IRF IRFR4510PBF

PD - 97784
IRFR4510PbF
IRFU4510PbF
Applications
l High Efficiency Synchronous Rectification in SMPS
l Uninterruptible Power Supply
l High Speed Power Switching
l Hard Switched and High Frequency Circuits
HEXFET® Power MOSFET
VDSS
100V
11.1m
RDS(on) typ.
max.
13.9m
ID (Silicon Limited)
63A
ID (Package Limited)
56A
D
G
S
Benefits
l Improved Gate, Avalanche and Dynamic dV/dt
Ruggedness
l Fully Characterized Capacitance and Avalanche
SOA
l Enhanced body diode dV/dt and dI/dt Capability
l Lead-Free
D
D
S
G
G
DPak
IRFR4510PbF
D
S
IPAK
IRFU4510PbF
G
D
S
Gate
Drain
Source
Absolute Maximum Ratings
Symbol
ID @ TC = 25°C
ID @ TC = 100°C
ID @ TC = 25°C
IDM
PD @TC = 25°C
Parameter
Continuous Drain Current, VGS @ 10V (Silicon Limited)
Continuous Drain Current, VGS @ 10V (Silicon Limited)
Continuous Drain Current, VGS @ 10V (Package Limited)
Pulsed Drain Current
Maximum Power Dissipation
c
Linear Derating Factor
Gate-to-Source Voltage
Operating Junction and
Storage Temperature Range
Soldering Temperature, for 10 seconds
(1.6mm from case)
VGS
TJ
TSTG
Avalanche Characteristics
EAS (Thermally limited)
IAR
EAR
Single Pulse Avalanche Energy
Avalanche Current
Repetitive Avalanche Energy
c
d
c
Max.
Units
63
45
56
252
A
143
0.95
± 20
-55 to + 175
W/°C
V
W
°C
300
127
See Fig. 14, 15, 22a, 22b
mJ
A
mJ
Thermal Resistance
Symbol
RJC
RJA
RJA
Parameter
j
Junction-to-Case
Junction-to-Ambient (PCB Mount)
Junction-to-Ambient
i
Typ.
Max.
Units
–––
–––
–––
1.05
50
110
°C/W
ORDERING INFORMATION:
See detailed ordering and shipping information on the last page of this data sheet.
Notes  through ˆ are on page 11
www.irf.com
1
05/02/12
IRFR/U4510PbF
Static @ TJ = 25°C (unless otherwise specified)
Symbol
Parameter
V(BR)DSS
V(BR)DSS/TJ
RDS(on)
VGS(th)
IDSS
Drain-to-Source Breakdown Voltage
Breakdown Voltage Temp. Coefficient
Static Drain-to-Source On-Resistance
Gate Threshold Voltage
Drain-to-Source Leakage Current
IGSS
Gate-to-Source Forward Leakage
Gate-to-Source Reverse Leakage
Internal Gate Resistance
RG(int)
Min.
Typ.
Max.
Units
100
–––
–––
2.0
–––
–––
–––
–––
–––
–––
13.9
4.0
20
250
100
-100
–––
V
V/°C
m
V
–––
–––
0.10
11.1
3.0
–––
–––
–––
–––
0.61
Min.
Typ.
Max.
Units
62
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
54
14
15
39
18
42
42
34
3031
213
104
255
478
–––
81
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
S
Min.
Typ.
Max.
μA
nA
Conditions
VGS = 0V, ID = 250μA
Reference to 25°C, ID = 5mA
VGS = 10V, ID = 38A
VDS = VGS, ID = 100μA
VDS = 100V, VGS = 0V
VDS = 100V, VGS = 0V, TJ = 125°C
VGS = 20V
VGS = -20V
c
f

Dynamic @ TJ = 25°C (unless otherwise specified)
Symbol
gfs
Qg
Qgs
Qgd
Qsync
td(on)
tr
td(off)
tf
Ciss
Coss
Crss
Coss eff. (ER)
Coss eff. (TR)
Parameter
Forward Transconductance
Total Gate Charge
Gate-to-Source Charge
Gate-to-Drain ("Miller") Charge
Total Gate Charge Sync. (Qg - Qgd)
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Effective Output Capacitance (Energy Related)
Effective Output Capacitance (Time Related)
nC
ns
pF
Conditions
VDS = 25V, ID = 38A
ID = 38A
VDS = 50V
VGS = 10V
ID = 38A, VDS =0V, VGS = 10V
VDD = 65V
ID = 38A
RG = 7.5
VGS = 10V
VGS = 0V
VDS = 50V
ƒ = 1.0MHz
VGS = 0V, VDS = 0V to 80V
VGS = 0V, VDS = 0V to 80V
f
f
h
g
Diode Characteristics
Symbol
IS
Parameter
VSD
dv/dt
trr
Continuous Source Current
(Body Diode)
Pulsed Source Current
(Body Diode)
Diode Forward Voltage
Peak Diode Recovery
Reverse Recovery Time
Qrr
Reverse Recovery Charge
IRRM
ton
Reverse Recovery Current
Forward Turn-On Time
ISM
2
c
Units
Conditions
MOSFET symbol
–––
–––
56
showing the
A
G
integral reverse
–––
–––
252
p-n junction diode.
–––
–––
1.3
V
TJ = 25°C, IS = 38A, VGS = 0V
–––
7.0
–––
V/ns TJ = 175°C, IS = 38A, VDS = 100V
–––
34
–––
TJ = 25°C
VR = 86V
ns
–––
39
–––
TJ = 125°C
IF = 38A
di/dt = 100A/μs
–––
47
–––
TJ = 25°C
nC
–––
61
–––
TJ = 125°C
–––
2.4
–––
A
TJ = 25°C
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
f
D
S
e
f
www.irf.com
IRFR/U4510PbF
1000
1000
100
BOTTOM
VGS
15V
10V
6.0V
5.5V
5.0V
4.75V
4.5V
4.25V
TOP
ID, Drain-to-Source Current (A)
ID, Drain-to-Source Current (A)
TOP
VGS
15V
10V
6.0V
5.5V
5.0V
4.75V
4.5V
4.25V
100
10
1
60μs PULSE WIDTH
Tj = 25°C
BOTTOM
10
4.25V
60μs PULSE WIDTH
4.25V
Tj = 175°C
0.1
1
0.1
1
10
100
0.1
V DS, Drain-to-Source Voltage (V)
Fig 1. Typical Output Characteristics
100
2.6
RDS(on) , Drain-to-Source On Resistance
(Normalized)
ID, Drain-to-Source Current (A)
10
Fig 2. Typical Output Characteristics
1000
100
T J = 175°C
T J = 25°C
10
VDS = 25V
60μs PULSE WIDTH
1.0
ID = 38A
VGS = 10V
2.2
1.8
1.4
1.0
0.6
0.2
2
3
4
5
6
7
8
9
-60 -40 -20 0 20 40 60 80 100120140160180
T J , Junction Temperature (°C)
VGS, Gate-to-Source Voltage (V)
Fig 4. Normalized On-Resistance vs. Temperature
Fig 3. Typical Transfer Characteristics
14.0
100000
ID= 38A
VGS, Gate-to-Source Voltage (V)
VGS = 0V,
f = 1 MHZ
C iss = C gs + C gd, C ds SHORTED
C rss = C gd
C oss = C ds + C gd
10000
C, Capacitance (pF)
1
V DS, Drain-to-Source Voltage (V)
Ciss
1000
Coss
Crss
100
12.0
VDS= 80V
VDS= 50V
10.0
VDS= 20V
8.0
6.0
4.0
2.0
0.0
10
1
10
100
1000
VDS, Drain-to-Source Voltage (V)
Fig 5. Typical Capacitance vs. Drain-to-Source Voltage
www.irf.com
0
10
20
30
40
50
60
70
QG, Total Gate Charge (nC)
Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage
3
IRFR/U4510PbF
1000
ID, Drain-to-Source Current (A)
ISD, Reverse Drain Current (A)
1000
T J = 175°C
100
T J = 25°C
10
OPERATION IN THIS AREA
LIMITED BY RDS(on)
100
1msec
10
Limited by
package
1
10msec
0.1
0.01
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
0.1
VSD, Source-to-Drain Voltage (V)
ID, Drain Current (A)
50
40
30
20
10
0
50
75
100
125
150
175
V(BR)DSS , Drain-to-Source Breakdown Voltage (V)
Limited by package
25
100
1000
125
Id = 5mA
120
115
110
105
100
95
-60 -40 -20 0 20 40 60 80 100120140160180
T J , Temperature ( °C )
T C , Case Temperature (°C)
Fig 9. Maximum Drain Current vs.
Case Temperature
Fig 10. Drain-to-Source Breakdown Voltage
1.6
EAS , Single Pulse Avalanche Energy (mJ)
600
1.4
1.2
Energy (μJ)
10
Fig 8. Maximum Safe Operating Area
70
60
1
VDS, Drain-to-Source Voltage (V)
Fig 7. Typical Source-Drain Diode
Forward Voltage
1.0
0.8
0.6
0.4
0.2
0.0
ID
4.7A
12A
BOTTOM 38A
TOP
500
400
300
200
100
0
-20
0
20
40
60
80
100
VDS, Drain-to-Source Voltage (V)
Fig 11. Typical COSS Stored Energy
4
DC
Tc = 25°C
Tj = 175°C
Single Pulse
VGS = 0V
1.0
100μsec
120
25
50
75
100
125
150
175
Starting T J , Junction Temperature (°C)
Fig 12. Maximum Avalanche Energy vs. DrainCurrent
www.irf.com
IRFR/U4510PbF
Thermal Response ( Z thJC ) °C/W
10
1
D = 0.50
0.20
R1
R1
0.10
0.1
J
0.05
0.02
0.01
0.01
J
1
R2
R2
2
1
2
R3
R3
3
C

3
0.6371
Ci= iRi
Ci iRi
1E-005
0.005883
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
SINGLE PULSE
( THERMAL RESPONSE )
0.001
1E-006
Ri (°C/W) i (sec)
0.3442 0.001031
0.0679 0.000061
0.0001
0.001
0.01
0.1
t1 , Rectangular Pulse Duration (sec)
Fig 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case
100
Allowed avalanche Current vs avalanche
pulsewidth, tav, assuming  Tj = 150°C and
Tstart =25°C (Single Pulse)
Avalanche Current (A)
Duty Cycle = Single Pulse
0.01
10
0.05
0.10
1
Allowed avalanche Current vs avalanche
pulsewidth, tav, assuming  j = 25°C and
Tstart = 150°C.
0.1
1.0E-06
1.0E-05
1.0E-04
1.0E-03
1.0E-02
1.0E-01
tav (sec)
Fig 14. Typical Avalanche Current vs.Pulsewidth
EAR , Avalanche Energy (mJ)
150
Notes on Repetitive Avalanche Curves , Figures 14, 15:
(For further info, see AN-1005 at www.irf.com)
1. Avalanche failures assumption:
Purely a thermal phenomenon and failure occurs at a temperature far in
excess of Tjmax. This is validated for every part type.
2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded.
3. Equation below based on circuit and waveforms shown in Figures 16a, 16b.
4. PD (ave) = Average power dissipation per single avalanche pulse.
5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase
during avalanche).
6. Iav = Allowable avalanche current.
7. T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as
25°C in Figure 14, 15).
tav = Average time in avalanche.
D = Duty cycle in avalanche = tav ·f
ZthJC(D, tav) = Transient thermal resistance, see Figures 13)
TOP
Single Pulse
BOTTOM 1.0% Duty Cycle
ID = 38A
125
100
75
50
25
0
25
50
75
100
125
150
175
Starting T J , Junction Temperature (°C)
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC
Iav = 2DT/ [1.3·BV·Zth]
EAS (AR) = PD (ave)·tav
Fig 15. Maximum Avalanche Energy vs. Temperature
www.irf.com
5
IRFR/U4510PbF
20
IF = 25A
V R = 86V
4.0
TJ = 25°C
TJ = 125°C
15
3.5
IRRM (A)
VGS(th) , Gate threshold Voltage (V)
4.5
3.0
ID = 100μA
2.5
ID = 250μA
10
ID = 1.0mA
2.0
ID = 1.0A
5
1.5
0
1.0
-75 -50 -25
0
0
25 50 75 100 125 150 175
200
600
800
1000
diF /dt (A/μs)
T J , Temperature ( °C )
Fig. 17 - Typical Recovery Current vs. dif/dt
Fig 16. Threshold Voltage vs. Temperature
20
350
IF = 38A
V R = 86V
IF = 25A
V R = 86V
300
TJ = 25°C
TJ = 125°C
TJ = 25°C
TJ = 125°C
250
QRR (nC)
15
IRRM (A)
400
10
200
150
100
5
50
0
0
0
200
400
600
800
1000
0
diF /dt (A/μs)
200
400
600
800
1000
diF /dt (A/μs)
Fig. 19 - Typical Stored Charge vs. dif/dt
Fig. 18 - Typical Recovery Current vs. dif/dt
350
IF = 38A
V R = 86V
300
TJ = 25°C
TJ = 125°C
QRR (nC)
250
200
150
100
50
0
0
200
400
600
800
1000
diF /dt (A/μs)
6
Fig. 20 - Typical Stored Charge vs. dif/dt
www.irf.com
IRFR/U4510PbF
Driver Gate Drive
D.U.T
ƒ
-
‚
-
-
„
*
D.U.T. ISD Waveform
Reverse
Recovery
Current
+

RG
dv/dt controlled by RG
Driver same type as D.U.T.
I SD controlled by Duty Factor "D"
D.U.T. - Device Under Test
VDD
P.W.
Period
VGS=10V
Circuit Layout Considerations
 Low Stray Inductance
Ground Plane
Low Leakage Inductance
Current Transformer
+
D=
Period
P.W.
+
+
-
Body Diode Forward
Current
di/dt
D.U.T. VDS Waveform
Diode Recovery
dv/dt
Re-Applied
Voltage
Body Diode
VDD
Forward Drop
Inductor
Current
Inductor Curent
ISD
Ripple  5%
* VGS = 5V for Logic Level Devices
Fig 21. Peak Diode Recovery dv/dt Test Circuit for N-Channel
HEXFET® Power MOSFETs
V(BR)DSS
15V
DRIVER
L
VDS
tp
D.U.T
RG
VGS
20V
+
V
- DD
IAS
A
0.01
tp
I AS
Fig 22a. Unclamped Inductive Test Circuit
RD
VDS
Fig 22b. Unclamped Inductive Waveforms
VDS
90%
VGS
D.U.T.
RG
+
- VDD
V10V
GS
10%
VGS
Pulse Width µs
Duty Factor 
td(on)
Fig 23a. Switching Time Test Circuit
tr
t d(off)
Fig 23b. Switching Time Waveforms
Id
Current Regulator
Same Type as D.U.T.
Vds
Vgs
50K
12V
tf
.2F
.3F
D.U.T.
+
V
- DS
Vgs(th)
VGS
3mA
IG
ID
Current Sampling Resistors
Fig 24a. Gate Charge Test Circuit
www.irf.com
Qgs1 Qgs2
Qgd
Qgodr
Fig 24b. Gate Charge Waveform
7
IRFR/U4510PbF
D-Pak (TO-252AA) Package Outline
Dimensions are shown in millimeters (inches)
D-Pak (TO-252AA) Part Marking Information
(;$03/(
7+,6,6$1,5)5
3$57180%(5
:,7+$66(0%/<
,17(51$7,21$/
/27&2'(
,5)5
$
5(&7,),(5
$66(0%/('21::
/2*2
,17+($66(0%/</,1($
'$7(&2'(
<($5
:((.
/,1($
1RWH3LQDVVHPEO\OLQHSRVLWLRQ
$66(0%/<
LQGLFDWHV/HDG)UHH
/27&2'(
3LQDVVHPEO\OLQHSRVLWLRQLQGLFDWHV
/HDG)UHHTXDOLILFDWLRQWRWKHFRQVXPHUOHYHO
25
3$57180%(5
,17(51$7,21$/
5(&7,),(5
,5)5
'$7(&2'(
3
'(6,*1$7(6/($')5((
3
'(6,*1$7(6/($')5((
/2*2
352'8&7237,21$/
352'8&748$/,),('727+(
$66(0%/<
&21680(5/(9(/237,21$/
/27&2'(
<($5
:((.
$
$66(0%/<6,7(&2'(
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/
8
www.irf.com
IRFR/U4510PbF
I-Pak (TO-251AA) Package Outline
Dimensions are shown in millimeters (inches)
I-Pak (TO-251AA) Part Marking Information
(;$03/( 7+,6,6$1,5)8
:,7+$66(0%/<
/27&2'(
$66(0%/('21::
,17+($66(0%/</,1($
,17(51$7,21$/
5(&7,),(5
/2*2
3$57180%(5
,5)8
$
$66(0%/<
/27&2'(
1RWH3LQDVVHPEO\OLQHSRVLWLRQ
LQGLFDWHV/HDG)UHH
'$7(&2'(
<($5 :((.
/,1($
25
,17(51$7,21$/
5(&7,),(5
/2*2
3$57180%(5
,5)8
$66(0%/<
/27&2'(
'$7(&2'(
3 '(6,*1$7(6/($')5((
352'8&7237,21$/
<($5 :((.
$ $66(0%/<6,7(&2'(
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/
www.irf.com
9
IRFR/U4510PbF
D-Pak (TO-252AA) Tape & Reel Information
Dimensions are shown in millimeters (inches)
TR
TRR
16.3 ( .641 )
15.7 ( .619 )
12.1 ( .476 )
11.9 ( .469 )
FEED DIRECTION
TRL
16.3 ( .641 )
15.7 ( .619 )
8.1 ( .318 )
7.9 ( .312 )
FEED DIRECTION
NOTES :
1. CONTROLLING DIMENSION : MILLIMETER.
2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS ( INCHES ).
3. OUTLINE CONFORMS TO EIA-481 & EIA-541.
13 INCH
16 mm
NOTES :
1. OUTLINE CONFORMS TO EIA-481.
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/
10
www.irf.com
IRFR/U4510PbF
Orderable part number
Package Type
IRFR4510PbF
IRFR4510TRPbF
IRFU4510PbF
D-PAK
D-PAK
I-PAK
Standard Pack
Form
Quantity
Tube/Bulk
75
Tape and Reel
2000
Tube/Bulk
75
Note
†
Qualification Information
Industrial
Qualification level
††
†††
(per JEDEC JESD47F
guidelines)
Comments: This family of products has passed JEDEC’s Industrial
qualification. IR’s Consumer qualification level is granted by extension of the
higher Industrial level.
Moisture Sensitivity Level
MSL1
D-PAK
(per JEDEC J-STD-020D†††)
Not applicable
I-PAK
Yes
RoHS Compliant
† Qualification standards can be found at International Rectifier’s web site http://www.irf.com/product-info/reliability
†† Higher qualification ratings may be available should the user have such requirements. Please contact
your International Rectifier sales representative for further information: http://www.irf.com/whoto-call/salesrep/
††† Applicable version of JEDEC standard at the time of product release.
Notes:
 Repetitive rating; pulse width limited by max. junction
temperature.
‚ Limited by TJmax, starting TJ = 25°C, L = 0.18mH
RG = 50, IAS = 38A, VGS =10V. Part not recommended for use
above this value.
ƒ ISD  38A, di/dt  2031A/μs, VDD V(BR)DSS, TJ  175°C.
„ Pulse width  400μs; duty cycle  2%.
… Coss eff. (TR) is a fixed capacitance that gives the same charging time
as Coss while VDS is rising from 0 to 80% VDSS .
† Coss eff. (ER) is a fixed capacitance that gives the same energy as
Coss while VDS is rising from 0 to 80% VDSS.
‡ When mounted on 1" square PCB (FR-4 or G-10 Material). For recom
mended footprint and soldering techniques refer to application
note #AN-994.
ˆ R is measured at TJ approximately 90°C.
Data and specifications subject to change without notice
IR WORLD HEADQUARTERS: 101 N. Sepulveda Blvd., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information. 05/2012
www.irf.com
11