PD - 95707E IRFB4410PbF IRFS4410PbF IRFSL4410PbF Applications l High Efficiency Synchronous Rectification in SMPS l Uninterruptible Power Supply l High Speed Power Switching l Hard Switched and High Frequency Circuits HEXFET® Power MOSFET D G S Benefits l Improved Gate, Avalanche and Dynamic dV/dt Ruggedness l Fully Characterized Capacitance and Avalanche SOA l Enhanced body diode dV/dt and dI/dt Capability l Lead-Free VDSS RDS(on) typ. max. ID 100V 8.0m: 10m: 88A S D G S D G S D G D2Pak IRFS4410PbF TO-220AB IRFB4410PbF TO-262 IRFSL4410PbF Absolute Maximum Ratings Symbol ID @ TC = 25°C Parameter Max. Units cl 63cl Continuous Drain Current, VGS @ 10V 88 A ID @ TC = 100°C Continuous Drain Current, VGS @ 10V IDM Pulsed Drain Current PD @TC = 25°C Maximum Power Dissipation 200 W Linear Derating Factor 1.3 VGS Gate-to-Source Voltage ± 20 W/°C V dv/dt TJ Peak Diode Recovery 19 Operating Junction and TSTG Storage Temperature Range d 380 f V/ns °C -55 to + 175 300 Soldering Temperature, for 10 seconds (1.6mm from case) x Avalanche Characteristics EAS (Thermally limited) Single Pulse Avalanche Energy IAR Avalanche Current EAR Repetitive Avalanche Energy x 10lb in (1.1N m) Mounting torque, 6-32 or M3 screw c l l e g 220 mJ See Fig. 14, 15, 16a, 16b A mJ Thermal Resistance Symbol Parameter Typ. Max. ––– 0.61 Case-to-Sink, Flat Greased Surface , TO-220 0.50 ––– Junction-to-Ambient, TO-220 ––– 62 ––– 40 k RθJC Junction-to-Case RθCS RθJA RθJA Junction-to-Ambient (PCB Mount) , D2Pak www.irf.com k jk l Units °C/W 1 05/02/07 IRFB/S/SL4410PbF Static @ TJ = 25°C (unless otherwise specified) Symbol V(BR)DSS ∆V(BR)DSS/∆TJ RDS(on) VGS(th) IDSS IGSS RG Parameter Min. Typ. Max. Units Drain-to-Source Breakdown Voltage Breakdown Voltage Temp. Coefficient Static Drain-to-Source On-Resistance Gate Threshold Voltage Drain-to-Source Leakage Current 100 ––– ––– 2.0 ––– ––– ––– ––– ––– Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Gate Input Resistance ––– ––– 0.094 ––– 8.0 10 ––– 4.0 ––– 20 ––– 250 ––– 200 ––– -200 1.5 ––– Conditions V VGS = 0V, ID = 250µA V/°C Reference to 25°C, ID = 1mA mΩ VGS = 10V, ID = 58A V VDS = VGS, ID = 150µA µA VDS = 100V, VGS = 0V VDS = 100V, VGS = 0V, TJ = 125°C nA VGS = 20V VGS = -20V Ω f = 1MHz, open drain d g Dynamic @ TJ = 25°C (unless otherwise specified) Symbol gfs Qg Qgs Qgd td(on) tr td(off) tf Ciss Coss Crss Coss eff. (ER) Coss eff. (TR) Parameter Min. Typ. Max. Units Forward Transconductance Total Gate Charge Gate-to-Source Charge Gate-to-Drain ("Miller") Charge Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Input Capacitance Output Capacitance Reverse Transfer Capacitance Effective Output Capacitance (Energy Related) Effective Output Capacitance (Time Related) h 120 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– 120 31 44 24 80 55 50 5150 360 190 420 500 ––– 180 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– S nC ns pF Conditions VDS = 50V, ID = 58A ID = 58A VDS = 80V VGS = 10V VDD = 65V ID = 58A RG = 4.1Ω VGS = 10V VGS = 0V VDS = 50V ƒ = 1.0MHz VGS = 0V, VDS = 0V to 80V VGS = 0V, VDS = 0V to 80V g g i, See Fig.11 h, See Fig. 5 Diode Characteristics Symbol Parameter IS Continuous Source Current ISM (Body Diode) Pulsed Source Current VSD trr (Body Diode) Diode Forward Voltage Reverse Recovery Time Qrr Reverse Recovery Charge IRRM ton Reverse Recovery Current Forward Turn-On Time d Notes: Calculated continuous current based on maximum allowable junction temperature. Package limitation current is 75A. Repetitive rating; pulse width limited by max. junction temperature. Limited by TJmax, starting TJ = 25°C, L = 0.14mH RG = 25Ω, IAS = 58A, VGS =10V. Part not recommended for use above this value. ISD ≤ 58A, di/dt ≤ 650A/µs, VDD ≤ V(BR)DSS, TJ ≤ 175°C. Pulse width ≤ 400µs; duty cycle ≤ 2%. 2 Min. Typ. Max. Units ––– ––– ––– ––– Conditions c A MOSFET symbol 380 A showing the integral reverse 88 D G p-n junction diode. TJ = 25°C, IS = 58A, VGS = 0V VR = 85V, TJ = 25°C IF = 58A TJ = 125°C di/dt = 100A/µs TJ = 25°C S g ––– ––– 1.3 V ––– 38 56 ns ––– 51 77 ––– 61 92 nC TJ = 125°C ––– 110 170 ––– 2.8 ––– A TJ = 25°C Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD) g Coss eff. (TR) is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% VDSS . Coss eff. (ER) is a fixed capacitance that gives the same energy as Coss while VDS is rising from 0 to 80% VDSS . When mounted on 1" square PCB (FR-4 or G-10 Material). For recommended footprint and soldering techniques refer to application note #AN-994. Rθ is measured at TJ approximately 90°C. RθJC (end of life) for D2Pak and TO-262 = 0.75°C/W. Note: This is the maximum measured value after 1000 temperature cycles from -55 to 150°C and is accounted for by the physical wearout of the die attach medium. www.irf.com IRFB/S/SL4410PbF 1000 1000 ID, Drain-to-Source Current (A) TOP 100 BOTTOM 10 1 4.5V TOP ID, Drain-to-Source Current (A) VGS 15V 10V 8.0V 6.0V 5.5V 5.0V 4.8V 4.5V 100 BOTTOM 4.5V 10 ≤60µs PULSE WIDTH ≤60µs PULSE WIDTH Tj = 175°C Tj = 25°C 0.1 0.1 1 10 1 100 1000 0.1 V DS, Drain-to-Source Voltage (V) 10 100 1000 Fig 2. Typical Output Characteristics 1000 3.0 RDS(on) , Drain-to-Source On Resistance (Normalized) ID, Drain-to-Source Current (Α) 1 V DS, Drain-to-Source Voltage (V) Fig 1. Typical Output Characteristics 100 T J = 175°C 10 T J = 25°C 1 VDS = 25V ≤60µs PULSE WIDTH 0.1 ID = 58A VGS = 10V 2.5 2.0 1.5 1.0 0.5 2 3 4 5 6 7 8 9 10 -60 -40 -20 0 Fig 4. Normalized On-Resistance vs. Temperature Fig 3. Typical Transfer Characteristics 100000 12.0 VGS = 0V, f = 1 MHZ C iss = C gs + C gd, C ds SHORTED C rss = C gd VGS, Gate-to-Source Voltage (V) ID= 58A C oss = C ds + C gd 10000 Ciss 1000 20 40 60 80 100 120 140 160 180 T J , Junction Temperature (°C) VGS, Gate-to-Source Voltage (V) C, Capacitance(pF) VGS 15V 10V 8.0V 6.0V 5.5V 5.0V 4.8V 4.5V Coss Crss 100 VDS= 80V VDS= 50V VDS= 20V 10.0 8.0 6.0 4.0 2.0 0.0 1 10 100 VDS, Drain-to-Source Voltage (V) Fig 5. Typical Capacitance vs. Drain-to-Source Voltage www.irf.com 0 20 40 60 80 100 120 QG Total Gate Charge (nC) Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage 3 IRFB/S/SL4410PbF 1000 ID, Drain-to-Source Current (A) ISD, Reverse Drain Current (A) 1000 OPERATION IN THIS AREA LIMITED BY R DS(on) 100µsec 100 100 T J = 175°C T J = 25°C 10 1msec 10msec 10 DC Tc = 25°C Tj = 175°C Single Pulse VGS = 0V 1 1 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 0 Limited By Package ID, Drain Current (A) 75 50 25 0 75 100 125 150 175 V(BR)DSS , Drain-to-Source Breakdown Voltage (V) 100 50 1000 125 120 115 110 105 100 -60 -40 -20 0 20 40 60 80 100 120 140 160 180 T J , Temperature ( °C ) Fig 10. Drain-to-Source Breakdown Voltage Fig 9. Maximum Drain Current vs. Case Temperature 2.0 EAS , Single Pulse Avalanche Energy (mJ) 900 1.5 Energy (µJ) 100 130 T C , Case Temperature (°C) 1.0 0.5 0.0 ID 6.7A 9.7A BOTTOM 58A 800 TOP 700 600 500 400 300 200 100 0 0 20 40 60 80 100 120 VDS, Drain-to-Source Voltage (V) 4 10 Fig 8. Maximum Safe Operating Area Fig 7. Typical Source-Drain Diode Forward Voltage 25 1 VDS, Drain-to-Source Voltage (V) VSD, Source-to-Drain Voltage (V) Fig 11. Typical COSS Stored Energy 25 50 75 100 125 150 175 Starting T J , Junction Temperature (°C) Fig 12. Maximum Avalanche Energy vs. DrainCurrent www.irf.com IRFB/S/SL4410PbF 1 Thermal Response ( Z thJC ) D = 0.50 0.20 0.1 0.10 0.05 0.02 0.01 0.01 τJ τJ τ1 R2 R2 τC τ2 τ1 τ Ri (°C/W) τi (sec) 0.2736 0.000376 0.3376 τ2 0.004143 Ci= τi/Ri Ci i/Ri SINGLE PULSE ( THERMAL RESPONSE ) 0.001 R1 R1 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.0001 1E-006 1E-005 0.0001 0.001 0.01 0.1 t1 , Rectangular Pulse Duration (sec) Fig 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case Avalanche Current (A) 1000 Allowed avalanche Current vs avalanche pulsewidth, tav, assuming ∆Tj = 150°C and Tstart =25°C (Single Pulse) 100 Duty Cycle = Single Pulse 0.01 10 1 0.05 0.10 Allowed avalanche Current vs avalanche pulsewidth, tav, assuming ∆Τ j = 25°C and Tstart = 150°C. 0.1 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01 tav (sec) Fig 14. Typical Avalanche Current vs.Pulsewidth EAR , Avalanche Energy (mJ) 250 Notes on Repetitive Avalanche Curves , Figures 14, 15: (For further info, see AN-1005 at www.irf.com) 1. Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of Tjmax. This is validated for every part type. 2. Safe operation in Avalanche is allowed as long as neither Tjmax nor Iav (max) is exceeded. 3. Equation below based on circuit and waveforms shown in Figures 16a, 16b. 4. PD (ave) = Average power dissipation per single avalanche pulse. 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. Iav = Allowable avalanche current. 7. ∆T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as 25°C in Figure 14, 15). tav = Average time in avalanche. D = Duty cycle in avalanche = tav ·f ZthJC(D, tav) = Transient thermal resistance, see Figures 13) TOP Single Pulse BOTTOM 1% Duty Cycle ID = 58A 200 150 100 50 0 25 50 75 100 125 150 175 Starting T J , Junction Temperature (°C) Fig 15. Maximum Avalanche Energy vs. Temperature www.irf.com PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC Iav = 2DT/ [1.3·BV·Zth] EAS (AR) = PD (ave)·tav 5 IRFB/S/SL4410PbF 20 5.0 VGS(th) Gate threshold Voltage (V) 4.5 15 4.0 IRRM (A) 3.5 3.0 2.5 2.0 ID = 150µA ID = 250µA ID = 1.0mA ID = 1.0A 10 IF = 19A VR = 85V 5 T = 25°C _____ J T = 125°C ---------J 1.5 1.0 -75 -50 -25 0 25 50 0 75 100 125 150 175 200 100 200 300 400 500 600 700 800 900 1000 T J , Temperature ( °C ) dif/dt (A/µs) Fig. 17 - Typical Recovery Current vs. dif/dt Fig 16. Threshold Voltage vs. Temperature 400 20 350 300 15 Qrr (nC) IRRM (A) 250 10 200 150 IF = 38A V = 85V R T = 25°C _____ J TJ = 125°C ---------- 5 IF = 19A VR = 85V 100 T = 25°C _____ J T = 125°C ---------J 50 0 0 100 200 300 400 500 600 700 800 900 1000 100 200 300 400 500 600 700 800 900 1000 dif/dt (A/µs) dif/dt (A/µs) Fig. 19 - Typical Stored Charge vs. dif/dt Fig. 18 - Typical Recovery Current vs. dif/dt 400 350 300 Qrr (nC) 250 200 150 I = 38A F V = 85V R TJ = 25°C _____ 100 50 TJ = 125°C ---------- 0 100 200 300 400 500 600 700 800 900 1000 dif/dt (A/µs) 6 Fig. 20 - Typical Stored Charge vs. dif/dt www.irf.com IRFB/S/SL4410PbF D.U.T Driver Gate Drive - - - * D.U.T. ISD Waveform Reverse Recovery Current + RG • • • • dv/dt controlled by RG Driver same type as D.U.T. I SD controlled by Duty Factor "D" D.U.T. - Device Under Test VDD P.W. Period VGS=10V Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer + D= Period P.W. + + - Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt Re-Applied Voltage Body Diode VDD Forward Drop Inductor Current Inductor Curent ISD Ripple ≤ 5% * VGS = 5V for Logic Level Devices Fig 20. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs V(BR)DSS 15V D.U.T RG VGS 20V DRIVER L VDS tp + V - DD IAS tp A 0.01Ω I AS Fig 21a. Unclamped Inductive Test Circuit LD Fig 21b. Unclamped Inductive Waveforms VDS VDS 90% + VDD - 10% D.U.T VGS VGS Pulse Width < 1µs Duty Factor < 0.1% td(on) Fig 22a. Switching Time Test Circuit tr td(off) tf Fig 22b. Switching Time Waveforms Id Vds Vgs L DUT 0 VCC Vgs(th) 1K Qgs1 Qgs2 Fig 23a. Gate Charge Test Circuit www.irf.com Qgd Qgodr Fig 23b. Gate Charge Waveform 7 IRFB/S/SL4410PbF TO-220AB Package Outline Dimensions are shown in millimeters (inches) TO-220AB Part Marking Information (;$03/( 7+,6,6$1,5) /27&2'( $66(0%/('21:: ,17+($66(0%/</,1(& 1RWH3LQDVVHPEO\OLQHSRVLWLRQ LQGLFDWHV/HDG)UHH ,17(51$7,21$/ 5(&7,),(5 /2*2 $66(0%/< /27&2'( 3$57180%(5 '$7(&2'( <($5 :((. /,1(& TO-220AB packages are not recommended for Surface Mount Application. 8 www.irf.com IRFB/S/SL4410PbF TO-262 Package Outline Dimensions are shown in millimeters (inches) TO-262 Part Marking Information (;$03/( 7+,6,6$1,5// /27&2'( $66(0%/('21:: ,17+($66(0%/</,1(& ,17(51$7,21$/ 5(&7,),(5 /2*2 $66(0%/< /27&2'( 3$57180%(5 '$7(&2'( <($5 :((. /,1(& 25 ,17(51$7,21$/ 5(&7,),(5 /2*2 $66(0%/< /27&2'( www.irf.com 3$57180%(5 '$7(&2'( 3 '(6,*1$7(6/($')5(( 352'8&7237,21$/ <($5 :((. $ $66(0%/<6,7(&2'( 9 IRFB/S/SL4410PbF D2Pak (TO-263AB) Package Outline Dimensions are shown in millimeters (inches) D2Pak (TO-263AB) Part Marking Information 7+,6,6$1,5)6:,7+ /27&2'( $66(0%/('21:: ,17+($66(0%/</,1(/ ,17(51$7,21$/ 5(&7,),(5 /2*2 $66(0%/< /27&2'( 25 ,17(51$7,21$/ 5(&7,),(5 /2*2 $66(0%/< /27&2'( 10 3$57180%(5 )6 '$7(&2'( <($5 :((. /,1(/ 3$57180%(5 )6 '$7(&2'( 3 '(6,*1$7(6/($')5(( 352'8&7237,21$/ <($5 :((. $ $66(0%/<6,7(&2'( www.irf.com IRFB/S/SL4410PbF D2Pak (TO-263AB) Tape & Reel Information TRR 1.60 (.063) 1.50 (.059) 4.10 (.161) 3.90 (.153) FEED DIRECTION 1.85 (.073) 1.60 (.063) 1.50 (.059) 11.60 (.457) 11.40 (.449) 1.65 (.065) 0.368 (.0145) 0.342 (.0135) 15.42 (.609) 15.22 (.601) 24.30 (.957) 23.90 (.941) TRL 1.75 (.069) 1.25 (.049) 10.90 (.429) 10.70 (.421) 4.72 (.136) 4.52 (.178) 16.10 (.634) 15.90 (.626) FEED DIRECTION 13.50 (.532) 12.80 (.504) 27.40 (1.079) 23.90 (.941) 4 330.00 (14.173) MAX. 60.00 (2.362) MIN. NOTES : 1. COMFORMS TO EIA-418. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION MEASURED @ HUB. 4. INCLUDES FLANGE DISTORTION @ OUTER EDGE. 26.40 (1.039) 24.40 (.961) 3 30.40 (1.197) MAX. 4 Data and specifications subject to change without notice. This product has been designed and qualified for the Industrial market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.05/07 www.irf.com 11