TI VSP01M02

VSP01M01
VSP01M02
www.ti.com .................................................................................................................................................................................................. SBES016 – MARCH 2009
CCD Analog Front-End with Timing Generator and Vertical Driver for Digital Cameras
FEATURES
1
•
•
•
•
•
•
•
•
•
CCD Signal Processing:
– 36-MHz Correlated Double Sampling (CDS)
16-Bit Analog-to Digital Conversion:
– 36-MHz Conversion Rate
– No Missing Codes Ensured
80-dB Input-Referred SNR (at 12-dB Gain)
Programmable Black Level Clamping
Programmable Gain Amplifier (PGA):
– –9 dB to +44 dB
–3 dB to +18 dB by Analog Front Gain
–6 dB to +26 dB by Digital Gain
Timing Generator:
– Fully Programmable VRATE Timing by Serial
I/O
– Default Timing Supports Standard
Operation
– Flexible VRATE Pin Assignment
– HD/VD Master or Slave Mode
– External Trigger, Strobe Function Support
– Flexible Draft or Pixel Summing Operation
RG and HG Driver:
– Programmable Drivability Control
– Two Horizontal Transfer Independent
Drivers
– One Reset Gate Driver
CCD Horizontal High-Speed Clock Phase
Control:
– Fine Step: 0.28 ns
– Wide Step: 1/3 Pixel Rate
Vertical CCD Driver:
– 8-Channel VDRIVER with Sub-Driver
– Supports Three-Field CCD Driving
– Three Level Drivers (VTRANSFER) × 5
– Two Level Drivers (VTRANSFER) × 3
– Two Level Drivers (ESHUTTER) × 1
– 450 pF to 1890 pF with 60 Ω to 240 Ω
•
•
Flexible Voltage Operation:
– AFET + TG: 2.7 V to 3.6 V
– VL: –5.0 V to –9.0 V
– VM: GND
– VH: 11.5 V to 15.5 V
– Low Power: 139 mW at 3.0 V, 36 MHz
– Stand-By + Power-Save Mode: 36 mW
– Stand-By Mode (MCK Off): 10 mW
BGA-100 Package
DESCRIPTION
The VSP01M01 and VSP01M02 are complete
mixed-signal ICs for charge-coupled device (CCD)
signal processing with a built-in CCD timing
generator, analog-to-digital converter (ADC), and
CCD vertical driver. The AFE CCD channel has
correlated double sampling to extract image
information from the CCD output signal. Signal paths
have gains ranging from –9 dB to +44 dB. The black
level clamping circuit enables accurate black
reference level and quick black level recovery after
gain changes. An input signal clamp with CDS offset
adjustment function is available. The system
synchronizes the master clock, horizontal driver (HD),
and vertical driver (VD). The VSP01M01 and
VSP01M02 support all signal terminals required by
CCD architecture. The RG driver, HG driver, and
vertical driver synchronize the ADC clock phase in
order to realize ideal performance.
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas
Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
PRODUCTION DATA information is current as of publication date.
Products conform to specifications per the terms of the Texas
Instruments standard warranty. Production processing does not
necessarily include testing of all parameters.
Copyright © 2009, Texas Instruments Incorporated
VSP01M01
VSP01M02
SBES016 – MARCH 2009 .................................................................................................................................................................................................. www.ti.com
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with
appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more
susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.
PACKAGE/ORDERING INFORMATION (1)
PRODUCT
PACKAGELEAD
PACKAGE
DESIGNATOR
SPECIFIED
TEMPERATURE
RANGE
PACKAGE
MARKING
VSP01M01ZWD (2)
BGA-100
ZWD
–25°C to +85°C
VSP01M01
VSP01M01GWD
BGA-100
GWD
–25°C to +85°C
VSP01M01
VSP01M02ZWD (2)
BGA-100
ZWD
–25°C to +85°C
VSP01M02
(1)
(2)
ORDERING
NUMBER
TRANSPORT
MEDIA, QUANTITY
VSP01M01ZWD
Tray, 360
VSP01M01ZWDR
Tape and Reel
VSP01M01GWD
Tray, 360
VSP01M01GWDR
Tape and Reel
VSP01M02ZWD
Tray, 360
VSP01M02ZWDR
Tape and Reel
For the most current package and ordering information see the Package Option Addendum at the end of this document, or see the TI
web site at www.ti.com.
The package is Pb-free.
ABSOLUTE MAXIMUM RATINGS (1)
Over operating free-air temperature range, unless otherwise noted.
PARAMETER
Supply voltage
VSP01M01, VSP01M02
UNIT
AVDD
–0.3 to +4.0
V
DRVDD
–0.3 to +4.0
V
VDD5
–0.3 to +6.0
V
VL
GND to –10
V
VH
VL + 26
V
Supply voltage differences
AVDD, DRVDD
±0.1
V
Ground voltage differences
VSS
±0.1
V
Digital input voltage
–0.3 to (DVDD + 0.3)
V
Analog input voltage
–0.3 to (AVDD + 0.3)
V
±10
mA
Ambient temperature under bias
–25 to +85
°C
Storage temperature
–55 to +125
°C
Junction temperature
+150
°C
Package temperature (IR reflow, peak)
+250
°C
Input current (any pins except supplies)
(1)
Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. Exposure to
absolute-maximum-rated conditions for extended periods may affect device reliability. These are stress ratings only and functional
operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied.
RECOMMENDED OPERATING CONDITIONS
Over operating free-air temperature range, unless otherwise noted.
PARAMETER
Analog supply voltage
Digital supply voltage
Driver supply voltage
MIN
TYP
MAX
AVDD
2.7
3.0
3.6
V
DVDD
2.7
3.0
3.6
V
VDD5
3.0
5.5
V
VL
–9.0
–5.0
V
VH
11.5
15.5
V
Digital input logic family
Digital input clock frequency
CMOS
MCK
12
SCLK
Digital output load capacitance
Operating free-air temperature
2
UNIT
TA
–25
Submit Documentation Feedback
36
MHz
20
MHz
10
pF
+85
°C
Copyright © 2009, Texas Instruments Incorporated
Product Folder Link(s): VSP01M01 VSP01M02
VSP01M01
VSP01M02
www.ti.com .................................................................................................................................................................................................. SBES016 – MARCH 2009
ELECTRICAL CHARACTERISTICS
All specifications at TA = +25°C, all power supply voltages = +3.0 V, and conversion rate = 36 MHz, unless otherwise noted.
VSP01M01ZWD,
VSP01M01GWD,
VSP01M02ZWD
PARAMETER
TEST CONDITIONS
MIN
TYP
MAX
UNIT
RESOLUTION
Resolution
VSP01M01 only
10
Bits
VSP01M02 only
12
Bits
CONVERSION/CLOCK RATE
Conversion/clock rate
36
MHz
ANALOG INPUT (CCDIN)
Input signal level for full-scale out
CDS gain = 0 dB, DPGA gain = 0 dB
1000
mV
Maximum input range
CDS gain = –3 dB, DPGA gain = 0 dB
1300
mV
Input capacitance
15
Input limit
–0.3
pF
3.3
V
TRANSFER CHARACTERISTICS
Differential nonlinearity
Integral nonlinearity
DNL
CDS gain = 0 dB, DPGA gain = 0 dB
INL
CDS gain = 0 dB, DPGA gain = 0 dB
No missing codes
LSB
±0.5
LSB
Ensured
Step response settling time
Full-scale step input
1
Pixel
Step input from 1.8 V to 0 V
2
Pixels
9
Clocks
Grounded input capacitor, PGA gain = 0 dB
76
dB
Grounded input capacitor, analog gain = +12 dB
68
dB
Overload recovery time
Data latency
Signal-to-noise ratio (1)
±0.25
CCD offset correction range
–200
200
mV
INPUT CLAMP
Clamp on-resistance
400
Ω
Clamp level
1.5
V
PROGRAMMABLE ANALOG FRONT GAIN (CDS)
Minimum gain
Gain code = 111b
–3
dB
Default gain
Gain code = 000b
0
dB
Medium gain 1
Gain code = 001b
6
dB
Medium gain 2
Gain code = 010b
12
dB
Maximum gain
Gain code = 011b
18
dB
0.5
dB
Gain control error
PROGRAMMABLE DIGITAL GAIN (DPGA)
Programmable gain range
–6
Gain step
26
dB
0.03125
dB
10
Bits
40.7
µs
OPTICAL BLACK CLAMP LOOP
Control DAC resolution
Loop time constant
Programmable range of clamp level
Optical black clamp level (VSP01M01 only)
LSB
LSB
OB level program step
2
LSB
OBCLP level at code = 01000b
OB level program step
(1)
78
32
Programmable range of clamp level
Optical black clamp level (VSP01M02 only)
16
OBCLP level at code = 01000b
64
312
LSB
128
LSB
8
LSB
SNR = 20 log (full-scale voltage/rms noise).
Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated
Product Folder Link(s): VSP01M01 VSP01M02
3
VSP01M01
VSP01M02
SBES016 – MARCH 2009 .................................................................................................................................................................................................. www.ti.com
ELECTRICAL CHARACTERISTICS (continued)
All specifications at TA = +25°C, all power supply voltages = +3.0 V, and conversion rate = 36 MHz, unless otherwise noted.
VSP01M01ZWD,
VSP01M01GWD,
VSP01M02ZWD
PARAMETER
TEST CONDITIONS
MIN
TYP
MAX
UNIT
DIGITAL INPUTS
Logic family
Input voltage
Input current
CMOS
VT+
Low to high threshold voltage
1.7
VT–
High to low threshold voltage
1.0
IIH
Logic high, VIN = +3 V
±20
µA
IIL
Logic low, VIN = 0 V
±20
µA
Input capacitance
Maximum input voltage
–0.3
V
V
5
pF
DVDD + 0.3
V
DIGITAL OUTPUTS (DATA)
Logic family
CMOS
Logic coding
Output voltage
Straight Binary
VOH
VOL
Additional output data delay
Logic high
2.4
V
Logic low
0.4
V
Output data delay code = 00b
0
ns
Output data delay code = 01b
2
ns
Output data delay code = 10b
4
ns
Output data delay code = 11b
6
ns
Logic high (VOH) IOH = 0 mA
VDD5 – 0.05
V
Logic high (VOH) IOH = –6.8 mA
VDD5 – 0.6
HDRIVER OUTPUTS
Output voltage
RG, HL
Logic low (VOL) IOL = 6.8 mA
Output voltage
(HG1A, HG1B, HG2A, HG2B)
V
0.4
V
Logic high (VOH) IOH = 0 mA
VDD5 – 0.05
V
Logic high (VOH) IOH = –13.6 mA (max),
–6.8 mA (min)
VDD5 – 0.6
V
Logic low (VOL) IOL = 13.6 mA (max),
6.8 mA (min)
0.4
V
TG OUTPUTS
Output voltage (V0N-V12N, P0-P5, SUBN,
FIELD, STROBE, MSHUT, SUBSW1,
SUBSW2, ADCCK, HD, VD)
Logic high (VOH) IOH = –1.7 mA
Logic low (VOL) IOL = 1.7 mA
Logic high (VOH) IOH = –1.7 mA
TP output voltage (TPP, TPD)
DVDD – 0.6
V
0.4
DVDD – 0.6
Logic low (VOL) IOL = 1.7 mA
V
V
0.4
V
VDRIVER OUTPUTS
Output current
(V1, V2, V3A, V3B, V4, V5A,
V5B, V6)
(VL = –9.0 V, VM = 0 V,
VH = 15.5 V)
4
IOL
V1, V2, V3A, V3B, V4, V5A, V5B, V6 = –8.1 V
IOM1
V1, V2, V3A, V3B, V4, V5A, V5B, V6 = –0.2 V
IOM2
V1, V3A, V3B, V5A, V5B = 0.2 V
IOH
V1, V3A, V3B, V5A, V5B = 14.55 V
IOSL
SUB = –8.1 V
IOSH
SUB = 14.55 V
Submit Documentation Feedback
10
mA
–5.0
5
mA
mA
–7.2
5.4
mA
mA
–4
mA
Copyright © 2009, Texas Instruments Incorporated
Product Folder Link(s): VSP01M01 VSP01M02
VSP01M01
VSP01M02
www.ti.com .................................................................................................................................................................................................. SBES016 – MARCH 2009
ELECTRICAL CHARACTERISTICS (continued)
All specifications at TA = +25°C, all power supply voltages = +3.0 V, and conversion rate = 36 MHz, unless otherwise noted.
VSP01M01ZWD,
VSP01M01GWD,
VSP01M02ZWD
PARAMETER
TEST CONDITIONS
MIN
TYP
MAX
UNIT
2.7
3.0
3.6
V
POWER SUPPLY
AVDD
DVDD
Supply voltage
VDD5
for HG1A, HG1B, HG2A, HG2B, HL, RG
3.0
5.5
V
VL
for V1, V2, V3A, V3B, V4, V5A, V5B, V6
–9
–5
V
VH
for V1, V2, V3A, V3B, V4, V5A, V5B, V6
11.5
15.5
V
Power dissipation
AFE
Power dissipation
TG + H,
RDRIVER
Power dissipation
VDRIVER
Normal operation mode: no CCD load
(at 3.0 V, 38 MHz)
mW
50
mW
4
mW
139
mW
Standby + power-save mode (at 3.0 V, 38 MHz)
36
mW
Master clock off mode (at 3.0 V)
10
mW
Power dissipation (total) without CCD load
Power dissipation (total)
85
TEMPERATURE RANGE
Operating temperature
Thermal resistance
–25
θJA
At 165 mW power dissipation with load
+85
46.18
°C
°C/W
SWITCHING CHARACTERISTICS
All specifications at TA = +25°C, all power supply voltages = +3.0 V, and conversion rate = 36 MHz, unless otherwise noted.
PARAMETER
Propagation delay time
Rise time
Fall time
Output noise voltage
TEST CONDITIONS
MIN
TYP
MAX
UNIT
tPLM
15
100
ns
tPMH
20
100
ns
tPLH
20
100
ns
tPML
15
50
ns
tPHM
30
50
ns
tPHL
30
50
ns
tTLM
VL → VM
300
ns
tTMH
VM → VH
300
ns
tTLH
VL → VH
300
ns
tTML
VM → VL
300
ns
tTHM
VH → VM
300
ns
tTHL
VH → VL
300
ns
VCLH
2.0
V
VCLL
2.0
V
VCMH
2.0
V
VCML
2.0
V
VCHL
2.0
V
Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated
Product Folder Link(s): VSP01M01 VSP01M02
5
VSP01M01
VSP01M02
SBES016 – MARCH 2009 .................................................................................................................................................................................................. www.ti.com
PIN CONFIGURATION
VSP01M01ZWD, VSP01M01GWD
BGA PACKAGE
(BOTTOM VIEW)
1
2
3
4
5
6
7
8
9
10
A
DAC1
V12N
CH2N
V6N
NC
V1N
V0N
NC
NC
CH0N
B
DAC2
V11N
V10N
V8N
V7N
CH1N
NC
CH3N
B8
NC
C
CCDIN
CCDGND
V9N
V3N
V4N
V2N
CH5N
B9
B6
B7
D
COB
BYP
BYP2
AVDD
DVSS
DVSS
DRVDD
CH4N
B4
B5
E
CM
BYPM
REFN
AVDD
AVSS
AVSS
DRVDD
B3
B1
B2
F
REFP
V5N
NC
AVDD
AVSS
AVSS
DRVDD
V2
B0
SUB
G
BYPD
V3B
TPD
DVSS
VL
VH
VDD5
VSS5
VSS5
NC
H
TPP
SYSRST
RLOAD
V5A
V3A
STROBE
VDD5
V6
RG
H1A
J
SDATA
SCLK
TRIG
VD
SUBSW1
MSHUT
SUBN
HL
V4
ADCCK
K
MCK
CS
HD
SUBSW2
V1
FIELD
V5B
H2A
H1B
H2B
PIN CONFIGURATION
VSP01M02ZWD
BGA PACKAGE
(BOTTOM VIEW)
6
1
2
3
4
5
6
7
8
9
10
A
DAC1
V12N
CH2N
V6N
NC
V1N
V0N
NC
NC
CH0N
B
DAC2
V11N
V10N
V8N
V7N
CH1N
NC
CH3N
B10
B1
C
CCDIN
CCDGND
V9N
V3N
V4N
V2N
CH5N
B11
B8
B9
D
COB
BYP
BYP2
AVDD
DVSS
DVSS
DRVDD
CH4N
B6
B7
E
CM
BYPM
REFN
AVDD
AVSS
AVSS
DRVDD
B5
B3
B4
F
REFP
V5N
NC
AVDD
AVSS
AVSS
DRVDD
V2
B2
SUB
G
BYPD
V3B
TPD
DVSS
VL
VH
VDD5
VSS5
VSS5
B0
V5A
V3A
STROBE
VDD5
V6
RG
H1A
H
TPP
SYSRST
RLOAD
J
SDATA
SCLK
TRIG
VD
SUBSW1
MSHUT
SUBN
HL
V4
ADCCK
K
MCK
CS
HD
SUBSW2
V1
FIELD
V5B
H2A
H1B
H2B
Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated
Product Folder Link(s): VSP01M01 VSP01M02
VSP01M01
VSP01M02
www.ti.com .................................................................................................................................................................................................. SBES016 – MARCH 2009
Table 1. TERMINAL FUNCTIONS
TERMINAL
(1)
(2)
(3)
(4)
NAME
PIN
TYPE (1)
DAC1
A1
DO
DAC1 output
DESCRIPTION
V12N
A2
DO
Vertical rate signal 12N
CH2N
A3
DO
Universal vertical rate signal 2N (for V3A)
V6N
A4
DO
Vertical rate signal 6N (for V6)
NC
A5
—
No connection
V1N
A6
DO
Vertical rate signal 1N (for V1)
V0N
A7
DO
Vertical rate signal 0N
NC
A8
—
No connection
NC
A9
—
No connection
CH0N
A10
DO
Universal vertical rate signal 0N
DAC2
B1
DO
DAC2 output
V11N
B2
DO
Vertical rate signal 11N
V10N
B3
DO
Vertical rate signal 10N
V8N
B4
DO
Vertical rate signal 8N
V7N
B5
DO
Vertical rate signal 7N
CH1N
B6
DO
Universal vertical rate signal 1N (for V1)
NC
B7
—
No connection
CH3N
B8
DO
Universal vertical rate signal 3N (for V5A)
B8
B9
DO
Data out bit 8 (VSP01M01 only)
B10
B9
DO
Data out bit 10 (VSP01M02 only)
NC
B10
—
No connection (VSP01M01 only)
B1
B10
DO
Data out bit 1 (VSP01M02 only)
CCDIN
C1
AI
CCD signal input
CCDGND
C2
AI
CCD signal input ground
V9N
C3
DO
Vertical rate signal 9N
V3N
C4
DO
Vertical rate signal 3N (for V3A, V3B)
V4N
C5
DO
Vertical rate signal 4N (for V4)
V2N
C6
DO
Vertical rate signal 2N (for V2)
CH5N
C7
DO
Universal vertical rate signal 5N (for V5B)
B9
C8
DO
Data out bit 9 (MSB) (VSP01M01 only)
B11
C8
DO
Data out bit 11 (MSB) (VSP01M02 only)
B6
C9
DO
Data out bit 6 (VSP01M01 only)
B8
C9
DO
Data out bit 8 (VSP01M02 only)
B7
C10
DO
Data out bit 7 (VSP01M01 only)
B9
C10
DO
Data out bit 9 (VSP01M02 only)
COB
D1
AO
OB loop feedback capacitor (2)
BYP
D2
AO
Internal reference (3)
BYP2
D3
AO
Internal reference (4)
AVDD
D4
P
Analog power supply
DVSS
D5
P
Ground
DVSS
D6
P
Ground
Designators by type: P: power-supply and ground, DI: digital input, DO: digital output, DI/O: digital input and output, AI: analog input,
AO: analog output, and VDO: VDRIVER digital output.
Should be connected to ground with a bypass capacitor. The recommended value is 0.1 µF to 0.22 µF; however, actual value depends
on the application environment. Refer to the OB Loop and OB Clamp Level section for more detail.
Should be connected to ground with a bypass capacitor (0.1 µF). Refer to the Voltage Reference section for more detail.
Should be connected to ground with a bypass capacitor. The recommended value is 400 pF to 1000 pF; however, actual value depends
on the application environment. Refer to the Voltage Reference section for more detail.
Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated
Product Folder Link(s): VSP01M01 VSP01M02
7
VSP01M01
VSP01M02
SBES016 – MARCH 2009 .................................................................................................................................................................................................. www.ti.com
Table 1. TERMINAL FUNCTIONS (continued)
TERMINAL
(5)
(6)
8
NAME
PIN
TYPE (1)
DRVDD
D7
P
CH4N
D8
DO
Universal vertical rate signal 4N (for V3B)
B4
D9
DO
Data out bit 4 (VSP01M01 only)
B6
D9
DO
Data out bit 6 (VSP01M02 only)
B5
D10
DO
Data out bit 5 (VSP01M01 only)
DESCRIPTION
Digital output power supply
B7
D10
DO
Data out bit 7 (VSP01M02 only)
CM
E1
AO
Internal reference (3)
BYPM
E2
AO
Internal reference (4)
REFN
E3
AO
Internal reference (3)
AVDD
E4
P
Analog power supply
AVSS
E5
P
Ground
AVSS
E6
P
Ground
DRVDD
E7
P
Digital output power supply
B3
E8
DO
Data out bit 3 (VSP01M01 only)
B5
E8
DO
Data out bit 5 (VSP01M02 only)
B1
E9
DO
Data out bit 1 (VSP01M01 only)
B3
E9
DO
Data out bit 3 (VSP01M02 only)
B2
E10
DO
Data out bit 2 (VSP01M01 only)
B4
E10
DO
Data out bit 4 (VSP01M02 only)
REFP
F1
AO
Internal reference (5)
V5N
F2
DO
Vertical rate signal 5N (for V5A, V5B)
NC
F3
—
No connection
AVDD
F4
P
Analog power supply
AVSS
F5
P
Ground
AVSS
F6
P
Ground
DRVDD
F7
P
Digital output power supply
V2
F8
VDO
B0
F9
DO
Data out bit 0 (LSB) (VSP01M01 only)
B2
F9
DO
Data out bit 2 (VSP01M02 only)
VDRIVER out 2
SUB
F10
VDO
BYPD
G1
AO
VDRIVER out for CCD electric shutter
DLL bypass (6)
V3B
G2
VDO
VDRIVER out 3B
TPD
G3
DO
DVSS
G4
P
Test pin for SHD, CLPDM, HDIV
Ground
VL
G5
P
VDRIVER power supply
VH
G6
P
VDRIVER power supply
VDD5
G7
P
Digital power supply
VSS5
G8
P
Digital ground
VSS5
G9
P
Digital ground
NC
G10
—
No connection (VSP01M01 only)
B0
G10
DO
Data out bit 0 (LSB) (VSP01M02 only)
TPP
H1
DO
Test pin for SHP, CLPOB, PBLK, HBLK
SYSRST
H2
DI
Asynchronous reset
RLOAD
H3
DI
Register load
Should be connected to ground with a bypass capacitor (0.1 µF). Refer to the Voltage Reference section for more detail.
Should be connected to ground with a bypass capacitor. The recommended value is 1000 pF to 0.1 µF; however, actual value depends
on the application environment.
Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated
Product Folder Link(s): VSP01M01 VSP01M02
VSP01M01
VSP01M02
www.ti.com .................................................................................................................................................................................................. SBES016 – MARCH 2009
Table 1. TERMINAL FUNCTIONS (continued)
TERMINAL
NAME
PIN
TYPE (1)
V5A
H4
VDO
VDRIVER out 5A
V3A
H5
VDO
VDRIVER out 3A
STROBE
H6
DO
VDD5
H7
P
V6
H8
VDO
DESCRIPTION
Strobe signal
Digital power supply
VDRIVER out 6
RG
H9
DO
CCD reset gate signal
H1A
H10
DO
CCD horizontal transfer signal 1A
SDATA
J1
DI
Serial data
SCLK
J2
DI
Serial data clock
TRIG
J3
DI
External trigger
VD
J4
DI/O
Vertical sync
SUBSW1
J5
DO
CCD substrate signal switch 1
MSHUT
J6
DO
Mechanical shutter signal
SUBN
J7
DO
CCD electric shutter (for SUB)
HL
J8
DO
CCD horizontal transfer signal
V4
J9
VDO
ADCCK
J10
DO
VDRIVER out 4
Clock for digital output buffer
MCK
K1
DI
Master clock
CS
K2
DI
Chip select
HD
K3
DI/O
Horizontal sync
SUBSW2
K4
DO
CCD substrate signal switch 2
V1
K5
VDO
FIELD
K6
DO
V5B
K7
VDO
H2A
K8
DO
CCD horizontal transfer signal 2A
H1B
K9
DO
CCD horizontal transfer signal 1B
H2B
K10
DO
CCD horizontal transfer signal 2B
VDRIVER out 1
Field index signal
VDRIVER out 5B
Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated
Product Folder Link(s): VSP01M01 VSP01M02
9
VSP01M01
VSP01M02
SBES016 – MARCH 2009 .................................................................................................................................................................................................. www.ti.com
FUNCTIONAL BLOCK DIAGRAM
BYP2
COB
BYP
BYPM
REFP
CM
REFN
BYPD
VDD5
AVDD DRVDD
Internal Reference
Buffer
Current DAC
Decoder
Digital
Output
DPGA and Output Register
CCD Out
Signal
PBLK
16-Bit ADC
CDS
CCDIN
ADCCK
CLPOB
Gain Setting
SHP/SHD
ADCCK
CCGND
Clamp
CLPDM
RG
HL
HG1A
HG2A
HG1
HG2
MCK
SDATA
Horizontal Timing Generator and Driver
SCLK
CS
Serial Interface
and Register
TRIG
STDBY
RLOAD
HDIV
HBLK
Drive
HD
VD
P0-P5
V0N-V12N
FIELD
STROBE
MSHUT
SUBSW1
SUBSW2
SYSRST
Vertical Timing Generator
DAC
OUTPUT 1
8-Bit DAC
DAC
OUTPUT 2
8-Bit DAC
SUBN
SUB
SUB
V1
V1
V2
V2
V3A
V3A
V3B
V3B
V4
V4
V5A
V5A
V5B
V5B
V6
V6
P1
V1N
V2N
P2
VDRIVER
V3N
P4
V4N
P3
V5N
P5
V6N
VSS
10
Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated
Product Folder Link(s): VSP01M01 VSP01M02
VSP01M01
VSP01M02
www.ti.com .................................................................................................................................................................................................. SBES016 – MARCH 2009
TIMING CHARACTERISTICS
TG HIGH-SPEED PULSE TIMING
tMCKP
MCK
tRGW
tCKP/4
tCKP/2
tMCKPG
tCKP
RG
tH1R
HG1
HL
tH1F
HG2
tH2R
tH2F
tLHR
N (pix)
CCD
tS
tPF
tPR
SHP
tS
tDR
SHD
tDF
tADCKR
tINHIBIT
ADCCK
tHOLD
tOD
B[9:0]
B[11:0]
B[15:0]
NOTE: Dashed lines indicate programmable parameters.
Figure 1. TG High-Speed Pulse Timing
Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated
Product Folder Link(s): VSP01M01 VSP01M02
11
VSP01M01
VSP01M02
SBES016 – MARCH 2009 .................................................................................................................................................................................................. www.ti.com
Table 2. Timing Characteristics for Figure 1
PARAMETER
(1)
(2)
(3)
12
MIN
tMCKP
MCK clock period
tMCKRG
MCK rising edge to RG rising edge (1)
tCKP
Pixel rate
tRGW
RG rising edge to RG falling edge (2)
tH1R
RG rising edge to HG1 rising edge
(2)
–16tCKP/100
tH1F
RG rising edge to HG1 falling edge (2)
tCKP/2 – 16tCKP/100
tH2R
RG rising edge to HG2 rising edge (2)
tCKP/2 – 16tCKP/100
tH2F
(2)
TYP
27.7
UNIT
83.3
ns
14
27.7
RG rising edge to HG2 falling edge
MAX
tCKP/4 – 16tCKP/100
ns
83.3
ns
tCKP/4 + 15tCKP/100
ns
0
15tCKP/100
ns
tCKP/2
tCKP/2 + 15tCKP/100
ns
tCKP/2
tCKP/2 + 15tCKP/100
ns
tCKP/4
–16tCKP/100
0
+15tCKP/100
ns
tLHR
RG rising edge to HL rising edge (2)
–16tCKP/100
0
+15tCKP/100
ns
tLHF
RG rising edge to HL falling edge (2)
tCKP/2 – 16tCKP/100
tCKP/2
tCKP/2 + 15tCKP/100
ns
tPF
RG rising edge to SHP falling edge
(2)
tCKP/4 – 16tCKP/100
tCKP/4
tCKP/4 + 15tCKP/100 + 6
ns
tPR
RG rising edge to SHP rising edge (2)
tCKP/2 – 16tCKP/100
tCKP/2
tCKP/2 + 15tCKP/100 + 6
ns
tDF
RG rising edge to SHD falling edge
(2)
3tCKP/4 – 24tCKP/100
3tCKP/4 –
8tCKP/100
3tCKP/4 + 7tCKP/100 + 6
ns
tDR
RG rising edge to SHD rising edge (2)
–24tCKP/100
–8tCKP/100
7tCKP/100 + 6
ns
tADCKR
RG rising edge to ADCCK rising edge (3)
–50tCKP/100
0
49tCKP/100
ns
tS
Sampling delay for SHP and SHD
tINHIBIT
Inhibited clock period
tADC
ADCCK duty
tDOD
Data out delay (register setting 002h)
tHOLD
Output hold time
tOD
Output delay (no load)
DL
Data latency
3
4
7
ns
10
ns
6
ns
50
0
0
%
2 + tDOD
ns
27 + tDOD
9 (fixed)
ns
tCKP cycles
Pulse phase can be programmed through the serial interface.
RG pulse width can be programmed through the serial interface. Refer to the High-Speed Pulse Adjustment section of the TG (Timing
Generator) Section for details.
ADCCK phase can also be programmed as a 90-degree step through the serial interface.
Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated
Product Folder Link(s): VSP01M01 VSP01M02
VSP01M01
VSP01M02
www.ti.com .................................................................................................................................................................................................. SBES016 – MARCH 2009
SLAVE MODE: VD, HD SPECIFICATIONS
VD, HD Detect
The odd field of the two-field CCD operation and the first field of the even field operation is detected by the VD
and HD phase. The delay limit of the VD and HD phase is specified in Figure 2 and Figure 3.
tVD
VD
MCK
tODD HD-VD
tODD VD-HD
VD After HD
tHD
HD
HD After VD
HD
Figure 2. VD, HD Falling Edge Detect
VD
MCK
tODD HD-VD
tODD VD-HD
VD After HD
HD
HD After VD
HD
Figure 3. VD, HD Rising Edge Detect
Table 3. Timing Characteristics for Figure 2 and Figure 3 (1)
PARAMETER
(1)
MIN
TYP
MAX
UNIT
tVD
VD trail-to-trail
10
τ (MCK cycles)
tHD
HD trail-to-trail
10
τ (MCK cycles)
0
1
6
τ (MCK cycles)
0
1
6
τ (MCK cycles)
tODD
HD-VD
VD trail delay limit for ODD detect
(register setting 02Fh[2:0])
tODD
HD-VD
HD trail delay limit for ODD detect
(register setting 02Fh[5:3])
The VD, HD edge is detected by the rising edge of MCK.
Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated
Product Folder Link(s): VSP01M01 VSP01M02
13
VSP01M01
VSP01M02
SBES016 – MARCH 2009 .................................................................................................................................................................................................. www.ti.com
HCOUNTER Reset
HCOUNTER is reset via HD detection. The timing is shown in Figure 4 and Figure 5.
tHCNT-latency
HD
MCK
tCH3
tCH1
N - 1 (pix)
P[12:0]
N (pix)
Start (pix)
M (H)
H[11:0]
M + 1 (H)
Figure 4. HD Falling Edge Detect
tHCNT-latency
HD
MCK
tCH3
tCH1
N - 1 (pix)
P[12:0]
N (pix)
Start (pix)
M (H)
H[11:0]
M + 1 (H)
Figure 5. HD Rising Edge Detect
Table 4. Timing Characteristics for Figure 4 and Figure 5 (1)
REGISTER
PARAMETER
14
MCK EDGE
020h[2]
MIN
MAX
UNIT
tCH1
HD falling edge to MCK rising edge
0 (falling)
0 (rising)
–6
1
ns
tCH2
HD rising edge to MCK rising edge
1 (rising)
0 (rising)
–6
1
ns
tCH3
HD falling edge to MCK falling edge
0 (falling)
1 (falling)
–4
3
ns
tCH4
HD rising edge to MCK falling edge
1 (rising)
1 (falling)
–4
3
ns
tHCNT-
HCOUNTER reset latency
(register setting 034h[3:0])
—
—
LATENCY
(1)
VD, HD EDGE
020h[3]
TYP
6
τ (MCK cycles)
HCOUNTER reset timing is selected by MCK edge polarity.
Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated
Product Folder Link(s): VSP01M01 VSP01M02
VSP01M01
VSP01M02
www.ti.com .................................................................................................................................................................................................. SBES016 – MARCH 2009
MASTER MODE: HD, VD SPECIFICATIONS
The HD, VD MCK timing is shown in Figure 6 and Figure 7.
VD
tMCK-VD
tMCK-VD
MCK
Figure 6. VD MCK Specification
HD
tMCK-HD
tMCK-HD
MCK
Figure 7. HD MCK Specification
Table 5. Timing Characteristics for Figure 6 and Figure 7
PARAMETER
MIN
TYP
MAX
UNIT
tMCK-VD
MCK rising edge to VD falling edge
10
ns
tMCK-HD
MCK rising edge to HD falling edge
10
ns
SERIAL INTERFACE TIMING SPECIFICATION
The serial interface has two writing modes: standard and continuous write. These modes are shown in Figure 8
and Figure 9.
tXS
tXH
tXS
CS
tXHS
tCKH
tCKL
tCKP
SCLK
tDS
SDATA
tDH
Address
LSB
Address
MSB
10 Bits
Data
LSB
Data
MSB
Data Width
tDLLC
tDLLC
tDLLC
Activated Sent DATA
Toggling of HA
Figure 8. Standard Mode Timing
Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated
Product Folder Link(s): VSP01M01 VSP01M02
15
VSP01M01
VSP01M02
SBES016 – MARCH 2009 .................................................................................................................................................................................................. www.ti.com
CS
SCLK
Address
LSB
SDATA
Address
MSB
Data
MSB
Data
LSB
Data Width
10 Bits
Activated Sent DATA
Data
LSB
Data
MSB
Data Width
tDLLC
tDLLC
Toggling of HA
tDLLC
tDLLC
tDLLC
Figure 9. Continuous Write Mode Timing
Table 6. Timing Characteristics for Figure 8 and Figure 9
PARAMETER
MIN
TYP
MAX
UNIT
tCKP
Clock period
50
ns
tCKH
Clock high pulse width
25
ns
tCKL
Clock low pulse width
25
ns
tDS
Data setup time
15
ns
tDH
Data hold time
15
ns
tXS
SLOAD to SCLK setup time
20
ns
tXH
SCLK to CS hold time
20
ns
tXHS
CS width
20
tDLLC
Data load latency clock
ns
10
MCK CLK
Data shift operation should decode at the rising edges of SCLK while CS is low.
Parallel latch timing for each mode is described in Table 7.
Table 7. Parallel Latch
MODE
PARALLEL LATCH TIMING
Standard write
Rising edge of CS
Continuous write
End of data (MSB)
In addition to the parallel latch, there are several registers dedicated to the specific features of the device; these
registers are synchronized with MCK. It takes less than 10 clock cycles for the data in the parallel latch to be
written to these registers. Therefore, to complete the data updates, it requires less than 10 clock cycles after
parallel latching.
Toggling of HA is inhibited from parallel latch. Refer to the Serial interface (SPI) section of the Common Section
for details.
16
Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated
Product Folder Link(s): VSP01M01 VSP01M02
VSP01M01
VSP01M02
www.ti.com .................................................................................................................................................................................................. SBES016 – MARCH 2009
EQUIVALENT CIRCUITS
Figure 10 shows the HG1A, HG1B, HG2A, and HG2B high-speed driver and load model. The driver supports up
to 150 pF. Figure 11 shows the RG and HL high-speed driver and load model. The driver supports up to 10 pF.
Figure 10. HG Driver and Load Model
RR
CR
10pF
Figure 11. RG Driver and Load Model
Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated
Product Folder Link(s): VSP01M01 VSP01M02
17
VSP01M01
VSP01M02
SBES016 – MARCH 2009 .................................................................................................................................................................................................. www.ti.com
COMMON SECTION
REGISTER/MEMORY MAP
Figure 12 shows the TG register/memory map, which has 1024 words of 32-bit instruction (max). The 256-word
register area enables active instruction, which requires dynamic operation. The 768-word memory area enables
static instruction, which is almost fixed during a frame rate.
Address
Data
22 Bits (maximum)
10-Bit
000h
00 0000 0000b
6-Bit
Register (active control)
192 Words (maximum)
0BFh
00 1011 1111b
0C0h
00 1100 0000b
0FFh
00 1111 1111b
100h
01 0000 0000b
16-Bit
Register (reserved)
64 Words (maximum)
#1 (100h)
#2 (120h)
#3 (140h)
17Fh
01 0111 1111b
#4 (160h)
180h
01 1000 0000b
VA1 (180h)
Memory [vertical high-speed transfer(HS) #1-4]
128 Words (maximum)
VA2 (190h)
VA3 (1A0h)
VA4 (1B0h)
Memory (vertical timing: VA1-VA8)
VA5 (1C0h)
128 Words (maximum)
(1)
VA6 (1D0h)
VA7 (1E0h)
1FFh
01 1111 1111b
VA8 (1F0h)
200h
10 0000 0000b
HA Address
0
Memory (horizontal timing: HA)
512 Words (maximum)
3FFh
11 1111 1111b
511
NOTE: Shaded cells indicate the area under discussion.
(1) Refer to the TG Instruction Hierarchy section of the TG (Timing Generator) Section for details.
Figure 12. VSP01M01/VSP01M02 TG Register/Memory Map
18
Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated
Product Folder Link(s): VSP01M01 VSP01M02
VSP01M01
VSP01M02
www.ti.com .................................................................................................................................................................................................. SBES016 – MARCH 2009
SERIAL INTERFACE (SPI)
The SPI functions and timings are controlled through the serial interface, which is composed of three signals:
SDATA, SCLK, and CS. SDATA data are sequentially stored to the shift register at the rising edge of SCLK.
Before a write operation, CS must go low, and remain low during writing. Refer to Serial Interface Timing
Specification for further details.
The serial interface command is composed of a 10-bit address and 6-bit, 16-bit, or 22-bit data. Table 8 shows the
data width for each address area.
Table 8. Address Data Width (1)
ADDRESS (10-Bit)
(1)
DATA WIDTH (Bits)
USAGE
000h-0BFh
6
Register
100h-17Fh
16
HS memory
180h-3FFh
22
HA and VA memory
Refer to Register/Memory Map for details.
The SPI has two write modes: standard and continuous.
Standard Write Mode
The VSP01M01 and VSP01M02 support a standard write mode, as shown in Figure 13. Normally, a serial
interface command is sent by one address and data combination. The 10-bit address should primarily be sent
LSB first; the following 6-bit, 16-bit, or 22-bit data should also sent LSB first. 6-bit, 16-bit, or 22-bit data are
stored in the respective register by the 10-bit address at the rising edge of CS. The stored serial command data
change immediately at rising edge of CS or are reserved by programmable control. If the data bit does not
contain either 6-bits, 16-bits, or 22-bits at the end of the data stream, any empty data bits are ignored.
CS
CS
SCLK
SCLK
SDATA
A0
A9
10-Bit
Address
D0
D5
A0
SDATA
A9
10-Bit
Address
6-Bit
Data
D0
D21
22-Bit
Data
b) 22-Bit Memory Area
a) 6-Bit Register Area
CS
SCLK
SDATA
A0
A9
10-Bit
Address
D0
D15
16-Bit
Data
c) 16-Bit Memory Area
Figure 13. SPI Standard Write Mode
Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated
Product Folder Link(s): VSP01M01 VSP01M02
19
VSP01M01
VSP01M02
SBES016 – MARCH 2009 .................................................................................................................................................................................................. www.ti.com
Continuous Write Mode
These devices also support a continuous write mode, as shown in Figure 14. When the input serial data are
longer than one set of instructions, the following data stream is automatically recognized as the data of the next
address. In this mode, 6-bit, 16-bit, or 22-bit serial command data are stored to the respective registers
immediately when those data are fetched. Address and data should be sent LSB first, in the same way as
standard write mode. If the data bit does not contain either 6-bits, 16-bits, or 22-bits at the end of the data
stream, any empty data bits are ignored.
CS
SCLK
SDATA
A0
A9
D0
10-Bit
Address
D5
D0
6-Bit
Data
D5
D0
6-Bit
Data
D5
6-Bit
Data
a) 6-Bit Register Area
CS
SCLK
SDATA
A0
A9
D0
10-Bit
Address
D15
D0
16-Bit
Data
D15
D0
16-Bit
Data
D15
16-Bit
Data
b) 16-Bit Memory Area
CS
SCLK
SDATA
A0
A9
10-Bit
Address
D0
D21
22-Bit
Data
D0
D21
D0
22-Bit
Data
D21
22-Bit
Data
c) 22-Bit Memory Area
Figure 14. SPI Continuous Write Mode
20
Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated
Product Folder Link(s): VSP01M01 VSP01M02
VSP01M01
VSP01M02
www.ti.com .................................................................................................................................................................................................. SBES016 – MARCH 2009
Mode Confusion
If 22 bits of data are sent to a 6-bit register area, the SPI recognizes continuous write mode, because usually
only 6-bit data should be sent to 6-bit register area in standard write mode, as shown in Figure 15. The
end-of-data point is recognized by the rising edge of CS.
CS
A0
SDATA
A9
D0
D21
10-Bit
Address
(6-Bit Register Area)
SPI Recognition
A0
22-Bit Data
A9
D0
10-Bit
Address
(Add A)
D5
D0
6-Bit Data
(Store to
Add A)
D5
D0
6-Bit Data
(Store to
Add A + 1)
D5
D0
6-Bit Data
(Store to
Add A + 2)
D3
Ignored
Figure 15. Mode Confusion
SPI recognition is shown in Table 9.
Table 9. SPI Recognition
DATA WIDTH
(1)
(2)
(3)
ADDRESS AREA
6-BIT
16-BIT
22-BIT
32-BIT
6-bit register
Standard (1) (one word)
Continuous (2) (two words)
Continuous (three words)
Continuous (five words)
16-bit memory
Ignored
Standard (one word)
Standard (3) (one word)
Continuous (two words)
22-bit memory
Ignored
Ignored
Standard (one word)
Standard (one word)
Shaded cells indicate standard operation.
Continuous = continuous write mode.
Standard = standard write mode.
Read and Write Batting
Address 100h-3FFh is the memory area. HA, VA, and HS access this memory area to read programs. If the SPI
writes to the memory area during a program read, the programmed operation is cancelled. SPI operation should
be done with TG disable. If SPI operation must be done with TG enable (TG operating), the SPI must write for a
no-read term (no toggling term). For the register area (000h-0FFh), this precaution is not necessary.
REGISTER UPDATE
The update timing of each register is specified in Table 10.
Table 10. Updated Timing
REGISTER ADDRESS
000h
UPDATE TIMING
Real time
001h-01Fh
Timing specified at bits 0-2 of 000h (AFE update)
020h-035h
Real time
036h[2:0]
VD; refer to the CCD Timing Composition section of the TG (Timing Generator) Section for details.
036h[5:3]
TRIG; refer to the CCD Timing Composition section of the TG (Timing Generator) Section for details.
037h-0FFh
Timing specified at bit 3 of 000h (TG update)
Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated
Product Folder Link(s): VSP01M01 VSP01M02
21
VSP01M01
VSP01M02
SBES016 – MARCH 2009 .................................................................................................................................................................................................. www.ti.com
The AFE register is updated in real time by the RLOAD pin or VD, as shown in Table 11.
Table 11. Update Select Register (AFE)
PARAMETER
REGISTER ADDRESS
AFE UPDATE
000h[0]
AFE UP POL
000h[2:1]
DESCRIPTION
0 = Real-time update (default)
1 = Updated by RLOAD pin or VD
AFE register update signal and polarity
00b = RLOAD rising edge (default) 10b = VD rising edge
01b = RLOAD falling edge
11b = VD falling edge
The TG register can be updated at a specified line number through VA instruction. The update method selection
is described in Table 12. In general, this function is used for SUBN control.
Table 12. Update Select Register (TG)
PARAMETER
REGISTER ADDRESS
TG UPDATE
DESCRIPTION
0 = Real-time update (default)
1 = Updated by VA instruction line number
Refer to the Vertical Sequence section for VA instruction details.
000h[3]
MCK STOP DETECT
The MCK stop detect function is supported, as shown in Table 13. If an MCK stop was detected, all register
values are cleared. After an MCK stop detect, a SYSRST is required.
Table 13. MCK Stop Detect Register
PARAMETER
REGISTER ADDRESS
MCK detect
020h[4]
DESCRIPTION
0 = Disabled
1 = Enabled (default)
STANDBY FUNCTION
For increased power savings, this device can be put into a standby mode (power-down mode) through serial
interface control when the device is not in use. In this mode, all function blocks are disabled. Current
consumption drops to about 2 mA. Because all the bypass capacitors discharge during this mode, a substantial
time (usually on the order of 200 ms to 300 ms) is required to return from standby mode. A four-part standby is
selected independently, as described in Table 14.
Table 14. Standby Control Register
SECTION
REGISTER
ADDRESS
DESCRIPTION
SIGNAL STATUS IN STANDBY
TG
020h[0]
0 = Standby (default)
1 = Normal operation
Refer to the Signal section of the
TG (Timing Generator) Section.
AFE
001h[0]
0 = Normal operation (default)
1 = Standby
Digital output = high impedance
DAC1
001h[1]
0 = Enabled
1 = Disabled (Standby) (default)
Analog output = low
DAC2
001h[2]
0 = Enabled
1 = Disabled (Standby) (default)
—
AFE standby, DAC1 standby, or DAC2 standby should be completed before TG standby if using the VD update
method for the the AFE section. If the AFE standby is completed after TG standby, the AFE standby, DAC1
standby, or DAC2 standby are not activated.
22
Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated
Product Folder Link(s): VSP01M01 VSP01M02
VSP01M01
VSP01M02
www.ti.com .................................................................................................................................................................................................. SBES016 – MARCH 2009
SYSTEM RESET
All parameters are reset to the respective default values when the SYSRST pin goes low asynchronously with
respect to the system clock. All register and memory values are cleared by SYSRST. SYSRST should be pulled
up for operation. Figure 16 shows typical SYSRST implementation with a pull-up resistor.
SYSRST
Figure 16. SYSRST Pin
POWER-UP SEQUENCE
When the device is powered up, follow this recommended sequence:
1. Turn on the power supplies for the device.
2. Apply the master clock input to the MCK, VD, and HD signals.
3. Input the serial data for the 6-bit register setting. Input SRG for 16-bit serial data. (10-bit address + 6-bit
data). TG disable must be complete. (020h[0] = 0)
4. Input the serial data for VHIGH SPEED transfer toggling. Input SRG for 26-bit serial data. (10-bit address + 16-bit
data)
5. Input the serial data for VRATE toggling. Input SRG for 32-bit serial data. (10-bit address + 22-bit data)
6. Input the serial data for HRATE toggling. Input SRG for 32-bit serial data. (10-bit address + 22-bit data)
7. Input the serial data for TG enable. Input SRG for 16-bit serial data. (10-bit address + 16-bit data) TG enable
must be complete. (020h[0] = 1)
Figure 17 shows the timing for the power-up sequence.
Power
SDATA
CS
SCLK
MCK
VD
1
1
HD
100
200
100
Vertical Output
HG1A, HL = High, HG1B = Z
High-Speed Output
HG2A, RG = Low, HG2B = Z
Figure 17. Power-Up Sequence
Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated
Product Folder Link(s): VSP01M01 VSP01M02
23
VSP01M01
VSP01M02
SBES016 – MARCH 2009 .................................................................................................................................................................................................. www.ti.com
AFE (ANALOG FRONT-END) SECTION
OVERVIEW
Composition
The VSP01M01/VSP01M02 are complete mixed-signal ICs that contain all of the key features associated with
processing of the CCD imager output signal in video cameras, digital still cameras, security cameras, or similar
applications. A simplified block diagram of the AFE section is shown in Figure 18. The AFE section includes
these features:
• Correlated double sampler (CDS)
• Programmable gain amplifier (PGA)
• Analog-to-digital converter (ADC)
• Input clamp
• Optical black (OB) level clamp loop
• Timing control
• Internal reference voltage generator
It is recommended that an off-chip emitter follower buffer be placed between the CCD output and the device
CCDIN input. The serial interface controls PGA gain, clock polarity setting, and operation mode.
BYP2
COB
Buffer
Current DAC
Decoder
From Serial Interface
Gain Control
CCD Out
Signal
CDS
16-Bit ADC
Digital
Output
10-/12-/16-Bit
DPGA
CCDIN
Clamp
Internal Clocks (SHP/SHD, ADCCK, CLPOB, CLPDM)
From TG Section
Figure 18. Simplified Block Diagram of the AFE Section
Function
Table 15 shows the major functions of the AFE section.
Table 15. AFE Functional Summary
24
FUNCTION
RELATED REGISTER
Selectable CDS (analog) gain
008h
Programmable digital gain
006h, 007h
SECTION
Programmable Gain
Programmable OB clamp level
004h
Standby mode
001h[2:0]
Standby Function
Hot pixel rejection
005h
Hot Pixel Rejection
Selectable register update
000h[2:0]
AFE Register Update Function
Data output enable control
002h[2]
Data Output Enable
Submit Documentation Feedback
OB Loop and OB Clamp Level
Copyright © 2009, Texas Instruments Incorporated
Product Folder Link(s): VSP01M01 VSP01M02
VSP01M01
VSP01M02
www.ti.com .................................................................................................................................................................................................. SBES016 – MARCH 2009
CORRELATED DOUBLE SAMPLER (CDS)
The output signal of the CCD image sensor is sampled twice during one pixel period: once at the reference
interval and again at the data interval. Subtracting these two samples extracts the video information of the pixel
as well as removes any noise, which is common to both intervals. Thus, CDS is very important to reduce the
reset noise and the low-frequency noise that are present on the CCD output signal. Figure 19 shows the block
diagram of the CDS section. SHP, SHD, CLPDM, and CLPOB are supplied from the TG section; these signals
are active low (close).
SHP/SHD
CINP
C1
CCD
Input
CCDIN
SHP
CCGND
C2
CCD
GND
CLPDM
SHP
REFP
1.5 V
Figure 19. Block Diagram of CDS and Input Clamp
INPUT CLAMP
The buffered CCD output is capacitively coupled to this device. The purpose of the input clamp is to restore the
dc component of the input signal, which was lost with the ac coupling, and to establish the desired dc bias point
for the CDS. Figure 19 also shows the block diagram of the input clamp. The input level is clamped to the
internal reference voltage, CM (1.25 V), during the dummy pixel interval. More specifically, the clamping function
becomes active when both CLPDM and SHP are active.
Immediately after power on, the clamp voltage of the input capacitor is not charged. For fast charge-up for clamp
voltage, these devices provide a boost-up circuit.
ANALOG-TO-DIGITAL CONVERTER (ADC)
These devices provide a high-speed, 16-bit analog-to-digital converter (ADC). This ADC uses a fully differential
pipelined architecture with a correction feature. The ADC error correction architecture is very advantageous to
realize a better linearity for lower signal levels. Large linearity errors tend to occur at specific points in the
full-scale range and the linearity improves for a signal level below that specific point. The ADC ensures 16-bit
resolution across the entire full-scale range.
Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated
Product Folder Link(s): VSP01M01 VSP01M02
25
VSP01M01
VSP01M02
SBES016 – MARCH 2009 .................................................................................................................................................................................................. www.ti.com
OB LOOP AND OB CLAMP LEVEL
This device has a built-in OB offset self-calibration circuit (OB loop) that compensates the OB level by using
optical black (OB) pixels output from the CCD image sensor. A block diagram of the OB loop and OB clamp
circuit is shown in Figure 20.
OB Clamp
Level
CCDIN
CDS
16-Bit ADC
Data
Out
DPGA
BYP2
Current
DAC
COB
Decoder
CPLOB
Figure 20. OB Loop and OB Clamp Level
CCD offset is compensated by the convergence of this calibration circuit while activating CLPOB during a period
when OB pixels are output from the CCD. Note that the total number of effective pixels is (the CLPOB period –6
pixels).
At the CDS circuit, CCD offset is compensated as a difference between reference level and data level of the OB
pixel. These compensated signal levels are recognized as actual OB levels, and the outputs are clamped to the
OB levels set by the serial interface. These OB levels are the base of black for the effective pixel period
thereafter.
Because DPGA, which is a gain stage, is outside the OB loop, OB levels are not affected even if the gain is
changed.
Converging time of the OB loop is determined by the capacitor value connected to the COB terminal and output
from the current output DAC of the loop. The time constant can be obtained from Equation 1:
C
T=
(16384 ´ IMIN)
(1)
Where:
C is the capacitor value connected to COB,
IMIN is the minimum current (0.15 µA) of the current DAC which is an equivalent current to 1 LSB of the DAC
output.
When C = 0.1 µF, T is 40.8 µs.
Slew rate (SR) can be obtained from Equation 2:
IMAX
SR =
C
(2)
Where:
C is the capacitor value connected to COB,
IMAX is the maximum current (76 µA) of the current DAC which is an equivalent current to 511 LSB of the
DAC output.
26
Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated
Product Folder Link(s): VSP01M01 VSP01M02
VSP01M01
VSP01M02
www.ti.com .................................................................................................................................................................................................. SBES016 – MARCH 2009
Immediately after power-on, the COB capacitors are not charged. For fast start-up, a COB voltage boost-up
circuit is provided.
The OB clamp level (digital output value) can be set externally through the serial interface by inputting a digital
code to the OB clamp level register. The digital codes to be input and the corresponding OB clamp levels are
shown in Table 16.
Table 16. Input Code and OB Clamp Level to Be Set
CLAMP LEVEL (LSB)
CODE
(Register = 004h)
VSP01M01 (10-Bit)
VSP01M02 (12-Bit)
00000b
16
64
00001b
18
72
—
—
—
00110b
28
112
00111b
30
120
01000b (default)
32
128
01001b
34
136
—
—
—
11110b
76
304
11111b
78
312
PROGRAMMABLE GAIN
The VSP01M01 and VSP01M02 gain ranges from –9 dB to 44 dB. The desired gain is set as a combination of
CDS gain and the digital programmable gain amplifier (DPGA). CDS gain can be programmed in the range of –3
dB to 18 dB (–3 dB, 0 dB, 6 dB, 12 dB, 18 dB). –3 dB gain supports large input levels ranging from 1 V to 1.3 V.
Digital gain can be programmed in the range of –6 dB to 26 dB in 0.03125-dB steps. Both gains are controlled
through the serial interface. Gain changes linearly in proportion to the setting code, as shown in Figure 21.
Table 17. Programmable Gain Register (1)
(1)
PARAMETER
REGISTER ADDRESS
CDS (analog) gain
008h
DPGA
006h, 007h
Refer to the Configuration Register section for details.
30
25
Gain (dB)
20
15
10
5
0
-5
-10
0
128
256
384
512
640
768
896
1024
Input Code for Gain Control (0 to 1023)
Figure 21. DPGA Setting Code vs Gain
Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated
Product Folder Link(s): VSP01M01 VSP01M02
27
VSP01M01
VSP01M02
SBES016 – MARCH 2009 .................................................................................................................................................................................................. www.ti.com
PRE-BLANKING AND DATA LATENCY
These devices have a pre-blanking function. When PBLK = low, all digital outputs are set to '0' after the latching
ADCCK clocks counting from PBLK go low to accommodate the clock latency of these devices.
CLOCK TIMINGS FOR THE AFE SECTION
The CDS and the ADC are operated by SHP and SHD; the derivative timing clocks are generated by the on-chip
timing generator. The output register and decoder are operated by ADCCK. The digital output data are
synchronized with ADCCK. The timing relationship between the CCD signal, SHP, SHD, ADCCK, and the output
data is described in the Timing Characteristics. CLPOB is used to activate the black level clamp loop during the
OB pixel interval and CLPDM is used to activate the input clamping during the dummy pixel interval. In standby
mode, ADCCK, SHP, SHD, CLPOB, and CLPDM are internally masked and pulled high. Refer to the Standby
Function section of the Common Section and the Signal section of the TG (Timing Generator) Section for details.
VOLTAGE REFERENCE
All reference voltages and bias currents used on the device are created from an internal band-gap circuitry. The
VSP01M01 and VSP01M02 have symmetrically independent voltage references.
CDS and the ADC primarily use three reference voltages: REFP (1.5 V), REFN (1.0 V), and CM (1.25 V) of the
individual reference. REFP and REFN are buffered on-chip. CM is derived as the mid-voltage of the register
chain connecting REFP and REFN internally. Twice the difference voltage between REFP and REFN [that is,
2(REFP – REFN)] determines the ADC full-scale range.
REFP, REFN, and CM should be heavily decoupled with appropriate capacitors. Refer to the Terminal Functions
section for details.
HOT PIXEL REJECTION
Sometimes the OB pixel output signal from the CCD includes an unusual level signal that causes pixel defection.
If this level reaches a full-scale level, is may affect OB level stability. These devices have a function that rejects
this large unusual pixel level (hot pixel) at the OB pixel. Through this function, these devices improve the CCD
yield at camera manufacturing.
The rejection level for hot pixels can be programmed through the serial interface. When a hot pixel comes from
the CCD, the VSP01M01 and VSP01M02 omit it and replace it with the previous pixel level from the OB level
calculation.
Table 18. Hot Pixel Rejection Register (1)
(1)
28
PARAMETER
REGISTER ADDRESS
Hot pixel rejection
005h
Refer to the Configuration Register section for details.
Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated
Product Folder Link(s): VSP01M01 VSP01M02
VSP01M01
VSP01M02
www.ti.com .................................................................................................................................................................................................. SBES016 – MARCH 2009
AFE REGISTER UPDATE FUNCTION
Some registers for the AFE section can be selected during update timing. Refer to the Register Update section of
the Common Section for details.
DATA OUTPUT ENABLE
Data out is enabled or disabled by the Data Output Enable register, as shown in Table 19. When disabled, the
output level is high impedance.
Table 19. Data Output Enable Register
PARAMETER
REGISTER ADDRESS
OE
002h[2]
DESCRIPTION
0 = Enabled (default)
1 = Disabled (high impedance)
DAC
The VSP01M01 and VSP01M02 provide a two-channel, general-purpose, 8-bit DAC, as shown in Table 20. This
DAC can be used for various applications such as CCD bias control, iris control, etc.
Table 20. DAC Input Register (1)
PARAMETER
(1)
REGISTER ADDRESS
DAC1
00Ah, 00Bh
DAC2
00Ch, 00Dh
Refer to the Configuration Register section for details.
Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated
Product Folder Link(s): VSP01M01 VSP01M02
29
VSP01M01
VSP01M02
SBES016 – MARCH 2009 .................................................................................................................................................................................................. www.ti.com
TG (TIMING GENERATOR) SECTION
OVERVIEW
Composition
The VSP01M01 and VSP01M02 support variable CCD timing. For horizontal and vertical sequencing, full
programming is available. These devices include a counter, high-speed signal generator, VA selector for frame
mode change, output controller, and a TRIG function section.
High-speed signal rise and fall timing are generated through the high-speed signal generator.
For each signal, enabling and initial polarity are controlled by the output controller.
Counter
Table 21 shows the operation of each counter.
Table 21. Counter Operation
COUNTER
INCREASED BY
RESET BY
Frame
Reset (VA)
VA instruction
TRIG
Reset (HA)
VD
EOF (VA)
TRIG
VA (vertical)
OUTPUT/OPERATION
Frame count
Line count Instruction:
Frame count reset
Initialize
Event number start/stop
EOF
Call HA Address
HA (horizontal)
MCK
HS
(VHIGH SPEED transfer)
MCK
Event
Trigger V
HD
EOL (HA)
TRIG
HS number start (HA)
Repeat (HS)
Pixel count
Signal toggling
V0N-12N, P0-5, CLPDM, CLPOB, PBLK, HBLK, HDIV, HD, VD
Instruction:
HS number start/stop
EOL
VSIGNAL toggling
Repeat instruction
Event number start (VA) VSIGNAL control
The HA counter controls the horizontal sequence with the pixel counter. Some signal toggling is controlled by the
pixel step. The VA counter controls the vertical sequence with the line counter. The VA calls the HA address by a
line step. HS controls the VHIGH SPEED transfer sequence with a pixel counter. VSIGNAL toggling is controlled by a
pixel step. This counter is started by the HA start command. The loop cycle continues until an HA stop command
is issued. An event counter controls VHIGH-SPEED transfer for an electrical zoom function. This counter operates
between the VA start and stop commands.
TRIG Function Section
TRIG has the following functionality:
• Frame counter reset function
• Load frame function
• TG stop function
These functions are activated by a register setting.
30
Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated
Product Folder Link(s): VSP01M01 VSP01M02
VSP01M01
VSP01M02
www.ti.com .................................................................................................................................................................................................. SBES016 – MARCH 2009
CCD Support
The VSP01M01 and VSP01M02 TG are designed for various kinds of CCD sensor operation, including IT-CCD
as well as FT-CCD, IT progressive CCD, FIT-CCD, and motion CCD, as shown in Figure 22.
OB
OB
OB
Active Area
OB
OB
OB
OB
OB
OB
FD
Active Area
OB
Active Area
OB
OB
HV PIX Summing Area
Horizontal CCD
FD
Dummy
Horizontal CCD
Memory Area
Dummy
a) IT/IT Progressive
c) Motion CCD
FD
Horizontal CCD
Dummy
b) CCD FT/FIT-CCD
NOTE: Shaded cells indicate the area under discussion.
Figure 22. CCD Support Applications
The CCD operation supports these functions:
• Vertical format:
– IT-CCD: two, three, or four field types
– IT-progressive CCD
– FT-CCD
– FIT-CCD
– Motion CCD
• Horizontal transfer format:
– Four channels, two phases
• Floating diffusion reset:
– One floating diffusion or single phase reset
Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated
Product Folder Link(s): VSP01M01 VSP01M02
31
VSP01M01
VSP01M02
SBES016 – MARCH 2009 .................................................................................................................................................................................................. www.ti.com
Timing Range
The VSP01M01 and VSP01M02 have a horizontal 13-bit counter and a vertical 12-bit counter. The counter
synchronizes the pixel rate master clock (MCK). The reference signal (HD/VD) has flexibility that can select
either the master or slave mode. The timing is programmable so that the TG generates every signal. Apply the
program through the serial interface. Refer to the Register/Memory Map section of the Common Section for
details.
Line
Counter
VD
1
3 M PIX CCD
5 M PIX CCD
4095
13-Bit (8191 Pixels) x 12-Bit (4095 Lines) Timing Area
1
Pixel
Counter
8191
1
1
HD
Figure 23. TG Handling Time Range
Operating Mode
The primary operating mode consists of a combination of normal mode, monitor mode, still mode, and motion
picture mode.
32
Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated
Product Folder Link(s): VSP01M01 VSP01M02
VSP01M01
VSP01M02
www.ti.com .................................................................................................................................................................................................. SBES016 – MARCH 2009
Normal Mode
Normal mode operates as a basic function with an electric shutter, integration, readout, vertical transfer, and
horizontal transfer.
IT-CCD, FT-CCD, and progressive-CCD use a horizontal sequence (see the Horizontal Sequence section),
vertical sequence (see the Vertical Sequence section), and an HBLK function (see the HBLK Function section).
IT-CCD, progressive-CCD, and most of the FT-CCD use an electric shutter function (see the Electric Shutter
Function section).
VD
HD
HG1A, HG1B
HG2A, HG2B
V0N-V12N
P0-P55
SUBN
Figure 24. Normal Mode Timing Example
Monitor Mode
Monitor mode operates vertically over several pixel intervals, with an electric shutter, integration, readout, vertical
transfer, and horizontal transfer.
IT-CCD, FT-CCD, and progressive-CCD use a horizontal sequence (see the Horizontal Sequence section),
vertical sequence (see the Vertical Sequence section), and an HBLK function (see the HBLK Function section).
IT-CCD, progressive-CCD, and most of the FT-CCD use an electric shutter function (see the Electric Shutter
Function section).
VD
HD
HG1A, HG1B
HG2A, HG2B
V0N-V12N
P0-P55
SUBN
Figure 25. Monitor Mode Timing Example
Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated
Product Folder Link(s): VSP01M01 VSP01M02
33
VSP01M01
VSP01M02
SBES016 – MARCH 2009 .................................................................................................................................................................................................. www.ti.com
Still Mode
Still mode operates as a smear dump operation and SUBSW control.
IT-CCD, FT-CCD, and progressive-CCD use a vertical sequence (see the Vertical Sequence section), horizontal
sequence (see the Horizontal Sequence section), vertical high-speed transfer sequence (see the Vertical
High-Speed Transfer (HS) Sequence section), and an HBLK function (see the HBLK Function section). IT-CCD,
progressive-CCD, and most of the FT-CCD uses an electric shutter function (see the Electric Shutter Function
section). IT-CCD and progressive-CCD use a SUBSW function (see the SUBSW Function section) for CCD
substrate bias control.
VD
HD
HG1A, HG1B
HG2A, HG2B
V0N-V12N
P0-P5
SUBN
SUBSW
Figure 26. Still Mode Timing Example
Motion Picture Mode
Motion picture mode adds up the pixels in the CCD horizontal and vertical transfer.
IT-CCD is dedicated to this mode and uses a vertical sequence (see the Vertical Sequence section), horizontal
sequence (see the Horizontal Sequence section), an HBLK function (see the HBLK Function section), and HDIV
function (see the HDIV Function section).
VD
HD
HG1A, HG1B
HG2A, HG2B
V0N-V12N
P0-P5
SUBN
Figure 27. Motion Picture Mode Timing Example
34
Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated
Product Folder Link(s): VSP01M01 VSP01M02
VSP01M01
VSP01M02
www.ti.com .................................................................................................................................................................................................. SBES016 – MARCH 2009
Function
Table 22 summarizes the primary TG section functionality.
Table 22. TG Function
FUNCTION
RELATED REGISTER
SECTION
Adjustable high-speed pulse
002h, 003h, 010h-01Ah
High-Speed Pulse Adjustment
Programmable horizontal pattern
200h-3FFh
Horizontal Sequence
Programmable vertical pattern
180h-1FFh
Vertical Sequence
Programmable VCCD high-speed transfer
pattern
100h-17Fh
Electrical zoom function
030h-033h, 037h-03Eh
Vertical High-Speed (HS) Transfer Sequence
Sync signal selectable (master or slave)
020h
Field index for two-field CCD
022h, 02Fh, 035h[0]
Programmable electrical shutter
08Ch-0A3h
Programmable strobe
04Ch-07Bh
Strobe Function
Programmable MECH shutter
040h-04Bh
MSHUT Function
Synchronous Function
Electric Shutter Function
Programmable SUBSW
07Ch-08Bh
SUBSW Function
Programmable frame sequence for strobe,
MECH shutter, and SUBSW
021h[4], 022h[2]
Frame Count Function
Frame mode control by trigger
021h[3:2], 036h[5:3]
Waiting mode by trigger
020h[4], 021h[1:0]
Frame sequence (for strobe, MECH shutter,
and SUBSW) control by trigger
021h[4:3], 022h[2]
Trigger Function
Standby mode
020h[0]
Standby Function
Programmable HG signal for horizontal blank
—
HBLK Function
Flexible pixel summing operation
01Bh[2:0]
HDIV Function
Monitor out for internal signal
001h[3], 0B5h
Selectable HG power
01Ch[1:0]
Flexible register update
000h[3]
Signal
TG Register Update Function
Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated
Product Folder Link(s): VSP01M01 VSP01M02
35
VSP01M01
VSP01M02
SBES016 – MARCH 2009 .................................................................................................................................................................................................. www.ti.com
SIGNAL
This device has 32 vertical signals and nine horizontal signals. The universal-purpose signal has flexible usage.
Refer to the Terminal Functions table for details.
Pin enabling of vertical signals is set by register address 023h-028h. Pin initial polarity is set by register address
029h-02Eh. The initial polarity is applied by the VA initialize instruction. (The initial polarity is not applied by the
TG operation start). Refer to the Configuration Register section for details.
V13
Signals
Universal
Purpose
(19 Signals)
External Use
(19 Signals)
Read Out
(6 Signals)
Vertical
(32 Signals)
Sync I/O
(2 Signals)
Specific
Purpose
(13 Signals)
External Use
(6 Signals)
Internal Use
(5 Signals)
Specific
Purpose
(9 Signals)
Horizontal
(9 Signals)
External Use
(6 Signals)
Internal Use
(3 Signals)
Test (Monitor)
(2 Signals)
Universal
Test Purpose
(2 Signals)
V0N
V1N
V2N
V3N
V4N
V5N
V6N
V7N
V8N
V9N
V10N
V11N
V12N
P0
P1
P2
P3
P4
P5
HD
VD
SUBN
FIELD
STROBE
MSHUT
SUBSW1
SUBSW2
HDIV
CLPDM
CLPOB
PBLK
HBLK
HG1A
HG1B
HL
HG2A
HG2B
RG
SHP
SHD
ADCCK
TPP
TPD
External Use
(2 Signals)
Figure 28. Signal Overview
36
Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated
Product Folder Link(s): VSP01M01 VSP01M02
VSP01M01
VSP01M02
www.ti.com .................................................................................................................................................................................................. SBES016 – MARCH 2009
Programmed Signal (Memory Assignment)
The signal timing (described in Table 23) is specified by the HA (horizontal address) program. Terminal
assignment numbers are used by the HA command (data[17:13]). The default output level is fixed except for an
MCK stop condition. These signals are disabled with a power-up default. The CLPDM, CLPOB, PBLK, HBLK,
and HDIV signal active polarity is low.
Table 23. Memory Assignment Signal
REGISTER ADDRESS
TERMINAL
NAME
SIGNAL FUNCTION
TERMINAL
ASSIGNMENT
V[0:12]N
Vertical transfer signal
(high-speed transfer)
P[0:5]
ENABLE
INITIAL
00001b-01101b
(1-13)
023h-025h
029h-02Bh
Vertical transfer signal
(general signal)
10000b-10101b
(16-21)
025h-026h
02Bh-02Ch
CLPDM
Clump dummy signal
11000b (24)
026h[5]
02Ch[5]
CLPOB
Clump OB signal
11001b (25)
[0]
[0]
PBLK
Pre-blanking signal
(digital out = low)
11010b (26)
[1]
[1]
HBLK
Horizontal transfer pulse blank
11011b (27)
HDIV
Horizontal transfer pulse divide
11100b (28)
VD
Vertical sync signal
(master mode)
11101b (29)
[4]
[4]
HD
Horizontal sync signal
(master mode)
11110b (30)
[5]
[5]
LEVEL
POWERUP
DEFAULT
AFE
STANDBY
TG
STANDBY
High
[2]
027h
[3]
[2]
02Dh
TRIG STOP
MCK
High
No effect
No effect
Low
Low
[3]
Decoded Signal (Register Assignment)
The signal timing of Table 24 is specified by the decoder. The decoder refers to the register value of the frame
number, line number, or pixel number. Default output levels are fixed except for an MCK stop condition. These
signals are disabled with a power-up default.
Table 24. Register Assignment Signal
REGISTER ADDRESS
TERMINAL
NAME
SIGNAL FUNCTION
SUBN
Electric shutter
[0]
[0]
FIELD
Field index
[1]
[1]
ENABLE
STROBE
Strobe signal
MSHUT
Mechanical shutter
SUBSW1
CCD substrate bias control 1
[4]
[4]
SUBSW2
CCD substrate bias control 2
[5]
[5]
028h
[2]
INITIAL
[3]
02Eh
LEVEL
POWER-UP
DEFAULT
High
[2]
[3]
AFE
STANDBY
Low
TG
STANDBY
TRIG STOP
MCK
High
No effect
Low
No effect
Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated
Product Folder Link(s): VSP01M01 VSP01M02
37
VSP01M01
VSP01M02
SBES016 – MARCH 2009 .................................................................................................................................................................................................. www.ti.com
Phase Controlled Signal (Register Assignment)
The high-speed signal timing is specified by a register. Default output levels are shown in Table 25.
Table 25. Horizontal Signal
REGISTER
ADDRESS
LEVEL
ENABLE
TERMINAL
NAME
SIGNAL FUNCTION
HG2A
HG2B
Horizontal transfer signal 1
01Bh[3]
Horizontal transfer signal 2
RG
CCD reset signal
SHP
Reference level sampling
SHD
Data level sampling
ADCCK
ADCCK buffer
DISABLE
01Bh[2]
AFE
STANDBY
TG
STANDBY
TRIG STOP
MCK
—
High
01Ch[2]
Z
01Bh[4]
0 = Low
1 = High
High
High
High
—
Low
01Ch[2]
Z
Low
Low
Low
Low
Toggling
Toggling
ENABLE
HG1A, HL
HG1B
POWER-UP
DEFAULT
Low
Always enable
Toggling
No effect
High
Low
HG Drive
The HG drive power for HG1A, HG1B, HG2A, and HG2B is selected by the HG power select register
(01Ch[1:0]), as shown in Table 26.
Table 26. HG Power Select Register
TERMINAL NAME
REGISTER 01Ch[1:0]
HG1A
00 = Minimum
HG1B
01 = Default
HG2A
10 = Mid-range
HG2B
11 = Maximum
The HG drive power can be doubled by a connection between HGAx and HGBx. However, this setting is typically
used for power dissipation. If HGBx is not used, disable and do not connect HGBx.
HG1A
HG1B
HG2A
HG2B
Figure 29. HG Double Power Connection
38
Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated
Product Folder Link(s): VSP01M01 VSP01M02
VSP01M01
VSP01M02
www.ti.com .................................................................................................................................................................................................. SBES016 – MARCH 2009
Monitor Signal
The test pin (TPP, TPD) is set up by address 001h, data bit [3] = 1, as shown in Table 27. Table 28 describes
TPP and TPD.
Table 27. Monitor Pin Enable Register (1)
(1)
PARAMETER
REGISTER ADDRESS
VALUE
Monitor pin
001h[3]
1 = Enable
Refer to the Configuration Register section for details.
Table 28. Test Pin Output Select
REGISTER 0B5h[3:0]
TPP
TPD
1000b (8)
SHP
SHD
1001b (9)
CLPOB
CLPDM
1010b (10)
PBLK
HDIV
1011b (11)
HBLK
—
SHP and SHD are monitored at the TG section output, as shown in Figure 30. The actual sampling point is
delayed from the monitor point. The delay time is shown in Figure 30. The actual sampling point delay = delay
controller value (003h[1:0] = 0 ns-6 ns) + sampling delay (3 ns).
TG Section
AFE Section
3-ns Delay
SHP
High-Speed
Signal Generator
Delay
Controller
SHD
015h-018h
Sampling
Circuit
003h[1:0]
TPP
Signal
Selector
TPD
Figure 30. SHP/SHD Monitor Out
HIGH-SPEED PULSE ADJUSTMENT
The high-speed pulse can be adjusted in steps of one pixel clock cycle per 100. The assignment register for
each pulse is shown in Table 29. The rising edge of the RG pulse as a reference.
Table 29. High-Speed Pulse Adjustment Register
REGISTER ADDRESS
CONTROL ITEM
TERMINAL NAME
FALLING
RISING
RG
RG
014h[4:0]
—
G1h
G1Ah
G1Bh
HL
011h[4:0]
010h[4:0]
G2h
G2Ah
G2Bh
012h[4:0]
013h[4:0]
DELAY
—
SHP
SHP
015h[4:0]
016h[4:0]
SHD
SHD
017h[4:0]
018h[4:0]
003h[1:0]
ADCCK
ADCCK
—
—
019h[5:0]
019h[6]
Data out
B0-B15
—
—
002h[1:0]
Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated
Product Folder Link(s): VSP01M01 VSP01M02
39
VSP01M01
VSP01M02
SBES016 – MARCH 2009 .................................................................................................................................................................................................. www.ti.com
RG Control
RG control is described in Figure 31 and Table 30.
tCKP
tCKP/4
RG
tRGW
tRGW
Figure 31. RG Fall Timing
Table 30. RG Fall Register
ADDRESS
NAME
DESCRIPTION
RG falling edge from RG rising edge
(tCKP/4 – 16tCKP/100 < tRGW < tCKP/4 + 15tCKP/100)
00 0001 0100b (014h)
RG FALL[4:0]
DATA
(DEC)
STEP
10000b
10001b
—
11111b
00000b
00001b
—
01110b
01111b
(16)
(17)
—
(31)
(0)
(1)
—
(14)
(15)
–16
–15
—
–1
0 (default)
1
—
14
15
STEP is twos complement of data. 1 step = (1 pixel clock term)/100
HG1 Control
HG1 control is described in Figure 32 and Table 31.
tCKP
RG
tH1R
tH1R
HG1A, HG1B, HL Rising
tCKP/2
HG1A, HG1B, HL Falling
tCKP/2
tH1F
Figure 32. HG1 Timing
Table 31. HG1 Register
ADDRESS
00 0001 0000b (010h)
00 0001 0001b (011h)
40
NAME
DESCRIPTION
HG1 RISE[4:0]
HG1A, HG1B, and HL rising edge from RG rising edge
(–tCKP16/100 < tH1R < tCKP15/100)
Same step control as for Table 30.
Default = 00000b.
HG1 FALL[4:0]
HG1A, HG1B, and HL falling edge from RG rising edge
(tCKP/2 – 16tCKP/100 < tH1F < tCKP/2 + 15tCKP/100)
Same step control as for Table 30.
Default = 00000b.
Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated
Product Folder Link(s): VSP01M01 VSP01M02
VSP01M01
VSP01M02
www.ti.com .................................................................................................................................................................................................. SBES016 – MARCH 2009
HG2 Control
HG2 control is described in Figure 33 and Table 32.
tCKP
RG
tCKP/2
tCKP/2
tH2R
HG1A, HG1B, HL Rising
tH2F
tH2F
HG1A, HG1B, HL Falling
Figure 33. HG2 Timing
Table 32. HG2 Register
ADDRESS
NAME
DESCRIPTION
00 0001 0011b (013h)
HG2 RISE[4:0]
HG2A and HG2B rising edge from RG rising edge
(tCKP/2 – 16tCKP/100 < tH2R < tCKP/2 + 15tCKP/100)
Same step control as for Table 30.
Default = 00000b.
00 0001 0010b (012h)
HG2 FALL[4:0]
HG2A and HG2B falling edge from RG rising edge
(–tCKP16/100 < tH2F < tCKP15/100)
Same step control as for Table 30.
Default = 00000b.
SHP Control
SHP control is described in Figure 34 and Table 33.
tCKP
tCKP/4
tCKP/2
RG
tPR
SHP Rising
tPF
tPR = tPR1 + tSDLY
tPF
SHP Falling
tPF = tPF1 + tSDLY
Figure 34. SHP Timing
Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated
Product Folder Link(s): VSP01M01 VSP01M02
41
VSP01M01
VSP01M02
SBES016 – MARCH 2009 .................................................................................................................................................................................................. www.ti.com
Table 33. SHP Register
ADDRESS
NAME
00 0001 0110b (016h)
SHP RISE[4:0]
SHP rising edge from RG rising edge
(tCKP/2 – 16tCKP/100 < tPR1 < tCKP/2 + 15tCKP/100)
Same step control as for Table 30.
Default = 00000b.
00 0001 0101b (015h)
SHP FALL[4:0]
SHP falling edge from RG rising edge
(tCKP/4 – 16tCKP/100 < tPF1 < tCKP/4 + 15tCKP/100)
Same step control as for Table 30.
Default = 00000b.
S-DELAY[1:0]
Sampling delay for SHP/SHD
(0 ns < tSDLY < 6 ns)
00b = 0 ns (default)
01b = 2 ns
10b = 4 ns
11b = 6 ns
00 0000 0011b (003h)
DESCRIPTION
SHD Control
SHD control is described in Figure 35 and Table 34.
tCKP
+3tCKP/4 - 8tCKP/100
-8tCKP/100
RG
tDR
tDR
SHD Rising
tDR = tDR1 + tSDLY
SHD Falling
tDF
tDF = tDF1 + tSDLY
Figure 35. SHD Timing
Table 34. SHD Register
ADDRESS
DESCRIPTION
00 0001 1000b (018h)
SHD RISE[4:0]
SHD rising edge from RG rising edge
(–24tCKP/100 < tDR1 < 7tCKP/100)
Same step control as for Table 30.
Default = 00000b.
00 0001 0111b (017h)
SHD FALL[4:0]
SHD falling edge from RG rising edge
(3tCKP/4 – 24tCKP/100 < tDF1 < 3tCKP/4 + 7tCKP/100)
Same step control as for Table 30.
Default = 00000b.
S-DELAY[1:0]
Sampling delay for SHP/SHD (0 ns < tSDLY < 6 ns)
(0 ns < tSDLY < 6 ns)
00b = 0 ns (default)
01b = 2 ns
10b = 4 ns
11b = 6 ns
00 0000 0011b (003h)
42
NAME
Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated
Product Folder Link(s): VSP01M01 VSP01M02
VSP01M01
VSP01M02
www.ti.com .................................................................................................................................................................................................. SBES016 – MARCH 2009
ADCCK Control
ADCCK control is described in Figure 36 and Table 35.
tCKP
tCKP/2
tCKP/2
tADCKR
tADCKR
RG
ADCCK
Figure 36. ADCCK Delay Timing
Table 35. ADCCK Delay Register
ADDRESS
NAME
DESCRIPTION
00 0001 1001b (019h)
ADCCK DELAY[5:0]
ADCCK rising edge from RG rising edge
(–50tMCKP/100 < tADCKR < 49tMCKP/100)
Default = 00 0000b.
Data[6:0] = 01Ah[0] × 26 + 019h[5:0]
00 0001 1010b (01Ah)
ADCCK DELAY[6]
DATA[6]
01Ah[0]
019h[5:0]
(DEC)
STEP
100 0000b
1
00 0000b
(64)
Reserved
100 1101b
1
00 1101b
(77)
Reserved
100 1110b
1
00 1110b
(78)
–50
100 1111b
1
00 1111b
(79)
–49
—
—
—
—
—
111 1111b
1
11 1111b
(127)
–1
000 0000b
0
00 0000b
(0)
0 (default)
000 0001b
0
00 0001b
(1)
1
—
—
—
—
—
011 0000b
0
11 0000b
(48)
48
011 0001b
0
11 0001b
(49)
49
011 0010b
0
11 0010b
(50)
Reserved
011 1111b
0
11 1111b
(63)
Reserved
STEP is twos complement of data.
1 step = (1 pixel clock term)/100.
Data Out Delay Control
Data out delay control is described in Figure 37 and Table 36.
tCKP
ADCCK
tHOLD
(tDOD = 6 ns)
tHOLD
(tDOD = 0 ns)
tDOD
tOD
(tDOD = 6 ns)
tOD
(tDOD = 0 ns)
tDOD
B[15:0]
Figure 37. Data Out Delay Timing
Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated
Product Folder Link(s): VSP01M01 VSP01M02
43
VSP01M01
VSP01M02
SBES016 – MARCH 2009 .................................................................................................................................................................................................. www.ti.com
Table 36. Data Out Delay Register
ADDRESS
NAME
00 0000 0010b (002h)
DESCRIPTION
Data out delay
00b to 11b (0 ns < tDOD < 6 ns)
00b = 0 ns (default)
01b = 2 ns
10b = 4 ns
11b = 6 ns
DATA OUT DELAY[1:0]
TG INSTRUCTION HIERARCHY
Figure 38 shows the instruction hierarchy. The VA number corresponds to the frame template, and the HA
number corresponds to the line template. Each VA has a set of HA number instructions in the vertical timing
memory; each HA number has a set of toggling instructions in the horizontal memory. The frame mode is
selected by a register (036h).
Fixed
Address
Frame Data
Set Data
HA Address
Call
0
HA Address = 0
Vertical Data Set
VA1-1: HA1 Start at Line 1
(Blanking)
VA1-2: HA2 Start at Line 37
(Readout1)
VA1-3: HA3 Start at Line 38
(Readout2)
180h
Frame Mode (VA1)
190h
Frame Mode (VA2)
VA1-16: HA4 Start at Line 39
(OB)
1B0h
HA1-2: CPOB at Pixel 40
2
HA1-3: PBLK¯ at Pixel 51
3
HA1-4: V3N at Pixel 52
9
HA1-10: EOL at Pixel 1023
10
HA2-1: CPOB¯ at Pixel 10
11
HA2-2: CPOB at Pixel 40
12
HA2-3: PBLK¯ at Pixel 51
13
HA2-4: V1N at Pixel 100
16
HA2-7: EOL at Pixel 1023
Call
HA Address = 10
Frame Mode (VA4)
128 Words
1
¼
Frame Mode (VA3)
HA1-1: CPOB¯ at Pixel 10
¼
16 Words
1A0h
Horizontal Data Set
1C0h
Frame Mode (VA5)
1D0h
Frame Mode (VA6)
¼
1E0h
Frame Mode (VA7)
1F0h
Frame Mode (VA8)
NOTE: Line number, pixel number, and start of HA address are programmable.
Figure 38. Instruction Hierarchy (Standard Sequence Sample)
CCD TIMING COMPOSITION
TG timing is composed of a vertical data set (VA) that contains eight frames. VA has a horizontal data set (HA),
which has several numbers of lines for specific functions. Frame mode is provided by VA. Table 37 shows the
frame number for each VA number.
Table 37. Frame Number
PARAMETER
44
FRAME
VA number
1
2
3
4
5
6
7
8
Frame number
0
1
2
3
4
5
6
7
Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated
Product Folder Link(s): VSP01M01 VSP01M02
VSP01M01
VSP01M02
www.ti.com .................................................................................................................................................................................................. SBES016 – MARCH 2009
Operated VA is updated to the Frame Now register by VD. Operated VA is updated to Frame TRIG by the TRIG
signal with a Load TRIG frame function. This updating process is shown in Table 38.
Table 38. Frame Mode Register
PARAMETER
REGISTER ADDRESS
DESCRIPTION
Frame now
036h[2:0]
Set current frame number
Default = 000b.
Frame TRIG
036h[5:3]
Set frame number when trigger input
Default = 000b.
Figure 39 shows the TG mode transition.
Power Off
· Power ON
· Serial Code Input
TG Disable
TG Standby
VD
TG Enable
Frame Now
VA (n)
Frame TRIG
TRIG
VD
VA (m)
Figure 39. TG Mode Transition
Figure 40 shows the CCD timing composition example, which consists of frames for several operation modes.
Each frame counts the line count. VD (master/slave) or TRIG (external trigger) signal the reset line counter and
change during the next frame.
Table 39. TRIG Frame Function Register Setting (1) (2)
(1)
(2)
PARAMETER
REGISTER ADDRESS
VALUE
VD frame
022h[0]
1 = Enabled
TRIG frame INCR
021h[2]
1 = Enabled
TRIG counter RST
021h[3]
1 = Enabled
Static frame number
036h[2:0]
—
TRIG frame number
036h[5:3]
7
If the TRIG function is not used, TRIG Frame INCR and TRIG Counter RST should be disabled. Refer to the TRIG Function Section of
this document
Refer to the Configuration Register section for details.
Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated
Product Folder Link(s): VSP01M01 VSP01M02
45
VSP01M01
VSP01M02
SBES016 – MARCH 2009 .................................................................................................................................................................................................. www.ti.com
Frame Number By
Frame Now Register
(036h[2:0])
Frame Number By
Frame TRG Register
(036h[5:3])
Operated
VA Number
VD
(Master/Slave)
TRIG
(External)
Line
Counter
HD
1H
1
Standard Function
Monitor Mode
V-Blanking
HA #1
Readout
HA #2
OB
HA #3
0
(VA #1)
VA #1
Active Signal
HA #4
HA #3
HA #5
Readout
HA #6
VHIGH-SPEED Transfer
HA #12
Active Signal
HA #7
1
VHIGH-SPEED Transfer
HA #5
1
Readout
HA #8
OB
HA #9
Active Signal
HA #10
1
OB
VHIGH-SPEED Transfer
E-Zoom Function
Monitor Mode
VA #3
7
(VA #8)
2
(VA #3)
VA #3
Standard Function
Still Mode
VA #8
3
(VA #4)
1
OB
HA #9
VBLANKING
HA #11
VA #4
Figure 40. CCD Timing Composition (Example)
SYNCHRONOUS FUNCTION
The system follows either the HD/VD master or slave mode. Select the master/slave mode through register
setting (020h[1]: 0 = Slave, 1 = Master), as shown in Table 40. The default setting is slave mode. TG also follows
an external HD/VD signal. The master mode generates HD/VD timing according to HA instruction.
Table 40. Sync Mode
MODE
REGISTER 020h[1]
HD AND VD PIN
Slave
0 (default)
Input
Master
1
Output
HD AND VD TIMING
HCYCLE
VCYCLE
Synchronous
HA command
EOL of HA
EOF of VA
Slave Mode
The system synchronizes the external master clock, HD, and VD. Note that the HD and VD pins are input
modes.
46
Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated
Product Folder Link(s): VSP01M01 VSP01M02
VSP01M01
VSP01M02
www.ti.com .................................................................................................................................................................................................. SBES016 – MARCH 2009
VD, HD Detection
VD- and HD-detected edge polarity are selected by register 020h[3]. The selected edge is detected as a rising
edge of MCK. VD is detected by the HD phase. If the pixel count between the VD edge and HD edge is within
the selected range, VD is detected. The range is selected as shown in Table 41.
Table 41. VD HD Detect Register (1)
(1)
PARAMETER
REGISTER ADDRESS
DESCRIPTION
VD HD TRG edge
020h[3]
0 = Falling edge (default)
1 = Rising edge
ODD HD-VD
02Fh[2:0]
VD after HD detect range
0-7 pixel delay
Default = 001b
ODD VD-HD
02Fh[5:3]
HD after VD detect range
0-8 pixel delay
Default = 001b
Refer to the Slave Mode: VD, HD Specifications section for details.
HCOUNTER Reset
HCOUNTER reset is selected by MCK edge polarity (020h[2]). Table 42 shows the register.
Table 42. MCK Edge Polarity (1)
(1)
PARAMETER
REGISTER ADDRESS
VH, HD, and MCK edge
020h[2]
DESCRIPTION
0 = MCK rising edge (default)
1 = MCK falling edge
Refer to the Slave Mode: VD, HD Specifications section for details.
Field Index
Field for two-field operation is detected. The detection method is selected to the VD and HD phase or Register.
The Field output signal is selected by a register, as shown in Table 43.
ODD detect range is selected by register 02Fh[5:0]. More than seven enabled instructions will always odd detect.
Refer to the Configuration Register and Slave Mode: VD, HD Specifications section for details.
Table 43. ODD/EVEN Detect Register
PARAMETER
REGISTER ADDRESS
DESCRIPTION
Detect method
022h[3]
0 = VD/HD phase (default)
1 = Register (035h[0])
Register select
035h[0]
0 = ODD (default)
1 = EVEN
Field POL
022h[4]
0 = Low at ODD, high at EVEN (default)
1 = High at ODD, low at EVEN
VD even
022h[5]
0 = Disabled (default)
1 = Enabled
Master Mode
The system synchronizes the external master clock, internal HD, and internal VD. Note that the HD and VD pins
are output modes. HD and VD timing are provided by the HA command. HCYCLE is provided by an end-of-line
instruction of the HA command. VCYCLE is provided by the end-of-frame instruction of the VA command.
Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated
Product Folder Link(s): VSP01M01 VSP01M02
47
VSP01M01
VSP01M02
SBES016 – MARCH 2009 .................................................................................................................................................................................................. www.ti.com
HORIZONTAL SEQUENCE
The horizontal sequence contains toggling information for 1H. Each word describes toggling information. The
user must input 2-bit delay information, 2-bit toggling information, 5-bit terminal assignment, and 13-bit pixel
count. TG decodes the pixel count and precedes each event sequentially according to the address. A maximum
of four signals toggling at the same pixel counter are allowed using the 2-bit delay instruction.
Horizontal Address (HA) Memory
The HA memory area is shown in Table 44.
Table 44. HA Memory Area
PARAMETER
DESCRIPTION
Address
200h-3FFh
Memory area
512 words
Data width
22-bit
Basic Functionality
Table 45 defines the terminal assignment (5-bit) command and pixel address for toggling.
Table 45. HA Bit Function
21
20
19
Delay
18
17
16
Toggle
15
14
13
12
11
10
9
8
7
Terminal
6
5
4
3
2
1
0
Pixel count
BITS
NAME
21-20
DELAY
DESCRIPTION
19-18
TOGGLE
17-13
TERMINAL
Terminal assignment using five bit.
Terminal: V0N-12N, P0-5, CLPDM, CLPOB, PBLK, HBLK, HDIV, HD (master mode), and
VD (master mode)
Refer to the Signal section for details.
12-0
PIXEL CNT
Toggling of the pixel count using 13 bits (10-8191). Bits below 9 are prohibited. Order in one
HA part must be added order. Same pixel count is prohibited.
Toggling delay pixel number using two bits (0-3)
Toggling set to high/low using two bits
00b = Low, 01b = High
General Instruction
Table 46 details the VCCD high-speed start and end-of-line commands.
Table 46. HA Instruction Bit Function
21
20
19
18
General instruction
GENERAL
INSTRUCTION
17
16
15
14
13
1
1
1
1
1
12
11
10
General instruction fix
9
8
7
6
5
4
3
2
1
0
Pixel count (same as for Table 45)
NAME
DESCRIPTION
The end-of-line reset pixel counter is at the pixel number.
1111b
48
EOL
Mode
Pixel Number
Master
Target HCYCLE – 1 + register 034h[3:0]
Slave
8191
0001b
Start HS 1
Start VCCD high-speed transfer (HS 1)
0010b
Start HS 2
Start VCCD high-speed transfer (HS 2)
0011b
Start HS 3
Start VCCD high-speed transfer (HS 3)
0100b
Start HS 4
Start VCCD high-speed transfer (HS 4)
0101b
Stop HS
Stop VCCD high-speed transfer
Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated
Product Folder Link(s): VSP01M01 VSP01M02
VSP01M01
VSP01M02
www.ti.com .................................................................................................................................................................................................. SBES016 – MARCH 2009
VHIGH-SPEED Transfer (HS) Instruction
Two sets of commands specify the HS start/stop information and the HS toggling pixel address information. As
shown in Table 47, HS start/stop information is part of the horizontal memory. Four types of HS are available
using the [21:18] bit instruction. An HA programming example is shown in Table 47. Note that sync mode is a
slave mode.
Table 47. Horizontal Memory Example
MEMORY ADDRESS
FIXED [31]
SEQUENTIAL [30:22]
DELAY
[21:20]
TOGGLING
[19:18]
TERMINAL ASSIGNMENT
[17:13]
PIXEL COUNT [12:0]
1
0 0000 0000b (A1h-1h)
00b
00b
11001b (CLPOB)
0 0000 0000 1010b (10)
1
0 0000 0001b (A1h-2h)
00b
01b
11001b (CLPOB)
0 0000 0010 1000b (40)
1
0 0000 0010b (A1h-3h)
00b
00b
11011b (HBLK)
0 0000 0011 0011b (51)
1
0 0000 0011b (A1h-4h)
01b
01b
00001b (V0N flexible)
0 0000 0011 1111b (63)
1
0 0000 0100b (A1h-5h)
00b
01b
00010b (V1N flexible)
0 0000 0100 0000b (64)
1
0 0000 0101b (A1h-6h)
00b
00b
00001b (V0N flexible)
0 0000 0110 0100b (100)
1
0 0000 0110b (A1h-7h)
00b
00b
00010b (V1N flexible)
0 0000 1001 0110b (150)
1
0 0000 0111b (A1h-8h)
00b
01b
11011b (HBLK)
0 0000 1111 0001b (241)
1
0 0000 1000b (A1h-9h)
00b
00b
11000b (CLPDM)
0 0000 1111 1010b (250)
1
0 0000 1001b (A1h-10h)
00b
01b
11000b (CLPDM)
0 0001 0001 1000b (280)
1
0 0000 1010b (A1h-11h)
11111b (general instruction)
1 1111 1111 1111b (8191)
1111b (EOL)
Figure 41 shows the horizontal timing. Sequentially input 22-bit data for each toggling position.
HA1-10
HA1-8
HA1-9
HA1-7
HA1-6
HA1-5
HA1-4
HA1-3
HA1-2
HA1-1
CCD Format
Dummy
Active
OB
2000 1
Active
HD
HG1
51
241
HBLK
10
40
CLPOB
250
CLPDM
64
280
100
V0N
64
150
V1N
Figure 41. Horizontal Timing Example
Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated
Product Folder Link(s): VSP01M01 VSP01M02
49
VSP01M01
VSP01M02
SBES016 – MARCH 2009 .................................................................................................................................................................................................. www.ti.com
VERTICAL SEQUENCE
The vertical sequence consists of elements of the Horizontal Sequence. Each word contains a horizontal
memory address and a line number, which is applied for the operation. The user must input 1-bit loading
information, 9-bit HA address, and 12-bit line number. The TG decodes the line count and precedes each event
sequentially according to the address.
Vertical Address (VA) Memory
The VA is detailed in Table 48 and Table 49.
Table 48. VA Memory Area
PARAMETER
DESCRIPTION
Address
180h-1FFh
Memory area
128 words
Data width
22-bit
Table 49. VA Number Start Address
VA NUMBER
1
2
3
4
5
6
7
8
Start address
180h
190h
1A0h
1B0h
1C0h
1D0h
1E0h
1F0h
Basic Functionality
Table 50 defines the HA (horizontal address) command and HA pattern apply line number command.
Table 50. VA Bit Function
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
0
(1)
(1)
50
HA ADD
LINE
VLOAD.
BITS
NAME
21
VLOAD
20-12
HA ADD
11-0
LINE
DESCRIPTION
Vertical timing load, fixed at '0'
HA address load using 9-bit, HA address = (HA physical memory address) – 512
Line count using 12-bit (1-4095).
Order in one VA must be added order. Same line count is prohibited.
Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated
Product Folder Link(s): VSP01M01 VSP01M02
VSP01M01
VSP01M02
www.ti.com .................................................................................................................................................................................................. SBES016 – MARCH 2009
MISC Instruction
Table 51 shows the vertical command apply line number command.
Table 51. VA Instruction Bit Function
21
20
19
18
0
(1)
(1)
17
16
15
14
13
12
X
X
X
X
X
Instruction
11
10
9
8
7
Don't care
6
5
4
3
2
1
0
LINE
VLOAD.
BITS
NAME
21
VLOAD
Vertical timing load, fixed at '0'
DESCRIPTION
11-0
LINE
Line count using 12-bit (1-4095).
Order in one VA must be added order. Same line count is not prohibited.
INSTRUCTION
NAME
DESCRIPTION
End of frame, reset line counter. In master mode, renew frame
mode.
1111b
EOF
MODE
LINE NUMBER
Master
Slave
Target VCYCLE + 1
4095
Initialize pin output at line 1.
(V0N-12N, P0-5, SUBN, CLPDM, CLPOB, PBLK, HBLK, HDIV,
FIELD, STROBE, MSHUT, SUBSW1, and SUBSW2)
0001b
Initialize
0010b
Reserved
Reserved
0011b
RUPDATE
Register update. Renew TG register (H037-H0A3) at line number.
0100b
Start event 1
Start VCCD high-speed transfer (dynamic mode) 1 at line number.
0101b
Start event 2
Start VCCD high-speed transfer (dynamic mode) 2 at line number.
0110b
End event
0111b
Frame counter reset
Stop VCCD high-speed transfer (dynamic mode) at line number.
Frame counter reset. Reset and start frame counter at line 1.
Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated
Product Folder Link(s): VSP01M01 VSP01M02
51
VSP01M01
VSP01M02
SBES016 – MARCH 2009 .................................................................................................................................................................................................. www.ti.com
VA programming is shown in Table 52. Sync mode is a slave mode.
Table 52. Vertical Memory Example
MEMORY ADDRESS
SEQUENTIAL
[29:22]
LOAD
[21]
HA ADDRESS (0-511) OR
INSTRUCTION [20:12]
LINE COUNT [11:0]
01b
1000 0000b
(VA1-0)
0
0 0000 0000b (A1h)
0000 0000 0001b (01)
01b
1000 0001b
(VA1-1)
1
0 0010 0000b (initialize)
0000 0000 0001b (01)
01b
1000 0010b
(VA1-2)
1
0 1110 0000b (frame count reset)
0000 0000 0001b (01)
01b
1000 0011b
(VA1-3)
0
0 0001 0000b (A2h)
0000 0010 0001b (33)
01b
1000 0100b
(VA1-4)
0
0 0001 1101b (A3h)
0000 0010 0010b (34)
01b
1000 0101b
(VA1-5)
0
0 0011 0011b (A4h)
0000 0010 0011b (35)
01b
1000 0110b
(VA1-6)
0
0 0000 0001b (A1h)
0000 0010 0100b (36)
01b
1000 0110b
(VA1-7)
1
1 1110 0000b (end of frame)
1111 1111 1111b (4095)
FIXED [31:30]
HA1
41
42
43
45
HA1
40
44
HA1
39
HA1
HA1
38
HA1
HA1
37
HA1
36
HA1
35
32
VA1-6 HA1
31
VA1-4 HA3
HA1
30
VA1-5 HA4
HA1
29
33
HA1
28
34
HA1
27
VA1-3 HA2
HA1
HA1
HA1
4
3
HA1
HA1
HA1
1
2
VA1-0 HA1
HA1 1259
HA1 1257
HA1 1258
HA1 1256
HA1 1254
HA1 1255
HA1 1253
HD
VD
V0N
P0
Figure 42. Vertical Timing Example
VERTICAL HIGH-SPEED (HS) TRANSFER SEQUENCE
The vertical high-speed (HS) transfer shifts a charge for a specified number of lines. The still mode and electric
zoom use HS. Counter start of HS has three pixel delays from the Start HS command of HA. The vertical
high-speed transfer has both a programmed operation mode and register dynamic mode.
HS Memory
HS memory is described in Table 53 and Table 54.
Table 53. HS Memory Area
PARAMETER
DESCRIPTION
Address
100h-17Fh
Memory area
128 words
Data width
16-bit
Table 54. HS Number Start Address
52
HS NUMBER
1
2
3
4
Start address
100h
120h
140h
160h
Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated
Product Folder Link(s): VSP01M01 VSP01M02
VSP01M01
VSP01M02
www.ti.com .................................................................................................................................................................................................. SBES016 – MARCH 2009
Basic Functionality
Table 55 describes the HS basic functionality.
Table 55. HS Bit Function
15
14
Delay
13
12
Toggle
11
10
9
8
7
6
5
Terminal
4
3
2
1
0
1
0
Pixel count
BITS
NAME
15-14
DELAY
DESCRIPTION
13
TOGGLE
HS delay using two bits (0-3)
HS is set to high/low
0 = Low, 1 = High
HS pin using four bits (1-13)
12-9
TERMINAL
8-0
PIXEL CNT
TERMINAL NUMBER
V
1
V0N
13
V12N
HS toggling pixel using nine bits (1-511)
Instruction
Table 56 details the HS instruction.
Table 56. HS Instruction Bit Function
15
14
13
12
11
10
9
8
7
6
5
General instruction
4
3
2
Pixel count
GENERAL INSTRUCTION
NAME
DESCRIPTION
111 0000b
Repeat
Reset HS pixel counter, pixel number = target cycle – 1
Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated
Product Folder Link(s): VSP01M01 VSP01M02
53
VSP01M01
VSP01M02
SBES016 – MARCH 2009 .................................................................................................................................................................................................. www.ti.com
Programmed Operation Mode
The VHIGH-SPEED transfer function is used to clear the VCCD. The HS pattern is supplied in the HS memory area.
The pattern can be provided four types. HS start and stop timing is provided in the HA memory area. The
operation continues until a decoding stop command of HA. VTOGGLING must not be provided under an HS
operation.
1. Provide toggling information in HS memory.
2. Provide HS start and stop instruction in the HA memory with no VTOGGLING of HA.
3. Provide the above HA to the VA memory.
VCCD Clear Example
Figure 43 shows an example of a programmable operation mode.
0
HA1-1: CPOB¯ at Pixel 10
1
HA1-2: CPOB at Pixel 40
1: V2N¯ at Pixel 1
2
HA1-3: PBLK¯ at Pixel 51
2: V0N at Pixel 21
3
HA1-4: V2N at Pixel 52
(2)
(1)
VA1-2: HA2 Start at Line 2
(VHIGH-SPEED #1 Blank)
¼
VA1-3: HA3 Start at Line 80
(VHIGH-SPEED #1 End)
¼
VHIGH-SPEED Transfer #1
13: Repeat at Pixel 179
HA1: VHIGH-SPEED #1
Start at Pixel 561
Repeat
¼
VA1-16: HA4 Start at Line150
9
HA1-10: EOL at Pixel 1023
Call
HA Address = 10
VHIGH-SPEED Transfer #1
10
HA2-1: CPOB¯ at Pixel 10
HA2-2: CPOB at Pixel 40
12
HA2-3: PBLK¯ at Pixel 51
¼
11
16
HA2-7: EOL at Pixel 1023
17
HA3-1: CPOB¯ at Pixel 10
18
HA3-2: CPOB at Pixel 40
19
HA3-3: PBLK¯ at Pixel 51
20
HA3-4: VHIGH-SPEED End
at Pixel 2432
26
HA3-10: EOL at Pixel 1023
Do Not Provide
VTOGGLING
Call
HA Address = 17
¼
16 Words
Transfer #1
¼
HA Address = 0
VA1-1: HA1 Start at Line 1
(VHIGH-SPEED #1 Start)
VHIGH-SPEED Transfer
Data Set (HS)
Horizontal Data Set (HA)
Call
Vertical Data Set (VA)
Start
VHIGH-SPEED
HA
Address
Note (2)
VHIGH-SPEED Transfer #1
End VHIGH-SPEED
(3)
¼
Transfer
NOTE: Shaded cells indicate the area under discussion.
(1) The HA command block is called by a VA command.
(2) The HS loop sequence is started by an HA command at the selected pixel.
(3) The HS loop sequence is stopped by an HA command at the selected pixel.
(4) Line number, pixel number, and start of HA address are programmable.
Figure 43. Programmed Operation Mode Sequence
54
Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated
Product Folder Link(s): VSP01M01 VSP01M02
VSP01M01
VSP01M02
www.ti.com .................................................................................................................................................................................................. SBES016 – MARCH 2009
As shown in Table 57, VHIGH-SPEED toggling pixel address information is part of the HS memory. Input toggling
points for one vertical transfer and one cycle address for repeat.
Table 57. V High-Speed Toggling Memory Example
MEMORY ADDRESS
FIXED
SEQUENTIAL
DELAY [15:14]
SET [13]
TERMINAL
ASSIGNMENT [12:9]
PIXEL COUNT [8:0]
01b
0000 0000b (HS 1-1)
00b
0
0011b
0 0000 0001b (1)
01b
0000 0001b (HS 1-2)
00b
1
0001b
0 0001 0101b (21)
01b
0000 0010b (HS 1-3)
01b
0
0100b
0 0010 1001b (41)
01b
0000 0011b (HS 1-4)
00b
1
0010b
0 0011 1101b (61)
—
—
—
—
—
—
01b
0000 0100b (HS 1-5)
11b
1
0000b (repeat)
0 1011 0011 (179)
Vertical High-Speed
Transfer, One Cycle
21
81
V0N
61
141
V1N
1
101
180
V2N
41
121
V3N
(0)
(1)
Figure 44. HS One Cycle Example
The HS start and stop command of HA is delayed by three pixel terms. Table 58 shows the delay.
Table 58. HA and HS Pixel Count
ITEM
LINE NUMBER
HA PIXEL COUNT
HS PIXEL COUNT
HA1 VHIGH-SPEED transfer start.
1
561
—
VHIGH-SPEED transfer counter start and V2 pulled low.
1
564
1
—
—
—
—
HA3 VHIGH-SPEED transfer stop.
80
2432
177
VHIGH-SPEED transfer cycle end.
80
2435
180
Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated
Product Folder Link(s): VSP01M01 VSP01M02
55
VSP01M01
VSP01M02
SBES016 – MARCH 2009 .................................................................................................................................................................................................. www.ti.com
High-Speed Transfer End Point
High-Speed Transfer Start Point
(1 H)
HD
64
(80 H)
100
584
644
2336
V0N
88
124
624
2376
684
V1N
52
112
564
664
2356
V2N
176
136
604
704
2396
Vn
(0)
(1)
(2)
(639)
(640)
Figure 45. HS Timing Chart Example
Figure 46 shows the programmed operation mode for a still picture.
Line (HA Number)
Pix Number
VHIGH-SPEED
VHIGH-SPEED Counter
V0N
V1N
V2N
Vn
HD
CCD Operation Mode
Start
HA 1
1
1
HA #1
VHIGH-SPEED Transfer #1
HA #2
HA 3
Stop
HA #3
Readout
HA #6
HA 5
HA #5
Active Signal
HA #11
NOTE: Shaded cells indicate the area under discussion.
Figure 46. Programmed Operation Mode for A Still Picture
56
Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated
Product Folder Link(s): VSP01M01 VSP01M02
VSP01M01
VSP01M02
www.ti.com .................................................................................................................................................................................................. SBES016 – MARCH 2009
Example for Electrical Zoom
Figure 47 shows the programmed operation mode for an electric zoom function.
Line (HA Naumber)
Pix Number
VHIGH-SPEED
Enable Pix Number
VHIGH-SPEED Counter
V0N
V1N
V2N
Vn
HD
CCD Operation Mode
Start
HA 1
1
1
HA #1
VHIGH-SPEED Transfer #1
HA #2
Stop
HA 3
HA #3
Readout
HA #6
HA 5
1
HA #5
Start
1
VHIGH-SPEED Transfer #2
HA #10
HA 11
Stop
HA #11
Active Signal
NOTE: Shaded cells indicate the area under discussion.
Figure 47. Programmed Operation Mode for An Electric Zoom Function
Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated
Product Folder Link(s): VSP01M01 VSP01M02
57
VSP01M01
VSP01M02
SBES016 – MARCH 2009 .................................................................................................................................................................................................. www.ti.com
Register Dynamic Operation Mode
The HS changes for a specified number of lines. Specifically, the electric zoom requires a dynamic adjustment of
the vertical transfer line number. In addition to the programmed operation mode, the HS enables/disables the line
number memory and VEVENT counter; the VEVENT start/stop register enables the dynamic adjustment. HS
enable/disable memory is included in the vertical memory area. A VEVENT start command resets the VEVENT
counter (bit) at a specified line count.
Follow this recommended procedure to:
1. Select the VSIGNAL for the event function. All VSIGNALS for a VHIGH-SPEED transfer must be enabled by a register
setting, as shown in Table 59.
2. Select the VSIGNAL for the event counter trigger. This signal counts up the event counter, as shown in
Table 60. The last signal of the VHIGH-SPEED transfer is useful.
3. Provide toggling information in the HS memory.
4. Provide HS start and stop instruction in the HA memory. Refer to the Horizontal Sequence section for details.
5. Provide Event instruction in the VA memory. Refer to the Vertical Sequence section for details.
6. Set the event count value for an event start and stop, as shown in Table 61.
Table 59. VEVENT Pin Register (1)
(1)
PARAMETER
REGISTER ADDRESS
VEVENT pin
030h-032h
Refer to the Configuration Register section for details.
Table 60. Event Counter Trigger Select Register
PARAMETER
REGISTER ADDRESS
TRG pin
033h[4:0]
TRG edge
033h[5]
DESCRIPTION
Terminal number (V0N-12N)
Refer to the Signal section for details.
Default = 00000b.
0 = Rising edge (default)
1 = Falling edge
Table 61. Event Start/Stop Register
PARAMETER
EVENT 1
EVENT 2
58
REGISTER ADDRESS
Start
037h, 038h
Stop
039h, 03Ah
Start
03Bh, 03Ch
Stop
03Dh, 03Eh
Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated
Product Folder Link(s): VSP01M01 VSP01M02
VSP01M01
VSP01M02
www.ti.com .................................................................................................................................................................................................. SBES016 – MARCH 2009
Horizontal Data Set (HA)
Call
Vertical Data Set (VA)
HA Address = 0
(1)
VA1-1: HA1 Start at L ine1
(VHIGH-SPEED #1 Start)
2
HA1-3: PBLK¯ at Pixel 51
3
HA1-4: V2N¯ at Pixel 52
VA1-5: HA3 Start at Line 38
(VHIGH-SPEED #1 End)
VA1-7: HA6 Start at Line 39
VA1-9: Instruction at Line 120
Start Event 2
VA1-10: HA2 Start at Line 121
(blank)
VA1-11: HA11 Start at Line 157
(VHIGH-SPEED End)
2: V0N at Pixel 21
0
Note (4)
13: Repeat at Pixel 179
HA1: VHIGH-SPEED #1
Start at Pixel 561
VA1-6: Instruction at Line 38
End Event
VA1-8: HA5 Start at Line 120
(VHIGH-SPEED #2 Start)
1: V2N¯ at Pixel 1
Note (3)
Repeat
9
HA1-10: EOL at Pixel 1023
Call
HA Address = 10
VHIGH-SPEED Transfer #1
10
HA2-1: CPOB¯ at Pixel 10
11
HA2-2: CPOB at Pixel 40
12
HA2-3: PBLK¯ at Pixel 51
Do Not Provide
VTOGGLING
¼
VA1-12: Instruction at Line 157
End Event
1
¼
Note (8)
HA1-2: CPOB at Pixel 40
Event Counter
VHIGH-SPEED Transfer #1
¼
Note (7)
VA1-2: Instruction at Line 1
Start Event 1
VA1-4: HA2 Start at Line 2
(blank)
1
VHIGH-SPEED Transfer
Data Set (HS)
¼
Note (2)
0
HA1-1: CPOB¯ at Pixel 10
Start VHIGH-SPEED
Transfer#1
¼
HA
Address
VA1-13: HA4 Start at Line 158
16
HA2-7: EOL at Pixel 1023
Call
HA Address = 17
VHIGH-SPEED Transfer #1
HA3-1: CPOB¯ at Pixel 10
18
HA3-2: CPOB at Pixel 40
19
HA3-3: PBLK¯ at Pixel 51
20
HA3-4: VHIGH-SPEED End
at Pixel 2432
26
Stop
Note (7)
¼
17
29
Note (5)
HA3-10: EOL at Pixel 1023
Note (6)
Item
Event #
Event 1 Start
0
Event 1 Stop
29
Event 2 Start
0
Event 2 Stop
29
NOTE: Shaded cells indicate the area under discussion.
(1) The HA command block is called by the VA command.
(2) Event 1 is started by a VA command at same line number as that of note 1.
(3) The HS loop sequence is started by an HA command at the selected pixel number. However, the vertical signal does not output.
(4) The event counter is increased by one count a trigger vertical signal.
(5) When the event counter reaches the value of the Event 1 Start register, the vertical signal starts to output.
(6) When the event counter reaches the value of the Event 1 Stop register, the vertical signal stops outputting.
(7) The HS loop sequence is stopped by an HA command at the selected pixel number.
(8) The event is stopped by a VA command at the same line number as in note 7.
(9) Line number, pixel number, and start of the HA address are programmable. The operation of event 2 is the same as event 1.
Figure 48. Register Dynamic Operation Mode Sequence
Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated
Product Folder Link(s): VSP01M01 VSP01M02
59
VSP01M01
VSP01M02
SBES016 – MARCH 2009 .................................................................................................................................................................................................. www.ti.com
Table 62. Event Start/Stop (1)
PARAMETER
(1)
EVENT NUMBER
Event 1 start
0
Event 1 stop
29
Event 2 start
0
Event 2 stop
29
The operation of Event 2 is the same as Event 1.
Vertical high-speed transfer has higher priority than any other vertical transfer instruction. Figure 49 shows the
register dynamic operation mode for an electric zoom.
Line (HA Number)
Pix Number
VHIGH-SPEED (HA)
VHIGH-SPEED Counter
V0N
V1N
V2N
Vn
HD
VEVENT Counter
Event Counter Number
VA Line Number
CCD Operation Mode
0
HA 1
0
Start
1
0
HA #1
1
1
Event #1
Event #1
VHIGH-SPEED Transfer #1
29
29
HA #2
38
Non VSIGNAL
HA 3
Stop
HA #3
Readout
HA #6
HA 5
Start
1
0
120
HA #5
1
1
2
Event #2
Event #2
HA #2
VHIGH-SPEED Transfer #2
HA 11
Stop
29
29
HA #11
157
Non VSIGNAL
NOTE: Shaded cells indicate the area under discussion.
Figure 49. Register Dynamic Operation Mode for Electric Zoom Function
60
Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated
Product Folder Link(s): VSP01M01 VSP01M02
VSP01M01
VSP01M02
www.ti.com .................................................................................................................................................................................................. SBES016 – MARCH 2009
FRAME COUNT FUNCTION
The frame counter counts up by '1' for each VD update event. The frame counter range is from 1 to 63. This
counter value is controlled by the following functions:
• SUBSW1 and SUBSW2 control
• MSHUT control
• Strobe control
A counter reset is accomplished by the following operation. The counter value is '1' after reset.
• VA instruction (Refer to the Vertical Sequence section for details.)
• TRIG (Refer to the Trigger Function section for details.)
If the counter value reaches the maximum value (63), the value can only be changed with a frame counter reset.
Table 63. Frame Counter Register
PARAMETER
REGISTER ADDRESS
Frame Counter
022h[2]
DESCRIPTION
0 = Disabled (default)
1 = Enabled
TG REGISTER UPDATE FUNCTION
Some registers of the TG section can be selected for update timing. Refer to the Register Update section of the
Common Section for details.
PIXEL COUNTER PRESET
The preset value of the horizontal sequence pixel counter is set, as shown in Table 64.
Table 64. Pixel Counter Preset Register
PARAMETER
REGISTER ADDRESS
Pixel Counter Preset
034h[3:0]
DESCRIPTION
Slave = 6 (default)
Master = 0 (recommend)
ELECTRIC SHUTTER FUNCTION
The electric shutter is operated by the SUBN pattern setting and SUBN pattern change setting.
SUBN Pattern Setting
The SUBN pattern has four types of toggling positions that are stored in the registers shown in Table 65.
Patterns 2 and 3 enable fine pitch integration time control.
Table 65. SUBN Pattern Register (1)
(1)
PATTERN
REGISTER ADDRESS
Point 1 pixel number and polarity
08Ch-08Eh
Point 2 pixel number and polarity
08Fh-091h
Point 3 pixel number and polarity
092h-094h
Point 4 pixel number and polarity
095h-097h
Refer to the Configuration Register section for details.
Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated
Product Folder Link(s): VSP01M01 VSP01M02
61
VSP01M01
VSP01M02
SBES016 – MARCH 2009 .................................................................................................................................................................................................. www.ti.com
The SUBN pattern is specified by each point combination, as Table 66 shows.
Table 66. SUBN Pattern Description
PATTERN
DESCRIPTION
0
Non SUBN pulse
1
Operation of point 1 and point 2
2
Operation of point 3 and point 4
3
Operation of points 1 to 4
Table 67 describes an example SUBN pattern. Figure 50 shows a four-pattern example of an electric shutter.
Table 67. SUBN Pattern Example
TOGGLE POINT
PIXEL NUMBER
POLARITY
1
50
0
2
80
1
3
180
0
4
210
1
Toggle
Point 1
Toggle
Point 2
Toggle
Point 3
Toggle
Point 4
50
80
180
210
HD
Pattern 0
Pattern 1
Pattern 2
Pattern 3
Figure 50. Electric Shutter Four-Pattern Example
SUBN Pattern Change
The electric shutter function has four sequential registers, as shown in Table 68. For each register, the SUBN
pattern is assigned among four types of patterns and is selected at the pattern change point.
Table 68. SUBN Pattern Change (1)
PARAMETER
(1)
REGISTER ADDRESS
Pattern change point 1 line number and SUBN pattern number
098h-09Ah
Pattern change point 2 line number and SUBN pattern number
09Bh-09Dh
Pattern change point 3 line number and SUBN pattern number
09Eh-0A0h
Pattern change point 4 line number and SUBN pattern number
0A1h-0A3h
Refer to the Configuration Register section for details.
Table 69 lists an electrical shutter example method with the register update function activated.
Table 69. Register Update Setting
62
PARAMETER
REGISTER ADDRESS
VALUE
TG Update
000h[3]
1 = VA Internal instruction (R_UPDATE)
Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated
Product Folder Link(s): VSP01M01 VSP01M02
VSP01M01
VSP01M02
www.ti.com .................................................................................................................................................................................................. SBES016 – MARCH 2009
This example method has three cases of exposure time within one frame cycle. Table 70 lists several electrical
shutter parameters.
Table 70. Electrical Shutter Parameter
PARAMETER
LINE NUMBER
SUBN operation term
A
Exposure time
B
Read out
C
1 frame cycle
D
R_UPDATE
1
NOTE
Use with calculation of Table 71
Should be provided at the VA internal instruction
Table 71. SUBN Start and End Line Number (1)
LINE NUMBER
CASE
(1)
DESCRIPTION
CONDITION
SUBN_START
SUBN_END
1
Line number 1 ≤ SUBN_Start < SUBN _End < Read_out
C–B–A≥0
C–B–A
C–B
2
Line number 1 ≤ SUBN _End < Read_out < SUBN _Start
(C – B ≥ 0) and (C – B – A < 0)
D + (C – B – A)
C–B
3
Line number 1 < Read_out < SUBN _Start < SUBN _End
C–B<0
D + (C – B – A)
D + (C – B)
Line number ≠ Read_out, and Read_out ≠ SUBN _Start ≠ SUBN _End.
An actual value example is shown in Table 72.
Table 72. Example Parameter
PARAMETER
LINE NUMBER
VALUE
SUBN operation term
A
28
Read out
C
34
1 frame cycle
D
1259
Table 73. Example Parameter for Each Case (1)
LINE NUMBER
CASE
(1)
DESCRIPTION
INTEGRATION
TIME
SUBN_START
SUBN_END
C – B = 32
1
Line number 1 ≤ SUBN_Start < SUBN _End < Read_out
B=2
C–B–A=4
2
Line number 1 ≤ SUBN _End < Read_out < SUBN _Start
B=6
D + (C – B – A) = 1259
C – B = 28
3
Line number 1 < Read_out < SUBN _Start < SUBN _End
B = 1229
D + (C – B – A) = 36
D + (C – B) = 64
Actual integration time is increased less than 1H by SUBN pattern three.
Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated
Product Folder Link(s): VSP01M01 VSP01M02
63
VSP01M01
VSP01M02
SBES016 – MARCH 2009 .................................................................................................................................................................................................. www.ti.com
Case 1: Line Number 1 ≤ SUBN_Start < SUBN _End < Read_out
Table 74. Register Setting: Case 1
PATTERN CHANGE POINT
LINE NUMBER
SUBN PATTERN
1
1
0 (non SUBN)
NOTE
—
2
4
1
SUBN_Start
3
31
3
—
4
32
0 (non SUBN)
SUBN_End
45
43
44
42
41
40
38
39
35
37
36
34
33
32
31
30
29
28
27
3
4
1
2
1259
1258
1257
1256
1253
1255
1254
VD
HD
HG1A, HG1B
HG2A, HG2B
V0N-V12N
P0-P5
SUBN
Fine Pitch
Integration Time
0
SUBN Pattern
Number
0
1
Point 1
3
Point 2
Point 3
0
Point 4
Figure 51. Electrical Shutter Timing: Case 1
Case 2: Line Number 1 ≤ SUBN_End < Read_out < SUBN _Start
Table 75. Register Setting: Case 2
PATTERN CHANGE POINT
LINE NUMBER
SUBN PATTERN
NOTE
1
1
1
—
2
27
3
—
3
28
0 (non SUBN)
SUBN_End
4
1259
1
SUBN_Start
45
43
44
41
42
40
38
39
35
37
36
33
34
32
31
30
28
29
27
3
4
1
2
1259
1258
1257
1256
1253
1255
1254
VD
HD
HG1A, HG1B
HG2A, HG2B
V0N-V12N
P0-P5
SUBN
SUBN Pattern
Number
0
1
Point 4
1
Point 1
3
Point 2
Fine Pitch Integration
Time
0
Point 3
Figure 52. Electrical Shutter Timing: Case 2
64
Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated
Product Folder Link(s): VSP01M01 VSP01M02
VSP01M01
VSP01M02
www.ti.com .................................................................................................................................................................................................. SBES016 – MARCH 2009
Case 3: Line Number 1 < Read_out < SUBN_Start < SUBN _End
Table 76. Register Setting: Case 3
PATTERN CHANGE POINT
LINE NUMBER
SUBN PATTERN
1
1
0 (non SUBN)
NOTE
—
2
36
1
SUBN_Start
3
63
3
—
4
64
0 (non SUBN)
SUBN_End
67
65
66
63
64
61
62
35
37
36
33
34
32
31
30
28
29
27
3
4
1
2
1259
1258
1257
1256
1253
1255
1254
VD
HD
HG1A, HG1B
HG2A, HG2B
V0N-V12N
P0-P5
SUBN
Fine Pitch Integration Time
0
SUBN Pattern
Number
0
Point 1
1
Point 2
3
Point 3
0
Point 4
Figure 53. Electrical Shutter Timing: Case 3
SUBSW FUNCTION
The still mode uses an SUBSW1 and SUBSW2 function with two toggling registers for SUBSW1 and SUBSW2,
respectively. The instruction consists of a frame number, line number, and polarity, as shown in Table 77.
Table 77. SUBSW Register (1)
PARAMETER
Point 1
SUBSW1
Point 2
Point 1
SUBSW2
Point 2
(1)
REGISTER ADDRESS
Line number
07Ch, 07Dh
Frame number
07Eh
Polarity
07Fh
Line number
080h, 081h
Frame number
082h
Polarity
083h
Line number
084h, 085h
Frame number
086h
Polarity
087h
Line number
088h, 089h
Frame number
08Ah
Polarity
08Bh
Refer to the Configuration Register and Frame Count Function sections for details.
Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated
Product Folder Link(s): VSP01M01 VSP01M02
65
VSP01M01
VSP01M02
SBES016 – MARCH 2009 .................................................................................................................................................................................................. www.ti.com
Table 78 and Figure 54 show an example SUBSW register and operation, respectively.
Table 78. SUBSW Register Example
PARAMETER
VALUE
Point 1
SUBSW1
Point 2
Frame
Number
Line number
1259
Frame number
1
Polarity
1
Line number
35
Frame number
2
Polarity
0
1
2
45
43
44
41
42
40
38
39
37
36
35
34
33
31
32
30
28
29
27
3
4
1
2
1258
1259
1257
1255
1256
1254
1253
VD
HD
HG1A, HG1B
HG2A, HG2B
V0N-V12N
P0-P5
SUBN
Point 1
Point 2
SUBSW1
Figure 54. SUBSW Operation Example
66
Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated
Product Folder Link(s): VSP01M01 VSP01M02
VSP01M01
VSP01M02
www.ti.com .................................................................................................................................................................................................. SBES016 – MARCH 2009
MSHUT Function
The mechanical shutter function has a total of two words. The instruction consists of a frame number, line
number, pixel number, and polarity, as shown in Table 79.
Table 79. MSHUT Register (1)
PARAMETER
(1)
REGISTER ADDRESS
Point 1
Pixel number, line number, frame number, and polarity
040h-045h
Point 2
Pixel number, line number, frame number, and polarity
046h-04Bh
Refer to the Configuration Register and Frame Count Function sections for details.
Table 80 and Figure 55 show an example MSHUT register and operation, respectively.
Table 80. MSHUT Register Example
PARAMETER
Point 1
Point 2
Frame
Number
VALUE
Pixel number
900
Line number
1253
Frame number
1
Polarity
1
Pixel number
400
Line number
1259
Frame number
1
Polarity
0
1
2
45
44
43
41
42
40
38
39
37
35
36
33
34
32
31
30
29
28
27
4
3
1
(628)
(629)
2
1258
1259
(626)
(627)
(625)
1257
1255
(623)
(624)
1256
1253
1254
HD
V1N
CH2, CH4
Point 1
Point 2
MSHUT
Figure 55. MSHUT Operation Example
STROBE FUNCTION
The strobe shutter function has eight words. The instruction consists of a frame number, line number, pixel
number, and polarity, as shown in Table 81.
Table 81. Strobe Register (1)
PARAMETER
(1)
REGISTER ADDRESS
Point 1
Pixel number, line number, frame number, and polarity
Point 2
Pixel number, line number, frame number, and polarity
04Ch-051h
052h-057h
Point 3
Pixel number, line number, frame number, and polarity
058h-05Dh
Point 4
Pixel number, line number, frame number, and polarity
05Eh-063h
Point 5
Pixel number, line number, frame number, and polarity
064h-069h
Point 6
Pixel number, line number, frame number, and polarity
06Ah-06Fh
Point 7
Pixel number, line number, frame number, and polarity
070h-075h
Point 8
Pixel number, line number, frame number, and polarity
076h-07Bh
Refer to the Configuration Register and Frame Count Function sections for details.
Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated
Product Folder Link(s): VSP01M01 VSP01M02
67
VSP01M01
VSP01M02
SBES016 – MARCH 2009 .................................................................................................................................................................................................. www.ti.com
Table 82 and Figure 56 show an example strobe register and operation, respectively.
Table 82. Strobe Register Example
PARAMETER
Point 1
Point 2
Point 3
Point 4
Frame
Number
VALUE
Pixel number
200
Line number
1257
Frame number
1
Polarity
1
Pixel number
500
Line number
1
Frame number
2
Polarity
0
Pixel number
800
Line number
4
Frame number
2
Polarity
1
Pixel number
300
Line number
31
Frame number
2
Polarity
0
1
2
45
44
43
41
42
40
38
39
37
35
36
33
34
32
31
30
29
27
28
3
4
(629)
2
1259
(628)
1
1258
(626)
(627)
(625)
1257
1255
(623)
(624)
1256
1253
1254
HD
V1N
CH2, CH4
Point 1
Point 2
Point 3
Point 4
STROBE
Figure 56. Strobe Operation Example
HBLK FUNCTION
The horizontal blank signal (HBLK) controls the H1, H2, and HL outputs. H1 and HL are high and H2 is low
during blanking time. HBLK timing is provided by HA memory command. An example HBLK timing sequence is
shown in Figure 57.
HD
HG1A, HG1B, HL
HG2A, HG2B
HBLK
Figure 57. Horizontal Blanking Timing Example
68
Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated
Product Folder Link(s): VSP01M01 VSP01M02
VSP01M01
VSP01M02
www.ti.com .................................................................................................................................................................................................. SBES016 – MARCH 2009
HDIV FUNCTION
The motion picture CCD requires horizontal transfer during horizontal blanking. Select the horizontal transfer
clock rate (divide H clock) from 2, 4, 6, 8, 10, or 12 by register (01Bh[2:0]). HDIV timing is provided by HA
memory command. An example HDIV timing is shown in Figure 58.
HD
HG1A, HG1B, HL
HG2A, HG2B
HBLK
HDIV
Figure 58. Motion Picture CCD Timing Example
SHP/SHD SKIPPING
An SHP and SHD skipping function is supported by VSP01M01 and VSP01M02. The skipping ratio is selected
by the register, as shown in Table 83.
Table 83. SHP and SHD Skipping Register (1)
(1)
PARAMETER
REGISTER ADDRESS
SHP/SHD skipping
01Dh, 01Eh
Refer to the Configuration Register section for details.
TRIGGER FUNCTION
Load TRIG Frame
The TRIG frame number is operated by the falling edge of the TRIG signal. The required register setting is
shown in Table 84. For an example, refer to the CCD Timing Composition section.
Table 84. Load TRIG Frame Register Setting (1)
(1)
PARAMETER
REGISTER ADDRESS
VALUE
TRIG frame INCR
021h[2]
1 = Enabled
TRIG counter RST
021[3]
1 = Enabled
TRIG frame number
036h[5:3]
1-7
Refer to the Configuration Register section for details.
TG Stop
TG is stopped by a TRIG signal polarity. The required register setting is shown in Table 85.
Table 85. TG Stop Register Setting (1)
(1)
PARAMETER
REGISTER ADDRESS
VALUE
MCK detect
020h[4]
0 = Disabled
TG CLK stop
021h[1]
1 = Enabled
TRIG POL
021h[0]
0 = High or 1 = Low
Refer to the Configuration Register section for details.
Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated
Product Folder Link(s): VSP01M01 VSP01M02
69
VSP01M01
VSP01M02
SBES016 – MARCH 2009 .................................................................................................................................................................................................. www.ti.com
Figure 59 shows a CCD timing composition example that operates the Long Time Exposure by TRIG. The falling
edge of the TRIG (external trigger) signal reset line counter changes during the next frame. TG is stopped when
the TRIG signal is high.
Controller
OUT1
OUT2
OUT3
CS
SCLK
SDATA
OUT4
TRIG
AFE
Figure 59. TRIG Signal Connection Example
Table 86. Long-Time Exposure by TRIG Example (1)
(1)
70
PARAMETER
REGISTER ADDRESS
VALUE
VD frame
022h[0]
1 = Enabled
TRIG frame INCR
021h[2]
1 = Enabled
TRIG counter RST
021h[3]
1 = Enabled
Static frame number
036h[2:0]
0 or 2
TRIG frame number
036h[5:3]
6 or 7
MCK detect
020h[4]
0 = Disabled
TG CLK stop
021h[1]
0 = Disabled
1 = Enabled (between A and B)
TRIG POL
021h[0]
0 = High
Refer to the Configuration Register section for details.
Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated
Product Folder Link(s): VSP01M01 VSP01M02
VSP01M01
VSP01M02
www.ti.com .................................................................................................................................................................................................. SBES016 – MARCH 2009
Frame Number By
Frame Now Register
(036h[2:0])
Frame Number By
Frame TRG Register
(036h[5:3])
VA Operation
Number
VD (Master)
SUB
TG CLK STOP
(021h[1])
TRIG (External)
Line Counter
HD
1H
Standard Function
Monitor Mode
1
Disable
HA #1
Readout
HA #2
OB
HA #3
Active Signal
HA #4
Dummy
HA #20
0
(VA #1)
VA #1
Exposure
Enable
No Function
Long Time Exposure Mode
A
Freeze
B
1
Disable
Standard Function
Still Mode
VHIGH-SPEED Transfer
HA #5
Readout
HA #8
OB
HA #9
VA #7
6
(VA #7)
Not
Operational
1
VBLANKING
7
(VA #8)
2
(VA #3)
VA #8
HA #10
Active Signal
1
OB
HA #9
VBLANKING
HA #11
VA #3
NOTE: Shaded cells indicate the area under discussion.
Figure 60. Long-Time Exposure by TRIG Example
Frame Counter Reset
The frame counter is reset by the falling edge of the TRIG signal. The required register setting is shown in
Table 87.
Table 87. Frame Counter Reset Register Setting (1)
(1)
PARAMETER
REGISTER ADDRESS
VALUE
Frame counter
022h[2]
1 = Enabled
Frame RST
021h[4]
1 = Enabled
TRIG counter RST
021h[3]
1 = Enabled
Refer to the Configuration Register section for details.
Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated
Product Folder Link(s): VSP01M01 VSP01M02
71
VSP01M01
VSP01M02
SBES016 – MARCH 2009 .................................................................................................................................................................................................. www.ti.com
VDRIVER SECTION
Signal Connection and Truth Table
3-State Output
Table 88. 3-State Output
INPUT (TG OUTPUT)
OUTPUT (DEVICE PIN OUTPUT)
SIGNAL NAME
VxN
Px
V1N
P1
SIGNAL NAME
P2
V3N
P4
P3
V5N
P5
TRUTH TABLE
VxN
Low
High
Px
LEVEL
Low
VH
High
VM
Low
Hi-Z
High
VL
2-State Output
Table 89. 2-State Output
INPUT (TG OUTPUT)
OUTPUT (DEVICE PIN OUTPUT)
SIGNAL NAME
VxN
SIGNAL NAME
V2N
V2
V4N
V4
V6N
V6
TRUTH TABLE
VxN
LEVEL
Low
VM
High
VL
SUB 2-State Output
Table 90. SUB 2-State Output
INPUT (TG OUTPUT)
OUTPUT (DEVICE PIN OUTPUT)
SIGNAL NAME
SIGNAL NAME
SUBN
SUB
TRUTH TABLE
SUBN
LEVEL
Low
VH
High
VL
Output
Hi-Z = high impedance
VH = high level
VM = middle level
VL = low level
72
Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated
Product Folder Link(s): VSP01M01 VSP01M02
VSP01M01
VSP01M02
www.ti.com .................................................................................................................................................................................................. SBES016 – MARCH 2009
CONFIGURATION REGISTER
The 6-bit register area is described in Table 91. The addresses range from 000h to 0BFh.
Table 91. Register Section Overview
REGISTER ADDRESS
SECTION
Common
AFE
TG
DEC
HEX
Update
0
000h
Standby
1
001h
Data out
2
002h
S-delay
3
003h
004h
OB clamp
4
Hot-pixel rejection
5
005h
DPGA
6, 7
006h, 007h
CDS gain
8
008h
IDAC power
9
009h
DAC1 input
10, 11
00Ah, 00Bh
DAC2 input
12, 13
00Ch, 00Dh
High-speed timing
16-24
010h-018h
ADCCK rise
25, 26
019h, 01Ah
HG1/HG2
27
01Bh
HG drive
28
01Ch
SHP/SHD pix skip
29, 30
01Dh, 01Eh
TG enable and sync
32
020h
TRG
33
021h
Frame field
34
022h
Pin enable
35-40
023h-028h
Pin initialize
41-46
029h-02Eh
ODD range
47
02Fh
VEVENT pin
48-51
030h-033h
Pixel counter
52
034h
Field
53
035h
Frame
54
036h
037h-03Eh
UPDATE METHOD
Real time
Real Time, VD, or RLOAD
(selected by 000h[2:0])
Real time
VA initialization instruction
Real time
VD or FLOAD (selected by 022h[1:0])
VEVENT
55-62
Mech shut
64-75
040h-04Bh
Strobe
76-123
04Ch-07Bh
SUBSW1
124-131
07Ch-083h
SUBSW2
132-139
084h-08Bh
SUBN
140-151
08Ch-097h
SUBN CHG
152-163
098h-0A3h
Monitor pin select
181
0B5h
TRIG is input when h021h[2] is
enabled
Real Time or R_Update
(selected by 000h[3])
Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated
Product Folder Link(s): VSP01M01 VSP01M02
73
VSP01M01
VSP01M02
SBES016 – MARCH 2009 .................................................................................................................................................................................................. www.ti.com
Detailed Common Section
ADDRESS
SECTION
Update
DEC HEX
0
PARAMETER
DESCRIPTION
PARAMETER
# OF BITS
—
—
—
—
0 = Real time
1 = External trigger (RLOAD pin or VD)
[2:1]
AFE UP POL
2
AFE register update
signal and polarity
00b =
01b =
10b =
11b =
0 = Real time
1 = VA internal instruction (R_UPDATE) (default)
Reserved
Default = 00b
—
DESCRIPTION
UPDATE
METHOD
BITS
[3]
TG update
1
TG register update
timing
[5:4]
—
2
—
VALUE
RLOAD input rising edge (default)
RLOAD input falling edge
VD rising edge
VD falling edge
Real time
Detailed AFE Section
ADDRESS
SECTION
Standby
1
Data out
2
S-DELAY
3
OB clamp
Hot-pixel
rejection
74
DEC HEX
4
5
1
PARAMETER
DESCRIPTION
DESCRIPTION
UPDATE
METHOD
BITS
PARAMETER
# OF BITS
[0]
AFE standby
1
AFE standby
[1]
8-bit DAC1
standby
1
Independent 8-bit DAC1
standby
[2]
8-bit DAC2
standby
1
Independent 8-bit DAC2
standby
[3]
Monitor pin
1
Monitor pin enable
0 = Disabled (default)
1 = Enabled
[5:4]
—
2
—
Reserved
Default = 00b
[1:0]
Data out delay
2
Data out delay
00b =
01b =
10b =
11b =
[2]
OE
1
Data output enable
0 = Enabled (default)
1 = Disabled (high impedance)
[5:3]
—
3
—
Reserved
Default = 000b
[1:0]
←
2
Sampling delay for
SHP/SHD internal delay
circuit
00b =
01b =
10b =
11b =
[5:2]
—
4
—
Reserved
Default = 0000b
2
3
VALUE
0 = AFE functions normally (default)
1 = AFE standby
Real time,
VD, or
RLOAD
(selected
by
000h[2:0])
0 = Enabled
1 = Standby (default)
0 ns (default)
2 ns
4 ns
6 ns
Real time,
VD, or
RLOAD
(selected
by
000h[2:0])
0 ns (default)
2 ns
4 ns
6 ns
Real time,
VD, or
RLOAD
(selected
by
000h[2:0])
DATA
(DEC)
12-BIT
10-BIT
00000b
00001b
—
00110b
00111b
01000b
01001b
—
01110b
01111b
—
11110b
11111b
Step
(0)
(1)
—
(6)
(7)
(8)
(9)
—
(14)
(15)
—
(30)
(31)
—
64
72
—
112
120
128
136
—
176
184
—
304
312
8
16
18
—
28
30
32 (default)
34
—
44
46
—
76
78
2
[4:0]
←
5
OB clamp level
[5]
—
1
—
Reserved
Default = 0
[4:0]
HOT PIX LEVEL
5
Hot-pixel rejection level
RL (LSB) = 16 × (code[4:0] + 1) (RL is the
difference from OB level of 10-bit equivalent)
[5]
HOT PIX EN
1
Hot-pixel rejection
enable/disable
0 = Disabled (default)
1 = Enabled
4
5
Submit Documentation Feedback
Real time,
VD, or
RLOAD
(selected
by
000h[2:0])
Real time,
VD, or
RLOAD
(selected
by
000h[2:0])
Copyright © 2009, Texas Instruments Incorporated
Product Folder Link(s): VSP01M01 VSP01M02
VSP01M01
VSP01M02
www.ti.com .................................................................................................................................................................................................. SBES016 – MARCH 2009
Detailed AFE Section (continued)
ADDRESS
SECTION
DEC HEX
6
6
PARAMETER
BITS
PARAMETER
[5:0]
LSB
[3:0]
7
DESCRIPTION
10
MSB
Digital programmable
gain
7
UPDATE
METHOD
VALUE
DATA
←
DPGA
DESCRIPTION
# OF BITS
00 0000 0000b
—
00 1100 0000b
—
11 1111 1111b
(DEC)
GAIN
(0)
—
(192)
—
(1023)
–6 dB
—
0 dB
(default)
—
26 dB
Gain (dB) = data × 0.03125(dB/step) – 60.03125
dB/step
[5:4]
CDS gain
IDAC
power
8
9
10
—
3
[5:3]
—
3
—
Reserved
Default = 000b
[1:0]
←
2
IDAC output current
00b = ‫( ױ‬default)
01b = ‫ײ‬
10b = ‫״‬
11b =
[5:2]
—
4
—
Reserved
Default = 0000b
8
9
A
[5:0]
LSB
B
C
DAC2
input
[5:0]
[1:0]
—
4
LSB
15
8
—
Independent DAC2 input
code
E
F
[5:0]
[5:0]
Real time,
VD, or
RLOAD
(selected
by
000h[2:0])
DATA
OUT (V)
0000 0000b
—
1111 1111b
0.1
—
2.9
Reserved
Default = 0000b
DATA
OUT (V)
0000 0000b
—
1111 1111b
0.1
—
2.9
Out (V) = 0.01094 × data + 0.1
Default = 0 (DEC)
MSB
D
[5:2]
—
Independent DAC1 input
code
Real time,
VD, or
RLOAD
(selected
by
000h[2:0])
Out (V) = 0.01094 × data + 0.1
Default = 0 (DEC)
←
14
8
MSB
[5:2]
—
000b = 0 dB (default)
001b = 6 dB
010b = 12 dB
011b = 18 dB
111b = –3 dB
←
[1:0]
13
Reserved
Default = 00b
[2:0]
DAC1
input
12
—
Analog programmable
gain
←
11
2
—
—
—
4
6
6
—
—
—
Reserved
Default = 0000b
Real time,
VD, or
RLOAD
(selected
by
000h[2:0])
Real time,
VD, or
RLOAD
(selected
by
000h[2:0])
Real time,
VD, or
RLOAD
(selected
by
000h[2:0])
Reserved
Default = 0 (DEC)
Real time,
VD, or
RLOAD
(selected
by
000h[2:0])
Reserved
Default = 0 (DEC)
Real time,
VD, or
RLOAD
(selected
by
000h[2:0])
Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated
Product Folder Link(s): VSP01M01 VSP01M02
75
VSP01M01
VSP01M02
SBES016 – MARCH 2009 .................................................................................................................................................................................................. www.ti.com
Detailed TG Section
ADDRESS
SECTION
DEC
HEX
16
10
17
18
19
11
12
13
High-speed
timing
20
21
14
15
22
16
23
17
24
18
25
19
PARAMETER
DESCRIPTION
BITS
PARAMETER
# OF BITS
DESCRIPTION
[4:0]
HG1 rising
5
HG1A, HG1B, HL rising
edge
[5]
—
1
Reserved
[4:0]
HG1 falling
5
HG1A, HG1B, HL
falling edge
[5]
—
1
Reserved
[4:0]
HG2 falling
5
HG2A, HG2B, falling
edge
[5]
—
1
Reserved
[4:0]
HG2 rising
5
HG2A, HG2B, rising
edge
[5]
—
1
Reserved
[4:0]
RG falling
5
RG falling edge
[5]
—
1
Reserved
[4:0]
SHP falling
5
SHP falling edge
[5]
—
1
Reserved
[4:0]
SHP rising
5
SHP rising edge
[5]
—
1
Reserved
[4:0]
SHD falling
5
SHD falling edge
[5]
—
1
Reserved
[5:0]
SHD rising
5
SHD rising edge
[0]
—
1
Reserved
UPDATE
METHOD
VALUE
DATA
(DEC)
STEP
10000b
10001b
—
11111b
00000b
00001b
—
01110b
01111b
(16)
(17)
—
(31)
(0)
(default)
(1)
—
(14)
(15)
–16
–15
—
–1
0 (default)
1
—
14
15
Real time
Step is twos complement of data. 1 step = (1
pixel clock term)/100.
Data[6:0] = 01Ah[0] × 26 + 019h[5:0]
[5:0]
LSB
01Ah[0]
←
ADCCK
delay
[0]
26
7
ADCCK delay
MSB
1A
1
—
1
1
1
—
1
0
0
—
0
0
0
—
0
019h[5:0]
(DEC)
STEP
00 0000b
—
00 1101b
00 1110b
00 1111b
—
11 1111b
00 0000b
00 0001b
—
11 0000b
11 0001b
11 0010b
—
11 1111b
(64)
—
(77)
(78)
(79)
—
(127)
(0)
(default)
(1)
—
(48)
(49)
(50)
—
(63)
Reserved
—
Reserved
–50
–49
—
–1
0 (default)
1
—
48
49
Reserved
—
Reserved
Real time
Step is twos complement of data. 1 step = (1
pixel clock term)/100.
HG1/HG2
76
27
1B
[5:1]
—
5
Reserved
Reserved
Default = 0 (DEC)
[2:0]
DIV
3
High-speed pulse
divide rate
000b = Divide by 16 (default)
001b = Divide by 2
—
111b = Divide by 14
[3]
Enable
1
HG1A, HG2A, HG1B,
HG2B, HL
enable/standby
0 = Enabled (default)
1 = Standby
0 = High (default)
1 = Low
Reserved
Default = 0
[4]
HG1 POL
1
HG1A, HG1B, HL
polarity during a TG
standby condition
[5]
—
1
Reserved
Submit Documentation Feedback
Real time
Copyright © 2009, Texas Instruments Incorporated
Product Folder Link(s): VSP01M01 VSP01M02
VSP01M01
VSP01M02
www.ti.com .................................................................................................................................................................................................. SBES016 – MARCH 2009
Detailed TG Section (continued)
ADDRESS
SECTION
HG drive
DEC
28
29
HEX
—
TG enable
and sync
TRG
31
32
33
DESCRIPTION
BITS
PARAMETER
# OF BITS
[1:0]
H current
2
H1, H2 output drive
current
00b
01b
10b
11b
[2]
HGB enable
1
HG1B, HG2B
enable/disable
0 = Disabled (Z) (default)
1 = Enabled
[5:3]
—
3
Reserved
Reserved
Default = 011b
1C
DESCRIPTION
[2:0]
Ratio
3
RG, SHP, SHD pixel
skipping ratio
[5:3]
Start
3
RG, SHP, SHD pixel
skipping start point.
Count from HD edge
[0]
CLPDM
1
RG, SHP, SHD pixel
skipping when CLPDM
is active
1D
SHP/SHD
PIX SKIP
30
PARAMETER
1E
1F
UPDATE
METHOD
VALUE
=
=
=
=
Minimum
Default (default)
Mid-range
Maximum
Real time
DATA
RATIO
000b (default)
001b
010b
011b
100b
101b
110b
111b
No skip
2 pixels
3 pixels
4 pixels
5 pixels
6 pixels
7 pixels
8 pixels
Pixel number
Default = 000b
0 = Continue
1 = Stop (default)
[1]
CLPOB
1
RG, SHP, SHD pixel
skipping when CLPOB
is active
[5:2]
—
4
Reserved
Reserved
Default = 0000b
[5:0]
—
6
Reserved
Reserved
Default = 0 (DEC)
[0]
TG enable
1
TG function
enable/disable
0 = TG function disabled (standby) (default)
1 = TG function enabled
[1]
Master/slave
1
Master/slave mode
0 = Slave mode (HD, VD input) (default)
1 = Master mode (HD, VD output)
[2]
VH, HD, MCK
edge
1
VD, HD signal latch by
MCK
0 = MCK rising edge (default)
1 = MCK falling edge
[3]
VD, HD, TRG
edge
1
VD, HD signal trigger
0 = Falling edge (default)
1 = Rising edge
[4]
MCK detect
1
Detect MCK stop and
set output default
0 = Disabled
1 = Enabled (default)
[5]
—
1
Reserved
Reserved
Default = 0
[0]
POL
1
Trigger polarity for TG
CLK STOP (021h[1])
0 = Active high (default)
1 = Active low
[1]
CLK stop
1
Trigger state (021h[0])
stops MCK for TG
circuit (020h[4] does
not work)
[2]
Frame INC
1
Trigger falling edge
sets the frame (defined
by 036h[5:3]) when this
bit is enabled
20
21
[3]
Counter RST
1
Trigger falling edge
resets the line and pixel
counter
[4]
Frame RST
1
Trigger falling edge
resets the frame
counter when 021h[3] =
1
[5]
—
1
Reserved
Real time
0 = Disabled (default)
1 = Enabled
Real time
Real time
Real time
Reserved
Default = 0
Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated
Product Folder Link(s): VSP01M01 VSP01M02
77
VSP01M01
VSP01M02
SBES016 – MARCH 2009 .................................................................................................................................................................................................. www.ti.com
Detailed TG Section (continued)
ADDRESS
SECTION
Frame field
DEC
34
35
36
HEX
23
24
38
39
40
78
25
26
27
28
DESCRIPTION
BITS
PARAMETER
# OF BITS
[0]
VD
1
Restart frame by VD
0 = Disabled
1 = Enabled (default)
[1]
FLOAD
1
Restart frame by FLOAD
of VA
0 = Disabled (default)
1 = Enabled
[2]
Frame, CNT,
RST
1
Reset and start frame
counter
0 = Disabled (default)
1 = Enabled
[3]
Field SET
1
Field setting selection
0 = VD/HD phase (default)
1 = Register setting
[4]
Field POL
1
Field polarity
0 = Low when ODD (default)
1 = High when EVEN
[5]
VD Even
1
VD edge trigger in
EVEN field
0 = Disabled (default)
1 = Enabled
[0]
V0N
1
[1]
V1N
1
[2]
V2N
1
[3]
V3N
1
Pin enable selection
0 = Disabled (default)
1 = Enabled
[4]
V4N
1
[5]
V5N
1
[0]
V6N
1
[1]
V7N
1
[2]
V8N
1
[3]
V9N
1
Pin enable selection
0 = Disabled (default)
1 = Enabled
[4]
V10N
1
[5]
V11N
1
[0]
V12N
1
[1]
—
1
[2]
—
1
[3]
P0
1
[4]
P1
1
[5]
P2
1
[0]
P3
1
[1]
P4
1
[2]
P5
1
[3]
—
1
[4]
—
1
[5]
CLPDM
1
[0]
CLPOB
1
[1]
PBLK
1
[2]
HBLK
1
[3]
HDIV
1
[4]
VD
1
[5]
HD
1
[0]
Field
1
[1]
SUBN
1
[2]
Strobe
1
[3]
MSHUT
1
[4]
SUBSW1
1
[5]
SUBSW2
1
22
Pin enable
37
PARAMETER
DESCRIPTION
VALUE
UPDATE
METHOD
Real time
Real time
Pin enable selection
0 = Disabled (default)
1 = Enabled
Pin enable selection
0 = Disabled (default)
1 = Enabled
Pin enable selection
0 = Disabled (default)
1 = Enabled
Real time
Pin enable selection
0 = Disabled (default)
1 = Enabled
Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated
Product Folder Link(s): VSP01M01 VSP01M02
VSP01M01
VSP01M02
www.ti.com .................................................................................................................................................................................................. SBES016 – MARCH 2009
Detailed TG Section (continued)
ADDRESS
SECTION
DEC
41
42
43
HEX
29
2A
2B
Pin
initialization
44
45
46
ODD range
47
2C
2D
2E
PARAMETER
DESCRIPTION
BITS
PARAMETER
# OF BITS
[0]
V0N
1
[1]
V1N
1
[2]
V2N
1
[3]
V3N
1
[4]
V4N
1
[5]
V5N
1
[0]
V6N
1
[1]
V7N
1
[2]
V8N
1
[3]
V9N
1
[4]
V10N
1
[5]
V11N
1
[0]
V12N
1
[1]
—
1
[2]
—
1
[3]
P0
1
[4]
P1
1
[5]
P2
1
[0]
P3
1
[1]
P4
1
[2]
P5
1
[3]
—
1
[4]
—
1
[5]
CLPDM
1
[0]
CLPOB
1
[1]
PBLK
1
[2]
HBLK
1
[3]
HDIV
1
[4]
VD
1
[5]
HD
1
[0]
Field
1
[1]
SUBN
1
[2]
Strobe
1
[3]
MSHUT
1
[4]
SUBSW1
1
[5]
SUBSW2
1
[2:0]
ODD HD-VD
[5:3]
ODD VD-HD
DESCRIPTION
Pin initialization polarity
0 = Low
1 = High (default)
VA
initializatio
n
instruction
Pin initialization polarity
0 = Low (default)
1 = High
Pin initialization polarity
0 = Low
1 = High (default)
Pin initialization polarity
0 = Low (default)
1 = High
3
HD-VD delay for ODD
detection
0-7 pixel delay
Default = 001b
3
VD-HD delay for ODD
detection
0-8 pixel delay
Default = 001b
2F
UPDATE
METHOD
VALUE
Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated
Product Folder Link(s): VSP01M01 VSP01M02
Real time
79
VSP01M01
VSP01M02
SBES016 – MARCH 2009 .................................................................................................................................................................................................. www.ti.com
Detailed TG Section (continued)
ADDRESS
SECTION
DEC
48
HEX
30
VEVENT pin
49
50
31
32
VEVENT pin
51
Pixel
counter
Field
52
53
PARAMETER
DESCRIPTION
BITS
PARAMETER
# OF BITS
[0]
V0N
1
[1]
V1N
1
[2]
V2N
1
[3]
V3N
1
[4]
V4N
1
[5]
V5N
1
[0]
V6N
1
[1]
V7N
1
[2]
V8N
1
[3]
V9N
1
[4]
V10N
1
[5]
V11N
1
[0]
V12N
1
[1]
—
1
[2]
—
1
[5:3]
—
DESCRIPTION
UPDATE
METHOD
VALUE
Pin used for vertical
event control
0 = Disabled (default)
1 = Enabled
Pin used for vertical
event control
0 = Disabled (default)
1 = Enabled
3
Reserved
Reserved
Default = 000b
Terminal number.
Refer to the Signal section for details.
Default = 0 (DEC)
[4:0]
TRG pin
5
Vertical event trigger
pin
[5]
TRG edge
1
Vertical event trigger
0 = Rising edge (default)
1 = Falling edge
[3:0]
Pixel count
4
Pin counter start offset
Pixel number.
Slave mode = 0110 (default)
Master mode = 0
[5:4]
—
2
Reserved
Reserved
Default = 00b
[0]
ODD/EVEN
1
Field index
0 = ODD (default)
1 = EVEN
[5:1]
—
5
Reserved
Reserved
Default = 0 (DEC)
3
Set current frame
number
33
34
35
Real time
Real time
Real time
Real time
Frame number. Default = 000b
[2:0]
Frame
54
36
[5:3]
VEVENT1
VEVENT2
—
80
Frame now
55
37
[5:0]
LSB
56
38
[5:0]
MSB
57
39
[5:0]
LSB
58
3A
[5:0]
MSB
59
3B
[5:0]
LSB
60
3C
[5:0]
MSB
61
3D
[5:0]
LSB
62
3E
[5:0]
MSB
63
3F
[5:0]
3
Set frame number
when trigger input
Start
12
Vertical event start 1
Stop
12
Vertical event stop 1
Frame TRG
—
Start
12
Vertical event start 2
Stop
12
Vertical event stop 2
6
Reserved
VA
FRAME NUMBER
VA1 (180h)
VA2 (190h)
VA3 (1A0h)
VA4 (1B0h)
VA5 (1C0h)
VA6 (1D0h)
VA7 (1E0h)
VA8 (1F0h)
0
1
2
3
4
5
6
7
VD or
FLOAD
(selected
by
022h[1:0])
TRIG input
when
021[2] is
enabled
Event number
Default = 0 (DEC)
Real time
or
R_Update
(selected
by
000h[3])
Reserved
Default = 0 (DEC)
Real time
or
R_Update
(selected
by
000h[3])
Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated
Product Folder Link(s): VSP01M01 VSP01M02
VSP01M01
VSP01M02
www.ti.com .................................................................................................................................................................................................. SBES016 – MARCH 2009
Detailed TG Section (continued)
ADDRESS
SECTION
MECH
SHUT1
DEC
HEX
BITS
PARAMETER
64
40
[5:0]
LSB
65
41
[5:0]
MID
66
42
67
43
68
44
69
MECH
SHUT2
MSB
LSB
[5:0]
MID
[0]
MSB
[5:1]
LSB
[0]
MSB
13
Mechanical shutter 1
toggling pix
Pixel number
Default = 0 (DEC)
Line
12
Mechanical shutter 1
toggling line
Line number
Default = 0 (DEC)
Frame
6
Mechanical shutter 1
toggling frame
Frame number
Default = 0 (DEC)
0 = Low (default)
1 = High
[5:2]
—
4
Reserved
Reserved
Default = 0000b
PIX
13
Mechanical shutter 2
toggling pix
Pixel number
Default = 0 (DEC)
Line
12
Mechanical shutter 2
toggling line
Line number
Default = 0 (DEC)
Frame
6
Mechanical shutter 2
toggling frame
Frame number
Default = 0 (DEC)
LSB
[5:0]
MID
72
48
73
49
74
4A
[0]
MSB
[5:1]
LSB
[5:0]
MID
[0]
MSB
[5:1]
LSB
[0]
MSB
[1]
POL
1
Mechanical shutter 2
toggling polarity
0 = Low (default)
1 = High
[5:2]
—
4
Reserved
Reserved
Default = 0000b
PIX
13
Strobe 1 toggling pix
Pixel number
Default = 0 (DEC)
Line
12
Strobe 1 toggling line
Line number
Default = 0 (DEC)
Frame
6
Strobe 1 toggling frame
Frame number
Default = 0 (DEC)
76
4C
[5:0]
LSB
77
4D
[5:0]
MID
78
4E
79
4F
80
50
[0]
MSB
[5:1]
LSB
[5:0]
MID
[0]
MSB
[5:1]
LSB
[0]
MSB
[1]
POL
1
Strobe 1 toggling
polarity
0 = Low (default)
1 = High
[5:2]
—
4
Reserved
Reserved
Default = 0000b
PIX
13
Strobe 2 toggling pix
Pixel number
Default = 0 (DEC)
Line
12
Strobe 2 toggling line
Line number
Default = 0 (DEC)
Frame
6
Strobe 2 toggling frame
Frame number
Default = 0 (DEC)
82
52
[5:0]
LSB
83
53
[5:0]
MID
84
54
85
55
86
56
57
PIX
Mechanical shutter 1
toggling polarity
[5:0]
87
VALUE
1
47
51
DESCRIPTION
POL
46
4B
DESCRIPTION
# OF BITS
[1]
71
81
Strobe 2
45
[0]
[5:1]
70
75
Strobe 1
PARAMETER
[0]
MSB
[5:1]
LSB
[5:0]
MID
[0]
MSB
[5:1]
LSB
[0]
MSB
[1]
POL
1
Strobe 2 toggling
polarity
0 = Low (default)
1 = High
[5:2]
—
4
Reserved
Reserved
Default = 0000b
Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated
Product Folder Link(s): VSP01M01 VSP01M02
UPDATE
METHOD
Real time
or
R_Update
(selected
by
000h[3])
Real time
or
R_Update
(selected
by
000h[3])
Real time
or
R_Update
(selected
by
000h[3])
Real time
or
R_Update
(selected
by
000h[3])
81
VSP01M01
VSP01M02
SBES016 – MARCH 2009 .................................................................................................................................................................................................. www.ti.com
Detailed TG Section (continued)
ADDRESS
SECTION
DEC
HEX
BITS
PARAMETER
88
58
[5:0]
LSB
89
59
[5:0]
MID
90
5A
[0]
MSB
[5:1]
LSB
91
Strobe 3
92
93
Strobe 4
5D
MID
[0]
MSB
[5:1]
LSB
[0]
MSB
Strobe 3 toggling pix
Pixel number
Default = 0 (DEC)
Line
12
Strobe 3 toggling line
Line number
Default = 0 (DEC)
Frame
6
Strobe 3 toggling frame
Frame number
Default = 0 (DEC)
Strobe 3 toggling
polarity
0 = Low (default)
1 = High
[5:2]
—
4
Reserved
Reserved
Default = 0000b
PIX
13
Strobe 4 toggling pix
Pixel number
Default = 0 (DEC)
Line
12
Strobe 4 toggling line
Line number
Default = 0 (DEC)
Frame
6
Strobe 4 toggling frame
Frame number
Default = 0 (DEC)
LSB
[5:0]
MID
96
60
97
61
98
62
[0]
MSB
[5:1]
LSB
[5:0]
MID
[0]
MSB
[5:1]
LSB
[0]
MSB
[1]
POL
1
Strobe 4 toggling
polarity
0 = Low (default)
1 = High
[5:2]
—
4
Reserved
Reserved
Default = 0000b
PIX
13
Strobe 5 toggling pix
Pixel number
Default = 0 (DEC)
Line
12
Strobe 5 toggling line
Line number
Default = 0 (DEC)
Frame
6
Strobe 5 toggling frame
Frame number
Default = 0 (DEC)
100
64
[5:0]
LSB
101
65
[5:0]
MID
102
66
103
67
104
68
[0]
MSB
[5:1]
LSB
[5:0]
MID
[0]
MSB
[5:1]
LSB
[0]
MSB
[1]
POL
1
Strobe 5 toggling
polarity
0 = Low (default)
1 = High
[5:2]
—
4
Reserved
Reserved
Default = 0000b
PIX
13
Strobe 6 toggling pix
Pixel number
Default = 0 (DEC)
Line
12
Strobe 6 toggling line
Line number
Default = 0 (DEC)
Frame
6
Strobe 6 toggling frame
Frame number
Default = 0 (DEC)
106
6A
[5:0]
LSB
107
6B
[5:0]
MID
108
6C
109
6D
110
6E
6F
VALUE
1
[5:0]
69
13
DESCRIPTION
POL
5F
63
PIX
DESCRIPTION
# OF BITS
[1]
5E
111
82
5C
[5:0]
95
105
Strobe 6
5B
94
99
Strobe 5
PARAMETER
[0]
MSB
[5:1]
LSB
[5:0]
MID
[0]
MSB
[5:1]
LSB
[0]
MSB
[1]
POL
1
Strobe 6 toggling
polarity
0 = Low (default)
1 = High
[5:2]
—
4
Reserved
Reserved
Default = 0000b
Submit Documentation Feedback
UPDATE
METHOD
Real time
or
R_Update
(selected
by
000h[3])
Real time
or
R_Update
(selected
by
000h[3])
Real time
or
R_Update
(selected
by
000h[3])
Real time
or
R_Update
(selected
by
000h[3])
Copyright © 2009, Texas Instruments Incorporated
Product Folder Link(s): VSP01M01 VSP01M02
VSP01M01
VSP01M02
www.ti.com .................................................................................................................................................................................................. SBES016 – MARCH 2009
Detailed TG Section (continued)
ADDRESS
SECTION
Strobe 7
DEC
HEX
BITS
PARAMETER
112
70
[5:0]
LSB
113
71
[5:0]
MID
114
72
115
73
116
74
117
Strobe 8
PARAMETER
75
[0]
MSB
[5:1]
LSB
[5:0]
MID
[0]
MSB
[5:1]
LSB
[0]
MSB
VALUE
PIX
13
Strobe 7 toggling pix
Pixel number
Default = 0 (DEC)
Line
12
Strobe 7 toggling line
Line number
Default = 0 (DEC)
Frame
6
Strobe 7 toggling frame
Frame number
Default = 0 (DEC)
POL
1
Strobe 7 toggling
polarity
0 = Low (default)
1 = High
[5:2]
—
4
Reserved
Reserved
Default = 0000b
PIX
13
Strobe 8 toggling pix
Pixel number
Default = 0 (DEC)
Line
12
Strobe 8 toggling line
Line number
Default = 0 (DEC)
Frame
6
Strobe 8 toggling frame
Frame number
Default = 0 (DEC)
76
[5:0]
LSB
119
77
[5:0]
MID
120
78
121
79
122
7A
7B
DESCRIPTION
[1]
118
123
DESCRIPTION
# OF BITS
[0]
MSB
[5:1]
LSB
[5:0]
MID
[0]
MSB
[5:1]
LSB
[0]
MSB
[1]
POL
1
Strobe 8 toggling
polarity
0 = Low (default)
1 = High
[5:2]
—
4
Reserved
Reserved
Default = 0000b
12
SUBSW1-1 toggling
line
Line number
Default = 0 (DEC)
124
7C
[5:0]
LSB
125
7D
[5:0]
MSB
126
7E
[5:0]
Frame
6
SUBSW1-1 toggling
frame
Frame number
Default = 0 (DEC)
[0]
POL
1
SUBSW1-1 polarity
0 = Low (default)
1 = High
[5:1]
—
5
Reserved
Reserved
Default = 0 (DEC)
12
SUBSW1-2 toggling
line
Line number
Default = 0 (DEC)
Line
SUBSW1-1
127
7F
128
80
[5:0]
LSB
129
81
[5:0]
MSB
130
82
[5:0]
Frame
6
SUBSW1-2 toggling
frame
Frame number
Default = 0 (DEC)
[0]
POL
1
SUBSW1-2 polarity
131
83
0 = Low (default)
1 = High
[5:1]
—
5
Reserved
Reserved
Default = 0 (DEC)
12
SUBSW2-1 toggling
line
Line number
Default = 0 (DEC)
Line
SUBSW1-2
132
84
[5:0]
LSB
133
85
[5:0]
MSB
134
86
[5:0]
Frame
6
SUBSW2-1 toggling
frame
Frame number
Default = 0 (DEC)
[0]
POL
1
SUBSW2-1 polarity
135
87
0 = Low (default)
1 = High
[5:1]
—
5
Reserved
Reserved
Default = 0 (DEC)
Line
SUBSW2-1
Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated
Product Folder Link(s): VSP01M01 VSP01M02
UPDATE
METHOD
Real time
or
R_Update
(selected
by
000h[3])
Real time
or
R_Update
(selected
by
000h[3])
Real time
or
R_Update
(selected
by
000h[3])
Real time
or
R_Update
(selected
by
000h[3])
Real time
or
R_Update
(selected
by
000h[3])
83
VSP01M01
VSP01M02
SBES016 – MARCH 2009 .................................................................................................................................................................................................. www.ti.com
Detailed TG Section (continued)
ADDRESS
SECTION
PARAMETER
DEC
HEX
BITS
PARAMETER
136
88
[5:0]
LSB
137
89
[5:0]
MSB
138
8A
[5:0]
DESCRIPTION
# OF BITS
SUBSW2-2 toggling
line
Line number
Default = 0 (DEC)
Frame
6
SUBSW2-2 toggling
frame
Frame number
Default = 0 (DEC)
[0]
POL
1
SUBSW2-2 polarity
0 = Low (default)
1 = High
[5:1]
—
5
Reserved
Reserved
Default = 0 (DEC)
13
SUBN 1 toggling pixel
Pixel number
Default = 0 (DEC)
8B
140
8C
[5:0]
LSB
141
8D
[5:0]
MID
[0]
MSB
PIX
SUBN 1
142
8E
[1]
POL
1
SUBN 1 polarity
0 = Low (default)
1 = High
[5:2]
—
4
Reserved
Reserved
Default = 0000b
13
SUBN 2 toggling pixel
Pixel number
Default = 0 (DEC)
143
8F
[5:0]
LSB
144
90
[5:0]
MID
[0]
MSB
PIX
SUBN 2
145
91
[1]
POL
1
SUBN 2 polarity
0 = Low (default)
1 = High
[5:2]
—
4
Reserved
Reserved
Default = 0000b
13
SUBN 3 toggling pixel
Pixel number
Default = 0 (DEC)
146
92
[5:0]
LSB
147
93
[5:0]
MID
[0]
MSB
PIX
SUBN 3
148
94
[1]
POL
1
SUBN 3 polarity
0 = Low (default)
1 = High
[5:2]
—
4
Reserved
Reserved
Default = 0000b
13
SUBN 4 toggling pixel
Pixel number
Default = 0 (DEC)
149
95
[5:0]
LSB
150
96
[5:0]
MID
[0]
MSB
PIX
SUBN 4
151
97
POL
1
SUBN 4 polarity
0 = Low (default)
1 = High
[5:2]
—
4
Reserved
Reserved
Default = 0000b
12
Electric shutter 1
toggling line
Line number
Default = 0 (DEC)
98
[5:0]
LSB
153
99
[5:0]
MSB
154
9A
Pattern
2
Electric shutter 1 SUBN Pattern number
pattern
Default = 00b
[5:2]
—
4
Reserved
Reserved
Default = 0000b
12
Electric shutter 2
toggling line
Line number
Default = 0 (DEC)
9B
[5:0]
LSB
156
9C
[5:0]
MSB
157
9D
Pattern
2
Electric shutter 2 SUBN Pattern number
pattern
Default = 00b
[5:2]
—
4
Reserved
Reserved
Default = 0000b
12
Electric shutter 3
toggling line
Line number
Default = 0 (DEC)
9E
[5:0]
LSB
159
9F
[5:0]
MSB
160
Line
[1:0]
158
SUBN CHG
3
Line
[1:0]
155
SUBN CHG
2
84
[1]
152
SUBN CHG
1
VALUE
12
Line
SUBSW2-2
139
DESCRIPTION
Line
[1:0]
Pattern
2
Electric shutter 3 SUBN Pattern number
pattern
Default = 00b
[5:2]
—
4
Reserved
A0
Reserved
Default = 0000b
Submit Documentation Feedback
UPDATE
METHOD
Real time
or
R_Update
(selected
by
000h[3])
Real time
or
R_Update
(selected
by
000h[3])
Real time
or
R_Update
(selected
by
000h[3])
Real time
or
R_Update
(selected
by
000h[3])
Real time
or
R_Update
(selected
by
000h[3])
Real time
or
R_Update
(selected
by
000h[3])
Real time
or
R_Update
(selected
by
000h[3])
Real time
or
R_Update
(selected
by
000h[3])
Copyright © 2009, Texas Instruments Incorporated
Product Folder Link(s): VSP01M01 VSP01M02
VSP01M01
VSP01M02
www.ti.com .................................................................................................................................................................................................. SBES016 – MARCH 2009
Detailed TG Section (continued)
ADDRESS
SECTION
PARAMETER
DEC
HEX
BITS
161
A1
[5:0]
LSB
162
A2
[5:0]
MSB
SUBN CHG
4
163
PARAMETER
Line
DESCRIPTION
# OF BITS
DESCRIPTION
12
Electric shutter 4
toggling line
VALUE
Line number
Default = 0 (DEC)
[1:0]
Pattern
2
Electric shutter 4 SUBN Pattern number
pattern
Default = 00b
[5:2]
—
4
Reserved
Reserved
Default = 0000b
A3
—
164
A4
[5:0]
—
6
Reserved
Reserved
Default = 0 (DEC)
—
165
A5
[5:0]
—
6
Reserved
Reserved
Default = 0 (DEC)
—
166
A6
[5:0]
—
6
Reserved
Reserved
Default = 0 (DEC)
—
167
A7
[5:0]
—
6
Reserved
Reserved
Default = 0 (DEC)
—
168
A8
[5:0]
—
6
Reserved
Reserved
Default = 0 (DEC)
—
169
A9
[5:0]
—
6
Reserved
Reserved
Default = 0 (DEC)
—
170
AA
[5:0]
—
6
Reserved
Reserved
Default = 0 (DEC)
—
171
AB
[5:0]
—
6
Reserved
Reserved
Default = 0 (DEC)
—
172
AC
[5:0]
—
6
Reserved
Reserved
Default = 0 (DEC)
—
173
AD
[5:0]
—
6
Reserved
Reserved
Default = 0 (DEC)
—
174
AE
[5:0]
—
6
Reserved
Reserved
Default = 0 (DEC)
—
175
AF
[5:0]
—
6
Reserved
Reserved
Default = 0 (DEC)
—
176
B0
[5:0]
—
6
Reserved
Reserved
Default = 0 (DEC)
—
177
B1
[5:0]
—
6
Reserved
Reserved
Default = 0 (DEC)
—
178
B2
[5:0]
—
6
Reserved
Reserved
Default = 0 (DEC)
—
179
B3
[5:0]
—
6
Reserved
Reserved
Default = 0 (DEC)
—
180
B4
[5:0]
—
6
Reserved
Reserved
Default = 0 (DEC)
Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated
Product Folder Link(s): VSP01M01 VSP01M02
UPDATE
METHOD
Real time
or
R_Update
(selected
by
000h[3])
Real time
or
R_Update
(selected
by
000h[3])
85
VSP01M01
VSP01M02
SBES016 – MARCH 2009 .................................................................................................................................................................................................. www.ti.com
Detailed TG Section (continued)
ADDRESS
SECTION
Monitor pin
select
86
DEC
181
HEX
PARAMETER
BITS
PARAMETER
DESCRIPTION
# OF BITS
DESCRIPTION
VALUE
[3:0]
←
4
Monitor pin selection
1000b = TPP = SHP, TPD = SHD
1001b = TPP = CLPOB, TPD = CLPDM
1010b = TPP = PBLK, TPD = HDIV
1011b = TPP =HBLK, TPD = (na)
Default = 0000b
[5:4]
—
2
Reserved
Reserved
Default = 00b
B5
—
182
B6
[5:0]
—
6
Reserved
Reserved
Default = 0 (DEC)
—
183
B7
[5:0]
—
6
Reserved
Reserved
Default = 0 (DEC)
—
184
B8
[5:0]
—
6
Reserved
Reserved
Default = 0 (DEC)
—
185
B9
[5:0]
—
6
Reserved
Reserved
Default = 0 (DEC)
—
186
BA
[5:0]
—
6
Reserved
Reserved
Default = 0 (DEC)
—
187
BB
[5:0]
—
6
Reserved
Reserved
Default = 0 (DEC)
—
188
BC
[5:0]
—
6
Reserved
Reserved
Default = 0 (DEC)
—
189
BD
[5:0]
—
6
Reserved
Reserved
Default = 0 (DEC)
—
190
BE
[5:0]
—
6
Reserved
Reserved
Default = 0 (DEC)
—
191
BF
[5:0]
—
6
Reserved
Reserved
Default = 0 (DEC)
Submit Documentation Feedback
UPDATE
METHOD
Real time
or
R_Update
(selected
by
000h[3])
Real time
or
R_Update
(selected
by
000h[3])
Copyright © 2009, Texas Instruments Incorporated
Product Folder Link(s): VSP01M01 VSP01M02
PACKAGE OPTION ADDENDUM
www.ti.com
17-Aug-2012
PACKAGING INFORMATION
Orderable Device
Status
(1)
Package Type Package
Drawing
Pins
VSP01M01ZWD
ACTIVE
NFBGA
ZWD
100
VSP01M01ZWDR
ACTIVE
NFBGA
ZWD
100
Package Qty
1000
Eco Plan
(2)
Lead/
Ball Finish
TBD
Call TI
Pb-Free (RoHS)
SNAGCU
MSL Peak Temp
(3)
Samples
(Requires Login)
Call TI
Level-2-260C-1 YEAR
(1)
The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2)
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability
information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight
in homogeneous material)
(3)
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
Addendum-Page 1
PACKAGE MATERIALS INFORMATION
www.ti.com
16-Aug-2012
TAPE AND REEL INFORMATION
*All dimensions are nominal
Device
VSP01M01ZWDR
Package Package Pins
Type Drawing
NFBGA
ZWD
100
SPQ
Reel
Reel
A0
Diameter Width (mm)
(mm) W1 (mm)
1000
330.0
16.4
Pack Materials-Page 1
7.3
B0
(mm)
K0
(mm)
P1
(mm)
W
Pin1
(mm) Quadrant
7.3
2.2
12.0
16.0
Q1
PACKAGE MATERIALS INFORMATION
www.ti.com
16-Aug-2012
*All dimensions are nominal
Device
Package Type
Package Drawing
Pins
SPQ
Length (mm)
Width (mm)
Height (mm)
VSP01M01ZWDR
NFBGA
ZWD
100
1000
342.0
336.0
34.0
Pack Materials-Page 2
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other
changes to its semiconductor products and services per JESD46C and to discontinue any product or service per JESD48B. Buyers should
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All
semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale supplied at the time
of order acknowledgment.
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily
performed.
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered
documentation. Information of third parties may be subject to additional restrictions.
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.
TI is not responsible or liable for any such statements.
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use
of any TI components in safety-critical applications.
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and
requirements. Nonetheless, such components are subject to these terms.
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties
have executed a special agreement specifically governing such use.
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and
regulatory requirements in connection with such use.
TI has specifically designated certain components which meet ISO/TS16949 requirements, mainly for automotive use. Components which
have not been so designated are neither designed nor intended for automotive use; and TI will not be responsible for any failure of such
components to meet such requirements.
Products
Applications
Audio
www.ti.com/audio
Automotive and Transportation www.ti.com/automotive
Amplifiers
amplifier.ti.com
Communications and Telecom www.ti.com/communications
Data Converters
dataconverter.ti.com
Computers and Peripherals
www.ti.com/computers
DLP® Products
www.dlp.com
Consumer Electronics
www.ti.com/consumer-apps
DSP
dsp.ti.com
Energy and Lighting
www.ti.com/energy
Clocks and Timers
www.ti.com/clocks
Industrial
www.ti.com/industrial
Interface
interface.ti.com
Medical
www.ti.com/medical
Logic
logic.ti.com
Security
www.ti.com/security
Power Mgmt
power.ti.com
Space, Avionics and Defense
www.ti.com/space-avionics-defense
Microcontrollers
microcontroller.ti.com
Video and Imaging
www.ti.com/video
RFID
www.ti-rfid.com
OMAP Mobile Processors
www.ti.com/omap
TI E2E Community
e2e.ti.com
Wireless Connectivity
www.ti.com/wirelessconnectivity
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2012, Texas Instruments Incorporated