ONSEMI NCV1117ST50T3G

NCP1117, NCV1117
1.0 A Low-Dropout Positive
Fixed and Adjustable
Voltage Regulators
The NCP1117 series are low dropout positive voltage regulators that
are capable of providing an output current that is in excess of 1.0 A
with a maximum dropout voltage of 1.2 V at 800 mA over
temperature. This series contains nine fixed output voltages of 1.5 V,
1.8 V, 1.9 V, 2.0 V, 2.5 V, 2.85 V, 3.3 V, 5.0 V, and 12 V that have no
minimum load requirement to maintain regulation. Also included is an
adjustable output version that can be programmed from 1.25 V to
18.8 V with two external resistors. On chip trimming adjusts the
reference/output voltage to within 1.0% accuracy. Internal protection
features consist of output current limiting, safe operating area
compensation, and thermal shutdown. The NCP1117 series can
operate with up to 20 V input. Devices are available in SOT−223 and
DPAK packages.
http://onsemi.com
DPAK
DT SUFFIX
CASE 369C
SOT−223
ST SUFFIX
CASE 318H
PIN CONFIGURATION
Tab
Features
 Output Current in Excess of 1.0 A
 1.2 V Maximum Dropout Voltage at 800 mA Over Temperature
 Fixed Output Voltages of 1.5 V, 1.8 V, 1.9 V, 2.0 V, 2.5 V, 2.85 V,







3.3 V, 5.0 V, and 12 V
Adjustable Output Voltage Option
No Minimum Load Requirement for Fixed Voltage Output Devices
Reference/Output Voltage Trimmed to 1.0%
Current Limit, Safe Operating and Thermal Shutdown Protection
Operation to 20 V Input
NCV Prefix for Automotive and Other Applications Requiring
Unique Site and Control Change Requirements; AEC−Q100
Qualified and PPAP Capable
These are Pb-Free Devices
Consumer and Industrial Equipment Point of Regulation
Active SCSI Termination for 2.85 V Version
Switching Power Supply Post Regulation
Hard Drive Controllers
Battery Chargers
 Semiconductor Components Industries, LLC, 2013
June, 2013 − Rev. 25
SOT−223
(Top View)
Tab
1
2
3
DPAK
(Top View)
Pin: 1. Adjust/Ground
2. Output
3. Input
Heatsink tab is connected to Pin 2.
Applications





123
ORDERING INFORMATION
See detailed ordering and shipping information in the package
dimensions section on page 12 of this data sheet.
DEVICE MARKING INFORMATION
See general marking information in the device marking
section on page 14 of this data sheet.
1
Publication Order Number:
NCP1117/D
NCP1117, NCV1117
TYPICAL APPLICATIONS
110 W
Input
10
mF
3
+
NCP1117
XTXX
2 Output
1
Input
3
10
mF
+
+ 10
mF
NCP1117
XTA
1
3
2 Output
10
mF
+ 10
mF
4.75 V
to
5.25 V
Figure 1. Fixed
Output Regulator
Figure 2. Adjustable
Output Regulator
+
NCP1117
XT285
110 W
2
+ 22
1
mF
+
110 W
18 to 27
Lines
110 W
Figure 3. Active SCSI Bus Terminator
MAXIMUM RATINGS
Rating
Symbol
Value
Unit
Vin
20
V
−
Infinite
−
PD
RqJA
RqJC
Internally Limited
160
15
W
C/W
C/W
PD
RqJA
RqJC
Internally Limited
67
6.0
W
C/W
C/W
Maximum Die Junction Temperature Range
TJ
−55 to 150
C
Storage Temperature Range
Tstg
−65 to 150
C
Operating Ambient Temperature Range
NCP1117
NCV1117
TA
Input Voltage (Note 1)
Output Short Circuit Duration (Notes 2 and 3)
Power Dissipation and Thermal Characteristics
Case 318H (SOT−223)
Power Dissipation (Note 2)
Thermal Resistance, Junction−to−Ambient, Minimum Size Pad
Thermal Resistance, Junction−to−Case
Case 369A (DPAK)
Power Dissipation (Note 2)
Thermal Resistance, Junction−to−Ambient, Minimum Size Pad
Thermal Resistance, Junction−to−Case
0 to +125
−40 to +125
C
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the
Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect
device reliability.
1. This device series contains ESD protection and exceeds the following tests:
Human Body Model (HBM), Class 2, 2000 V
Machine Model (MM), Class B, 200 V
Charge Device Model (CDM), Class IV, 2000 V.
2. Internal thermal shutdown protection limits the die temperature to approximately 175C. Proper heatsinking is required to prevent activation.
The maximum package power dissipation is:
TJ(max) * TA
PD +
RqJA
3. The regulator output current must not exceed 1.0 A with Vin greater than 12 V.
http://onsemi.com
2
NCP1117, NCV1117
ELECTRICAL CHARACTERISTICS
(Cin = 10 mF, Cout = 10 mF, for typical value TA = 25C, for min and max values TA is the operating ambient temperature range that applies
unless otherwise noted.) (Note 4)
Characteristic
Symbol
Reference Voltage, Adjustable Output Devices
(Vin–Vout = 2.0 V, Iout = 10 mA, TA = 25C)
(Vin–Vout = 1.4 V to 10 V, Iout = 10 mA to 800 mA) (Note 4)
Vref
Output Voltage, Fixed Output Devices
1.5 V (Vin = 3.5 V, Iout = 10 mA, TA = 25 C)
(Vin = 2.9 V to 11.5 V, Iout = 0 mA to 800 mA) (Note 4)
Vout
Min
Typ
Max
1.238
1.225
1.25
−
1.262
1.270
1.485
1.470
1.500
−
1.515
1.530
Unit
V
V
1.8 V
(Vin = 3.8 V, Iout = 10 mA, TA = 25 C)
(Vin = 3.2 V to 11.8 V, Iout = 0 mA to 800 mA) (Note 4)
1.782
1.755
1.800
−
1.818
1.845
1.9 V
(Vin = 3.9 V, Iout = 10 mA, TA = 25 C)
(Vin = 3.3 V to 11.9 V, Iout = 0 mA to 800 mA) (Note 4)
1.872
1.862
1.900
1.900
1.929
1.938
2.0 V
(Vin = 4.0 V, Iout = 10 mA, TA = 25 C)
(Vin = 3.4 V to 12 V, Iout = 0 mA to 800 mA) (Note 4)
1.970
1.960
2.000
−
2.030
2.040
2.5 V
(Vin = 4.5 V, Iout = 10 mA, TA = 25 C)
(Vin = 3.9 V to 10 V, Iout = 0 mA to 800 mA,) (Note 4)
2.475
2.450
2.500
−
2.525
2.550
2.85 V (Vin = 4.85 V, Iout = 10 mA, TA = 25 C)
(Vin = 4.25 V to 10 V, Iout = 0 mA to 800 mA) (Note 4)
(Vin = 4.0 V, Iout = 0 mA to 500 mA) (Note 4)
2.821
2.790
2.790
2.850
−
−
2.879
2.910
2.910
3.3 V
(Vin = 5.3 V, Iout = 10 mA, TA = 25 C)
(Vin = 4.75 V to 10 V, Iout = 0 mA to 800 mA) (Note 4)
3.267
3.235
3.300
−
3.333
3.365
5.0 V
(Vin = 7.0 V, Iout = 10 mA, TA = 25 C)
(Vin = 6.5 V to 12 V, Iout = 0 mA to 800 mA) (Note 4)
4.950
4.900
5.000
−
5.050
5.100
12 V
(Vin = 14 V, Iout = 10 mA, TA = 25 C)
(Vin = 13.5 V to 20 V, Iout = 0 mA to 800 mA) (Note 4)
11.880
11.760
12.000
−
12.120
12.240
−
0.04
0.1
%
−
−
−
−
−
−
−
−
−
0.3
0.4
0.5
0.5
0.5
0.8
0.8
0.9
1.0
1.0
1.0
2.5
2.5
2.5
3.0
4.5
6.0
7.5
mV
−
0.2
0.4
%
−
−
−
−
−
−
−
−
−
2.3
2.6
2.7
3.0
3.3
3.8
4.3
6.7
16
5.5
6.0
6.0
6.0
7.5
8.0
10
15
28
mV
−
−
−
0.95
1.01
1.07
1.10
1.15
1.20
Iout
1000
1500
2200
mA
IL(min)
−
0.8
5.0
mA
Line Regulation (Note 5)
1.5 V
1.8 V
1.9 V
2.0 V
2.5 V
2.85 V
3.3 V
5.0 V
12 V
Regline
(Vin = 2.9 V to 11.5 V, Iout = 0 mA)
(Vin = 3.2 V to 11.8 V, Iout = 0 mA)
(Vin = 3.3 V to 11.9 V, Iout = 0 mA)
(Vin = 3.4 V to 12 V, Iout = 0 mA)
(Vin = 3.9 V to 10 V, Iout = 0 mA)
(Vin = 4.25 V to 10 V, Iout = 0 mA)
(Vin = 4.75 V to 15 V, Iout = 0 mA)
(Vin = 6.5 V to 15 V, Iout = 0 mA)
(Vin = 13.5 V to 20 V, Iout = 0 mA)
Load Regulation (Note 5)
1.5 V
1.8 V
1.9 V
2.0 V
2.5 V
2.85 V
3.3 V
5.0 V
12 V
Adjustable (Vin = 2.75 V to 16.25 V, Iout = 10 mA)
Adjustable (Iout = 10 mA to 800 mA, Vin = 4.25 V)
Regline
(Iout = 0 mA to 800 mA, Vin = 2.9 V)
(Iout = 0 mA to 800 mA, Vin = 3.2 V)
(Iout = 0 mA to 800 mA, Vin = 3.3 V)
(Iout = 0 mA to 800 mA, Vin = 3.4 V)
(Iout = 0 mA to 800 mA, Vin = 3.9 V)
(Iout = 0 mA to 800 mA, Vin = 4.25 V)
(Iout = 0 mA to 800 mA, Vin = 4.75 V)
(Iout = 0 mA to 800 mA, Vin = 6.5 V)
(Iout = 0 mA to 800 mA, Vin = 13.5 V)
Dropout Voltage (Measured at Vout − 100 mV)
(Iout = 100 mA)
(Iout = 500 mA)
(Iout = 800 mA)
Vin−Vout
Output Current Limit (Vin−Vout = 5.0 V, TA = 25C, Note 6)
Minimum Required Load Current for Regulation, Adjustable Output Devices
(Vin = 15 V)
http://onsemi.com
3
V
NCP1117, NCV1117
ELECTRICAL CHARACTERISTICS (continued)
(Cin = 10 mF, Cout = 10 mF, for typical value TA = 25C, for min and max values TA is the operating ambient temperature range that applies
unless otherwise noted.) (Note 4)
Characteristic
Symbol
Quiescent Current
1.5 V (Vin = 11.5 V)
1.8 V (Vin = 11.8 V)
1.9 V (Vin = 11.9 V)
2.0 V (Vin = 12 V)
2.5 V (Vin = 10 V)
2.85 V (Vin = 10 V)
3.3 V (Vin = 15 V)
5.0 V (Vin = 15 V)
12 V (Vin = 20 V)
IQ
Thermal Regulation (TA = 25C, 30 ms Pulse)
Min
Typ
Max
−
−
−
−
−
−
−
−
−
3.6
4.2
4.3
4.5
5.2
5.5
6.0
6.0
6.0
10
10
10
10
10
10
10
10
10
−
0.01
0.1
67
66
66
66
64
62
62
60
57
50
73
72
70
72
70
68
68
64
61
54
−
−
−
−
−
−
−
−
−
−
Unit
mA
%/W
Ripple Rejection (Vin−Vout = 6.4 V, Iout = 500 mA, 10 Vpp 120 Hz Sinewave)
Adjustable
1.5 V
1.8 V
1.9 V
2.0 V
2.5 V
2.85 V
3.3 V
5.0 V
12 V
RR
Adjustment Pin Current (Vin = 11.25 V, Iout = 800 mA)
Iadj
−
52
120
mA
DIadj
−
0.4
5.0
mA
Temperature Stability
ST
−
0.5
−
%
Long Term Stability (TA = 25C, 1000 Hrs End Point Measurement)
St
−
0.3
−
%
RMS Output Noise (f = 10 Hz to 10 kHz)
N
−
0.003
−
%Vout
Adjust Pin Current Change
(Vin−Vout = 1.4 V to 10 V, Iout = 10 mA to 800 mA)
4. NCP1117: Tlow = 0C , Thigh = 125C
NCV1117: Tlow = −40C, Thigh = 125C
5. Low duty cycle pulse techniques are used during testing to maintain the junction temperature as close to ambient as possible.
6. The regulator output current must not exceed 1.0 A with Vin greater than 12 V.
http://onsemi.com
4
dB
2.0
1.4
Vin = Vout + 3.0 V
Iout = 10 mA
1.5
Vin − Vout, DROPOUT VOLTAGE (V)
Vout, OUTPUT VOLTAGE CHANGE (%)
NCP1117, NCV1117
Adj, 1.5 V,
1.8 V, 2.0 V,
2.5 V
1.0
0.5
0
−0.5
2.85 V, 3.3 V,
5.0 V, 12.0 V
−1.0
−1.5
−2.0
−50
−25
0
25
50
75
100
0.2
Load pulsed at 1.0% duty cycle
0
200
400
600
800
1.0
0.5
4
6
8
10
12
14
16
18
1000
2.0
Iout, OUTPUT CURRENT (A)
Iout, OUTPUT CURRENT (A)
0.4
Figure 5. Dropout Voltage
vs. Output Current
Load pulsed at 1.0% duty cycle
1.8
1.6
1.4
1.2
1.0
−50
20
Vin = 5.0 V
Load pulsed at 1.0% duty cycle
−25
0
25
50
75
100
125
Vin − Vout, VOLTAGE DIFFERENTIAL (V)
TA, AMBIENT TEMPERATURE (C)
Figure 6. Output Short Circuit Current
vs. Differential Voltage
Figure 7. Output Short Circuit Current
vs. Temperature
IQ, QUIESCENT CURRENT CHANGE (%)
100
Iadj, ADJUST PIN CURRENT (mA)
0.6
Figure 4. Output Voltage Change
vs. Temperature
1.5
2
TJ = 125C
Iout, OUTPUT CURRENT (mA)
TJ = 25C
0
0.8
TA, AMBIENT TEMPERATURE (C)
2.0
0
TJ = −40C
1.0
0
150
125
TJ = 25C
1.2
80
60
150
10
5.0
0
−5.0
40
20
0
−50
Iout = 10 mA
−25
0
25
50
75
100
125
150
−10
−15
−20
−50
−25
0
25
50
75
100
125
TA, AMBIENT TEMPERATURE (C)
TA, AMBIENT TEMPERATURE (C)
Figure 8. Adjust Pin Current
vs. Temperature
Figure 9. Quiescent Current Change
vs. Temperature
http://onsemi.com
5
150
NCP1117, NCV1117
100
80
60
fripple = 20 kHz
Vripple v 0.5 VP−P
40
Vout = 5.0 V
Vin − Vout = 3.0 V
Cout = 10 mF
Cadj = 25 mF
TA = 25C
20
0
RR, RIPPLE REJECTION (dB)
fripple = 120 Hz
Vripple v 3.0 VP−P
0
200
400
600
800
60
Vout = 5.0 V
Vin − Vout = 3.0 V
Iout = 0.5 A
Cout = 10 mF
Cadj = 25 mF, f > 60 Hz
Cadj = 200 mF, f v 60 Hz
TA = 25C
40
20
10
100
Vin − Vout w Vdropout
1.0 k
10 k
Figure 10. NCP1117XTA Ripple Rejection
vs. Output Current
Figure 11. NCP1117XTA Ripple Rejection
vs. Frequency
Vin = 3.0 V
Vout = 1.25 V
Iload = 5 mA − 1 A
Cin = 10 mF MLCC
TJ = 25C
10
Region of Instability
0.01
0.1
1
10
Region of Stability
1
0.01
0
Region of Instability
100 200 300 400 500 600 700 800 900 1000
Iout, OUTPUT CURRENT (mA)
Figure 13. Typical ESR vs. Output Current
350E−9
1A
Cin = 10 mF Tantalum
Cout = 10 mF Tantalum
Vin − Vout = 3.0 V
0.5 A
250E−9
200E−9
0.1 A
150E−9
100E−9
50E−9
0
10
100
Vin = 3.0 V
Vout = 1.25 V
Cin = 10 mF MLCC
Cout = 10 mF
TJ = 25C
0.1
Figure 12. Output Capacitance vs. ESR
300E−9
100 k
10
ESR, EQUIVALENT SERIES RESISTANCE (W)
V/sqrt (Hz)
OUTPUT CAPACITANCE (mF)
Vin − Vout w 3.0 V
fripple, RIPPLE FREQUENCY (Hz)
Region of Stability
0.1
0.001
Vripple v 0.5 VP−P
Iout, OUTPUT CURRENT (mA)
100
1
Vripple v 3.0 VP−P
80
0
1000
ESR, EQUIVALENT SERIES RESISTANCE (W)
RR, RIPPLE REJECTION (dB)
100
1.0 k
10 k
100 k
FREQUENCY (Hz)
Figure 14. Output Spectral Noise Density vs.
Frequency, Vout = 1V5
http://onsemi.com
6
5.25
0
20
0
−20
40
80
120
0.5
0
200
160
Cin = 10 mF
Cout = 10 mF
Vin = 4.5 V
Preload = 0.1 A
TA = 25C
−0.1
0
40
Figure 16. NCP1117XT285
Load Transient Response
7.5
20
0
−20
80
120
160
0
Cin = 10 mF
Cout = 10 mF
Vin = 6.5 V
Preload = 0.1 A
TA = 25C
0.5
0
200
0
40
80
120
OUTPUT VOLTAGE
DEVIATION (V)
0.1
0
Cin = 10 mF
Cout = 10 mF
Vin = 13.5 V
Preload = 0.1 A
TA = 25C
−0.1
LOAD CURRENT
CHANGE (A)
13.5
20
0
−20
40
80
120
200
Figure 18. NCP1117XT50
Load Transient Response
Cin = 1.0 mF
Cout = 10 mF
Iout = 0.1 A
TA = 25C
0
160
t, TIME (ms)
Figure 17. NCP1117XT50
Line Transient Response
14.5
200
0.1
−0.1
6.5
40
160
Figure 15. NCP1117XT285
Line Transient Response
t, TIME (ms)
INPUT
VOLTAGE (V)
120
t, TIME (ms)
Cin = 1.0 mF
Cout = 10 mF
Iout = 0.1 A
TA = 25C
0
OUTPUT VOLTAGE
DEVIATION (mV)
80
t, TIME (ms)
LOAD CURRENT
CHANGE (A)
INPUT
VOLTAGE (V)
0.1
LOAD CURRENT
CHANGE (A)
4.25
0
OUTPUT VOLTAGE
DEVIATION (mV)
OUTPUT VOLTAGE
DEVIATION (V)
Cin = 1.0 mF
Cout = 10 mF
Iout = 0.1 A
TA = 25C
OUTPUT VOLTAGE
DEVIATION (V)
OUTPUT VOLTAGE
DEVIATION (mV)
INPUT
VOLTAGE (V)
NCP1117, NCV1117
160
200
0.5
0
0
t, TIME (ms)
40
80
120
160
t, TIME (ms)
Figure 20. NCP1117XT12 Load
Transient Response
Figure 19. NCP1117XT12 Line
Transient Response
http://onsemi.com
7
200
RqJA, THERMAL RESISTANCE,
JUNCTION−TO−AIR (CW)
180
1.6
160
1.4
PD(max) for TA = 50C
140
ÎÎÎ
ÎÎÎ
ÎÎÎ
2.0 oz. Copper
L
Minimum
Size Pad
120
L
100
80
60
RqJA
0
5.0
10
15
20
25
L, LENGTH OF COPPER (mm)
1.2
1.0
0.8
0.6
0.4
30
PD, MAXIMUM POWER DISSIPATION (W)
NCP1117, NCV1117
RqJA, THERMAL RESISTANCE,
JUNCTION−TO−AIR (CW)
100
1.6
PD(max) for TA = 50C
1.4
90
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
2.0 oz. Copper
L
80
Minimum
Size Pad
70
1.0
L
0.8
60
50
0.6
RqJA
40
1.2
0
5.0
10
15
20
25
0.4
30
L, LENGTH OF COPPER (mm)
Figure 22. DPAK Thermal Resistance and Maximum
Power Dissipation vs. P.C.B. Copper Length
http://onsemi.com
8
PD, MAXIMUM POWER DISSIPATION (W)
Figure 21. SOT−223 Thermal Resistance and Maximum
Power Dissipation vs. P.C.B. Copper Length
NCP1117, NCV1117
APPLICATIONS INFORMATION
Introduction
Frequency compensation for the regulator is provided by
capacitor Cout and its use is mandatory to ensure output
stability. A minimum capacitance value of 4.7 mF with an
equivalent series resistance (ESR) that is within the limits of
33 mW (typ) to 2.2 W is required. See Figures 12 and 13. The
capacitor type can be ceramic, tantalum, or aluminum
electrolytic as long as it meets the minimum capacitance
value and ESR limits over the circuit’s entire operating
temperature range. Higher values of output capacitance can
be used to enhance loop stability and transient response with
the additional benefit of reducing output noise.
The NCP1117 features a significant reduction in dropout
voltage along with enhanced output voltage accuracy and
temperature stability when compared to older industry
standard three−terminal adjustable regulators. These
devices contain output current limiting, safe operating area
compensation and thermal shutdown protection making
them designer friendly for powering numerous consumer
and industrial products. The NCP1117 series is pin
compatible with the older LM317 and its derivative device
types.
Output Voltage
Input
The typical application circuits for the fixed and
adjustable output regulators are shown in Figures 23 and 24.
The adjustable devices are floating voltage regulators. They
develop and maintain the nominal 1.25 V reference voltage
between the output and adjust pins. The reference voltage is
programmed to a constant current source by resistor R1, and
this current flows through R2 to ground to set the output
voltage. The programmed current level is usually selected to
be greater than the specified 5.0 mA minimum that is
required for regulation. Since the adjust pin current, Iadj, is
significantly lower and constant with respect to the
programmed load current, it generates a small output
voltage error that can usually be ignored. For the fixed
output devices R1 and R2 are included within the device and
the ground current Ignd, ranges from 3.0 mA to 5.0 mA
depending upon the output voltage.
Cin
Cin
+
NCP1117
XTXX
1
+
+
+
Cout
Cadj
Ǔ
Vout + Vref 1 ) R2 ) Iadj R2
R1
Figure 24. Adjustable Output Regulator
The output ripple will increase linearly for fixed and
adjustable devices as the ratio of output voltage to the
reference voltage increases. For example, with a 12 V
regulator, the output ripple will increase by 12 V/1.25 V or
9.6 and the ripple rejection will decrease by 20 log of this
ratio or 19.6 dB. The loss of ripple rejection can be restored
to the values shown with the addition of bypass capacitor
Cadj, shown in Figure 24. The reactance of Cadj at the ripple
frequency must be less than the resistance of R1. The value
of R1 can be selected to provide the minimum required load
current to maintain regulation and is usually in the range of
100 W to 200 W.
Cadj u
1
2 p fripple R1
The minimum required capacitance can be calculated
from the above formula. When using the device in an
application that is powered from the AC line via a
transformer and a full wave bridge, the value for Cadj is:
Output
2
R1
Vref
1
ǒ
Output
2
R2
Input bypass capacitor Cin may be required for regulator
stability if the device is located more than a few inches from
the power source. This capacitor will reduce the circuit’s
sensitivity when powered from a complex source impedance
and significantly enhance the output transient response. The
input bypass capacitor should be mounted with the shortest
possible track length directly across the regulator’s input
and ground terminals. A 10 mF ceramic or tantalum
capacitor should be adequate for most applications.
3
+
NCP1117
XTA
Iadj
External Capacitors
Input
3
fripple + 120 Hz, R1 + 120 W, then Cadj u 11.1 mF
The value for Cadj is significantly reduced in applications
where the input ripple frequency is high. If used as a post
regulator in a switching converter under the following
conditions:
Cout
Ignd
fripple + 50 kHz, R1 + 120 W, then Cadj u 0.027 mF
Figure 23. Fixed Output Regulator
Figures 10 and 11 shows the level of ripple rejection that
is obtainable with the adjust pin properly bypassed.
http://onsemi.com
9
NCP1117, NCV1117
Protection Diodes
The second condition is that the ground end of R2 should be
connected directly to the load. This allows true Kelvin
sensing where the regulator compensates for the voltage
drop caused by wiring resistance RW −.
The NCP1117 family has two internal low impedance
diode paths that normally do not require protection when
used in the typical regulator applications. The first path
connects between Vout and Vin, and it can withstand a peak
surge current of about 15 A. Normal cycling of Vin cannot
generate a current surge of this magnitude. Only when Vin
is shorted or crowbarred to ground and Cout is greater than
50 mF, it becomes possible for device damage to occur.
Under these conditions, diode D1 is required to protect the
device. The second path connects between Cadj and Vout, and
it can withstand a peak surge current of about 150 mA.
Protection diode D2 is required if the output is shorted or
crowbarred to ground and Cadj is greater than 1.0 mF.
Input
Cin
3
+
NCP1117
XTA
RW+
2
+
R1
1
Cout
R2
Output
Remote
Load
RW−
Figure 26. Load Sensing
D1
Thermal Considerations
1N4001
Input
Cin
3
+
NCP1117
XTA
1
R2
This series contains an internal thermal limiting circuit
that is designed to protect the regulator in the event that the
maximum junction temperature is exceeded. When
activated, typically at 175C, the regulator output switches
off and then back on as the die cools. As a result, if the device
is continuously operated in an overheated condition, the
output will appear to be oscillating. This feature provides
protection from a catastrophic device failure due to
accidental overheating. It is not intended to be used as a
substitute for proper heatsinking. The maximum device
power dissipation can be calculated by:
Output
2
R1
+
D2
1N4001
+
Cout
Cadj
Figure 25. Protection Diode Placement
A combination of protection diodes D1 and D2 may be
required in the event that Vin is shorted to ground and Cadj
is greater than 50 mF. The peak current capability stated for
the internal diodes are for a time of 100 ms with a junction
temperature of 25C. These values may vary and are to be
used as a general guide.
PD +
TJ(max) * TA
RqJA
The devices are available in surface mount SOT−223 and
DPAK packages. Each package has an exposed metal tab
that is specifically designed to reduce the junction to air
thermal resistance, RqJA, by utilizing the printed circuit
board copper as a heat dissipater. Figures 21 and 22 show
typical RqJA values that can be obtained from a square
pattern using economical single sided 2.0 ounce copper
board material. The final product thermal limits should be
tested and quantified in order to insure acceptable
performance and reliability. The actual RqJA can vary
considerably from the graphs shown. This will be due to any
changes made in the copper aspect ratio of the final layout,
adjacent heat sources, and air flow.
Load Regulation
The NCP1117 series is capable of providing excellent
load regulation; but since these are three terminal devices,
only partial remote load sensing is possible. There are two
conditions that must be met to achieve the maximum
available load regulation performance. The first is that the
top side of programming resistor R1 should be connected as
close to the regulator case as practicable. This will minimize
the voltage drop caused by wiring resistance RW + from
appearing in series with reference voltage that is across R1.
http://onsemi.com
10
NCP1117, NCV1117
Input
NCP1117
XTA
3
+
10
mF
Constant Current
Output
R
2
+
1
Input
+
10
mF
10
mF
NCP1117
XTA
3
Output
2
+
R1
1
R2
50 k
2N2907
Figure 28. Slow Turn−On Regulator
Input
Input
3
10
mF
+
On
+
Output
2
R1
1
+ 10
120
2N2222
NCP1117
XTA
3
10
mF
Output
2
1
1.0 k
Output Control
NCP1117
XTA
10
mF
10
mF
V
Iout + ref ) Iadj
R
Figure 27. Constant Current Regulator
1N4001
+
10
mF
R2
mF
2N2222
360
1.0 k
Off
Output Voltage Control
Resistor R2 sets the maximum output voltage. Each
transistor reduces the output voltage when turned on.
Vout(Off) + Vref
Figure 29. Regulator with Shutdown
Input
3
10
mF
+
NCP1117
XT50
2
mF
−
10
mF
Input
5.3 V AC Line
5.0 V Battery
3
+
Output
+ 10
1
50 W
RCHG
6.6 V
Figure 30. Digitally Controlled Regulator
+
NCP1117
XT50
10
mF
2
3
+
NCP1117
XT50
mF
1
2.0 k
1
Output
5.0 V to
12 V
+ 10
2
+ 10
mF
The 50 W resistor that is in series with the ground pin of the
upper regulator level shifts its output 300 mV higher than the
lower regulator. This keeps the lower regulator off until the
input source is removed.
Figure 31. Battery Backed−Up Power Supply
Figure 32. Adjusting Output of Fixed
Voltage Regulators
http://onsemi.com
11
NCP1117, NCV1117
ORDERING INFORMATION
Nominal Output Voltage
Package
Shipping†
NCP1117DTAG
Adjustable
DPAK
(Pb−Free)
75 Units / Rail
NCP1117DTARKG
Adjustable
DPAK
(Pb−Free)
2500 / Tape & Reel
NCP1117DTAT5G
Adjustable
DPAK
(Pb−Free)
2500 / Tape & Reel
NCP1117STAT3G
Adjustable
SOT−223
(Pb−Free)
4000 / Tape & Reel
NCP1117DT12G
12
DPAK
(Pb−Free)
75 Units / Rail
NCP1117DT12RKG
12
DPAK
(Pb−Free)
2500 / Tape & Reel
NCP1117ST12T3G
12
SOT−223
(Pb−Free)
4000 / Tape & Reel
NCP1117DT15G
1.5
DPAK
(Pb−Free)
75 Units / Rail
NCP1117DT15RKG
1.5
DPAK
(Pb−Free)
2500 / Tape & Reel
NCP1117ST15T3G
1.5
SOT−223
(Pb−Free)
4000 / Tape & Reel
NCP1117DT18G
1.8
DPAK
(Pb−Free)
75 Units / Rail
NCP1117DT18RKG
1.8
DPAK
(Pb−Free)
2500 / Tape & Reel
NCP1117DT18T5G
1.8
DPAK
(Pb−Free)
2500 / Tape & Reel
NCP1117ST18T3G
1.8
SOT−223
(Pb−Free)
4000 / Tape & Reel
NCP1117DT19RKG
1.9
DPAK
(Pb−Free)
2500 / Tape & Reel
NCP1117DT20G
2.0
DPAK
(Pb−Free)
75 Units / Rail
NCP1117DT20RKG
2.0
DPAK
(Pb−Free)
2500 / Tape & Reel
NCP1117ST20T3G
2.0
SOT−223
(Pb−Free)
4000 / Tape & Reel
NCP1117DT25G
2.5
DPAK
(Pb−Free)
75 Units / Rail
NCP1117DT25RKG
2.5
DPAK
(Pb−Free)
2500 / Tape & Reel
NCP1117DT25T5G
2.5
DPAK
(Pb−Free)
2500 / Tape & Reel
NCP1117ST25T3G
2.5
SOT−223
(Pb−Free)
4000 / Tape & Reel
NCP1117DT285G
2.85
DPAK
(Pb−Free)
75 Units / Rail
NCP1117DT285RKG
2.85
DPAK
(Pb−Free)
2500 / Tape & Reel
Device
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging
Specifications Brochure, BRD8011/D.
*NCV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC−Q100 Qualified and
PPAP Capable
http://onsemi.com
12
NCP1117, NCV1117
ORDERING INFORMATION (continued)
Nominal Output Voltage
Package
Shipping†
NCP1117ST285T3G
2.85
SOT−223
(Pb−Free)
4000 / Tape & Reel
NCP1117DT33G
3.3
DPAK
(Pb−Free)
75 Units / Rail
NCP1117DT33RKG
3.3
DPAK
(Pb−Free)
2500 / Tape & Reel
NCP1117DT33T5G
3.3
DPAK
(Pb−Free)
2500 / Tape & Reel
NCP1117ST33T3G
3.3
SOT−223
(Pb−Free)
4000 / Tape & Reel
NCP1117DT50G
5.0
DPAK
(Pb−Free)
75 Units / Rail
NCP1117DT50RKG
5.0
DPAK
(Pb−Free)
2500 / Tape & Reel
NCP1117ST50T3G
5.0
SOT−223
(Pb−Free)
4000 / Tape & Reel
NCV1117DTARKG*
Adjustable
DPAK
(Pb−Free)
2500 / Tape & Reel
NCV1117STAT3G*
Adjustable
SOT−223
(Pb−Free)
4000 / Tape & Reel
NCV1117ST12T3G*
12
SOT−223
(Pb−Free)
4000 / Tape & Reel
NCV1117DT15RKG*
1.5
DPAK
(Pb−Free)
2500 / Tape & Reel
NCV1117ST15T3G*
1.5
SOT−223
(Pb−Free)
4000 / Tape & Reel
NCV1117DT18RKG*
1.8
DPAK
(Pb−Free)
2500 / Tape & Reel
NCV1117DT18T5G*
1.8
DPAK
(Pb−Free)
2500 / Tape & Reel
NCV1117ST18T3G*
1.8
SOT−223
(Pb−Free)
4000 / Tape & Reel
NCV1117DT20RKG*
2.0
DPAK
(Pb−Free)
2500 / Tape & Reel
NCV1117ST20T3G*
2.0
SOT−223
(Pb−Free)
4000 / Tape & Reel
NCV1117DT25RKG*
2.5
DPAK
(Pb−Free)
2500 / Tape & Reel
NCV1117ST25T3G*
2.5
SOT−223
(Pb−Free)
4000 / Tape & Reel
NCV1117DT33T5G*
3.3
DPAK
(Pb−Free)
2500 / Tape & Reel
NCV1117ST33T3G*
3.3
SOT−223
(Pb−Free)
4000 / Tape & Reel
NCV1117DT50RKG*
5.0
DPAK
(Pb−Free)
2500 / Tape & Reel
NCV1117ST50T3G*
5.0
SOT−223
(Pb−Free)
4000 / Tape & Reel
Device
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging
Specifications Brochure, BRD8011/D.
*NCV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC−Q100 Qualified and
PPAP Capable
http://onsemi.com
13
NCP1117, NCV1117
MARKING DIAGRAMS − NCP PREFIX
SOT−223
ST SUFFIX
CASE 318H
AYW
117−A G
G
1
2
AYW
17−15 G
G
3
2
1
AYW
17−19 G
G
AYW
17−18 G
G
3
2
1
3
2
1
3
1.5 V
1.8 V
1.9 V
AYW
7−285 G
G
AYW
17−33 G
G
AYW
117−5 G
G
Adjustable
2
1
3
2
1
2.85 V
3
AYW
117−2 G
G
2
1
3.3 V
2
1
AYW
17−25 G
G
3
2
1
2.0 V
2.5 V
AYW
17−12 G
G
3
2
1
3
5.0 V
12 V
17−19G
ALYWW
117−2G
ALYWW
DPAK
DT SUFFIX
CASE 369C
117AJG
ALYWW
17−15G
ALYWW
2
1
17−18G
ALYWW
2
3
Adjustable
2
2
1
3
1
2
1
3
17−25G
ALYWW
3
2
1
3
1
1.5 V
1.8 V
1.9 V
2.0 V
17285G
ALYWW
17−33G
ALYWW
117−5G
ALYWW
17−12G
ALYWW
2
1
2
3
2.85 V
1
2
3
1
3.3 V
5.0 V
A
= Assembly Location
L
= Wafer Lot
Y
= Year
WW, W = Work Week
G or G = Pb−Free Package
(Note: Microdot may be in either location)
http://onsemi.com
14
2.5 V
2
3
1
3
12 V
3
3
NCP1117, NCV1117
MARKING DIAGRAMS − NCV PREFIX
SOT−223
ST SUFFIX
CASE 318H
AYW
117AV G
G
1
2
AYW
1715V G
G
3
1
Adjustable
2
AYW
1718V G
G
3
2
1
2
1
3
2.5 V
2
1
2.0 V
AYW
1733V G
G
AYW
1725V G
G
2
3
1.8 V
1.5 V
1
AYW
1172V G
G
AYW
1712V G
G
3
2
1
3.3 V
3
12 V
DPAK
DT SUFFIX
CASE 369C
17AJVG
ALYWW
1715VG
ALYWW
2
1
1718VG
ALYWW
2
3
2
1
Adjustable
3
1
1.5 V
1725VG
ALYWW
1
1733VG
ALYWW
1
1175VG
ALYWW
2
3
3.3 V
A
= Assembly Location
L
= Wafer Lot
Y
= Year
WW, W = Work Week
G or G = Pb−Free Package
(Note: Microdot may be in either location)
http://onsemi.com
15
3
2.0 V
2
3
2.5 V
2
3
1.8 V
2
1
1172VG
ALYWW
1
3
5.0 V
3
NCP1117, NCV1117
PACKAGE DIMENSIONS
SOT−223
ST SUFFIX
CASE 318H
ISSUE O
0.08
E
0.2
M
C B
C
S
B
S
H
B
0.1
M
C A
S
B
S
A
b
D
b2
e1
0.1
M
A
B
1
E1
A1
A
B
(b)
(b2)
ÇÇÇÇÇÇÇ
ÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉ
ÇÇÇÇÇÇÇ
ÇÇÇ
ÉÉÉ
ÉÉÉ
ÇÇÇ
c
c1
T
b1
b3
SECTION B−B
C A
e
2
4
S
3
A
NOTES:
1. DIMENSIONS ARE IN MILLIMETERS.
2. INTERPRET DIMENSIONS AND TOLERANCES
PER ASME Y14.5M, 1994.
3. DIMENSION E1 DOES NOT INCLUDE INTERLEAD
FLASH OR PROTRUSION. INTERLEAD FLASH OR
PROTRUSION SHALL NOT EXCEED 0.23 PER
SIDE.
4. DIMENSIONS b AND b2 DO NOT INCLUDE
DAMBAR PROTRUSION. ALLOWABLE DAMBAR
PROTRUSION SHALL BE 0.08 TOTAL IN EXCESS
OF THE b AND b2 DIMENSIONS AT MAXIMUM
MATERIAL CONDITION.
5. TERMINAL NUMBERS ARE SHOWN FOR
REFERENCE ONLY.
6. DIMENSIONS D AND E1 ARE TO BE DETERMINED
AT DATUM PLANE H.
SECTION A−A
L
3.8
0.15
2.0
0.079
2.3
0.091
6.3
0.248
2.0
0.079
1.5
0.059
SCALE 6:1
mm Ǔ
ǒinches
*For additional information on our Pb−Free strategy and soldering
details, please download the ON Semiconductor Soldering and
Mounting Techniques Reference Manual, SOLDERRM/D.
http://onsemi.com
16
e1
L
T
SOLDERING FOOTPRINT*
2.3
0.091
DIM
A
A1
b
b1
b2
b3
c
c1
D
E
E1
e
MILLIMETERS
MIN
MAX
--1.80
0.02
0.11
0.60
0.88
0.60
0.80
2.90
3.10
2.90
3.05
0.24
0.35
0.24
0.30
6.30
6.70
6.70
7.30
3.30
3.70
2.30
4.60
--0.25
0_
10_
NCP1117, NCV1117
PACKAGE DIMENSIONS
DPAK
DT SUFFIX
CASE 369C
ISSUE D
A
E
b3
c2
B
Z
D
1
L4
A
4
L3
b2
e
2
NOTES:
1. DIMENSIONING AND TOLERANCING PER ASME
Y14.5M, 1994.
2. CONTROLLING DIMENSION: INCHES.
3. THERMAL PAD CONTOUR OPTIONAL WITHIN DIMENSIONS b3, L3 and Z.
4. DIMENSIONS D AND E DO NOT INCLUDE MOLD
FLASH, PROTRUSIONS, OR BURRS. MOLD
FLASH, PROTRUSIONS, OR GATE BURRS SHALL
NOT EXCEED 0.006 INCHES PER SIDE.
5. DIMENSIONS D AND E ARE DETERMINED AT THE
OUTERMOST EXTREMES OF THE PLASTIC BODY.
6. DATUMS A AND B ARE DETERMINED AT DATUM
PLANE H.
C
H
DETAIL A
3
DIM
A
A1
b
b2
b3
c
c2
D
E
e
H
L
L1
L2
L3
L4
Z
c
b
0.005 (0.13)
M
H
C
L2
GAUGE
PLANE
C
L
SEATING
PLANE
A1
L1
DETAIL A
ROTATED 905 CW
INCHES
MIN
MAX
0.086 0.094
0.000 0.005
0.025 0.035
0.030 0.045
0.180 0.215
0.018 0.024
0.018 0.024
0.235 0.245
0.250 0.265
0.090 BSC
0.370 0.410
0.055 0.070
0.108 REF
0.020 BSC
0.035 0.050
−−− 0.040
0.155
−−−
MILLIMETERS
MIN
MAX
2.18
2.38
0.00
0.13
0.63
0.89
0.76
1.14
4.57
5.46
0.46
0.61
0.46
0.61
5.97
6.22
6.35
6.73
2.29 BSC
9.40 10.41
1.40
1.78
2.74 REF
0.51 BSC
0.89
1.27
−−−
1.01
3.93
−−−
SOLDERING FOOTPRINT*
6.20
0.244
2.58
0.102
5.80
0.228
3.00
0.118
1.60
0.063
6.17
0.243
SCALE 3:1
mm Ǔ
ǒinches
*For additional information on our Pb−Free strategy and soldering
details, please download the ON Semiconductor Soldering and
Mounting Techniques Reference Manual, SOLDERRM/D.
ON Semiconductor and
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks,
copyrights, trade secrets, and other intellectual property. A listing of SCILLC’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent−Marking.pdf. SCILLC
reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any
particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without
limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications
and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC
does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where
personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and
its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly,
any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture
of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.
PUBLICATION ORDERING INFORMATION
LITERATURE FULFILLMENT:
Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA
Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada
Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada
Email: [email protected]
N. American Technical Support: 800−282−9855 Toll Free
USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81−3−5817−1050
http://onsemi.com
17
ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local
Sales Representative
NCP1117/D