AVAGO ACPL-214

ACPL-214
AC Input, Half-Pitch Phototransistor Optocoupler
Data Sheet
Lead (Pb) Free
RoHS 6 fully
compliant
RoHS 6 fully compliant options available;
-xxxE denotes a lead-free product
Description
Features
The ACPL-214 is an AC-input single channel half-pitch
phototransistor optocoupler which contains 2 light
emitting diodes connected inversely parallel & optically
coupled to a phototransistor. It is packaged in a 4-pin SO
package.
• Current transfer ratio
(CTR: 20% (min) at IF = ±5mA, VCC = 5V)
The input-output isolation voltage is rated at 3000 Vrms.
Response time, tr, is 2μs typically, while minimum CTR is
20% at input current of 5 mA
ACPL-214 pin layout
4
3
1
2
• High input-output isolation voltage
(VISO = 3,000VRMS)
• Non-saturated Response time
(tr: 2µs (typ) at VCC = 10V, IC = 2mA, RL= 100W)
• SO package
• CMR 10kV/μs (typical)
• Safety and regulatory approvals
- UL
- CSA
- IEC/EN/DIN EN 60747-5-2
• Options available:
– CTR Ranks 0, A
Applications
• Pin 1
Anode
• Pin 2
Cathode
• I/O Interface for Programmable controllers,
computers.
• Pin 3
Emitter
• Sequence controllers
• Pin 4
Collector
• System appliances, measuring instruments
• Signal transmission between circuits of different
potentials and impedances.
Ordering Information
ACPL-214-xxxx is pending UL Recognition with 3000 Vrms for 1 minute per UL1577 and is pending approval under CSA
Component Acceptance Notice #5, File CA 88324.
RoHS Compliant Option
Part number
ACPL-214
Rank ‘0’
20%<CTR<400%
IF=±5mA
VCE=5V
Rank ‘A’
50%<CTR<150%
IF=±5mA
VCE=5V
Package
Surface
Mount
Tape
& Reel
IC
Orientation
-500E
-50AE
SO-4
x
X
0°
-560E
-56AE
SO-4
x
X
0°
-700E
-70AE
SO-4
x
X
180°
-760E
-76AE
SO-4
x
X
180°
IEC/EN/DIN
EN 60747-5-2 Quantity
3000 pcs per reel
X
3000 pcs per reel
3000 pcs per reel
X
3000 pcs per reel
“To order, choose a part number from the part number column and combine with the desired option from the option
column to form an order entry.
Example 1:
HCPL-214-560E to order product of SO-4 Surface Mount package in Tape & Reel packaging with IEC/EN/DIN EN
60767-5-2 Safety Approval, 20%<CTR<400% and RoHS compliant.
Example 2:
ACPL-214-50AE to order product of SO-4 Surface Mount package in Tape & Reel packaging with 50%<CTR<150%
and RoHS compliant.
Option datasheets are available. Contact your Avago sales representative or authorized distributor for information.
Package Outline Drawings
Solder Reflow Temperature Profile
30 seconds
Temperature (°C)
250 °C
260 °C (Peak Temperature)
217 °C
200 °C
2. When using another soldering method such as
infrared ray lamp, the temperature may rise partially
in the mold of the device. Keep the temperature on
the package of the device within the condition of (1)
above.
150 °C
25 °C
60 sec
60 ~ 150 sec
90 sec
1. One-time soldering reflow is recommended within the
condition of temperature and time profile shown at
right.
60 sec
Time (sec)
Note: Non halide flux should be used.
Absolute Maximum Ratings
Parameter
Symbol
ACPL-214
Units
Storage Temperature
TS
-55~125
°C
Operating Temperature
TA
-55~110
°C
Average Forward Current
IF(AVG)
±50
mA
Pulse Forward Current
IFSM
±1
A
LED Power Dissipation
PI
65
mW
Collector Current
IC
50
mA
Collector-Emitter Voltage
VCEO
80
V
Emitter-Collector Voltage
VECO
7
V
Isolation Voltage (AC for 1min, R.H. 40~60%)
VISO
3000
VRMS
Collector Power Dissipation
PC
150
mW
Total Power Dissipation
PTOT
200
mW
Lead Solder Temperature
260°C for 10 sec., 1.6 mm below seating plane
Note
1min
Electrical Specifications
Over recommended ambient temperature at 25ºC unless otherwise specified.
Parameter
Symbol
Min.
Typ.
Max.
Units
Test Conditions
Note
Forward Voltage
VF
-
1.2
1.4
V
IF = ±20mA
Fig.6
Terminal Capacitance
Ct
-
60
-
pF
V = 0, f = 1MHz
Collector Dark Current
ICEO
-
-
100
nA
VCE = 48V, IF = 0 mA
Collector-Emitter Breakdown Voltage
BVCEO
80
-
-
V
IC = 0.5 mA, IF = 0 mA
Emitter-Collector Breakdown Voltage
BVECO
7
-
-
V
IE = 100 mA, IF = 0 mA
Current Transfer Ratio
CTR
20
-
400
%
IF = ±5 mA, VCE = 5V
Saturated CTR
CTR(sat)
-
100
-
%
IF = ±1mA, VCE = 0.4V
Collector-Emitter Saturation Voltage
VCE(sat)
-
-
0.4
Isolation Resistance
Riso
1x1011
-
V
W
IF = ±8mA, IC = 2.4mA
5x1010
Floating Capacitance
CF
-
0.8
1
pF
V = 0, f = 1MHz
Cut-off Frequency (-3dB)
FC
-
80
-
kHz
VCC = 5V, IC = 2 mA,
RL = 100W
Fig. 2,19
Response Time (Rise)
tr
-
2
-
ms
Fig. 1
Response Time (Fall)
tf
-
3
-
ms
VCC = 10V, IC = 2 mA,
RL = 100W
Turn-on Time
ton
-
3
-
ms
Turn-off Time
toff
-
3
-
ms
Turn-ON Time
tON
-
2
-
ms
Fig. 1, 17
Storage Time
TS
-
25
-
ms
VCC = 5V, IF = 16 mA,
RL = 1.9kW
Turn-OFF Time
tOFF
-
40
-
ms
Common Mode Rejection Voltage
CMR
-
10
-
kV/ms
Ta=25ºC, RL=470W,
VCM=1.5kV(peak), IF=0mA,
VCC=9V, Vnp=100mV
Fig.20
IF
RL
VCC
VCE
IF
VCE
tr
tf
ts
90%
10%
ton
Figure 1. Switching Time Test Circuit
RL
VCC
Output
RD
Figure 2. Frequency Response Test Circuit
toff
Fig.12
CTR=(IC/IF )x
100%
Fig.14
DC500V, R.H. 40~60%
60
160
40
Collector Power Dissipation, Pc(mW)
Forward Current, I F (mA)
50
ACPL-214
30
20
10
0
-25
-5
15
35
55
Ambient Temperature, Ta( ºC)
75
95
140
120
80
60
40
20
0
-25
115
Figure 3. Forward Current vs. Ambient Temperature
ACPL-214
100
0
25
50
75
Ambient Temperature, Ta(ºC)
100
Forward Current, I F (mA)
Peak Forward Current, I
FP
(mA)
Pulse width ≤100 µs
Ta = 25 º C
1000
100
10
0.0001
0.0010
0.0100
0.1000
50 º C
10
1
0.4
1.0000
Figure 5. Pulse Forward Current vs. Duty Cycle Ratio
-30 º C
0ºC
25 º C
75 º C
Ta = 110 º C
0.6
0.8
Duty Ratio
1.0
1.2
1.4
Forward Voltage, VF (V)
1.6
1.8
2.0
Figure 6. Forward Current vs. Forward Voltage
-3.2
1000
(mA)
-2.8
FP
-2.4
Pulse Forward Current, I
Forward Voltage Temperature Coefficient
∆V F /∆Ta (mV/ º C)
125
Figure 4. Collector Power Dissipation vs. Ambient Temperature
10000
-2.0
-1.6
-1.2
-0.8
-0.4
0.1
1
10
Forward current, I F (mA)
Figure 7. Forward Voltage Temperature Coefficient vs. Forward Current
100
100
100
10
1
Pulse Width ≤10 µs
Repetitive
Frequency=100Hz
Ta=25ºC
0.5
1
1.5
2
Pulse Forward Voltage, VFP (V)
Figure 8. Pulse Forward Current vs. Pulse Forward Voltage
2.5
3
50
50
T a = 25ºC
Collector Currrent, Ic( mA)
Collector Current, Ic(mA)
20mA
P C (max)=150mW
20
10mA
10
I F =5mA
35
5
Collector-Emitter Voltage, Vce(V)
30mA
30
25
20mA
20
15
10mA
10
5mA
5
0
0
50mA
40
30mA
30
0
45
50mA
40
10
Figure 9. Collector Current vs. Collector-Emitter Voltage
I F = 2mA
0
0.5
Collector-Emitter Voltage, V CE(V)
1
Figure 10. Collector Current vs. Small Collector¬-Emitter Voltage
0.1
10V
1.E-06
Collector Dark Current, I CEO (A)
Collector Current, I C (A)
5V
VCE = 0.4V
0.01
0.001
0.0001
0.0001
0.001
0.01
Forward Current, IF (A)
1.E-10
-25
0.1
5V
10V
15
35
55
Ambient Temperature, Ta (o C)
75
95
0.18
Collector-Emitter Saturation Voltage, V CE (sat) (V)
Current Transfer Ratio, CTR (%)
1000
10V
5V
V CE = 0.4V
100
0.001
0.01
Forward Current, IF (A)
Figure 13. Current Transfer Ratio vs. Forward Current
-5
24V
Figure 12. Collector Dark Current vs. Ambient Temperature
Figure 11. Collector Current vs. Forward Current
10
0.0001
VCE = 48V
1.E-08
0.1
0.16
I F = 8mA,
I C = 2.4mA
0.14
0.12
I F = 20mA,
I C= 1mA
0.10
0.08
I F = 1mA,
I C = 0.2mA
0.06
0.04
0.02
0.00
-30
5
40
Ambient Temperature, Ta(ºC)
75
110
Figure 14. Collector-Emitter Saturation Voltage vs. Ambient Temperature
1000
100
100
10mA
5mA
1mA
I F = 0.5mA
75
Figure 15. Collector Current vs. Ambient Temperature
Collector-Emitter Saturation Voltage, VCE(sat) (V)
Switching time, t (µs)
10
t ON
I F = 16mA
VCC = 5V
R L = 1.9kΩ
0
20
40
60
Ambient Temperature, Ta ( ºC)
100
5
tS
0.1
-20
10
Load Resistance, R L (kΩ)
Figure 16. Switching Time vs. Load Resistance
t OFF
1
1
80
100
Figure 17. Switching Time vs. Ambient Temperature
Ta = 25 ºC
4
3
2
7mA
100
0.1
100
Ta = 25 ºC
V CC = 5V
R L = 1.9kΩ
I C = 10mA
25
50
Ambient Temperature, Ta ( o C)
1
3mA
0
t ON
5mA
0.1
-25
TS
10
1mA
1
t OFF
0.5mA
10
Switching Time, t (µs)
Collector Current, I C (mA)
25mA
1
0
0
5
10
Forward Current, I F (mA)
15
20
Figure 18. Collector-Emitter Saturation Voltage vs. Forward Current
0
R L= 100Ω
Vo, (dB)
-2
1kΩ
-4
dV/dt
-6
RL
V CC = 5V
I C = 2mA
Ta = 25 ºC
-8
1
Vo
Vcc
V CM
V np
9V
470 Ω
Vo
V CM
10
Frequency, f (kHz)
100
Figure 19. Frequency Response
For product information and a complete list of distributors, please go to our web site:
(High Voltage Pulse)
Figure 20. CMR Test Circuit
www.avagotech.com
Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies Limited in the United States and other countries.
Data subject to change. Copyright © 2008 Avago Technologies Limited. All rights reserved.
AV02-0469EN - February 26, 2008
V cp
Vcp ≈ (dV/dt)xCfxRL
V cp : Voltage that is generated by the displacement
current in floating capacitance between primary and
secondary sides.