AD ADV3220ACPZ

800 MHz, 2:1 Analog Multiplexers
ADV3219/ADV3220
Excellent ac performance
−3 dB bandwidth
800 MHz (200 mV p-p)
730 MHz (2 V p-p)
Slew rate: 2800 V/μs
Low power: 75 mW, VS = ±5 V
Excellent video performance
>100 MHz, 0.1 dB gain flatness
0.02% differential gain/0.02° differential phase error
(RL = 150 Ω)
Gain = +1 (ADV3219) or gain = +2 (ADV3220)
Low crosstalk of −82 dB @ 5 MHz and −60 dB @ 100 MHz
High impedance output disable allows connection of
multiple devices without loading the output bus
8-lead LFCSP
FUNCTIONAL BLOCK DIAGRAM
ADV3219
(ADV3220)
IN0 1
8 SELECT
7 EN
GND 2
IN1 3
G = +1
(G = +2)
6 OUT
5 V–
V+ 4
08649-001
FEATURES
Figure 1.
APPLICATIONS
Routing of high speed signals including
Video (NTSC, PAL, S, SECAM, YUV, and RGB)
Compressed video (MPEG, wavelet)
3-level digital video (HDB3)
Data communications
Telecommunications
GENERAL DESCRIPTION
The ADV3219 and ADV3220 are high speed, high slew rate,
buffered, 2:1 analog multiplexers. They offer a −3 dB signal
bandwidth greater than 800 MHz and channel switch times of
less than 20 ns with 1% settling. With −60 dB of crosstalk and
−82 dB isolation (at 100 MHz), the ADV3219 and ADV3220 are
useful in many high speed applications. The differential gain of
less than 0.02% and the differential phase of less than 0.02°,
together with 0.1 dB flatness beyond 100 MHz while driving a
75 Ω back terminated load, make the ADV3219 and ADV3220
ideal for all types of signal switching.
The ADV3219/ADV3220 include an output buffer that can be
placed into a high impedance state to allow multiple outputs to
be connected together for cascading stages without the off channels
loading the output bus. The ADV3219 has a gain of +1, and the
ADV3220 has a gain of +2; they both operate on ±5 V supplies
while consuming less than 7.5 mA of idle current.
The ADV3219/ADV3220 are available in the 8-lead LFCSP
package over the extended industrial temperature range of
−40°C to +85°C.
Rev. 0
Information furnished by Analog Devices is believed to be accurate and reliable. However, no
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other
rights of third parties that may result from its use. Specifications subject to change without notice. No
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.
Trademarks and registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781.329.4700
www.analog.com
Fax: 781.461.3113
©2010 Analog Devices, Inc. All rights reserved.
ADV3219/ADV3220
TABLE OF CONTENTS
Features .............................................................................................. 1
Typical Performance Characteristics ..............................................7
Applications ....................................................................................... 1
Circuit Diagrams ............................................................................ 15
Functional Block Diagram .............................................................. 1
Theory of Operation ...................................................................... 16
General Description ......................................................................... 1
Applications Information .............................................................. 17
Revision History ............................................................................... 2
Circuit Layout ............................................................................. 17
Specifications..................................................................................... 3
Termination................................................................................. 17
Absolute Maximum Ratings............................................................ 5
Capacitive Load .......................................................................... 17
Thermal Resistance ...................................................................... 5
Outline Dimensions ....................................................................... 18
Power Dissipation ......................................................................... 5
Ordering Guide .......................................................................... 18
ESD Caution .................................................................................. 5
Pin Configuration and Function Descriptions ............................. 6
REVISION HISTORY
4/10—Revision 0: Initial Version
Rev. 0 | Page 2 of 20
ADV3219/ADV3220
SPECIFICATIONS
VS = ±5 V, TA = 25°C, RL = 150 Ω, CL = 4 pF, ADV3219 at G = +1, ADV3220 at G = +2, unless otherwise noted.
Table 1.
Parameter
DYNAMIC PERFORMANCE
−3 dB Bandwidth
Gain Flatness
Propagation Delay
Settling Time
Slew Rate
NOISE/DISTORTION PERFORMANCE
Differential Gain Error
Differential Phase Error
Crosstalk
Off Isolation, Input-Output
Input Second-Order Intercept
Input Third-Order Intercept
Output 1 dB Compression Point
Input Voltage Noise
DC PERFORMANCE
Gain Error
Gain Matching
OUTPUT CHARACTERISTICS
Output Impedance
Output Disable Capacitance
Output Leakage Current
Output Voltage Range
INPUT CHARACTERISTICS
Input Offset Voltage
Input Offset Voltage Drift
Input Voltage Range
Input Capacitance
Input Resistance
Input Bias Current
SWITCHING CHARACTERISTICS
Enable On Time
Switching Time, 2 V Step
Switching Transient (Glitch)
Conditions
Min
ADV3219
Typ
Max
Min
ADV3220
Typ
Max
Unit
200 mV p-p
2 V p-p
0.1 dB, 200 mV p-p
0.1 dB, 2 V p-p
2 V p-p
1%, 2 V step
2 V step, peak
840
600
100
100
700
5
2200
800
730
100
100
650
5
2800
MHz
MHz
MHz
MHz
ps
ns
V/μs
NTSC or PAL
NTSC or PAL
f = 100 MHz
f = 5 MHz
f = 100 MHz, one channel
f = 70 MHz, ADV3220, RL = 100 Ω
f = 70 MHz, ADV3220, RL = 100 Ω
f = 70 MHz, ADV3220, RL = 100 Ω
10 MHz to 100 MHz
0.02
0.02
−70
−90
−83
0.02
0.02
−60
−82
−82
47
34
20
17
%
Degrees
dB
dB
dB
dBm
dBm
dBm
nV/√Hz
16
No load
RL = 150 Ω
Channel-to-channel, no load
DC, enabled
Disabled
Disabled
Disabled
No load
Load
Short-circuit current
0.75
1
1
1.1
0.75
1
0.02
0.04
1
2.9
2.8
Worst case (all configurations)
No load
RL = 150 Ω
Any switch configuration
Output enabled
Output enabled
1
50% SELECT to 1% settling
IN0 to IN1 switching
Rev. 0 | Page 3 of 20
1
1.1
Ω
MΩ
pF
μA
V
V
mA
1
1.0
2
±3
±3
50
±5
±10
±3
±3
0.6
10
5
15
20
70
2.9
2.75
21
1
12
1.2
2
±3
±3
50
±5
±10
±1.5
±1.5
0.6
10
6
15
20
100
%
%
%
21
12
mV
μV/°C
V
V
pF
MΩ
μA
ns
ns
mV p-p
ADV3219/ADV3220
Parameter
POWER SUPPLIES
Supply Current
Conditions
Supply Voltage Range
PSR
Min
ADV3219
Typ
Max
ADV3220
Typ
Max
Unit
V+, output enabled, no load
V+, output disabled (EN high)
7
1.6
8
2.0
7.5
1.8
9
2.2
mA
mA
V−, output enabled, no load
V−, output disabled (EN high)
7
1.6
8
2.0
7.5
1.8
9
2.2
mA
mA
±5.5
V
dB
dB
+85
°C
°C/W
±4.5
f = 100 kHz
f = 1 MHz
TEMPERATURE
Operating Temperature Range
Operating Junction-to-Ambient
Thermal Impedance, θJA
Min
Still air
Still air
±5.5
±4.5
−72
−62
−40
−69
−60
+85
85
−40
85
Table 2. Logic Levels
VIH
SELECT, EN
VIL
SELECT, EN
IIH
SELECT, EN
IIL
SELECT, EN
+2.0 V minimum
+0.8 V maximum
±2 μA maximum
±2 μA maximum
Rev. 0 | Page 4 of 20
ADV3219/ADV3220
ABSOLUTE MAXIMUM RATINGS
POWER DISSIPATION
Table 3.
Rating
12 V
V− to V+
0 to V+
(V+ − 1 V) to (V− + 1 V)
Momentary
50 mA
−65°C to +150°C
−40°C to +85°C
150°C
THERMAL RESISTANCE
θJA is specified for the worst-case conditions, that is, a device
soldered in a circuit board for surface-mount packages.
Table 4. Thermal Resistance
Package Type
8-Lead LFCSP
θJA
85
θJC
23
Packaged in an 8-lead LFCSP, the ADV3219 and ADV3220
junction-to-ambient thermal impedance (θJA) is 85°C/W. For longterm reliability, the maximum allowed junction temperature of the
die, TJ, should not exceed 125°C. Temporarily exceeding this
limit can cause a shift in parametric performance due to a change
in stresses exerted on the die by the package. Figure 2 shows the
range of the allowed internal die power dissipations that meet
these conditions over the −40°C to +85°C ambient temperature
range. When using Figure 2, do not include the external load
power in the maximum power calculation, but do include the
load current through the die output transistors.
1.5
TJ = 125°C
MAXIMUM POWER (W)
Stresses above those listed under Absolute Maximum Ratings
may cause permanent damage to the device. This is a stress
rating only; functional operation of the device at these or any
other conditions above those indicated in the operational
section of this specification is not implied. Exposure to absolute
maximum rating conditions for extended periods may affect
device reliability.
The ADV3219/ADV3220 are operated with ±5 V supplies and
can drive loads down to 150 Ω, resulting in a wide range of
possible power dissipations. For this reason, extra care must
be taken derating the operating conditions based on ambient
temperature.
1.2
0.9
0.6
Unit
°C/W
0.3
15
25
35
45
55
65
AMBIENT TEMPERATURE (°C)
75
85
08649-002
Parameter
Supply Voltage (V+ − V−)
Analog Input Voltage
Digital Input Voltage
Output Voltage (Disabled Output)
Output Short-Circuit
Duration
Current
Temperature
Storage Temperature Range
Operating Temperature Range
Junction Temperature
Figure 2. Maximum Die Power Dissipation vs. Ambient Temperature
ESD CAUTION
Rev. 0 | Page 5 of 20
ADV3219/ADV3220
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS
IN0 1
8 SELECT
GND 2
ADV3219/
ADV3220
7 EN
IN1 3
TOP VIEW
(Not to Scale)
6 OUT
5 V–
NOTES
1. CONNECT THE EXPOSED
PAD TO GROUND.
08649-003
V+ 4
Figure 3. Pin Configuration
Table 5. Pin Function Descriptions
Pin No.
1
2
3
4
5
6
7
Mnemonic
IN0
GND
IN1
V+
V−
OUT
EN
Descriptions
Analog Input.
Ground.
Analog Input.
Positive Power Supply.
Negative Power Supply.
Analog Output.
Output Enable (Low True).
8
N/A 1
SELECT
EP
Logic Input for Analog Input Selection.
Exposed Pad. Connect the exposed pad to ground.
1
N/A means not applicable.
Table 6. Truth Table
SELECT
0
1
0
1
EN
OUT
IN0
IN1
High-Z
High-Z
0
0
1
1
Rev. 0 | Page 6 of 20
ADV3219/ADV3220
TYPICAL PERFORMANCE CHARACTERISTICS
4
3
2
1
0
–1
3
2
1
0
–1
4pF
GAIN (dB)
0pF
–2
–3
–4
–5
–6
–7
–8
2pF
–9
–10
10pF
10
100
1k
10k
FREQUENCY (MHz)
1
10
100
1k
10k
FREQUENCY (MHz)
Figure 7. ADV3220 Small Signal Frequency Response with
Capacitive Loads, 200 mV p-p Output
GAIN (dB)
4pF
0pF
10pF
10
100
1k
10k
FREQUENCY (MHz)
4pF
2pF
0pF
10pF
1
10
100
1k
10k
FREQUENCY (MHz)
Figure 5. ADV3219 Large Signal Frequency Response with
Capacitive Loads, 2 V p-p Output
0.2
3
2
1
0
–1
–2
–3
–4
–5
–6
–7
–8
–9
–10
–11
–12
08649-008
2pF
08649-005
Figure 8. ADV3220 Large Signal Frequency Response with
Capacitive Loads, 2 V p-p Output
0.2
0pF
2pF
4pF
10pF
0.1
VOUT (V)
0.1
0pF
2pF
4pF
10pF
0
–0.1
–0.2
0
5
10
TIME (ns)
15
20
08649-006
–0.1
0
Figure 6. ADV3219 Small Signal Pulse Response vs. Capacitive Load,
200 mV p-p Output
–0.2
0
5
10
TIME (ns)
15
20
08649-009
GAIN (dB)
10pF
4
1
VOUT (V)
0pF
–11
–12
Figure 4. ADV3219 Small Signal Frequency Response with Capacitive Loads,
200 mV p-p Output
4
3
2
1
0
–1
–2
–3
–4
–5
–6
–7
–8
–9
–10
–11
–12
2pF
–9
–10
–11
–12
1
4pF
–2
–3
–4
–5
–6
–7
–8
08649-007
4
08649-004
GAIN (dB)
VS = ±5 V, TA = 25°C, RL = 150 Ω, CL = 4 pF, ADV3219 at G = +1, ADV3220 at G = +2, unless otherwise noted.
Figure 9. ADV3220 Small Signal Pulse Response vs. Capacitive Load,
200 mV p-p Output
Rev. 0 | Page 7 of 20
ADV3219/ADV3220
2
2
0pF
2pF
4pF
10pF
1
VOUT (V)
0
0
–1
–1
0
5
10
15
–2
08649-010
–2
20
TIME (ns)
0
5
10
15
08649-013
VOUT (V)
1
0pF
2pF
4pF
10pF
20
TIME (ns)
Figure 10. ADV3219 Large Signal Pulse Response vs. Capacitive Load,
2 V p-p Output
Figure 13. ADV3220 Large Signal Pulse Response vs. Capacitive Load,
2 V p-p Output
3000
1.5
4000
2000
1.0
1.5
3000
1.0
0.5
dv/dt
0
0
–1000
–0.5
0.5
1000
dv/dt
0
0
VOUT (V)
SLEW RATE (V/µs)
1000
VOUT (V)
SLEW RATE (V/µs)
2000
–1000
–0.5
–2000
VOUT
–2000
VOUT
–1.0
–1.0
–3000
1.0
1.5
2.0
2.5
3.0
3.5
–1.5
4.0
–4000
TIME (ns)
0
2.0
2.5
3.0
3.5
4000
VOUT
–1.5
4.0
1.5
3000
2000
1.0
SLEW RATE (V/µs)
1000
dv/dt
0
–1000
VOUT (V)
0.5
–0.5
1.0
VOUT
2000
0.5
1000
dv/dt
0
0
–1000
–0.5
–2000
–2000
–1.0
–1.0
–3000
0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
–1.5
4.0
TIME (ns)
–4000
Figure 12. ADV3219 Large Signal Falling Slew Rate with 4 pF Load,
2 V p-p Output
0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
–1.5
4.0
TIME (ns)
Figure 15. ADV3220 Large Signal Falling Slew Rate with 4 pF Load,
2 V p-p Output
Rev. 0 | Page 8 of 20
08649-015
–3000
08649-012
SLEW RATE (V/µs)
1.5
Figure 14. ADV3220 Large Signal Rising Slew Rate with 4 pF Load,
2 V p-p Output
1.5
0
1.0
TIME (ns)
Figure 11. ADV3219 Large Signal Rising Slew Rate with 4 pF Load,
2 V p-p Output
3000
0.5
08649-014
0.5
VOUT (V)
0
08649-011
–3000
ADV3219/ADV3220
1.5
1.5
2.1
FALLING EDGE
1.0
1.9
2.1
FALLING EDGE
1.0
1.9
1.7
1.7
1.3
VOUT (V)
1.5
SELECT
0
–0.5
1.5
SELECT
0
1.3
–0.5
1.1
1.1
–1.0
0.9
–1.5
10
0.7
30
20
TIME (ns)
0.9
–1.5
08649-016
0
RISING EDGE
0
10
TIME (ns)
Figure 16. ADV3219 Switching Time
0.5
0.7
30
20
Figure 19. ADV3220 Switching Time
0.5
6
0.4
6
0.4
5
5
4
3
OUTPUT
2
–0.1
–0.2
VOUT (V)
0.1
4
0.2
EN (V)
0.2
0
EN
0.3
0.1
3
OUTPUT
0
2
–0.1
–0.2
1
–0.3
EN (V)
EN
0.3
1
–0.3
0
0
–0.4
10
20
30
40
–1
50
–0.5
TIME (ns)
0
10
30
40
Figure 20. ADV3220 Enable Glitch
3
2.1
2.1
EN
EN
1.9
1.7
1.5
0
1.3
INPUT –1V
–1
INPUT +0.5V
1
VOUT (V)
INPUT +1V
1
1.9
2
EN (V)
2
–2
1.5
1.3
INPUT –0.5V
–1
1.1
–2
10
20
TIME (ns)
0.7
30
08649-018
0.9
–3
1.7
0
1.1
0
–1
50
TIME (ns)
Figure 17. ADV3219 Enable Glitch
3
20
EN (V)
0
08649-017
–0.5
08649-020
–0.4
Figure 18. ADV3219 Enable On Timing
0.9
–3
0
10
20
TIME (ns)
Figure 21. ADV3220 Enable On Timing
Rev. 0 | Page 9 of 20
0.7
30
08649-021
VOUT (V)
08649-019
RISING EDGE
–1.0
VOUT (V)
SELECT (V)
0.5
SELECT (V)
VOUT (V)
0.5
ADV3219/ADV3220
1.5
1.5
2.1
INPUT +1V
INPUT +0.5V
1.9
1.0
2.1
1.9
1.0
1.7
1.7
1.5
1.3
–0.5
1.5
EN
0
1.3
–0.5
1.1
1.1
–1.0
0.9
–1.5
10
20
0.7
40
30
TIME (ns)
0.9
–1.5
08649-022
0
INPUT –0.5V
0
20
0.7
40
30
TIME (ns)
Figure 22. ADV3219 Disable Timing
100
10
Figure 25. ADV3220 Disable Timing
100
6
80
6
80
5
5
60
4
3
OUTPUT
0
2
–20
–40
20
VOUT (V)
20
3
OUTPUT
0
2
–20
–40
1
–60
4
40
SELECT (V)
40
1
–60
SELECT
SELECT (V)
60
SELECT
0
0
–80
0
10
20
30
40
–1
50
–100
08649-023
–100
TIME (ns)
0
30
40
–1
50
Figure 26. ADV3220 Switching Glitch Rising Edge
100
6
SELECT
80
20
TIME (ns)
Figure 23. ADV3219 Switching Glitch Rising Edge
100
10
08649-026
–80
6
SELECT
80
5
5
60
4
3
OUTPUT
0
2
–20
–40
20
VOUT (V)
20
4
40
SELECT (V)
40
3
OUTPUT
0
2
–20
–40
1
–60
SELECT (V)
60
1
–60
0
0
–80
–100
0
10
20
30
40
TIME (ns)
–1
50
08649-024
–80
–100
Figure 24. ADV3219 Switching Glitch Falling Edge
0
10
20
30
40
TIME (ns)
Figure 27. ADV3220 Switching Glitch Falling Edge
Rev. 0 | Page 10 of 20
–1
50
08649-027
VOUT (V)
08649-025
INPUT –1V
–1.0
VOUT (V)
EN (V)
EN
0
VOUT (V)
0.5
EN (V)
VOUT (V)
0.5
ADV3219/ADV3220
5
5
1.25
1.25
INPUT
4
4
3
0.75
0.75
0.25
ERROR
0
–1
–0.25
ERROR (%)
1
1
0.25
ERROR
0
–1
–0.25
OUTPUT (V)
2
OUTPUT (V)
2
OUTPUT
–2
–2
–3
–0.75
–3
–0.75
OUTPUT
–4
0
1
2
3
4
5
6
7
8
9
–1.25
10
08649-028
–5
TIME (ns)
–5
0
1
3
4
5
6
7
8
9
–1.25
10
TIME (ns)
Figure 28. ADV3219 Settling Time 2 V Output Step
Figure 31. ADV3220 Settling Time 2 V Output Step
10
10
0
0
–10
–10
–20
–20
–30
PSR (dB)
PSR (dB)
2
08649-031
–4
PSR (V–)
–40
–50
–30
PSR (V–)
–40
–50
PSR (V+)
–60
–60
–70
–70
–80
–80
10
100
1k
10k
FREQUENCY (MHz)
–90
0.1
1
Figure 29. ADV3219 PSR
180
160
160
140
140
NOISE (nV/ Hz)
200
180
120
100
80
10M
100M
80
40
20
20
10M
FREQUENCY (Hz)
100M
08649-030
60
1M
10k
100
40
100k
1k
120
60
10k
100
Figure 32. ADV3220 PSR
200
0
1k
10
FREQUENCY (MHz)
Figure 30. ADV3219 Noise vs. Frequency
0
1k
10k
100k
1M
FREQUENCY (Hz)
Figure 33. ADV3220 Noise vs. Frequency
Rev. 0 | Page 11 of 20
08649-033
1
08649-029
–90
0.1
08649-032
PSR (V+)
NOISE (nV/ Hz)
ERROR (%)
INPUT
3
–20
–20
–30
–30
–40
–40
–50
–50
CROSSTALK (dB)
–70
–80
–60
–70
–80
–90
–90
–100
–100
10
100
1k
10k
FREQUENCY (MHz)
–110
1
–30
–30
–40
–40
FEEDTHROUGH (dB)
FEEDTHROUGH (dB)
–20
–50
–60
–70
–80
–60
–70
–80
–100
–100
–110
10k
FREQUENCY (MHz)
08649-036
–90
1k
–110
1
10
100
1k
10k
FREQUENCY (MHz)
Figure 35. ADV3219 Off Isolation vs. Frequency
Figure 38. ADV3220 Off Isolation vs. Frequency
1M
1M
100k
INPUT IMPEDANCE (Ω)
100k
10k
1k
100
10k
1k
100
10
1
1
10
100
1k
FREQUENCY (MHz)
10
08649-041
DISABLED OUTPUT IMPEDANCE (Ω)
10k
–50
–90
100
1k
Figure 37. ADV3220 Crosstalk vs. Frequency
–20
10
100
FREQUENCY (MHz)
Figure 34. ADV3219 Crosstalk vs. Frequency
1
10
08649-039
1
08649-034
–110
08649-037
–60
1
10
100
1k
FREQUENCY (MHz)
Figure 36. ADV3219 Disabled Output Impedance vs. Frequency
Figure 39. ADV3219/ADV3220 Input Impedance vs. Frequency
Rev. 0 | Page 12 of 20
08649-040
CROSSTALK (dB)
ADV3219/ADV3220
ADV3219/ADV3220
ENABLED OUTPUT IMPEDANCE (Ω)
10k
1k
100
10
1
0.1
1
10
100
1k
FREQUENCY (MHz)
1k
100
10
1
0.1
0.01
1
10
08649-045
0.01
08649-042
ENABLED OUTPUT IMPEDANCE (Ω)
10k
1k
100
FREQUENCY (MHz)
Figure 40. ADV3219 Enabled Output Impedance vs. Frequency
Figure 43. ADV3220 Enabled Output Impedance vs. Frequency
–10
5
5
–30
–40
–50
10
100
1k
FREQUENCY (MHz)
3
2
OUTPUT
1
1
0
0
–1
–1
–2
–2
–3
–3
–4
–4
–5
100
–5
08649-043
1
4
3
2
–60
–70
4
0
20
40
60
80
08649-046
OUTPUT VOLTAGE (V)
INPUT S11 (dB)
–20
INPUT VOLTAGE (V)
INPUT
TIME (ns)
Figure 41. ADV3219/ADV3220, S11 (Measured on Evaluation Board)
Figure 44. ADV3219 Overdrive Recovery
1M
0
1k
100
–20
–30
–40
–50
–60
–70
HD2 0dBm
HD3 0dBm
HD2 10dBm
HD3 10dBm
10
–80
1
1
10
100
1k
FREQUENCY (MHz)
–90
10
100
1k
INPUT FREQUENCY (MHz)
Figure 42. ADV3220 Disabled Output Impedance vs. Frequency
Figure 45. ADV3220 Harmonic Distortion, RL = 100 Ω, CL = 4 pF
Rev. 0 | Page 13 of 20
08649-047
HARMONIC DISTORTION (dBc)
10k
08649-044
DISABLED OUTPUT IMPEDANCE (Ω)
–10
100k
ADV3219/ADV3220
60
35
30
25
20
15
10
5
1k
INPUT FREQUENCY (MHz)
1.0
OUTPUT
1
0.5
0
0
–1
–0.5
–2
–1.0
–3
–1.5
–4
–2.0
–5
–2.5
100
0
20
40
60
80
TIME (ns)
Figure 47. ADV3220 Overdrive Recovery
OUTPUT P1dB GAIN COMPRESSION (dBm)
2
INPUT VOLTAGE (V)
1.5
100
1k
24
22
20
18
16
14
12
10
8
6
4
2
0
10
08649-049
OUTPUT VOLTAGE (V)
3
10
Figure 48. ADV3220 Input Second-Order Intercept, RL = 100 Ω,
CL = 4 pF, 0 dBm Input
2.5
2.0
20
INPUT FREQUENCY (MHz)
INPUT
4
30
0
10
Figure 46. ADV3220 Input Third-Order Intercept, RL = 100 Ω,
CL = 4 pF, 0 dBm Input
5
40
100
INPUT FREQUENCY (MHz)
1k
08649-051
100
08649-048
0
10
50
08649-050
INPUT SECOND-ORDER INTERCEPT (dBm)
INPUT THIRD-ORDER INTERCEPT (dBm)
40
Figure 49. ADV3220 Output P1dB Gain Compression, RL = 100 Ω, CL = 4 pF
Rev. 0 | Page 14 of 20
ADV3219/ADV3220
CIRCUIT DIAGRAMS
V+
IN
08649-052
1.0pF (ADV3219)
1.2pF (ADV3220)
V–
08649-055
OUT
0.6pF
Figure 53. ADV3219/ADV3220 Disabled Output
Figure 50. ADV3219/ADV3220 Analog Input
V+
OUT
1kΩ
V–
08649-056
08649-053
SELECT, EN
Figure 54. ADV3219/ADV3220 Logic Input
Figure 51. ADV3219 Enabled Analog Output
V+
OUT
GND
08649-054
1kΩ
SELECT,
EN
INx, OUT
V–
GND
08649-057
1kΩ
Figure 55. ADV3219/ADV3220 ESD Schematic
Figure 52. ADV3220 Enabled Analog Output
Rev. 0 | Page 15 of 20
ADV3219/ADV3220
THEORY OF OPERATION
The ADV3219/ADV3220 are dual-supply, high performance 2:1
analog multiplexers, optimized for switching between multiple
video sources. High peak slew rates enable wide bandwidth operation for large input signals. Internal compensation provides for
high phase margin, allowing low overshoot and fast settling for
pulsed inputs. Low enabled and disabled power consumption make
the ADV3219 and ADV3220 ideal for constructing larger arrays.
The multiplexer is organized as two input transconductance
stages tied in parallel with a single output transimpedance stage
followed by a unity-gain buffer. Internal voltage feedback sets
the gain. The ADV3219 is configured as a gain of 1, whereas the
ADV3220 uses a resistive feedback network and ground buffer to
realize gain-of-2 operation (see Figure 56). The ground reference
for the ADV3220 is taken from the exposed pad of the package.
To minimize spurious signals on the output, tie the exposed pad
to a low inductance, quiet ground plane.
When not in use, place the OUT pin in a low power, high
impedance disabled mode via the EN logic input. This mode
provides a wideband high impedance on the OUT pin that is
useful when paralleling multiple ADV3219/ADV3220 devices
in a system to create larger switching arrays.
Switching between the inputs is controlled with the SELECT
logic input, with IN0 selected when the SELECT line is a logical
low and IN1 selected when the select line is a logical high. When
EN is a logical low, the output is enabled and connected to one
of the two inputs depending on the state of the SELECT pin.
When EN is a logical high, the output is placed in a high
impedance mode.
When not in use, the output can be placed in a low power, high
impedance disabled mode via the EN logic input.
V+
IN0
×1
OUT
V–
V+
IN1
V–
1kΩ
V+
V–
08649-058
1kΩ
GND
Figure 56. Conceptual Diagram of ADV3220
Rev. 0 | Page 16 of 20
ADV3219/ADV3220
APPLICATIONS INFORMATION
The ADV3219 and ADV3220 are very high speed muxes that
can be used to switch video or RF signals. The low output impedance of the ADV3219/ADV3220 allows the output environment
to be optimized for use in 75 Ω or 50 Ω systems by choosing the
appropriate series termination resistor. For composite video
applications, the ADV3220 (gain of +2) is typically used to
provide compensation for the loss of the output termination.
CIRCUIT LAYOUT
Use of proper high speed design techniques is important to
ensure optimum performance. Use a low inductance ground
plane for power supply bypassing and to provide high quality
return paths for the input and output signals. For best performance,
it is recommended that power supplies be bypassed with 0.1 μF
ceramic capacitors placed as close to the body of the device as
possible. To provide stored energy for lower frequency, high
current output driving, place 10 μF tantalum capacitors farther
from the device.
The input and output signal paths should be stripline or microstrip controlled impedance. Video systems typically use a 75 Ω
characteristic impedance, whereas RF systems typically use 50 Ω.
Various calculators are available to calculate the trace geometry
that is required to produce the proper characteristic impedance.
TERMINATION
For a controlled impedance situation, termination resistors are
required at the inputs and output of the device. The input termination should be a shunt resistor to ground with a value
matching the characteristic impedance of the input trace. To
reduce reflections, place the input termination resistor as close
to the device input pin as possible. To minimize the input-toinput crosstalk, it is important to use a low inductance shield
between input traces to isolate each input. Consideration of
ground current paths must be taken to minimize loop currents
in the shields to prevent them from providing a coupling medium
for crosstalk.
For proper matching, the output series termination resistor
should be the same value as the characteristic impedance of the
output trace and placed as close to the output of the device as
possible. This placement reduces the high frequency effect of
series parasitic inductance, which can affect gain flatness and
−3 dB bandwidth.
CAPACITIVE LOAD
A high frequency output generally has difficulty when driving a
capacitive load. The usual response is some peaking in the frequency domain or some overshoot in the time domain. If these
effects become too large, oscillation can result.
The response of the device under various capacitive loads is
shown in Figure 4 to Figure 10 and in Figure 13. If a condition
arises wherein excessive load capacitance is encountered and
the overshoot is too great or the part oscillates, use a small series
resistor of a few tens of ohms to improve the performance.
Rev. 0 | Page 17 of 20
ADV3219/ADV3220
OUTLINE DIMENSIONS
2.54
2.44
2.34
3.10
3.00 SQ
2.90
0.50 BSC
8
5
1.80
1.70
1.60
EXPOSED
PAD
0.50
0.40
0.30
0.80
0.75
0.70
SEATING
PLANE
0.30
0.25
0.20
1
4
BOTTOM VIEW
TOP VIEW
0.05 MAX
0.02 NOM
COPLANARITY
0.08
0.203 REF
PIN 1
INDICATOR
(R 0.15)
FOR PROPER CONNECTION OF
THE EXPOSED PAD, REFER TO
THE PIN CONFIGURATION AND
FUNCTION DESCRIPTIONS
SECTION OF THIS DATA SHEET.
COMPLIANT TO JEDEC STANDARDS MO-229-WEED
111809-A
PIN 1 INDEX
AREA
Figure 57. 8-Lead Lead Frame Chip Scale Package [LFCSP_WD]
3 mm × 3 mm Body, Very Very Thin, Dual Lead
(CP-8-11)
Dimensions shown in millimeters
ORDERING GUIDE
Model 1
ADV3219ACPZ
ADV3219ACPZ-RL
ADV3219ACPZ-R7
ADV3220ACPZ
ADV3220ACPZ-RL
ADV3220ACPZ-R7
ADV3219-EVALZ
ADV3220-EVALZ
1
Temperature Range
−40°C to +85°C
−40°C to +85°C
−40°C to +85°C
−40°C to +85°C
−40°C to +85°C
−40°C to +85°C
Package Description
8-Lead LFCSP_WD
8-Lead LFCSP_WD, 13” Tape and Reel
8-Lead LFCSP_WD, 7” Tape and Reel
8-Lead LFCSP_WD
8-Lead LFCSP_WD, 13” Tape and Reel
8-Lead LFCSP_WD, 7” Tape and Reel
Evaluation Board
Evaluation Board
Z = RoHS Compliant Part.
Rev. 0 | Page 18 of 20
Package Option
CP-8-11
CP-8-11
CP-8-11
CP-8-11
CP-8-11
CP-8-11
Branding Code
F0H
F0H
F0H
F0J
F0J
F0J
ADV3219/ADV3220
NOTES
Rev. 0 | Page 19 of 20
ADV3219/ADV3220
NOTES
©2010 Analog Devices, Inc. All rights reserved. Trademarks and
registered trademarks are the property of their respective owners.
D08649-0-4/10(0)
Rev. 0 | Page 20 of 20