IRF IRFS4410PBF

PD - 95707E
IRFB4410PbF
IRFS4410PbF
IRFSL4410PbF
Applications
l High Efficiency Synchronous Rectification in SMPS
l Uninterruptible Power Supply
l High Speed Power Switching
l Hard Switched and High Frequency Circuits
HEXFET® Power MOSFET
D
G
S
Benefits
l Improved Gate, Avalanche and Dynamic dV/dt
Ruggedness
l Fully Characterized Capacitance and Avalanche
SOA
l Enhanced body diode dV/dt and dI/dt Capability
l Lead-Free
VDSS
RDS(on) typ.
max.
ID
100V
8.0m:
10m:
88A
S
D
G
S
D
G
S
D
G
D2Pak
IRFS4410PbF
TO-220AB
IRFB4410PbF
TO-262
IRFSL4410PbF
Absolute Maximum Ratings
Symbol
ID @ TC = 25°C
Parameter
Max.
Units
cl
63cl
Continuous Drain Current, VGS @ 10V
88
A
ID @ TC = 100°C
Continuous Drain Current, VGS @ 10V
IDM
Pulsed Drain Current
PD @TC = 25°C
Maximum Power Dissipation
200
W
Linear Derating Factor
1.3
VGS
Gate-to-Source Voltage
± 20
W/°C
V
dv/dt
TJ
Peak Diode Recovery
19
Operating Junction and
TSTG
Storage Temperature Range
d
380
f
V/ns
°C
-55 to + 175
300
Soldering Temperature, for 10 seconds
(1.6mm from case)
x
Avalanche Characteristics
EAS (Thermally limited)
Single Pulse Avalanche Energy
IAR
Avalanche Current
EAR
Repetitive Avalanche Energy
x
10lb in (1.1N m)
Mounting torque, 6-32 or M3 screw
c
l
l
e
g
220
mJ
See Fig. 14, 15, 16a, 16b
A
mJ
Thermal Resistance
Symbol
Parameter
Typ.
Max.
–––
0.61
Case-to-Sink, Flat Greased Surface , TO-220
0.50
–––
Junction-to-Ambient, TO-220
–––
62
–––
40
k
RθJC
Junction-to-Case
RθCS
RθJA
RθJA
Junction-to-Ambient (PCB Mount) , D2Pak
www.irf.com
k
jk
l
Units
°C/W
1
05/02/07
IRFB/S/SL4410PbF
Static @ TJ = 25°C (unless otherwise specified)
Symbol
V(BR)DSS
∆V(BR)DSS/∆TJ
RDS(on)
VGS(th)
IDSS
IGSS
RG
Parameter
Min. Typ. Max. Units
Drain-to-Source Breakdown Voltage
Breakdown Voltage Temp. Coefficient
Static Drain-to-Source On-Resistance
Gate Threshold Voltage
Drain-to-Source Leakage Current
100
–––
–––
2.0
–––
–––
–––
–––
–––
Gate-to-Source Forward Leakage
Gate-to-Source Reverse Leakage
Gate Input Resistance
––– –––
0.094 –––
8.0
10
–––
4.0
–––
20
––– 250
––– 200
––– -200
1.5
–––
Conditions
V VGS = 0V, ID = 250µA
V/°C Reference to 25°C, ID = 1mA
mΩ VGS = 10V, ID = 58A
V VDS = VGS, ID = 150µA
µA VDS = 100V, VGS = 0V
VDS = 100V, VGS = 0V, TJ = 125°C
nA VGS = 20V
VGS = -20V
Ω f = 1MHz, open drain
d
g
Dynamic @ TJ = 25°C (unless otherwise specified)
Symbol
gfs
Qg
Qgs
Qgd
td(on)
tr
td(off)
tf
Ciss
Coss
Crss
Coss eff. (ER)
Coss eff. (TR)
Parameter
Min. Typ. Max. Units
Forward Transconductance
Total Gate Charge
Gate-to-Source Charge
Gate-to-Drain ("Miller") Charge
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Effective Output Capacitance (Energy Related)
Effective Output Capacitance (Time Related)
h
120
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
120
31
44
24
80
55
50
5150
360
190
420
500
–––
180
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
S
nC
ns
pF
Conditions
VDS = 50V, ID = 58A
ID = 58A
VDS = 80V
VGS = 10V
VDD = 65V
ID = 58A
RG = 4.1Ω
VGS = 10V
VGS = 0V
VDS = 50V
ƒ = 1.0MHz
VGS = 0V, VDS = 0V to 80V
VGS = 0V, VDS = 0V to 80V
g
g
i, See Fig.11
h, See Fig. 5
Diode Characteristics
Symbol
Parameter
IS
Continuous Source Current
ISM
(Body Diode)
Pulsed Source Current
VSD
trr
(Body Diode)
Diode Forward Voltage
Reverse Recovery Time
Qrr
Reverse Recovery Charge
IRRM
ton
Reverse Recovery Current
Forward Turn-On Time
d
Notes:
 Calculated continuous current based on maximum allowable junction
temperature. Package limitation current is 75A.
‚ Repetitive rating; pulse width limited by max. junction
temperature.
ƒ Limited by TJmax, starting TJ = 25°C, L = 0.14mH
RG = 25Ω, IAS = 58A, VGS =10V. Part not recommended for use
above this value.
„ ISD ≤ 58A, di/dt ≤ 650A/µs, VDD ≤ V(BR)DSS, TJ ≤ 175°C.
… Pulse width ≤ 400µs; duty cycle ≤ 2%.
2
Min. Typ. Max. Units
–––
–––
–––
–––
Conditions
c
A
MOSFET symbol
380
A
showing the
integral reverse
88
D
G
p-n junction diode.
TJ = 25°C, IS = 58A, VGS = 0V
VR = 85V,
TJ = 25°C
IF = 58A
TJ = 125°C
di/dt = 100A/µs
TJ = 25°C
S
g
––– –––
1.3
V
–––
38
56
ns
–––
51
77
–––
61
92
nC
TJ = 125°C
––– 110 170
–––
2.8
–––
A TJ = 25°C
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
g
† Coss eff. (TR) is a fixed capacitance that gives the same charging time
as Coss while VDS is rising from 0 to 80% VDSS .
‡ Coss eff. (ER) is a fixed capacitance that gives the same energy as
Coss while VDS is rising from 0 to 80% VDSS .
ˆ When mounted on 1" square PCB (FR-4 or G-10 Material). For recommended
footprint and soldering techniques refer to application note #AN-994.
‰ Rθ is measured at TJ approximately 90°C.
Š RθJC (end of life) for D2Pak and TO-262 = 0.75°C/W. Note: This is the maximum
measured value after 1000 temperature cycles from -55 to 150°C and is
accounted for by the physical wearout of the die attach medium.
www.irf.com
IRFB/S/SL4410PbF
1000
1000
ID, Drain-to-Source Current (A)
TOP
100
BOTTOM
10
1
4.5V
TOP
ID, Drain-to-Source Current (A)
VGS
15V
10V
8.0V
6.0V
5.5V
5.0V
4.8V
4.5V
100
BOTTOM
4.5V
10
≤60µs PULSE WIDTH
≤60µs PULSE WIDTH
Tj = 175°C
Tj = 25°C
0.1
0.1
1
10
1
100
1000
0.1
V DS, Drain-to-Source Voltage (V)
10
100
1000
Fig 2. Typical Output Characteristics
1000
3.0
RDS(on) , Drain-to-Source On Resistance
(Normalized)
ID, Drain-to-Source Current (Α)
1
V DS, Drain-to-Source Voltage (V)
Fig 1. Typical Output Characteristics
100
T J = 175°C
10
T J = 25°C
1
VDS = 25V
≤60µs PULSE WIDTH
0.1
ID = 58A
VGS = 10V
2.5
2.0
1.5
1.0
0.5
2
3
4
5
6
7
8
9
10
-60 -40 -20 0
Fig 4. Normalized On-Resistance vs. Temperature
Fig 3. Typical Transfer Characteristics
100000
12.0
VGS = 0V,
f = 1 MHZ
C iss = C gs + C gd, C ds SHORTED
C rss = C gd
VGS, Gate-to-Source Voltage (V)
ID= 58A
C oss = C ds + C gd
10000
Ciss
1000
20 40 60 80 100 120 140 160 180
T J , Junction Temperature (°C)
VGS, Gate-to-Source Voltage (V)
C, Capacitance(pF)
VGS
15V
10V
8.0V
6.0V
5.5V
5.0V
4.8V
4.5V
Coss
Crss
100
VDS= 80V
VDS= 50V
VDS= 20V
10.0
8.0
6.0
4.0
2.0
0.0
1
10
100
VDS, Drain-to-Source Voltage (V)
Fig 5. Typical Capacitance vs. Drain-to-Source Voltage
www.irf.com
0
20
40
60
80
100
120
QG Total Gate Charge (nC)
Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage
3
IRFB/S/SL4410PbF
1000
ID, Drain-to-Source Current (A)
ISD, Reverse Drain Current (A)
1000
OPERATION IN THIS AREA
LIMITED BY R DS(on)
100µsec
100
100
T J = 175°C
T J = 25°C
10
1msec
10msec
10
DC
Tc = 25°C
Tj = 175°C
Single Pulse
VGS = 0V
1
1
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
0
Limited By Package
ID, Drain Current (A)
75
50
25
0
75
100
125
150
175
V(BR)DSS , Drain-to-Source Breakdown Voltage (V)
100
50
1000
125
120
115
110
105
100
-60 -40 -20 0
20 40 60 80 100 120 140 160 180
T J , Temperature ( °C )
Fig 10. Drain-to-Source Breakdown Voltage
Fig 9. Maximum Drain Current vs. Case Temperature
2.0
EAS , Single Pulse Avalanche Energy (mJ)
900
1.5
Energy (µJ)
100
130
T C , Case Temperature (°C)
1.0
0.5
0.0
ID
6.7A
9.7A
BOTTOM 58A
800
TOP
700
600
500
400
300
200
100
0
0
20
40
60
80
100
120
VDS, Drain-to-Source Voltage (V)
4
10
Fig 8. Maximum Safe Operating Area
Fig 7. Typical Source-Drain Diode Forward Voltage
25
1
VDS, Drain-to-Source Voltage (V)
VSD, Source-to-Drain Voltage (V)
Fig 11. Typical COSS Stored Energy
25
50
75
100
125
150
175
Starting T J , Junction Temperature (°C)
Fig 12. Maximum Avalanche Energy vs. DrainCurrent
www.irf.com
IRFB/S/SL4410PbF
1
Thermal Response ( Z thJC )
D = 0.50
0.20
0.1
0.10
0.05
0.02
0.01
0.01
τJ
τJ
τ1
R2
R2
τC
τ2
τ1
τ
Ri (°C/W) τi (sec)
0.2736 0.000376
0.3376
τ2
0.004143
Ci= τi/Ri
Ci i/Ri
SINGLE PULSE
( THERMAL RESPONSE )
0.001
R1
R1
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
0.0001
1E-006
1E-005
0.0001
0.001
0.01
0.1
t1 , Rectangular Pulse Duration (sec)
Fig 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case
Avalanche Current (A)
1000
Allowed avalanche Current vs avalanche
pulsewidth, tav, assuming ∆Tj = 150°C and
Tstart =25°C (Single Pulse)
100
Duty Cycle = Single Pulse
0.01
10
1
0.05
0.10
Allowed avalanche Current vs avalanche
pulsewidth, tav, assuming ∆Τ j = 25°C and
Tstart = 150°C.
0.1
1.0E-06
1.0E-05
1.0E-04
1.0E-03
1.0E-02
1.0E-01
tav (sec)
Fig 14. Typical Avalanche Current vs.Pulsewidth
EAR , Avalanche Energy (mJ)
250
Notes on Repetitive Avalanche Curves , Figures 14, 15:
(For further info, see AN-1005 at www.irf.com)
1. Avalanche failures assumption:
Purely a thermal phenomenon and failure occurs at a temperature far in
excess of Tjmax. This is validated for every part type.
2. Safe operation in Avalanche is allowed as long as neither Tjmax nor Iav (max)
is exceeded.
3. Equation below based on circuit and waveforms shown in Figures 16a, 16b.
4. PD (ave) = Average power dissipation per single avalanche pulse.
5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase
during avalanche).
6. Iav = Allowable avalanche current.
7. ∆T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as
25°C in Figure 14, 15).
tav = Average time in avalanche.
D = Duty cycle in avalanche = tav ·f
ZthJC(D, tav) = Transient thermal resistance, see Figures 13)
TOP
Single Pulse
BOTTOM 1% Duty Cycle
ID = 58A
200
150
100
50
0
25
50
75
100
125
150
175
Starting T J , Junction Temperature (°C)
Fig 15. Maximum Avalanche Energy vs. Temperature
www.irf.com
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC
Iav = 2DT/ [1.3·BV·Zth]
EAS (AR) = PD (ave)·tav
5
IRFB/S/SL4410PbF
20
5.0
VGS(th) Gate threshold Voltage (V)
4.5
15
4.0
IRRM (A)
3.5
3.0
2.5
2.0
ID = 150µA
ID = 250µA
ID = 1.0mA
ID = 1.0A
10
IF = 19A
VR = 85V
5
T = 25°C _____
J
T = 125°C ---------J
1.5
1.0
-75 -50 -25
0
25
50
0
75 100 125 150 175 200
100 200 300 400 500 600 700 800 900 1000
T J , Temperature ( °C )
dif/dt (A/µs)
Fig. 17 - Typical Recovery Current vs. dif/dt
Fig 16. Threshold Voltage vs. Temperature
400
20
350
300
15
Qrr (nC)
IRRM (A)
250
10
200
150
IF = 38A
V = 85V
R
T = 25°C _____
J
TJ = 125°C ----------
5
IF = 19A
VR = 85V
100
T = 25°C _____
J
T = 125°C ---------J
50
0
0
100 200 300 400 500 600 700 800 900 1000
100 200 300 400 500 600 700 800 900 1000
dif/dt (A/µs)
dif/dt (A/µs)
Fig. 19 - Typical Stored Charge vs. dif/dt
Fig. 18 - Typical Recovery Current vs. dif/dt
400
350
300
Qrr (nC)
250
200
150
I = 38A
F
V = 85V
R
TJ = 25°C _____
100
50
TJ = 125°C ----------
0
100 200 300 400 500 600 700 800 900 1000
dif/dt (A/µs)
6
Fig. 20 - Typical Stored Charge vs. dif/dt
www.irf.com
IRFB/S/SL4410PbF
D.U.T
Driver Gate Drive
ƒ
-
‚
„
-
-
*
D.U.T. ISD Waveform
Reverse
Recovery
Current
+

RG
•
•
•
•
dv/dt controlled by RG
Driver same type as D.U.T.
I SD controlled by Duty Factor "D"
D.U.T. - Device Under Test
VDD
P.W.
Period
VGS=10V
Circuit Layout Considerations
• Low Stray Inductance
• Ground Plane
• Low Leakage Inductance
Current Transformer
+
D=
Period
P.W.
+
+
-
Body Diode Forward
Current
di/dt
D.U.T. VDS Waveform
Diode Recovery
dv/dt
Re-Applied
Voltage
Body Diode
VDD
Forward Drop
Inductor
Current
Inductor Curent
ISD
Ripple ≤ 5%
* VGS = 5V for Logic Level Devices
Fig 20. Peak Diode Recovery dv/dt Test Circuit for N-Channel
HEXFET® Power MOSFETs
V(BR)DSS
15V
D.U.T
RG
VGS
20V
DRIVER
L
VDS
tp
+
V
- DD
IAS
tp
A
0.01Ω
I AS
Fig 21a. Unclamped Inductive Test Circuit
LD
Fig 21b. Unclamped Inductive Waveforms
VDS
VDS
90%
+
VDD -
10%
D.U.T
VGS
VGS
Pulse Width < 1µs
Duty Factor < 0.1%
td(on)
Fig 22a. Switching Time Test Circuit
tr
td(off)
tf
Fig 22b. Switching Time Waveforms
Id
Vds
Vgs
L
DUT
0
VCC
Vgs(th)
1K
Qgs1 Qgs2
Fig 23a. Gate Charge Test Circuit
www.irf.com
Qgd
Qgodr
Fig 23b. Gate Charge Waveform
7
IRFB/S/SL4410PbF
TO-220AB Package Outline
Dimensions are shown in millimeters (inches)
TO-220AB Part Marking Information
(;$03/( 7+,6,6$1,5)
/27&2'(
$66(0%/('21::
,17+($66(0%/</,1(&
1RWH3LQDVVHPEO\OLQHSRVLWLRQ
LQGLFDWHV/HDG)UHH
,17(51$7,21$/
5(&7,),(5
/2*2
$66(0%/<
/27&2'(
3$57180%(5
'$7(&2'(
<($5 :((.
/,1(&
TO-220AB packages are not recommended for Surface Mount Application.
8
www.irf.com
IRFB/S/SL4410PbF
TO-262 Package Outline
Dimensions are shown in millimeters (inches)
TO-262 Part Marking Information
(;$03/( 7+,6,6$1,5//
/27&2'(
$66(0%/('21::
,17+($66(0%/</,1(&
,17(51$7,21$/
5(&7,),(5
/2*2
$66(0%/<
/27&2'(
3$57180%(5
'$7(&2'(
<($5 :((.
/,1(&
25
,17(51$7,21$/
5(&7,),(5
/2*2
$66(0%/<
/27&2'(
www.irf.com
3$57180%(5
'$7(&2'(
3 '(6,*1$7(6/($')5((
352'8&7237,21$/
<($5 :((.
$ $66(0%/<6,7(&2'(
9
IRFB/S/SL4410PbF
D2Pak (TO-263AB) Package Outline
Dimensions are shown in millimeters (inches)
D2Pak (TO-263AB) Part Marking Information
7+,6,6$1,5)6:,7+
/27&2'(
$66(0%/('21::
,17+($66(0%/</,1(/
,17(51$7,21$/
5(&7,),(5
/2*2
$66(0%/<
/27&2'(
25
,17(51$7,21$/
5(&7,),(5
/2*2
$66(0%/<
/27&2'(
10
3$57180%(5
)6
'$7(&2'(
<($5 :((.
/,1(/
3$57180%(5
)6
'$7(&2'(
3 '(6,*1$7(6/($')5((
352'8&7237,21$/
<($5 :((.
$ $66(0%/<6,7(&2'(
www.irf.com
IRFB/S/SL4410PbF
D2Pak (TO-263AB) Tape & Reel Information
TRR
1.60 (.063)
1.50 (.059)
4.10 (.161)
3.90 (.153)
FEED DIRECTION 1.85 (.073)
1.60 (.063)
1.50 (.059)
11.60 (.457)
11.40 (.449)
1.65 (.065)
0.368 (.0145)
0.342 (.0135)
15.42 (.609)
15.22 (.601)
24.30 (.957)
23.90 (.941)
TRL
1.75 (.069)
1.25 (.049)
10.90 (.429)
10.70 (.421)
4.72 (.136)
4.52 (.178)
16.10 (.634)
15.90 (.626)
FEED DIRECTION
13.50 (.532)
12.80 (.504)
27.40 (1.079)
23.90 (.941)
4
330.00
(14.173)
MAX.
60.00 (2.362)
MIN.
NOTES :
1. COMFORMS TO EIA-418.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION MEASURED @ HUB.
4. INCLUDES FLANGE DISTORTION @ OUTER EDGE.
26.40 (1.039)
24.40 (.961)
3
30.40 (1.197)
MAX.
4
Data and specifications subject to change without notice.
This product has been designed and qualified for the Industrial market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.05/07
www.irf.com
11