IRF IRFS3207PBF

PD - 95708D
IRFB3207PbF
IRFS3207PbF
IRFSL3207PbF
Applications
l High Efficiency Synchronous Rectification in SMPS
l Uninterruptible Power Supply
l High Speed Power Switching
l Hard Switched and High Frequency Circuits
HEXFET® Power MOSFET
D
G
Benefits
l Improved Gate, Avalanche and Dynamic dV/dt
Ruggedness
l Fully Characterized Capacitance and Avalanche
SOA
l Enhanced body diode dV/dt and dI/dt Capability
l Lead-Free
S
VDSS
RDS(on) typ.
max.
ID
S
D
G
S
D
G
S
D
G
D2Pak
IRFS3207PbF
TO-220AB
IRFB3207PbF
75V
3.6m:
4.5m:
170A
TO-262
IRFSL3207PbF
Absolute Maximum Ratings
Symbol
ID @ TC = 25°C
Parameter
Max.
ID @ TC = 100°C
Continuous Drain Current, VGS @ 10V
IDM
Pulsed Drain Current
PD @TC = 25°C
Maximum Power Dissipation
170
d
300
W
W/°C
V
Linear Derating Factor
2.0
Gate-to-Source Voltage
± 20
dV/dt
TJ
Operating Junction and
TSTG
Storage Temperature Range
f
5.8
V/ns
°C
-55 to + 175
300
Soldering Temperature, for 10 seconds
(1.6mm from case)
x
Avalanche Characteristics
EAS (Thermally limited)
Single Pulse Avalanche Energy
IAR
Avalanche Current
EAR
Repetitive Avalanche Energy
x
10lb in (1.1N m)
Mounting torque, 6-32 or M3 screw
c
A
720
VGS
Peak Diode Recovery
Units
c
120c
Continuous Drain Current, VGS @ 10V
e
g
910
mJ
See Fig. 14, 15, 16a, 16b,
A
mJ
Thermal Resistance
Symbol
Parameter
RθJC
Junction-to-Case
k
Typ.
Max.
–––
0.50
RθCS
Case-to-Sink, Flat Greased Surface , TO-220
0.50
–––
RθJA
Junction-to-Ambient, TO-220
–––
62
RθJA
Junction-to-Ambient (PCB Mount) , D2Pak
–––
40
www.irf.com
k
jk
Units
°C/W
1
03/06/06
IRF/B/S/SL3207PbF
Static @ TJ = 25°C (unless otherwise specified)
Symbol
Parameter
V(BR)DSS
∆V(BR)DSS/∆TJ
RDS(on)
VGS(th)
IDSS
Drain-to-Source Breakdown Voltage
Breakdown Voltage Temp. Coefficient
Static Drain-to-Source On-Resistance
Gate Threshold Voltage
Drain-to-Source Leakage Current
IGSS
Gate-to-Source Forward Leakage
Gate-to-Source Reverse Leakage
Gate Input Resistance
RG
Min. Typ. Max. Units
75
–––
–––
2.0
–––
–––
–––
–––
–––
––– –––
0.069 –––
3.6
4.5
–––
4.0
–––
20
––– 250
––– 200
––– -200
1.2
–––
Conditions
V VGS = 0V, ID = 250µA
V/°C Reference to 25°C, ID = 1mA
mΩ VGS = 10V, ID = 75A
V VDS = VGS, ID = 250µA
µA VDS = 75V, VGS = 0V
VDS = 75V, VGS = 0V, TJ = 125°C
nA VGS = 20V
VGS = -20V
Ω f = 1MHz, open drain
d
g
Dynamic @ TJ = 25°C (unless otherwise specified)
Symbol
gfs
Qg
Qgs
Qgd
td(on)
tr
td(off)
tf
Ciss
Coss
Crss
Coss eff. (ER)
Coss eff. (TR)
Parameter
Min. Typ. Max. Units
Forward Transconductance
Total Gate Charge
Gate-to-Source Charge
Gate-to-Drain ("Miller") Charge
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Effective Output Capacitance (Energy Related)
Effective Output Capacitance (Time Related)
h
i
150
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
180
48
68
29
120
68
74
7600
710
390
920
1010
–––
260
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
S
nC
Conditions
VDS = 50V, ID = 75A
ID = 75A
VDS = 60V
VGS = 10V
VDD = 48V
ID = 75A
RG = 2.6Ω
VGS = 10V
VGS = 0V
VDS = 50V
ƒ = 1.0MHz
VGS = 0V, VDS = 0V to 60V
VGS = 0V, VDS = 0V to 60V
g
ns
g
pF
j, See Fig.11
h, See Fig. 5
Diode Characteristics
Symbol
Parameter
Min. Typ. Max. Units
IS
Continuous Source Current
–––
––– 170
ISM
(Body Diode)
Pulsed Source Current
–––
–––
VSD
trr
(Body Diode)
Diode Forward Voltage
Reverse Recovery Time
Qrr
Reverse Recovery Charge
IRRM
ton
Reverse Recovery Current
Forward Turn-On Time
di
Notes:
 Calculated continuous current based on maximum allowable junction
temperature. Package limitation current is 75A.
‚ Repetitive rating; pulse width limited by max. junction
temperature.
ƒ Limited by TJmax, starting TJ = 25°C, L = 0.33mH
RG = 25Ω, IAS = 75A, VGS =10V. Part not recommended for use
above this value.
„ ISD ≤ 75A, di/dt ≤ 500A/µs, VDD ≤ V(BR)DSS, TJ ≤ 175°C.
… Pulse width ≤ 400µs; duty cycle ≤ 2%.
2
c
720
A
Conditions
MOSFET symbol
showing the
integral reverse
D
G
p-n junction diode.
TJ = 25°C, IS = 75A, VGS = 0V
TJ = 25°C
VR = 64V,
TJ = 125°C
IF = 75A
di/dt = 100A/µs
TJ = 25°C
TJ = 125°C
TJ = 25°C
S
g
––– –––
1.3
V
–––
42
63
ns
–––
49
74
–––
65
98
nC
–––
92
140
–––
2.6
–––
A
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
g
† Coss eff. (TR) is a fixed capacitance that gives the same charging time
as Coss while VDS is rising from 0 to 80% VDSS.
‡ Coss eff. (ER) is a fixed capacitance that gives the same energy as
Coss while VDS is rising from 0 to 80% VDSS.
ˆ When mounted on 1" square PCB (FR-4 or G-10 Material). For recommended
footprint and soldering techniques refer to application note #AN-994.
‰ Rθ is measured at TJ approximately 90°C.
www.irf.com
IRF/B/S/SL3207PbF
1000
1000
VGS
15V
10V
8.0V
6.0V
5.5V
5.0V
4.8V
4.5V
100
BOTTOM
10
4.5V
BOTTOM
100
4.5V
≤ 60µs PULSE WIDTH
Tj = 175°C
≤ 60µs PULSE WIDTH
Tj = 25°C
1
10
0.1
1
10
100
0.1
VDS, Drain-to-Source Voltage (V)
10
100
Fig 2. Typical Output Characteristics
2.5
RDS(on) , Drain-to-Source On Resistance
(Normalized)
1000.0
ID, Drain-to-Source Current(Α)
1
VDS, Drain-to-Source Voltage (V)
Fig 1. Typical Output Characteristics
TJ = 175°C
100.0
TJ = 25°C
10.0
VDS = 50V
≤ 60µs PULSE WIDTH
1.0
4.0
5.0
6.0
7.0
8.0
ID = 75A
VGS = 10V
2.0
1.5
1.0
0.5
9.0
-60 -40 -20 0
VGS, Gate-to-Source Voltage (V)
12000
VGS, Gate-to-Source Voltage (V)
Coss = Cds + Cgd
Ciss
8000
6000
4000
2000
Coss
Crss
10
100
VDS , Drain-to-Source Voltage (V)
Fig 5. Typical Capacitance vs. Drain-to-Source Voltage
www.irf.com
ID= 75A
VDS = 60V
VDS= 38V
16
12
8
4
0
0
1
Fig 4. Normalized On-Resistance vs. Temperature
20
VGS = 0V,
f = 1 MHZ
Ciss = Cgs + Cgd, Cds SHORTED
Crss = Cgd
10000
20 40 60 80 100 120 140 160 180
TJ , Junction Temperature (°C)
Fig 3. Typical Transfer Characteristics
C, Capacitance (pF)
VGS
15V
10V
8.0V
6.0V
5.5V
5.0V
4.8V
4.5V
TOP
ID, Drain-to-Source Current (A)
ID, Drain-to-Source Current (A)
TOP
0
40
80
120
160
200
240
280
QG Total Gate Charge (nC)
Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage
3
IRF/B/S/SL3207PbF
10000
ID, Drain-to-Source Current (A)
ISD, Reverse Drain Current (A)
1000.0
TJ = 175°C
100.0
10.0
TJ = 25°C
1.0
OPERATION IN THIS AREA
LIMITED BY R DS (on)
1000
100
100µsec
10
1
VGS = 0V
1
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2
V(BR)DSS , Drain-to-Source Breakdown Voltage
200
Limited By Package
ID, Drain Current (A)
150
100
50
0
50
75
100
125
150
100
1000
Fig 8. Maximum Safe Operating Area
Fig 7. Typical Source-Drain Diode
Forward Voltage
25
10
VDS , Drain-toSource Voltage (V)
VSD, Source-to-Drain Voltage (V)
100
90
80
70
-60 -40 -20 0
175
20 40 60 80 100 120 140 160 180
TJ , Junction Temperature (°C)
T C , Case Temperature (°C)
Fig 9. Maximum Drain Current vs.
Case Temperature
Fig 10. Drain-to-Source Breakdown Voltage
EAS, Single Pulse Avalanche Energy (mJ)
3.0
2.5
2.0
Energy (µJ)
10msec
DC
0.1
0.1
1.5
1.0
0.5
4000
I D
12A
16A
BOTTOM 75A
TOP
3000
2000
1000
0
0.0
20
30
40
50
60
70
VDS, Drain-to-Source Voltage (V)
Fig 11. Typical COSS Stored Energy
4
1msec
Tc = 25°C
Tj = 175°C
Single Pulse
80
25
50
75
100
125
150
175
Starting TJ, Junction Temperature (°C)
Fig 12. Maximum Avalanche Energy Vs. DrainCurrent
www.irf.com
IRF/B/S/SL3207PbF
1
Thermal Response ( ZthJC )
D = 0.50
0.1
0.20
0.10
0.05
0.01
τJ
0.02
0.01
R1
R1
τJ
τ1
R2
R2
τC
τ2
τ1
τ
Ri (°C/W) τi (sec)
0.2151 0.001175
0.2350
τ2
0.017994
Ci= τi/Ri
Ci= i/Ri
0.001
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
SINGLE PULSE
( THERMAL RESPONSE )
0.0001
1E-006
1E-005
0.0001
0.001
0.01
0.1
t1 , Rectangular Pulse Duration (sec)
Fig 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case
100
Avalanche Current (A)
Duty Cycle = Single Pulse
Allowed avalanche Current vs avalanche
pulsewidth, tav, assuming ∆Tj = 150°C and
Tstart =25°C (Single Pulse)
0.01
0.05
10
0.10
Allowed avalanche Current vs avalanche
pulsewidth, tav, assuming ∆Τ j = 25°C and
Tstart = 150°C.
1
0.1
1.0E-06
1.0E-05
1.0E-04
1.0E-03
1.0E-02
1.0E-01
tav (sec)
Fig 14. Typical Avalanche Current vs.Pulsewidth
EAR , Avalanche Energy (mJ)
1000
Notes on Repetitive Avalanche Curves , Figures 14, 15:
(For further info, see AN-1005 at www.irf.com)
1. Avalanche failures assumption:
Purely a thermal phenomenon and failure occurs at a temperature far in
excess of Tjmax. This is validated for every part type.
2. Safe operation in Avalanche is allowed as long as neither Tjmax nor Iav (max)
is exceeded.
3. Equation below based on circuit and waveforms shown in Figures 16a, 16b.
4. PD (ave) = Average power dissipation per single avalanche pulse.
5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase
during avalanche).
6. Iav = Allowable avalanche current.
7. ∆T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as
25°C in Figure 14, 15).
tav = Average time in avalanche.
D = Duty cycle in avalanche = tav ·f
ZthJC(D, tav) = Transient thermal resistance, see Figures 13)
TOP
Single Pulse
BOTTOM 1% Duty Cycle
ID = 75A
800
600
400
200
0
25
50
75
100
125
150
175
Starting TJ , Junction Temperature (°C)
Fig 15. Maximum Avalanche Energy vs. Temperature
www.irf.com
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC
Iav = 2DT/ [1.3·BV·Zth]
EAS (AR) = PD (ave)·tav
5
IRF/B/S/SL3207PbF
16
ID = 1.0A
ID = 1.0mA
ID = 250µA
4.5
4.0
14
12
IRRM - (A)
VGS(th) Gate threshold Voltage (V)
5.0
3.5
3.0
10
8
2.5
6
IF = 30A
VR = 64V
2.0
4
TJ = 125°C
TJ = 25°C
1.5
2
-75 -50 -25
0
25
50
75
100 125 150 175
100 200 300 400 500 600 700 800 900 1000
TJ , Temperature ( °C )
dif / dt - (A / µs)
Fig. 17 - Typical Recovery Current vs. dif/dt
Fig 16. Threshold Voltage Vs. Temperature
16
400
14
300
QRR - (nC)
IRRM - (A)
12
10
8
6
IF = 45A
VR = 64V
4
TJ = 125°C
200
IF = 30A
VR = 64V
100
TJ = 125°C
TJ = 25°C
TJ = 25°C
2
0
100 200 300 400 500 600 700 800 900 1000
100 200 300 400 500 600 700 800 900 1000
dif / dt - (A / µs)
dif / dt - (A / µs)
Fig. 18 - Typical Recovery Current vs. dif/dt
Fig. 19 - Typical Stored Charge vs. dif/dt
400
QRR - (nC)
300
200
100
IF = 45A
VR = 64V
TJ = 125°C
TJ = 25°C
0
100 200 300 400 500 600 700 800 900 1000
dif / dt - (A / µs)
Fig. 20 - Typical Stored Charge vs. dif/dt
6
www.irf.com
IRF/B/S/SL3207PbF
D.U.T
Driver Gate Drive
ƒ
+
‚
„
-
-
*
D.U.T. ISD Waveform
Reverse
Recovery
Current
+

RG
•
•
•
•
dv/dt controlled by RG
Driver same type as D.U.T.
I SD controlled by Duty Factor "D"
D.U.T. - Device Under Test
VDD
P.W.
Period
VGS=10V
Circuit Layout Considerations
• Low Stray Inductance
• Ground Plane
• Low Leakage Inductance
Current Transformer
-
D=
Period
P.W.
+
+
-
Body Diode Forward
Current
di/dt
D.U.T. VDS Waveform
Diode Recovery
dv/dt
Re-Applied
Voltage
Body Diode
VDD
Forward Drop
Inductor
Current
Inductor Curent
ISD
Ripple ≤ 5%
* VGS = 5V for Logic Level Devices
Fig 21. Peak Diode Recovery dv/dt Test Circuit for N-Channel
HEXFET® Power MOSFETs
V(BR)DSS
15V
DRIVER
L
VDS
tp
D.U.T
RG
+
V
- DD
IAS
VGS
20V
tp
A
0.01Ω
I AS
Fig 22a. Unclamped Inductive Test Circuit
Fig 22b. Unclamped Inductive Waveforms
LD
VDS
VDS
90%
+
VDD -
10%
D.U.T
VGS
VGS
Pulse Width < 1µs
Duty Factor < 0.1%
td(on)
Fig 23a. Switching Time Test Circuit
tr
td(off)
tf
Fig 23b. Switching Time Waveforms
Id
Vds
Vgs
L
VCC
DUT
0
Vgs(th)
1K
Qgs1 Qgs2
Fig 24a. Gate Charge Test Circuit
www.irf.com
Qgd
Qgodr
Fig 24b. Gate Charge Waveform
7
IRF/B/S/SL3207PbF
TO-220AB Package Outline
Dimensions are shown in millimeters (inches)
TO-220AB Part Marking Information
(;$03/( 7+,6,6$1,5)
/27&2'(
$66(0%/('21::
,17+($66(0%/</,1(&
1RWH3LQDVVHPEO\OLQHSRVLWLRQ
LQGLFDWHV/HDG)UHH
,17(51$7,21$/
5(&7,),(5
/2*2
$66(0%/<
/27&2'(
3$57180%(5
'$7(&2'(
<($5 :((.
/,1(&
TO-220AB packages are not recommended for Surface Mount Application.
8
www.irf.com
IRF/B/S/SL3207PbF
TO-262 Package Outline
Dimensions are shown in millimeters (inches)
TO-262 Part Marking Information
(;$03/( 7+,6,6$1,5//
/27&2'(
$66(0%/('21::
,17+($66(0%/</,1(&
,17(51$7,21$/
5(&7,),(5
/2*2
$66(0%/<
/27&2'(
3$57180%(5
'$7(&2'(
<($5 :((.
/,1(&
25
,17(51$7,21$/
5(&7,),(5
/2*2
$66(0%/<
/27&2'(
www.irf.com
3$57180%(5
'$7(&2'(
3 '(6,*1$7(6/($')5((
352'8&7237,21$/
<($5 :((.
$ $66(0%/<6,7(&2'(
9
IRF/B/S/SL3207PbF
D2Pak (TO-263AB) Package Outline
Dimensions are shown in millimeters (inches)
D2Pak (TO-263AB) Part Marking Information
7+,6,6$1,5)6:,7+
/27&2'(
$66(0%/('21::
,17+($66(0%/</,1(/
,17(51$7,21$/
5(&7,),(5
/2*2
$66(0%/<
/27&2'(
25
,17(51$7,21$/
5(&7,),(5
/2*2
$66(0%/<
/27&2'(
10
3$57180%(5
)6
'$7(&2'(
<($5 :((.
/,1(/
3$57180%(5
)6
'$7(&2'(
3 '(6,*1$7(6/($')5((
352'8&7237,21$/
<($5 :((.
$ $66(0%/<6,7(&2'(
www.irf.com
IRF/B/S/SL3207PbF
D2Pak (TO-263AB) Tape & Reel Information
TRR
1.60 (.063)
1.50 (.059)
4.10 (.161)
3.90 (.153)
FEED DIRECTION 1.85 (.073)
1.65 (.065)
1.60 (.063)
1.50 (.059)
11.60 (.457)
11.40 (.449)
0.368 (.0145)
0.342 (.0135)
15.42 (.609)
15.22 (.601)
24.30 (.957)
23.90 (.941)
TRL
10.90 (.429)
10.70 (.421)
1.75 (.069)
1.25 (.049)
4.72 (.136)
4.52 (.178)
16.10 (.634)
15.90 (.626)
FEED DIRECTION
13.50 (.532)
12.80 (.504)
27.40 (1.079)
23.90 (.941)
4
330.00
(14.173)
MAX.
NOTES :
1. COMFORMS TO EIA-418.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION MEASURED @ HUB.
4. INCLUDES FLANGE DISTORTION @ OUTER EDGE.
60.00 (2.362)
MIN.
26.40 (1.039)
24.40 (.961)
3
30.40 (1.197)
MAX.
4
Data and specifications subject to change without notice.
This product has been designed and qualified for the Industrial market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information. 03/06
www.irf.com
11
Note: For the most current drawings please refer to the IR website at:
http://www.irf.com/package/