-Rev. M, 01-Nov-10
DWG: 5471
b(1)
L
INCHES
Note
* M = 1.32 mm to 1.62 mm (dimension including protrusion)
Heatsink hole for HVM
C
b
e
J(1)
e(1)
Document Number: 71195
Revison: 01-Nov-10
www.vishay.com
1
Legal Disclaimer Notice
Vishay
Disclaimer
ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE
RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.
Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively,
“Vishay”), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other
disclosure relating to any product.
Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or
the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all
liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special,
consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular
purpose, non-infringement and merchantability.
Statements regarding the suitability of products for certain types of applications are based on Vishay’s knowledge of typical
requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements
about the suitability of products for a particular application. It is the customer’s responsibility to validate that a particular
product with the properties described in the product specification is suitable for use in a particular application. Parameters
provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All
operating parameters, including typical parameters, must be validated for each customer application by the customer’s
technical experts. Product specifications do not expand or otherwise modify Vishay’s terms and conditions of purchase,
including but not limited to the warranty expressed therein.
Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining
applications or for any other application in which the failure of the Vishay product could result in personal injury or death.
Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk and agree
to fully indemnify and hold Vishay and its distributors harmless from and against any and all claims, liabilities, expenses and
damages arising or resulting in connection with such use or sale, including attorneys fees, even if such claim alleges that Vishay
or its distributor was negligent regarding the design or manufacture of the part. Please contact authorized Vishay personnel to
obtain written terms and conditions regarding products designed for such applications.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by
any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.
Document Number: 91000
Revision: 11-Mar-11
www.vishay.com
1