[AK4678] AK4678 24bit Stereo CODEC with MIC/RCV/HP/SPK/LINE-AMP GENERAL DESCRIPTION The AK4678 is a 24bit stereo CODEC with a built-in Microphone-Amplifier, Receiver-Amplifier, Mono Class-D Speaker-Amplifier, Cap-less Class-G Headphone-Amplifier and Line-Amplifier. The AK4678 features dual PCM I/F in addition to audio I/F that allows easy interfacing in mobile phone designs with Bluetooth I/F. The playback features also include 5-band Parametric EQ and Dynamic Range Control, therefore the AK4678 can automatically adjust a comfortable volume without distortion and provides great flexibility. The AK4678 is available in a 49pin CSP, utilizing less board space than competitive offerings. FEATURES 1. Recording Function (Stereo CODEC) 4 Stereo Input Selectors 4 Stereo Inputs (Single-ended) or 3 Mono Input (Full-differential) MIC Amplifier: +24dB ~ 6dB, 3dB step 2 Output MIC Power Supplies Digital ALC (Automatic Level Control): +36dB ~ 54dB, 0.375dB Step, Mute ADC CHARACTERISTICS: S/(N+D): 80dB, DR, S/N: 87dB (MIC-Amp=+18dB) S/(N+D): 80dB, DR, S/N: 92dB (MIC-Amp=0dB) Stereo Digital MIC Interface Wind-noise Reduction Filter Stereo Separation Emphasis 3-band Programmable Notch Filter Audio Interface Format: 24/16bit MSB justified, 24/16bit I2S, 16bit DSP Mode 2. Playback Function (Stereo CODEC) Digital Volume (+6dB ~ 57.0dB, 0.5dB Step, Mute) Digital ALC (Automatic Level Control): +36dB ~ 54dB, 0.375dB Step, Mute Stereo Separation Emphasis Dynamic Range Control 5-band Parametric Equalizer Stereo Line Output (Selectable Full-differential / Single-ended) Mono Receiver-Amp - BTL Output - Output Power: 60mW @ 32 - Analog Volume: +12 ~ 30dB & Mute, 3dB Step Cap-less Stereo Class-G Headphone-Amp - Output Power: 25mW @ 32, 45mW @ 16 - Analog Volume: +6 ~ 62dB & Mute, 2dB Step - Zero crossing Detection - Pop Noise Free at Power-ON/OFF Mono Class-D Speaker-Amp - BTL Output - Short Protection Circuit - Output Power: 1.1W @ 8, SVDD=4.2V, THD+N = 10% 0.89W @ 8, SVDD=4.2V, THD+N = 1% - Analog Volume: +12 ~ 30dB & Mute, 3dB Step - Pop Noise Free at Power-ON/OFF Audio Interface Format: - 24/16bit MSB justified, 16bit LSB justified, 16/24bit I2S, 16bit DSP Mode MS1403-E-04 2014/12 -1- [AK4678] 3. Dual PCM I/F for Baseband & Bluetooth Interface Four sample Rate Converters (Up sample: up to x6: Down sample: down to x1/6) Sample Rate: - PORTA (Mono): 8 ~ 16kHz - PORTB (Stereo): 8 ~ 48kHz Digital Volume Slave Mode Audio Interface Format: - 16bit Linear, 8bit A-law, 8bit μ-law - Short/Long Frame, I2S, MSB justified 4. Power Management 5. Master Clock(Audio I/F): (1) PLL Mode Frequencies: 11.2896MHz, 12MHz, 12.288MHz, 13MHz, 13.5MHz, 19.2MHz, 24MHz, 25MHz, 26MHz, 27MHz (MCKI pin) 32fs or 64fs (BICK pin) (2) External Clock Mode Frequencies: 256fs, 512fs or 1024fs (MCKI pin) 6. Output Master Clock Frequencies(Audio I/F): 32fs/64fs/128fs/256fs 7. Sampling Frequency (Audio I/F) PLL Slave Mode (BICK pin): 8kHz ~ 48kHz PLL Master Mode: 8kHz, 11.025kHz, 12kHz, 16kHz, 22.05kHz, 24kHz, 32kHz, 44.1kHz, 48kHz EXT Master/Slave Mode: 8kHz 48kHz (256fs), 8kHz ~ 24kHz (512fs), 8kHz ~ 12kHz (1024fs) 8. Audio I/F: Master/Slave mode 9. μP I/F: I2C Bus (Ver 1.0, 400kHz Fast Mode) 10. Ta = 30 ~ 85C 11. Power Supply: SVDD (SPK/RCV/LINE-Amp): 3.0 ~ 5.5V AVDD (Analog): 1.7 ~ 2.0V DVDD (Digital Core): 1.7 ~ 2.0V PVDD (HP-Amp & Charge Pump): 1.7 ~ 2.0V TVDD (Digital I/F): 1.6 ~ 3.6V 12. Package : 49pin CSP(2.96 x 2.96 mm, 0.4mm pitch) MS1403-E-04 2014/12 -2- [AK4678] ■ Block Diagram SVDD VSS3 AVDD VSS1 VCOM PMMP2 MPWR MPWR2 MIC Power Supply PMMP1 MPWR MPWR1 MIC Power Supply MIC-Amp PMADL LIN1/IN1+ Internal MIC RIN1/IN1 To ADC Lch To ADC Rch LIN2/IN2 External MIC PMADR RIN2/IN2+ LIN3/IN3+ RIN3/IN3 LIN4 RIN4 LOUT/LOP PMLO From DAC Lch From DAC Rch Stereo Line Out ROUT/LON PMRO PMHPL HPL Headphone Out PMHPR HPR To HP-Amp PVDD PMRCV RCP From PVDD pin Receiver Out RCN VEE PMSPK SPP To Headphone-Amp Speaker Out Charge Pump SPN CPA CNA Class-D SPK-Amp SPFIL CNB CPB Figure 1. Analog Block Diagram MS1403-E-04 2014/12 -3- [AK4678] DVDD VSS2 TVDD PMADL or PMADR From Lch MIC-Amp From Rch MIC-Amp ADC HPF1 SCL PMPFIL bit Control Register HPF2 SDA LPF Stereo Separation PDN 3-band Notch BICK ALC LRCK MIX SDTO Audio I/F SDTI PMDAL or PMDAR To Lch Output DAC To Rch Output S E L DRC SVOLA PMEQ PMDRC S E L DATT-A 5-band SMUTE EQ MCKI DASEL1-0 PLL PMMIX PMPLL PMOSC MIX1L MIX1R OSC PMSRAO MIX2A SDOAD SRCAO MIX2B SVB2-0 PMPCMA MIX2C Mono PCM I/F (PORTA) SVOLB DATT-B SRCAI BICKA SYNCA SDTOA SDTIA BVL6-0 PMSRAI CVL6-0 DATT-C PMPCMB BICKB PMSRBO SDOBD MIX3 BIVOL BIV2-0 PCM I/F (PORTB) SRCBO SYNCB SDTOB SDTIB SRCBI PMSRBI Figure 2. Digital Block Diagram MS1403-E-04 2014/12 -4- [AK4678] ■ Ordering Guide 30 +85C 49pin CSP (0.4mm pitch) Black type Evaluation board for AK4678 AK4678ECB AKD4678 ■ Pin Layout 7 6 5 Top View 4 3 2 1 A B C D E F G 7 CNB CNA VEE HPR LIN3 /IN3+ LIN1/IN1+ /DMDAT RIN1/IN1 /DMCLK 6 CPB CPA PVDD HPL RIN3 /IN3 LIN2 /IN2 VSS1 5 TVDD VSS2 SDA LIN4 RIN2 /IN2+ VCOM AVDD 4 SDTO SCL PDN RIN4 LOUT /LOP MPWR1 MPWR2 3 BICK SDTI LRCK SYNCA ROUT /LON RCP RCN 2 MCKI SYNCB SDTOB BICKA SPFIL SVDD SPN 1 BICKB SDTIB SDTOA SDTIA DVDD SPP VSS3 A B C D E F G Top View MS1403-E-04 2014/12 -5- [AK4678] PIN/FUNCTION No. Pin Name Power Supply G5 AVDD F5 VCOM G6 VSS1 E1 DVDD A5 TVDD B5 VSS2 F2 SVDD G1 VSS3 C6 PVDD C7 VEE B6 CPA B7 CNA A6 CPB A7 CNB F4 MPWR1 G4 MPWR2 Audio Interface A2 MCKI A3 BICK C3 LRCK B3 SDTI A4 SDTO PCM Interface D2 BICKA D3 SYNCA D1 SDTIA C1 SDTOA A1 BICKB B2 SYNCB B1 SDTIB C2 SDTOB Analog Input LIN1 F7 IN1+ DMDAT RIN1 G7 IN1 DMCLK LIN2 F6 IN2 RIN2 E5 IN2+ LIN3 E7 IN3+ RIN3 E6 IN3 D5 LIN4 D4 RIN4 I/O O O I O I O O I I/O I/O I O Function Analog Power Supply Pin, 1.7 2.0V Common Voltage Output Pin Ground 1 Pin Digital Core Power Supply Pin, 1.7 ~ 2.0V Digital I/O Power Supply Pin, 1.6 3.6V Ground 2 Pin Analog Amp Power Supply Pin, 3.0 ~ 5.5V Ground 3 Pin HP-Amp & Charge Pump Power Supply Pin Charge Pump Circuit Negative Voltage Output Pin Positive Charge Pump Capacitor Terminal A Pin Negative Charge Pump Capacitor Terminal A Pin Positive Charge Pump Capacitor Terminal B Pin Negative Charge Pump Capacitor Terminal B Pin MIC Power Supply 1 Pin MIC Power Supply 2 Pin External Master Clock Input Pin Audio Serial Data Clock Pin Input / Output Channel Clock Pin Audio Serial Data Input Pin Audio Serial Data Output Pin I I I O I I I O Serial Data Clock A Pin Sync Signal A Pin Serial Data Input A Pin Serial Data Output A Pin Serial Data Clock B Pin Sync Signal B Pin Serial Data Input B Pin Serial Data Output B Pin I I I I I O I I I I I I I I I I Lch Analog Input 1 Pin (MDIF1 bit = “0”: Single-ended Input, DMIC bit = “0”) Positive Line Input 1 Pin (MDIF1 bit = “1”: Full-differential Input, DMIC bit = “0”) Digital Microphone Data Input Pin (DMIC bit = “1”) Rch Analog Input 1 Pin (MDIF1 bit = “0”: Single-ended Input, DMIC bit = “0”) Negative Line Input 1 Pin (MDIF1 bit = “1”: Full-differential Input, DMIC bit = “0”) Digital Microphone Clock Pin (DMIC bit = “1”) Lch Analog Input 2 Pin (MDIF2 bit = “0”: Single-ended Input) Negative Line Input 2 Pin (MDIF2 bit = “1”: Full-differential Input) Rch Analog Input 2 Pin (MDIF2 bit = “0”: Single-ended Input) Positive Line Input 2 Pin (MDIF2 bit = “1”: Full-differential Input) Lch Analog Input 3 Pin (MDIF3 bit = “0”: Single-ended Input) Positive Line Input 3 Pin (MDIF3 bit = “1”: Full-differential Input) Rch Analog Input 3 Pin (MDIF3 bit = “0”: Single-ended Input) Negative Line Input 3 Pin (MDIF3 bit = “1”: Full-differential Input) Lch Analog Input 4 Pin Rch Analog Input 4 Pin MS1403-E-04 2014/12 -6- [AK4678] PIN/FUNCTION (Cont.) No. Pin Name Analog Output ROUT E3 LON LOUT E4 LOP F3 RCP G3 RCN D6 HPL D7 HPR F1 SPP G2 SPN E2 I/O O O O O O O O O O O SPFIL O Control Interface B4 SCL C5 SDA I I/O Function Rch Stereo Line Output Pin (LODIF bit = “0”: Stereo Line Output) Negative Line Output Pin (LODIF bit = “1”: Full-differential Mono Output) Lch Stereo Line Output Pin (LODIF bit = “0”: Stereo Line Output) Positive Line Output Pin (LODIF bit = “1”: Full-differential Mono Output) Receiver-Amp Positive Output Pin Receiver-Amp Negative Output Pin Lch Headphone-Amp Output Pin Rch Headphone-Amp Output Pin Speaker-Amp Positive Output Pin Speaker-Amp Negative Output Pin Speaker-Amp Filter Pin Connect 2.2nF between SPFIL pin and VSS1. Control Data Clock Pin Control Data Input Pin Power-Down Mode Pin C4 PDN I “H”: Power-up, “L”: Power-down, reset and initializes the control register. Note 1. All input pins except analog input pins (LIN1/IN1+, RIN1/IN1, LIN2/IN2, RIN2/IN2+, LIN3/IN3+, RIN3/IN3, LIN4, RIN4) must not be allowed to float. I/O pins (LRCK, BICK and SDA pins) should be processed appropriately. ■ Handling of Unused Pin on the System The unused input and output pins on the system should be processed appropriately as below. Classification Analog Digital Pin Name MPWR1, MPWR2, SPP, SPN, RCP, RCN, HPL, HPR, ROUT/LON, LOUT/LOP, RIN4, LIN4, RIN3/IN3, LIN3/IN3+, RIN2/IN2+, LIN2/IN2, RIN1/IN1, LIN1/IN1+, CPA, CNA, CPB, CNB, VEE, SPFIL SDTO, SDTOA, SDTOB MCKI, SDTI, SDTIA, SDTIB, BICKA, SYNCA, BICKB, SYNCB Setting These pins should be open. These pins should be open. These pins should be connected to VSS2. These pins should be connected to VSS2 and M/S bit should be set to “0”. LRCK, BICK MS1403-E-04 2014/12 -7- [AK4678] ABSOLUTE MAXIMUM RATINGS (VSS1=VSS2=VSS3=0V; Note 2, Note 3) Parameter Symbol min max Unit Power Supplies: Analog AVDD 2.5 V 0.3 SPK/RCV/LINE-Amp SVDD 6.0 V 0.3 HP-Amp & Charge Pump PVDD 2.5 V 0.3 Digital Core DVDD 2.5 V 0.3 Digital I/O TVDD 6.0 V 0.3 Input Current, Any Pin Except Supplies IIN mA 10 Analog Input Voltage (Note 4) VINA AVDD + 0.3 V 0.3 Digital Input Voltage (Note 5) VIND TVDD + 0.3 V 0.3 Ambient Temperature (powered applied) Ta 85 30 C Storage Temperature Tstg 150 65 C Maximum Power Dissipation (Note 6) Pd 1 W Note 2. All voltages with respect to ground. Note 3. VSS1, VSS2 and VSS3 must be connected to the same analog ground plane. Note 4. RIN4, LIN4, RIN3/IN3, LIN3/IN3+, RIN2/IN2+, LIN2/IN2, RIN1/IN1, LIN1/IN1+ pins Note 5. SDTI, LRCK, BICK, MCKI, PDN, BICKA, SYNCA, SDITA, BICKB, SYNCB, SDTIB, SCL and SDA pins Pull-up resistors at SDA and SCL pins should be connected to (TVDD+0.3)V or less voltage. Note 6. The maximum power dissipation (1W) is the AK4678 internal dissipation that does not include power dissipation of externally connected speaker, headphone and receiver in recommended operating conditions. The allowable maximum junction temperature for the AK4678 is 125C and ja(Junction to Ambient) is 35C/W under JESD51-9(2p2s). The internal dissipation does not cause permanent damage to the device when ja = 35C/W and Pd=1W because the junction temperature does not exceed 125C. AKM recommends to use the board with ja 35C/W. WARNING: Operation at or beyond these limits may result in permanent damage to the device. Normal operation is not guaranteed at these extremes. MS1403-E-04 2014/12 -8- [AK4678] RECOMMENDED OPERATING CONDITIONS (VSS1=VSS2=VSS3=0V; Note 2) Parameter Power Analog Supplies SPK/RCV/LINE-Amp (Note 7) HP-Amp & Charge Pump Digital Core Digital I/O Difference Symbol AVDD SVDD PVDD DVDD TVDD AVDD – PVDD AVDD – DVDD PVDD – DVDD min 1.7 3.0 1.7 1.7 1.6 0.2 0.2 0.2 typ 1.8 4.2 1.8 1.8 1.8 max 2.0 5.5 2.0 2.0 3.6 0.2 0.2 0.2 Unit V V V V V V V V Note 2. All voltages with respect to ground. Note 7. The power-up sequence between supplies (AVDD, SVDD, PVDD, DVDD or TVDD) is not critical. The PDN pin should be held “L” when power supplies are tuning on. The PDN pin is allowed to be “H” after all power supplies are applied and settled. The AK4678 should be operated along the recommended power-up/down sequence shown in “System Design (Grounding and Power Supply Decoupling)” to avoid pop noise at speaker output, receiver output, headphone outputs and line outputs. * AVDD, PVDD, DVDD and TVDD can be powered OFF (Power is not applied) when SVDD is powered ON (Power is applied) with PDN pin “L”. When turning on AVDD, PVDD, DVDD and TVDD again in this case, the PDN pin must be “L” until all other power supplies are powered ON. Also, when turning off AVDD, PVDD, DVDD and TVDD, the PDN pin must be “L” before other power supplies start to turn off. * AKM assumes no responsibility for the usage beyond the conditions in this datasheet. MS1403-E-04 2014/12 -9- [AK4678] ANALOG CHARACTERISTICS (CODEC) (Ta=25C; AVDD=PVDD= DVDD=TVDD= 1.8V, SVDD=4.2V; VSS1=VSS2=VSS3=0V; Signal Frequency=1kHz; 24bit Data; fs=44.1kHz, BICK=64fs; Measurement Bandwidth=20Hz 20kHz; unless otherwise specified) Parameter min typ max Unit MIC Amplifier: LIN1/RIN1/LIN2/RIN2/LIN3/RIN3/LIN4/RIN4 pins Input Resistance 17 25 38 k Gain (Note 8) Gain Setting +24 dB 6 Step Width 3 dB MIC Power Supply: MPWR1, MPWR2 pin Output Voltage (Note 9) 2.4 2.5 2.6 V Load Resistance 1.0 k Load Capacitance 30 pF Output Noise Level (A-weighted) dBV 107 PSRR (Note 10) 217Hz 100 dB 1kHz 100 dB Stereo ADC Analog Input Characteristics: LIN1/RIN1/LIN2/RIN2/LIN3/RIN3/LIN4/RIN4 pins(Single-ended Input) Stereo ADC Programmable Filter (IVOL=0dB, EQ=ALC=OFF) SDTO Resolution 24 Bits (Note 12) 0.204 0.227 0.250 Vpp Input Voltage (Note 11) (Note 13) 1.62 1.8 1.98 Vpp (Note 12) 69 80 dB S/(N+D) (1dBFS) (Note 13) 80 dB (Note 12) 76 87 dB D-Range (60dBFS, A-weighted) (Note 13) 92 dB (Note 12) 76 87 dB S/N (A-weighted) (Note 13) 92 dB (Note 12) 75 90 dB Interchannel Isolation (Note 14) (Note 13) 100 dB (Note 12) 0 0.8 dB Interchannel Gain Mismatch (Note 14) (Note 13) 0 0.8 dB Note 8. In case of full-differential input, MGAIN (min)=-3dB Note 9. In case of MICL1 bit or MICL2 bit = “0”. Output voltage is proportional to AVDD (typ. 1.39 x AVDD V). MICL1 bit or MICL2 bit = “1”: typ. 1.56 x AVDD V Note 10. PSRR is referred to SVDD with 500mVpp sine wave. Note 11. Input voltage means ADC full-scale voltage. It is proportional to AVDD voltage. Single-ended Input: Vin = 1.0 x AVDD Vpp(typ). Full-Differential Input: Vin = (IN+) – (IN–) = 1.0 x AVDD Vpp(typ). IN+ = 0.5 x AVDD(typ), IN– = 0.5 x AVDD(typ) Pseudo-Differential Input: Vin = (IN+) – (IN–) = 1.0 x AVDD Vpp (typ). IN+ = 1.0 x AVDD(typ), IN– = 0V (IN– pin should be connected to VSS1.) Note 12. MGNL3-0=MGNR3-0 bits = “BH” (+18dB). In case of Full-differential, S/(N+D) =75dB, DR=S/N=81dB Note 13. MGNL3-0=MGNR3-0 bits = “5H” (0dB). In case of Full-differential, S/(N+D) =79dB, DR=S/N=91dB Note 14. This is a value between Lch and Rch of each input. MS1403-E-04 2014/12 - 10 - [AK4678] Parameter min typ max Unit Stereo DAC Characteristics: Resolution 24 Bits Stereo Line Output Characteristics: Stereo DAC LOUT/ROUT pins, ALC=OFF, IVOL=0dB, OVOL=0dB, LVL=0dB, RL=10k; unless otherwise specified. Output Voltage (Note 15) 1.62 1.8 1.98 Vpp S/(N+D) (0dBFS) 70 80 dB S/N (A-weighted) 82 92 dB Interchannel Isolation 80 95 dB Interchannel Gain Mismatch 0 0.8 dB Load Resistance 10 k Load Capacitance 30 pF PSRR (Note 16) 217Hz 75 dB 1kHz 75 dB Mono Line Output Characteristics: Stereo DAC LOP/LON pins, ALC=OFF, IVOL=0dB, OVOL=0dB, LVL=0dB, LODIF bit = “1”, RL=10k for each pin (Full-differential) Output Voltage (Note 17) 3.24 3.6 3.96 Vpp S/(N+D) (0dBFS) 73 dB S/N (A-weighted) 95 dB Load Resistance (LOP/LON pins, respectively) 10 k (Note 18) Load Capacitance (LOP/LON pins, respectively) 30 pF (Note 19) PSRR (Note 16) 217Hz 70 dB 1kHz 70 dB Mono Receiver-Amp Output Characteristics: DAC(Stereo, Note 20) RCP/RCN pins, ALC=OFF, IVOL=0dB, OVOL=0dB, RCVG=6dB, RL=32, BTL; unless otherwise specified. Output Voltage (Note 21) 0dBFS 1.76 1.96 2.16 Vpp 0dBFS, RCVG=0dB 3.91 Vpp S/(N+D) 0dBFS 40 59 dB 0dBFS, RCVG=0dB 55 dB S/N (A-weighted) (DAC RCP/RCN pins) 84 94 dB dBV Output Noise Level (A-weighted, RCVG = 9dB) 100 Load Resistance 32 Load Capacitance (Note 19) 30 pF PSRR (Note 16) 217Hz 75 dB 1kHz 75 dB Note 15. Output voltage is proportional to AVDD voltage. Vout = 1.0 x AVDD Vpp(typ) Note 16. PSRR is referred to SVDD with 200mVpp sine wave. Note 17. Output voltage is proportional to AVDD voltage. Vout = (LOP) – (LON) = 2.0 x AVDD Vpp(typ) Note 18. This is a resistance value between output pin and VSS1. When a resistor is connected between output pins, load resistance for each output pin is half. Therefore, it is necessary to decide load resistance in consideration of these. Note 19. This is a capacitance value between output pin and VSS1. When a capacitor is connected between output pins, load capacitance for each output pin doubles. Therefore, it is necessary to decide load capacitance in consideration of these. Note 20. Input signal of left and right channels is same phase and level. Note 21. Output voltage is proportional to AVDD voltage. Vout = (RCP) – (RCN) = 2.17 x AVDD Vpp(typ) Po = 15mW @ 32, Vout = 1.96Vpp. Po = 60mW @ 32, Vout = 3.91Vpp. MS1403-E-04 2014/12 - 11 - [AK4678] Parameter min typ max Unit Headphone-Amp Characteristics: DAC(Stereo, Note 20) HPL/HPR pins, ALC=OFF, IVOL=0dB, OVOL=0dB, HPG=0dB, RL=32 Output Voltage (Note 22) 1.44 1.6 1.76 Vpp 0dBFS, RL = 32, HPG=4dB 1.6 Vpp 0dBFS, RL = 16, HPG=4dB 2.5 Vpp 0dBFS, RL = 32, HPG=0dB 0.85 Vrms 0dBFS, RL = 16, HPG=0dB S/(N+D) 50 73 dB 0dBFS, RL = 32, HPG=4dB 67 dB 0dBFS, RL = 16, HPG=4dB 73 dB 0dBFS, RL = 32 HPG=0dB 20 dB 0dBFS, RL = 16 HPG=0dB S/N (A-weighted) 85 95 dB dBV Output Noise Level (A-weighted, HPG=14dB) 106 Interchannel Isolation 60 80 dB Interchannel Gain Mismatch 0 0.8 dB Load Resistance 16 32 Load Capacitance (Note 23) 300 pF PSRR (Note 24) 217Hz 70 dB 1kHz 60 dB 0 1 mV DC-offset (HPG 4dB) 1 Speaker-Amp Characteristics: DAC(stereo, Note 25) SPP/SPN pins, ALC=OFF, IVOL=0dB, OVOL=0dB, SPKG=6dB, RL=8 + 10μH Output Power SVDD=5.0V, THD+N = 10% 1.57 W SVDD=4.2V, THD+N = 10% 1.1 W SVDD=4.2V, THD+N = 1% 0.89 W SVDD=3.7V, THD+N = 1% 0.69 W 5.0 5.4 6.2 Vpp Output Voltage (3dBFS) (Note 26) S/(N+D) (SVDD=3.7V, Po=0.35W) 40 59 dB Output Noise Level (A-weighted) (Note 27) dBV 82 73 Load Resistance 8 Load Capacitance (Note 23) 300 pF PSRR (Note 28) 217Hz 63 dB 1kHz 63 dB DC-offset 0 10 mV 10 Current Limit (Note 29) 40 80 mA Note 22. The Output voltage is proportional to AVDD voltage. Vout = 1.4 x AVDD Vpp(typ). Po = 10mW @ 32, Vout = 1.6Vpp. Po = 25mW @ 32, Vout = 2.5Vpp. Po = 20mW @ 16, Vout = 1.6Vpp. Po = 45mW @ 16, Vout = 0.85Vrms. Note 23. Load Capacitance for VSS1. Note 24. PSRR is referred to PVDD with 200mVpp sine wave. Note 25. Input signal of left and right channels is same phase and level. Note 26. Output voltage is proportional to AVDD voltage. Vout = (SPP) – (SPN) = 3.0 x AVDD Vpp(typ). Note 27. In case of mono signal input (e.g. Lch only) and SPKG=0dB, output noise level is -84dBV. Note 28. PSRR is referred to SVDD with 200mVpp sine wave. Note 29. The average current between SVDD and VSS3 when the SPP and SPN pins are shorted and output power is 890mW. MS1403-E-04 2014/12 - 12 - [AK4678] Parameter Stereo Line Output Volume Characteristics: Gain Setting Step Width Headphone Output Volume Characteristics: Gain Setting Step Width Gain: +6 ~ 40dB Gain: 40 ~ 62dB Speaker Output Volume Characteristics: Gain Setting Step Width Receiver Output Volume Characteristics: Gain Setting Step Width min typ max Unit -9 1 3 +6 5 dB dB 62 1 - 2 2 +6 3 - dB dB dB 30 1 3 +12 5 dB dB 30 1 3 +12 5 dB dB MS1403-E-04 2014/12 - 13 - [AK4678] Parameter min typ max Unit Power Supply Current: Power Up (PDN pin = “H”, All Circuits Power-up) AVDD + DVDD + PVDD + TVDD (Note 30) 6.2 mA (Note 31) 9.6 14.4 mA SVDD (No Load) (Note 30) 3.5 mA (Note 31) 4.2 6.3 mA Power Down (PDN pin = “L”) (Note 32) AVDD + PVDD + DVDD + TVDD + SVDD 1 10 μA SVDD (Note 33) 0 10 μA Note 30. EXT Slave Mode, fs=44.1kHz, No input, No load, PMADL = PMADR = PMDAL = PMDAR = PMPFIL = PMEQ = PMDRC = PMLO = PMRO = PMHPL = PMHPR = PMSPK = PMRCV = PMVCM bits = “1”, PMPLL = PMMP1 = PMMP2 = M/S = PMOSC = PMMIX = PMSRAI = PMSRAO = PMSRBI = PMSRBO = PMPCMA = PMPCMB bits = “0”. AVDD=3.9mA (typ), DVDD=1.4mA (typ), PVDD=0.75mA (typ), SVDD=3.5mA (typ), TVDD=0.1mA (typ). Note 31. PLL Master Mode, Audio I/F sampling frequency =44.1kHz, PCM I/F A sampling frequency =16kHz, PCM I/F B sampling frequency = 8kHz, No input, No load, PMADL = PMADR = PMDAL = PMDAR = PMPFIL = PMEQ = PMDRC = PMLO = PMRO = PMHPL = PMHPR = PMSPK = PMRCV = PMVCM = PMPLL = PMMP1 = PMMP2 = M/S = PMOSC = PMMIX = PMSRAI = PMSRAO = PMSRBI = PMSRBO = PMPCMA = PMPCMB bits = “1”. PLL Reference Clock = MCKI = 11.2896MHz. In this case, output current of the MPWR1 and MPWR2 pins are 0mA. AVDD=4.6mA (typ), DVDD=4.0mA (typ), PVDD=0.78mA (typ), SVDD=4.2mA (typ), TVDD=0.2mA (typ) Note 32. All digital input pins are fixed to each supply pin TVDD or VSS2. Note 33. AVDD, DVDD, PVDD and TVDD are powered OFF. ■ Power Consumption for Each Operation Mode Condition: Ta=25C; AVDD=DVDD=PVDD=TVDD =1.8V, SVDD=4.2V; VSS1=VSS2=VSS3=0V; fs=44.1kHz, fs2=16kHz, fs3=8kHz; External Slave Mode, BICK=64fs; No data input, Receiver / Speaker / Headphone = No Load. AVDD DVDD+PVDD TVDD SVDD Total Power Mode [mA] [mA] [mA] [mA] [mW] LIN1/RIN1 ADC (Note 34) 1.93 0.74 0.1 0.003 5.0 DAC Lineout (Note 35) 1.27 0.46 0.02 0.9 6.9 DAC HP (Note 36) 0.82 1.21 0.02 0.003 3.7 DAC RCV (Note 37) 1.22 0.44 0.02 1.3 8.5 DAC SPK (Note 38) 1.75 0.44 0.02 1.35 9.4 PCM I/F A PCM I/F B & 0.21 1.19 0.1 0.003 2.7 PCM I/F B PCM I/F A (Note 39) Note 34. PMVCM = PMADL = PMADR bits = “1” , PFSDO bit = “0” Note 35. PMVCM = PMDAL = PMDAR = PMLO = PMRO bits = “1” , DASEL1-0 bits = “10” Note 36. PMVCM = PMDAL = PMDAR = PMHPL = PMHPR bits = “1” , DASEL1-0 bits = “10” Note 37. PMVCM = PMDAL = PMDAR = PMRCV bits = “1” , DASEL1-0 bits = “10” Note 38. PMVCM = PMDAL = PMDAR = PMSPK bits = “1” , DASEL1-0 bits = “10” Note 39. PMVCM = PMOSC = PMPCMA = PMSRAI = PMSRAO = PMPCMB = PMSRBI = PMSRBO bits = “1” Table 1. Power Consumption for Each Operation Mode (typ) MS1403-E-04 2014/12 - 14 - [AK4678] SRC CHARACTERISTICS (Ta=25C; AVDD=PVDD= DVDD=TVDD =1.8V, SVDD=4.2V; VSS1=VSS2=VSS3=0V; Signal Frequency=1kHz; 16bit Data; Measurement Bandwidth=20Hz FSO/2; unless otherwise specified) Parameter Symbol min typ max Unit SRC Characteristics (SRCAI): SDTIA SRCAI SDTO Resolution 16 Bits Input Sample Rate FSI 8 16 kHz Output Sample Rate FSO 8 48 kHz THD+N (Input = 1kHz, 1dBFS, Note 40) FSO/FSI = 44.1kHz/8kHz 88 dB Dynamic Range (Input = 1kHz, 60dBFS, Note 40) FSO/FSI = 44.1kHz/8kHz 98 dB Ratio between Input and Output Sample Rate FSO/FSI 1/2 6 SRC Characteristics (SRCAO): SDTI SRCAO SDTOA Resolution 16 Bits Input Sample Rate FSI 8 48 kHz Output Sample Rate FSO 8 16 kHz THD+N (Input = 1kHz, 1dBFS, Note 40) FSO/FSI = 8kHz/44.1kHz 75 dB FSO/FSI = 16kHz /8kHz 88 dB Dynamic Range (Input = 1kHz, 60dBFS, Note 40) FSO/FSI = 8kHz/44.1kHz 100 dB FSO/FSI = 16kHz /8kHz 99 dB Ratio between Input and Output Sample Rate FSO/FSI 1/6 2 SRC Characteristics (SRCBI, SRCBO): SDTI SRCBO SDTOB, SDTIB SRCBI SDTO Resolution 16 Bits Input Sample Rate FSI 8 48 kHz Output Sample Rate FSO 8 48 kHz THD+N (Input = 1kHz, 1dBFS, Note 40) FSO/FSI = 8kHz/44.1kHz 75 dB FSO/FSI = 44.1kHz/8kHz 88 dB Dynamic Range (Input = 1kHz, 60dBFS, Note 40) FSO/FSI = 8kHz/44.1kHz 100 dB FSO/FSI = 44.1kHz/8kHz 99 dB Ratio between Input and Output Sample Rate FSO/FSI 1/6 6 Note 40. Measured by Audio Precision System Two Cascade. MS1403-E-04 2014/12 - 15 - [AK4678] FILTER CHARACTERISTICS (CODEC) (Ta=25C; AVDD = PVDD =DVDD=1.7 2.0V; SVDD=3.0 5.5V, TVDD =1.6 3.6V; fs=44.1kHz; Programmable Filter=OFF) Parameter Symbol min typ max Unit ADC Digital Filter (Decimation LPF): Passband (Note 41) PB 0 17.3 kHz 0.16dB 19.4 kHz 0.66dB 19.9 kHz 1.1dB 22.1 kHz 6.9dB Stopband (Note 41) SB 26.1 kHz Passband Ripple PR dB 0.16 Stopband Attenuation SA 73 dB Group Delay (Note 42) GD 20 1/fs Group Delay Distortion 0 μs GD ADC Digital Filter (HPF): HPFC1-0 bits = “00” Frequency Response FR 3.4 Hz 3.0dB 10 Hz 0.5dB 22 Hz 0.1dB DAC Digital Filter (LPF): Passband (Note 41) PB 0 20.0 kHz 0.05dB 22.05 kHz 6.0dB Stopband (Note 41) SB 24.1 kHz Passband Ripple PR dB 0.05 Stopband Attenuation SA 54 dB Group Delay (Note 42) GD 25 1/fs DAC Digital Filter (LPF) + SCF + SMF: FR dB Frequency Response: 0 20.0kHz 1.0 Note 41. The passband and stopband frequencies scale with fs (system sampling rate). For example, DAC is PB=0.454 x fs (@0.05dB). Each response refers to that of 1kHz. Note 42. The calculated delay time caused by digital filtering. This time is from the input of analog signal to setting of the 24-bit data of both channels from the input register to the output register of the ADC. This time includes group delay of the HPF and Programmable filter. For the DAC, this time is from setting the 24-bit data of both channels from the input register to the output of analog signal and includes selector block (SDMIN, PFMXL/R and SRMXL/R), DRC, 5-band EQ and DATT-A. For the signal through the programmable filters, group delay is increased 4/fs at Playback Mode from the value above if there is no phase changed by the IIR filter. MS1403-E-04 2014/12 - 16 - [AK4678] FILTER CHARACTERISTICS (SRC) (Ta=25C; AVDD = PVDD =DVDD=1.7 2.0V; SVDD=3.0 5.5V, TVDD =1.6 3.6V; Programmable Filter=OFF) Parameter Symbol min typ max Unit Digital Filter Passband PB 0 0.4583FSI kHz 0.23dB 0.985 FSO/FSI 6.000 PB 0 0.4167FSI kHz 0.20dB 0.905 FSO/FSI 0.985 PB 0 0.3104FSI kHz 0.13dB 0.714 FSO/FSI 0.905 PB 0 0.2813FSI kHz 0.11dB 0.656 FSO/FSI 0.714 PB 0 0.2167FSI kHz 0.10dB 0.492 FSO/FSI 0.656 PB 0 0.1948FSI kHz 0.09dB 0.452 FSO/FSI 0.492 PB 0 0.1458FSI kHz 0.07dB 0.357 FSO/FSI 0.452 PB 0 0.1271FSI kHz 0.07dB 0.324 FSO/FSI 0.357 PB 0 0.0729FSI kHz 0.06dB 0.226 FSO/FSI 0.324 PB 0 0.0625FSI kHz 0.17dB 0.1667 FSO/FSI 0.226 Stopband SB 0.5417FSI kHz 0.985 FSO/FSI 6.000 SB 0.5021FSI kHz 0.905 FSO/FSI 0.985 SB 0.3958FSI kHz 0.714 FSO/FSI 0.905 SB 0.3667FSI kHz 0.656 FSO/FSI 0.714 SB 0.3021FSI kHz 0.492 FSO/FSI 0.656 SB 0.2802FSI kHz 0.452 FSO/FSI 0.492 SB 0.2313FSI kHz 0.357 FSO/FSI 0.452 SB 0.2125FSI kHz 0.324 FSO/FSI 0.357 SB 0.1583FSI kHz 0.226 FSO/FSI 0.324 SB 0.1271FSI kHz 0.1667 FSO/FSI 0.226 Stopband Attenuation 0.985 FSO/FSI 6.000 87.0 SA dB 88.0 SA dB 0.905 FSO/FSI 0.985 87.5 SA dB 0.714 FSO/FSI 0.905 86.8 SA dB 0.656 FSO/FSI 0.714 86.4 SA dB 0.492 FSO/FSI 0.656 86.0 SA dB 0.452 FSO/FSI 0.492 86.6 SA dB 0.357 FSO/FSI 0.452 86.1 SA dB 0.324 FSO/FSI 0.357 85.7 SA dB 0.226 FSO/FSI 0.324 72.8 SA dB 0.1667 FSO/FSI 0.226 Group Delay (Note 43) PCM I/F A PCM I/F B (PMMIX bit=“0”) GD 30/fs2+10.5/fs3 s 29.5/fs2+37.5/fs3 (PMMIX bit=“1”) GD s +9.5/fs PCM I/F B PCM I/F A (PMMIX bit=“0”) GD 30/fs2+10.5/fs3 s 29.5/fs2+37.5/fs3 (PMMIX bit=“1”) GD s +9.5/fs PCM I/F A SDTO GD 29.5/fs2+11.5/fs s PCM I/F B SDTO GD 29.5/fs2+12.5/fs s PCM I/F A 5-band EQ DATT-A DRC GD 29.5/fs2+32.5/fs s DAC Digital Output (Note 44) PCM I/F B 5-band EQ DATT-A DRC GD 29.5/fs2+33.5/fs s DAC Digital Output (Note 44) Note 43. This value is the time from the rising edge of LRCK, SYNCA or SYNCB after data is input to rising edge of LRCK after data is output, when LRCK, SYNCA or SYNCB for Output data corresponds with SYNCA or SYNCB for Input. fs: LRCK Frequency, fs2: SYNCA Frequency, fs3: SYNCB Frequency. Note 44. This value includes group delay of DAC digital filter. MS1403-E-04 2014/12 - 17 - [AK4678] DC CHARACTERISTICS (Ta=25C; AVDD = PVDD =DVDD=1.7 2.0V; SVDD=3.0 5.5V, TVDD =1.6 3.6V) Parameter Symbol min typ max Unit High-Level Input Voltage 2.2VTVDD3.6V VIH1 70TVDD V (Note 45) 1.6VTVDD<2.2V VIH1 80TVDD V Low-Level Input Voltage 2.2VTVDD3.6V VIL1 30TVDD V (Note 45) 1.6VTVDD<2.2V VIL1 20TVDD V High-Level Output Voltage VOH1 V (Note 46)(Iout=200μA) TVDD0.2 Low-Level Output Voltage V (Note 46)(Iout=200μA) VOL1 0.2 V VOL2 0.4 V (SDA pin, 2.0VTVDD3.6V: Iout=3mA) VOL2 20%TVDD V (SDA pin, 1.6VTVDD<2.0V: Iout=3mA) Input Leakage Current (Note 47) Iind μA 2 Digital MIC Interface (DMDAT pin Input; DMIC bit = “1”) High-Level Input Voltage VIH3 65%AVDD V Low-Level Input Voltage VIL3 35%AVDD V Digital MIC Interface (DMCLK pin Output; DMIC bit = “1”) High-Level Output Voltage (Iout=80μA) VOH3 AVDD-0.4 V Low-Level Output Voltage (Iout= 80μA) VOL3 0.4 V Input Leakage Current (Note 47) Iin 10 μA Note 45. BICK, LRCK, SDTI, MCKI, PDN, BICKA, SYNCA, SDTIA, BICKB, SYNCB, SDTIB, SCL and SDA pins Note 46. BICK, LRCK SDTO, SDTOA and SDTOB pins Note 47. SYNCB, BICKB, SDTIB, SDTI, LRCK, MCKI, BICK, SCL, SDA, SDTIA, BICKA and SYNCA pins. I/O pins (LRCK, BICK and SDA pins) are at the time of Input state. MS1403-E-04 2014/12 - 18 - [AK4678] SWITCHING CHARACTERISTICS (Ta=25C; AVDD=DVDD=PVDD=1.7 ~ 2.0V, TVDD =1.6 ~3 .6V, SVDD=3.0 5.5V; CL=20pF (except SDA pin) or 400pF (SDA pin); unless otherwise specified) Parameter Symbol min typ max Unit PLL Master Mode (PLL Reference Clock = MCKI pin) MCKI Input Timing Frequency fCLK 11.2896 27 MHz Pulse Width Low tCLKL 0.4/fCLK ns Pulse Width High tCLKH 0.4/fCLK ns LRCK Output Timing Frequency fs Table 7 kHz DSP Mode: Pulse Width High tLRCKH tBCK ns Except DSP Mode: Duty Cycle Duty 50 % BICK Output Timing Period BCKO bit = “0” tBCK 1/(32fs) ns BCKO bit = “1” tBCK 1/(64fs) ns Duty Cycle dBCK 50 % PLL Slave Mode (PLL Reference Clock = BICK pin) LRCK Input Timing Frequency fs 8 48 kHz DSP Mode: Pulse Width High tLRCKH ns tBCK60 1/fs tBCK Except DSP Mode: Duty Cycle Duty 45 55 % BICK Input Timing Period PLL3-0 bits = “0010” tBCK 1/(32fs) ns PLL3-0 bits = “0011” tBCK 1/(64fs) ns Pulse Width Low tBCKL 0.4 x tBCK ns Pulse Width High tBCKH 0.4 x tBCK ns MS1403-E-04 2014/12 - 19 - [AK4678] Parameter External Slave Mode MCKI Input Timing Frequency 256fs 512fs 1024fs Pulse Width Low Pulse Width High LRCK Input Timing Frequency 256fs 512fs 1024fs DSP Mode: Pulse Width High Except DSP Mode: Duty Cycle BICK Input Timing Period (Note 48) Symbol min typ max Unit fCLK fCLK fCLK tCLKL tCLKH 2.048 4.096 8.192 0.4/fCLK 0.4/fCLK - 12.288 12.288 12.288 - MHz MHz MHz ns ns fs fs fs tLRCKH Duty 8 8 8 tBCK60 45 - 48 24 12 1/fs tBCK 55 kHz kHz kHz ns % - - - - ns s ns ns - 12.288 12.288 12.288 - MHz MHz MHz ns ns tBCK 50 48 - kHz ns % 1/(32fs) 1/(64fs) 50 - ns ns % tBCK 312.5 or 1/(126fs) 130 130 Pulse Width Low tBCKL Pulse Width High tBCKH External Master Mode MCKI Input Timing Frequency 256fs fCLK 2.048 512fs fCLK 4.096 1024fs fCLK 8.192 Pulse Width Low tCLKL 0.4/fCLK Pulse Width High tCLKH 0.4/fCLK LRCK Output Timing Frequency fs 8 DSP Mode: Pulse Width High tLRCKH Except DSP Mode: Duty Cycle Duty BICK Output Timing Period BCKO bit = “0” tBCK BCKO bit = “1” tBCK Duty Cycle dBCK Note 48. The minimum value is longer time between 312.5ns and 1/(126fs)s. MS1403-E-04 2014/12 - 20 - [AK4678] Parameter Symbol min Audio Interface Timing (DSP Mode) Master Mode tDBF LRCK “” to BICK “” (Note 49) 0.5 x tBCK 40 tDBF LRCK “” to BICK “” (Note 50) 0.5 x tBCK 40 tBSD BICK “” to SDTO (BCKP bit = “0”) 70 tBSD BICK “” to SDTO (BCKP bit = “1”) 70 SDTI Hold Time tSDH 50 SDTI Setup Time tSDS 50 Slave Mode tLRB 0.4 x tBCK LRCK “” to BICK “” (Note 49) tLRB 0.4 x tBCK LRCK “” to BICK “” (Note 50) tBLR 0.4 x tBCK BICK “” to LRCK “” (Note 49) tBLR 0.4 x tBCK BICK “” to LRCK “” (Note 50) tBSD BICK “” to SDTO (BCKP bit = “0”) tBSD BICK “” to SDTO (BCKP bit = “1”) SDTI Hold Time tSDH 50 SDTI Setup Time tSDS 50 2 Audio Interface Timing (Right/Left justified & I S) Master Mode tMBLR BICK “” to LRCK Edge (Note 51) 40 LRCK Edge to SDTO (MSB) tLRD 70 (Except I2S mode) tBSD BICK “” to SDTO 70 SDTI Hold Time tSDH 50 SDTI Setup Time tSDS 50 Slave Mode tLRB 50 LRCK Edge to BICK “” (Note 51) tBLR 50 BICK “” to LRCK Edge (Note 51) LRCK Edge to SDTO (MSB) tLRD (Except I2S mode) tBSD BICK “” to SDTO SDTI Hold Time tSDH 50 SDTI Setup Time tSDS 50 Note 49. MSBS, BCKP bits = “00” or “11”. Note 50. MSBS, BCKP bits = “01” or “10”. Note 51. BICK rising edge must not occur at the same time as LRCK edge. MS1403-E-04 typ max Unit 0.5 x tBCK 0.5 x tBCK - 0.5 x tBCK + 40 0.5 x tBCK + 40 70 70 - ns ns ns ns ns ns - 80 80 - ns ns ns ns ns ns ns ns - 40 70 ns ns - 70 - ns ns ns - 80 ns ns ns - 80 - ns ns ns 2014/12 - 21 - [AK4678] Parameter Symbol PCM Interface Timing (BICKA, SYNCA, SDTIA, SDTOA pins): SYNCA Timing Frequency fs2 Serial Interface Timing at Short/long Frame Sync BICKA Frequency fBCK2 BICKA Period tBCK2 BICKA Pulse Width Low tBCKL2 Pulse Width High tBCKH2 tSYB2 SYNCA Edge to BICKA “” (Note 52) tSYB2 SYNCA Edge to BICKA “” (Note 53) tBSY2 BICKA “” to SYNCA Edge (Note 52) tBSY2 BICKA “” to SYNCA Edge (Note 53) SYNCA to SDTOA (MSB) (Except Short Frame) tSYD2 tBSD2 BICKA “” to SDTOA (BCKPA bit = “0”) tBSD2 BICKA “” to SDTOA (BCKPA bit = “1”) SDTIA Hold Time tSDH2 SDTIA Setup Time tSDS2 SYNCA Pulse Width Low tSYL2 Pulse Width High tSYH2 Serial Interface Timing at MSB justified and I2S BICKA Frequency fBCK2 BICKA Period tBCK2 BICKA Pulse Width Low tBCKL2 Pulse Width High tBCKH2 tSYB2 SYNCA Edge to BICKA “” tBSY2 BICKA “” to SYNCA Edge SYNCA to SDTOA (MSB) (Except I2S mode) tSYD2 tBSD2 BICKA “” to SDTOA SDTIA Hold Time tSDH2 SDTIA Setup Time tSDS2 SYNCA Duty Cycle dSYC2 Note 52. MSBSA, BCKPA bits = “00” or “11”. Note 53. MSBSA, BCKPA bits = “01” or “10”. MS1403-E-04 min typ max Unit 8 - 16 kHz 128 244 100 100 40 40 40 40 25 25 0.8 x tBCK2 0.8 x tBCK2 - 4096 60 60 60 - kHz ns ns ns ns ns ns ns ns ns ns ns ns ns ns 256 312.5 130 130 50 50 50 50 45 50 3072 80 80 55 kHz ns ns ns ns ns ns ns ns ns % 2014/12 - 22 - [AK4678] Parameter Symbol PCM Interface Timing (BICKB, SYNCB, SDTIB, SDTOB pins): SYNCB Timing Frequency fs3 Serial Interface Timing at Short/long Frame Sync BICKB Frequency fBCK3 BICKB Period tBCK3 BICKB Pulse Width Low tBCKL3 Pulse Width High tBCKH3 tSYB3 SYNCB Edge to BICKB “” (Note 54) tSYB3 SYNCB Edge to BICKB “” (Note 55) tBSY3 BICKB “” to SYNCB Edge (Note 54) tBSY3 BICKB “” to SYNCB Edge (Note 55) SYNCB to SDTOB (MSB) (Except Short Frame) tSYD3 tBSD3 BICKB “” to SDTOB (BCKPB bit = “0”) tBSD3 BICKB “” to SDTOB (BCKPB bit = “1”) SDTIB Hold Time tSDH3 SDTIB Setup Time tSDS3 SYNCB Pulse Width Low tSYL3 Pulse Width High tSYH3 Serial Interface Timing at MSB justified and I2S BICKB Frequency fBCK3 BICKB Period tBCK3 BICKB Pulse Width Low tBCKL3 Pulse Width High tBCKH3 tSYB3 SYNCB Edge to BICKB “” tBSY3 BICKB “” to SYNCB Edge SYNCB to SDTOB (MSB) (Except I2S mode) tSYD3 tBSD3 BICKB “” to SDTOB SDTIB Hold Time tSDH3 SDTIB Setup Time tSDS3 SYNCB Duty Cycle dSYC3 Note 54. MSBSB, BCKPB bits = “00” or “11”. Note 55. MSBSB, BCKPB bits = “01” or “10”. MS1403-E-04 min typ max Unit 8 - 48 kHz 128 244 100 100 40 40 40 40 25 25 0.8 x tBCK3 0.8 x tBCK3 - 4096 60 60 60 - kHz ns ns ns ns ns ns ns ns ns ns ns ns ns ns 256 312.5 130 130 50 50 50 50 45 50 3072 80 80 55 kHz ns ns ns ns ns ns ns ns ns % 2014/12 - 23 - [AK4678] Parameter Symbol min typ max Unit 2 Control Interface Timing (I C Bus mode): (Note 56) SCL Clock Frequency fSCL 30 400 kHz Bus Free Time Between Transmissions tBUF 1.3 μs Start Condition Hold Time (prior to first clock pulse) tHD:STA 0.6 μs Clock Low Time tLOW 1.3 μs Clock High Time tHIGH 0.6 μs Setup Time for Repeated Start Condition tSU:STA 0.6 μs SDA Hold Time from SCL Falling (Note 57) tHD:DAT 0 μs SDA Setup Time from SCL Rising tSU:DAT 0.1 μs Rise Time of Both SDA and SCL Lines tR 0.3 μs Fall Time of Both SDA and SCL Lines tF 0.3 μs Setup Time for Stop Condition tSU:STO 0.6 μs Capacitive Load on Bus Cb 400 pF Pulse Width of Spike Noise Suppressed by Input Filter tSP 0 50 ns Digital Audio Interface Timing: CL=100pF DMCLK Output Timing Period tSCK 1/(64fs) ns Rising Time tSRise 10 ns Falling Time tSFall 10 ns Duty Cycle dSCK 45 50 55 % Audio Interface Timing DMDAT Setup Time tDMS 50 ns DMDAT Hold Time tDMH 0 ns Power-down & Reset Timing PDN Accept Pulse Width (Note 58) tAPD 1.5 μs PDN Reject Pulse Width (Note 58) tRPD 50 ns PMADL or PMADR “” to SDTO valid (Note 59) tPDV 1059 1/fs ADRST bit = “0” tPDV 267 1/fs ADRST bit = “1” PMDML or PMDMR “” to SDTO valid (Note 60) tPDV 1059 1/fs ADRST bit = “0” tPDV 267 1/fs ADRST bit = “1” tPDV2 164 1/fs2 PMSRAO “” to SDTOA valid (Note 61) tPDV3 164 1/fs3 PMSRBO “” to SDTOB valid (Note 62) Note 56. I2C-bus is a registered trademark of NXP B.V. Note 57. Data must be held long enough to bridge the 300ns-transition time of SCL. Note 58. The AK4678 can be reset by bringing PDN pin = “L” to “H” only upon power up. The PDN pin must held “L” for more than 1.5μs for a certain reset. The AK4678 is not reset by the “L” pulse less than 50ns. Note 59. This is the count of LRCK “” from the PMADL or PMADR bit = “1”. Note 60. This is the count of LRCK “” from the PMDML or PMDMR bit = “1”. Note 61. This is the count of SYNCA “” from the PMSRAO bit = “1”. Note 62. This is the count of SYNCB “” from the PMSRBO bit = “1”. MS1403-E-04 2014/12 - 24 - [AK4678] ■ Timing Diagram 1/fCLK VIH1 MCKI VIL1 tCLKH tCLKL 1/fs 50%TVDD LRCK tLRCKH tLRCKL tBCK Duty = tLRCKH x fs x 100 tLRCKL x fs x 100 50%TVDD BICK tBCKH tBCKL dBCK = tBCKH / tBCK x 100 tBCKL / tBCK x 100 Figure 3. Clock Timing (PLL/EXT Master mode) tLRCKH LRCK 50%TVDD tDBF BICK (BCKP = "0") 50%TVDD BICK (BCKP = "1") 50%TVDD tBSD SDTO MSB tSDS 50%TVDD tSDH VIH1 SDTI VIL1 Figure 4. Audio Interface Timing (PLL/EXT Master mode, DSP mode, MSBS bit= “0”) MS1403-E-04 2014/12 - 25 - [AK4678] tLRCKH LRCK 50%TVDD tDBF BICK (BCKP = "1") 50%TVDD BICK (BCKP = "0") 50%TVDD tBSD SDTO 50%TVDD MSB tSDS tSDH VIH1 SDTI VIL1 Figure 5. Audio Interface Timing (PLL/EXT Master mode, DSP mode, MSBS bit= “1”) 50%TVDD LRCK tMBLR BICK 50%TVDD tLRD tBSD SDTO 50%TVDD tSDS tSDH VIH1 SDTI VIL1 Figure 6. Audio Interface Timing (PLL/EXT Master mode, Except DSP mode) MS1403-E-04 2014/12 - 26 - [AK4678] 1/fs VIH1 LRCK VIL1 tLRCKH tBLR tBCK VIH1 BICK (BCKP = "0") VIL1 tBCKH tBCKL VIH1 BICK (BCKP = "1") VIL1 Figure 7. Clock Timing (PLL Slave mode; PLL Reference Clock = BICK pin, DSP mode, MSBS bit= “0”) 1/fs VIH1 LRCK VIL1 tLRCKH tBLR tBCK VIH1 BICK (BCKP = "1") VIL1 tBCKH tBCKL VIH1 BICK (BCKP = "0") VIL1 Figure 8. Clock Timing (PLL Slave mode; PLL Reference Clock = BICK pin, DSP mode, MSBS bit= “1”) MS1403-E-04 2014/12 - 27 - [AK4678] 1/fCLK VIH1 MCKI VIL1 tCLKH tCLKL 1/fs VIH1 LRCK VIL1 tLRCKH tLRCKL tBCK Duty = tLRCKH x fs x 100 tLRCKL x fs x 100 VIH1 BICK VIL1 tBCKH tBCKL Figure 9. Clock Timing (PLL Slave mode; Except DSP mode) tLRCKH VIH1 LRCK VIL1 tLRB VIH1 BICK VIL1 (BCKP = "0") VIH1 BICK (BCKP = "1") VIL1 tBSD SDTO MSB tSDS 50%TVDD tSDH VIH1 SDTI MSB VIL1 Figure 10. Audio Interface Timing (PLL Slave mode, DSP mode; MSBS bit= “0”) MS1403-E-04 2014/12 - 28 - [AK4678] tLRCKH VIH1 LRCK VIL1 tLRB VIH1 BICK VIL1 (BCKP = "1") VIH1 BICK (BCKP = "0") VIL1 tBSD SDTO 50%TVDD MSB tSDS tSDH VIH1 SDTI MSB VIL1 Figure 11. Audio Interface Timing (PLL Slave mode, DSP mode, MSBS bit= “1”) 1/fCLK VIH1 MCKI VIL1 tCLKH tCLKL 1/fs VIH1 LRCK VIL1 tLRCKH tLRCKL Duty = tLRCKH x fs x 100 tLRCKL x fs x 100 tBCK VIH1 BICK VIL1 tBCKH tBCKL Figure 12. Clock Timing (EXT Slave mode) MS1403-E-04 2014/12 - 29 - [AK4678] VIH1 LRCK VIL1 tBLR tLRB VIH1 BICK VIL1 tLRD tBSD SDTO MSB tSDS 50%TVDD tSDH VIH1 SDTI VIL1 Figure 13. Audio Interface Timing (PLL/EXT Slave mode, Except DSP mode) 1/fs2 VIH1 SYNCA VIL1 tSYH2 tSYL2 dSYC2 = tSYH2 x fs2 x 100 tSYL2 x fs2 x 100 tBCK2 = 1/fBCK2 VIH1 VIL1 BICKA tBCKH2 tBCKL2 Figure 14. Clock Timing of PCM I/F A MS1403-E-04 2014/12 - 30 - [AK4678] VIH1 SYNCA VIL1 tBSY2 tSYB2 VIH1 BICKA VIL1 (BCKPA = “0”) VIH1 BICKA VIL1 (BCKPA = “1”) tSYD2 tBSD2 SDTOA 50%TVDD tSDS2 tSDH2 VIH1 SDTIA VIL1 Figure 15. PCM I/F A Timing at short and long frame sync (MSBSA bit= “0”) VIH1 SYNCA VIL1 tBSY2 tSYB2 VIH1 BICKA VIL1 (BCKPA = “1”) VIH1 BICKA (BCKPA = “0”) VIL1 tBSD2 SDTOA 50%TVDD tSDS2 tSDH2 VIH1 SDTIA VIL1 Figure 16. PCM I/F A Timing at short and long frame sync (MSBSA bit= “1”) MS1403-E-04 2014/12 - 31 - [AK4678] VIH1 SYNCA VIL1 tBSY2 tSYB2 VIH1 BICKA VIL1 tSYD2 tBSD2 SDTOA 50%TVDD tSDS2 tSDH2 VIH1 SDTIA VIL1 Figure 17. PCM I/F A Timing at MSB justified and I2S 1/fs3 VIH1 SYNCB VIL1 tSYH3 tSYL3 dSYC3 = tSYH3 x fs3 x 100 tSYL3 x fs3 x 100 tBCK3 = 1/fBCK3 VIH1 VIL1 BICKB tBCKH3 tBCKL3 Figure 18. Clock Timing of PCM I/F B MS1403-E-04 2014/12 - 32 - [AK4678] VIH1 SYNCB VIL1 tBSY3 tSYB3 VIH1 BICKB VIL1 (BCKPB = “0”) VIH1 BICKB VIL1 (BCKPB = “1”) tSYD3 tBSD3 SDTOB 50%TVDD tSDS3 tSDH3 VIH1 SDTIB VIL1 Figure 19. PCM I/F B Timing at short and long frame sync (MSBSB bit= “0”) VIH1 SYNCB VIL1 tBSY3 tSYB3 VIH1 BICKB VIL1 (BCKPB = “1”) VIH1 BICKB (BCKPB = “0”) VIL1 tBSD3 SDTOB 50%TVDD tSDS3 tSDH3 VIH1 SDTIB VIL1 Figure 20. PCM I/F B Timing at short and long frame sync (MSBSB bit= “1”) MS1403-E-04 2014/12 - 33 - [AK4678] VIH1 SYNCB VIL1 tBSY3 tSYB3 VIH1 BICKB VIL1 tSYD3 tBSD3 SDTOB 50%TVDD tSDS3 tSDH3 VIH1 SDTIB VIL1 Figure 21. PCM I/F B Timing at MSB justified and I2S tSCK 65%AVDD DMCLK 50%AVDD 35%AVDD tSCKL tSRise tSFall dSCK = 100 x tSCKL / tSCK Figure 22. DMCLK Clock Timing 65%AVDD DMCLK 35%AVDD tDMS tDMH VIH3 DMDAT VIL3 Figure 23. Audio Interface Timing (DCLKP bit = “1”) 65%AVDD DMCLK 35%AVDD tDMS tDMH VIH3 DMDAT VIL3 Figure 24. Audio Interface Timing (DCLKP bit = “0”) MS1403-E-04 2014/12 - 34 - [AK4678] VIH1 SDA VIL1 tBUF tLOW tHIGH tR tF tSP VIH1 SCL VIL1 tHD:STA Stop tHD:DAT tSU:DAT Start tSU:STA tSU:STO Start Stop 2 Figure 25. I C Bus Mode Timing PMADL bit, PMADR bit, PMDML or PMDMR bit tPDV SDTO 50%TVDD Figure 26. Power Down & Reset Timing 1 tAPD tRPD PDN VIL1 Figure 27. Power Down & Reset Timing 2 PMSRAO bit tPDV2 SDTOA 50%TVDD Figure 28. Power Down & Reset Timing 3 PMSRBO bit tPDV3 SDTOB 50%TVDD Figure 29. Power Down & Reset Timing 4 MS1403-E-04 2014/12 - 35 - [AK4678] OPERATION OVERVIEW ■ System Clock (Audio I/F) There are the following four clock modes to interface with external devices. (Table 2 and Table 3) Mode PLL Master Mode PLL Slave Mode (PLL Reference Clock: BICK pin) EXT Slave Mode EXT Master Mode Mode PLL Master Mode PLL Slave Mode (PLL Reference Clock: BICK pin) EXT Slave Mode EXT Master Mode PMPLL bit 1 M/S bit 1 PLL3-0 bits Table 5 Figure Figure 30 1 0 Table 5 Figure 31 x x Figure 32 Figure 33 0 0 0 1 Table 2. Clock Mode Setting (x: Don’t care) MCKI pin BICK pin Output Selected by PLL3-0 bits (Selected by BCKO bit) Input GND (Selected by PLL3-0 bits) Input Selected by FS1-0 bits (≥ 32fs) Output Selected by FS1-0 bits (Selected by BCKO bit) Table 3. Clock pins state in Clock Mode LRCK pin Output (1fs) Input (1fs) Input (1fs) Output (1fs) ■ Master Mode/Slave Mode The M/S bit selects either master or slave mode. M/S bit = “1” selects master mode and “0” selects slave mode. The AK4678 is in slave mode until the M/S bit is changed to “1” after the PDN pin changes from “L” to “H”. The AK4678 goes to master mode by changing M/S bit = “1”. When the AK4678 is used in master mode, LRCK and BICK pins are Hi-Z state until M/S bit becomes “1”. LRCK and BICK pins of the AK4678 should be pulled-down or pulled-up by a resistor (about 100k) externally to avoid floating state. M/S bit Mode 0 Slave Mode 1 Master Mode Table 4. Select Master/Slave Mode MS1403-E-04 (default) 2014/12 - 36 - [AK4678] ■ PLL Mode (PMPLL bit = “1”) When PMPLL bit is “1”, a fully integrated analog phase locked loop (PLL) generates clock that is selected by the PLL3-0 and FS3-0 bits. The PLL lock time is shown in Table 5. This lock time is when the AK4678 is supplied stable clocks after PLL is powered-up (PMPLL bit = “0” → “1”) or when the sampling frequency changes. 1) Setting of PLL Mode Mode PLL3 bit PLL2 bit PLL1 bit PLL0 bit PLL Reference Clock Input Pin 2 3 4 5 6 7 8 10 11 12 13 14 0 0 0 0 0 0 1 1 1 1 1 1 0 0 1 1 1 1 0 0 0 1 1 1 1 1 0 0 1 1 0 1 1 0 0 1 0 1 0 1 0 1 0 0 1 0 1 0 BICK pin BICK pin MCKI pin MCKI pin MCKI pin MCKI pin MCKI pin MCKI pin MCKI pin MCKI pin MCKI pin MCKI pin Others Input Frequency PLL Lock Time (max) 2ms 2ms 10ms 10ms 10ms 10ms 10ms 10ms 10ms 10ms 10ms 10ms 32fs 64fs 11.2896MHz 12.288MHz 12MHz 24MHz 19.2MHz 13MHz 26MHz 13.5MHz 27MHz 25MHz Others N/A Table 5. Setting of PLL Mode (*fs: Sampling Frequency, N/A: Not available) (default) 2) Setting of sampling frequency in PLL Mode When PLL reference clock input is MCKI and BICK pins, the sampling frequency is selected by FS3-0 bits as defined in Table 6. Mode FS3 bit FS2 bit FS1 bit FS0 bit Sampling Frequency (Note 63) 0 0 0 0 0 8kHz mode 1 0 0 0 1 12kHz mode 2 0 0 1 0 16kHz mode 3 0 0 1 1 24kHz mode 5 0 1 0 1 11.025kHz mode 7 0 1 1 1 22.05kHz mode 10 1 0 1 0 32kHz mode 11 1 0 1 1 48kHz mode 15 1 1 1 1 44.1kHz mode (default) Others Others N/A Table 6. Setting of Sampling Frequency at PMPLL bit = “1” (N/A: Not available) Note 63. When the MCKI pin is the PLL reference clock input, the sampling frequency generated by PLL differs from the sampling frequency of mode name in some combinations of MCKI frequency(PLL3-0 bits) and sampling frequency (FS3-0 bits). Refer to Table 7 for the details of sampling frequency. In master mode, LRCK and BICK output frequency correspond to sampling frequencies shown in Table 7. When the BICK pin is the PLL reference clock input, the sampling frequency generated by PLL is the same sampling frequency of mode name. MS1403-E-04 2014/12 - 37 - [AK4678] Input Frequency MCKI[MHz] 11.2896 Sampling Frequency Sampling Frequency Mode generated by PLL [kHz](Note 64) 8kHz mode 8.000000 12kHz mode 12.000000 16kHz mode 16.000000 24kHz mode 24.000000 32kHz mode 32.000000 48kHz mode 48.000000 11.025kHz mode 11.025000 22.05kHz mode 22.050000 44.1kHz mode 44.100000 12 8kHz mode 8.000000 12kHz mode 12.000000 16kHz mode 16.000000 24kHz mode 24.000000 32kHz mode 32.000000 48kHz mode 48.000000 11.025kHz mode 11.024877 22.05kHz mode 22.049753 44.1kHz mode 44.099507 24 8kHz mode 8.000000 12kHz mode 12.000000 16kHz mode 16.000000 24kHz mode 24.000000 32kHz mode 32.000000 48kHz mode 48.000000 11.025kHz mode 11.024877 22.05kHz mode 22.049753 44.1kHz mode 44.099507 13.5 8kHz mode 8.000300 12kHz mode 12.000451 16kHz mode 16.000601 24kHz mode 24.000901 32kHz mode 32.001202 48kHz mode 48.001803 11.025kHz mode 11.025218 22.05kHz mode 22.050436 44.1kHz mode 44.100871 27 8kHz mode 8.000300 12kHz mode 12.000451 16kHz mode 16.000601 24kHz mode 24.000901 32kHz mode 32.001202 48kHz mode 48.001803 11.025kHz mode 11.025218 22.05kHz mode 22.050436 44.1kHz mode 44.100871 Sampling frequency that differs from sampling frequency of mode name Note 64. These are rounded off to six decimal places. Table 7. Sampling Frequency at PLL mode (Reference clock is MCKI) MS1403-E-04 2014/12 - 38 - [AK4678] Input Frequency MCKI[MHz] 12.288 Sampling Frequency Sampling Frequency Mode generated by PLL [kHz] (Note 64) 8kHz mode 8.000000 12kHz mode 12.000000 16kHz mode 16.000000 24kHz mode 24.000000 32kHz mode 32.000000 48kHz mode 48.000000 11.025kHz mode 11.025000 22.05kHz mode 22.050000 44.1kHz mode 44.100000 19.2 8kHz mode 8.000000 12kHz mode 12.000000 16kHz mode 16.000000 24kHz mode 24.000000 32kHz mode 32.000000 48kHz mode 48.000000 11.025kHz mode 11.025000 22.05kHz mode 22.050000 44.1kHz mode 44.100000 13 8kHz mode 7.999786 12kHz mode 11.999679 16kHz mode 15.999572 24kHz mode 23.999358 32kHz mode 31.999144 48kHz mode 47.998716 11.025kHz mode 11.024877 22.05kHz mode 22.049753 44.1kHz mode 44.099507 26 8kHz mode 7.999786 12kHz mode 11.999679 16kHz mode 15.999572 24kHz mode 23.999358 32kHz mode 31.999144 48kHz mode 47.998716 11.025kHz mode 11.024877 22.05kHz mode 22.049753 44.1kHz mode 44.099507 25 8kHz mode 8.000088 12kHz mode 12.000132 16kHz mode 16.000177 24kHz mode 24.000265 32kHz mode 32.000353 48kHz mode 48.000530 11.025kHz mode 11.025706 22.05kHz mode 22.051411 44.1kHz mode 44.102823 Sampling frequency that differs from sampling frequency of mode name Note 64. These are rounded off to six decimal places. Table 7. Sampling Frequency at PLL mode (Reference clock is MCKI) (2) MS1403-E-04 2014/12 - 39 - [AK4678] ■ PLL Unlock State 1) PLL Master Mode (PMPLL bit = “1”, M/S bit = “1”) In this mode, LRCK and BICK pins output “L” before the PLL goes to lock state after PMPLL bit = “0” “1” (Table 8). After the PLL is locked, a first period of LRCK and BICK may be invalid clock, but these clocks return to normal state after a period of 1/fs. When sampling frequency is changed, BICK and LRCK pins do not output irregular frequency clocks but go to “L” by setting PMPLL bit “0”. PLL State BICK pin LRCK pin After that PMPLL bit “0” “1” “L” Output “L” Output PLL Unlock (except above case) Invalid Invalid PLL Lock Table 9 1fs Output Table 8. Clock Operation in PLL Master Mode (PMPLL bit = “1”, M/S bit = “1”) ■ PLL Master Mode (PMPLL bit = “1”, M/S bit = “1”) When an external clock (11.2896MHz, 12MHz, 12.288MHz, 13MHz, 13.5MHz, 19.2MHz, 24MHz, 25MHz, 26MHz or 27MHz) is input to the MCKI pin, the BICK and LRCK clocks are generated by an internal PLL circuit. MCKI input frequency is selected by PLL3-0 bits (Table 5). The BICK output frequency is selected between 32fs or 64fs, by BCKO bit (Table 9). Sampling frequency mode is selected by FS3-0 bits (Table 6, Table 7). 11.2896MHz, 12MHz, 12.288MHz, 13MHz, 13.5MHz, 19.2MHz, 24MHz, 25MHz, 26MHz, 27MHz DSP or P AK4678 MCKI 32fs, 64fs BICK 1fs LRCK BCLK LRCK SDTO SDTI SDTI SDTO Figure 30. PLL Master Mode BICK Output Frequency 0 32fs (default) 1 64fs Table 9. BICK Output Frequency in Master Mode BCKO bit MS1403-E-04 2014/12 - 40 - [AK4678] ■ PLL Slave Mode (PMPLL bit = “1”, M/S bit = “0”) A reference clock of PLL is selected among the input clocks to BICK pin. The required clock to the AK4678 is generated by an internal PLL circuit. Input frequency is selected by PLL3-0 bits (Table 5). BICK input should be synchronized to LRCK input. Sampling frequency can be selected by FS3-0 bits (Table 6). DSP or P AK4678 MCKI BICK LRCK 32fs or 64fs 1fs BCLK LRCK SDTO SDTI SDTI SDTO Figure 31. PLL Slave Mode (PLL Reference Clock: BICK pin) MS1403-E-04 2014/12 - 41 - [AK4678] ■ EXT Slave Mode (PMPLL bit = “0”, M/S bit = “0”) When PMPLL bit is “0”, the AK4678 becomes EXT mode. Master clock is input from the MCKI pin, the internal PLL circuit is not operated. This mode is compatible with I/F of the normal audio CODEC. The clocks required to operate the AK4678 are MCKI (256fs, 512fs, or 1024fs), LRCK (fs) and BICK (≥32fs). The master clock (MCKI) should be synchronized with LRCK. The phase between these clocks does not matter. The input frequency of MCKI is selected by CM1-0 bits (Table 10) and sampling frequency is selected by FS3-0 bits (Table 11). In case that the CODEC is used without Audio I/F (like phone call), the CODEC can be operated by MCKI only. In this case, BICK and LRCK can be stopped. Mode 0 1 2 3 Mode 0 1 2 3 5 7 10 11 15 Others CM1 bit CM0 bit MCKI Input Frequency Sampling Frequency Range 0 0 256fs 24kHz 48kHz 0 1 512fs 8kHz 24kHz 1 0 1024fs 8kHz 12kHz 1 1 256fs 8kHz 24kHz Table 10. MCKI Frequency in EXT Slave Mode (PMPLL bit = “0”, M/S bit = “0”) FS3 bit 0 0 0 0 0 0 1 1 1 FS2 bit FS1 bit FS0 bit Sampling Frequency 0 0 0 8kHz 0 0 1 12kHz 0 1 0 16kHz 0 1 1 24kHz 1 0 1 11.025kHz 1 1 1 22.05kHz 0 1 0 32kHz 0 1 1 48kHz 1 1 1 44.1kHz Others N/A Table 11. Setting of Sampling Frequency (N/A: Not available) (default) (default) The S/N of the DAC at low sampling frequencies is worse than at high sampling frequencies due to out-of-band noise. The out-of-band noise can be reduced by using higher frequency of the master clock. The S/N of the DAC output through LOUT/ROUT pins at fs=8kHz is shown in Table 12. S/N (fs=8kHz, 20kHzLPF + A-weighted) 256fs 82dB 512fs 82dB 1024fs 92dB Table 12. Relationship between MCKI and S/N of LOUT/ROUT pins MCKI DSP or P AK4678 MCKI BICK LRCK 256fs, 512fs, or 1024fs 32fs 1fs MCLK BCLK LRCK SDTO SDTI SDTI SDTO Figure 32. EXT Slave Mode MS1403-E-04 2014/12 - 42 - [AK4678] ■ EXT Master Mode (PMPLL bit = “0”, M/S bit = “1”) The AK4678 becomes EXT Master Mode by setting PMPLL bit = “0” and M/S bit = “1”. Master clock is input from the MCKI pin, the internal PLL circuit is not operated. The clock required to operate is MCKI (256fs, 512fs, or 1024fs). The input frequency of MCKI is selected by CM1-0 bits (Table 13) and sampling frequency is selected by FS3-0 bits (Table 14). Mode 0 1 2 3 Mode 0 1 2 3 5 7 10 11 15 Others CM1 bit CM0 bit MCKI Input Frequency Sampling Frequency Range 0 0 256fs (default) 24kHz 48kHz 0 1 512fs 8kHz 24kHz 1 0 1024fs 8kHz 12kHz 1 1 256fs 8kHz 24kHz Table 13. MCKI Frequency in EXT Master Mode (PMPLL bit = “0”, M/S bit = “1”) FS3 bit 0 0 0 0 0 0 1 1 1 FS2 bit FS1 bit FS0 bit Sampling Frequency 0 0 0 8kHz 0 0 1 12kHz 0 1 0 16kHz 0 1 1 24kHz 1 0 1 11.025kHz 1 1 1 22.05kHz 0 1 0 32kHz 0 1 1 48kHz 1 1 1 44.1kHz Others N/A Table 14. Setting of Sampling Frequency (N/A: Not available) (default) The S/N of the DAC at low sampling frequencies is worse than at high sampling frequencies due to out-of-band noise. The out-of-band noise can be reduced by using higher frequency of the master clock. The S/N of the DAC output through LOUT/ROUT pins at fs=8kHz is shown in Table 15. S/N (fs=8kHz, 20kHzLPF + A-weighted) 256fs 82dB 512fs 82dB 1024fs 92dB Table 15. Relationship between MCKI and S/N of LOUT/ROUT pins MCKI DSP or P AK4678 MCKI BICK LRCK 256fs, 512fs, or 1024fs 32fs or 64fs 1fs MCLK BCLK LRCK SDTO SDTI SDTI SDTO Figure 33. EXT Master Mode BCKO bit BICK Output Frequency 0 32fs (default) 1 64fs Table 16. BICK Output Frequency in Master Mode MS1403-E-04 2014/12 - 43 - [AK4678] ■ System Reset Upon power-up, the PDN pin must be “L” and changed to “H” after all power supplies are supplied. “L” time of 1.5μs or more is needed to reset the AK4678. All internal registers reset to their initial values. This reset is released when the dummy command (Actually, the rising edge of 16th SCL) is input after PDN pin = “H”. Dummy command is executed by writing all “0” to the register address 00H. The ADC enters an initialization cycle when the PMADL or PMADR bit is changed from “0” to “1”. The initialization cycle time is set by ADRST bit (Table 17). During the initialization cycle, the ADC digital data outputs of both channels are forced to a 2's complement, “0”. The ADC output reflects the analog input signal after the initialization cycle is complete. When using a digital microphone, the initialization cycle is the same as ADC’s. Note 65. The initial data of ADC has offset data that depends on the condition of the microphone and the cut-off frequency of HPF. If this offset is not small, make initialization cycle longer by setting ADRST bit = “0” or do not use the initial data of ADC. ADRST bit 0 1 Digital Initialization Cycle fs = 8kHz fs = 16kHz 1059/fs 132.4ms 66.2ms 267/fs 33.4ms 16.7ms Table 17. ADC Digital Initialization Cycle S T A R T SDA S (default) S T O P R/W="0" Slave Address fs = 44.1kHz 24ms 6.1ms Sub Address(00H) N A C K Data(00H) N A C K P N A C K Figure 34. Dummy Command MS1403-E-04 2014/12 - 44 - [AK4678] ■ Audio Interface Format Four types of data formats are available and can be selected by setting the DIF1-0 bits (Table 18). In all modes, the serial data is MSB first, 2’s complement format. Audio interface formats can be used in both master and slave modes. LRCK and BICK are output from the AK4678 in master mode, but must be input to the AK4678 in slave mode. 0 1 2 DIF1 bit 0 0 1 DIF0 bit 0 1 0 3 1 1 Mode SDTO (ADC) SDTI (DAC) 16bit DSP Mode 16bit DSP Mode 24bit MSB justified 16bit LSB justified 24bit MSB justified 24bit MSB justified 24/16 bit I2S 24/16bit I2S compatible compatible Table 18. Audio Interface Format BICK Figure ≥ 32fs ≥ 32fs ≥ 48fs 32fs or ≥ 48fs Table 19 Figure 39 Figure 40 (default) Figure 41 If 24-bit(16-bit) data that ADC outputs is converted to 8-bit data by removing LSB 16-bit(8-bit), “1” at 24bit(16bit) data is converted to “1” at 8-bit data. And when the DAC playbacks this 8-bit data, “1” at 8-bit data will be converted to “65536” at 24-bit (“256” at 16-bit) data which is a large offset. This offset can be removed by adding the offset of “32768” at 24-bit (“128” at 16bit) to 24-bit(16-bit) data before converting to 8-bit data. In Mode 1, 2 and 3, the SDTO is clocked out on the falling edge (“”) of BICK and the SDTI is latched on the rising edge (“”). In Mode 0 (16bit DSP mode), the audio I/F timing is changed by BCKP and MSBS bits (Table 19). DIF1 bit 0 DIF0 bit MSBS bit BCKP bit 0 0 0 1 1 0 1 1 0 Audio Interface Format MSB of SDTO is output by the rising edge (“”) of the first BICK after the rising edge (“”) of LRCK. MSB of SDTI is latched by the falling edge (“”) of the BICK just after the output timing of SDTO’s MSB. MSB of SDTO is output by the falling edge (“”) of the first BICK after the rising edge (“”) of LRCK. MSB of SDTI is latched by the rising edge (“”) of the BICK just after the output timing of SDTO’s MSB. MSB of SDTO is output by next rising edge (“”) of the falling edge (“”) of the first BICK after the rising edge (“”) of LRCK. MSB of SDTI is latched by the falling edge (“”) of the BICK just after the output timing of SDTO’s MSB. MSB of SDTO is output by next falling edge (“”) of the rising edge (“”) of the first BICK after the rising edge (“”) of LRCK. MSB of SDTI is latched by the rising edge (“”) of the BICK just after the output timing of SDTO’s MSB. Table 19. Audio Interface Format in Mode 0 MS1403-E-04 Figure Figure 35 (default) Figure 36 Figure 37 Figure 38 2014/12 - 45 - [AK4678] LRCK (Master) LRCK (Slave) 15 0 1 8 2 9 10 11 12 13 14 15 16 17 24 18 25 26 27 26 29 30 31 0 BICK(32fs) Lch SDTO(o) 0 SDTI(i) 0 Rch 15 14 8 7 6 5 4 3 2 1 0 8 7 6 5 4 3 2 1 0 Lch 15 1 8 7 6 5 4 3 2 1 0 8 7 6 5 4 3 2 1 0 Rch 15 14 0 15 14 14 2 15 16 17 18 30 31 15 14 32 33 46 34 47 48 49 50 27 26 62 63 30 31 BICK(64fs) Lch SDTO(o) Rch 15 14 2 1 0 2 1 0 15 14 1 0 2 1 0 Rch Lch SDTI(i) 2 15 14 15 14 1/fs 15:MSB, 0:LSB Figure 35. Mode 0 Timing (BCKP bit = “0”, MSBS bit = “0”) LRCK (Master) LRCK (Slave) 15 0 1 8 2 9 10 11 12 13 14 15 16 17 24 18 25 26 29 0 BICK(32fs) Lch SDTO(o) 0 SDTI(i) 0 Rch 15 14 8 7 6 5 4 3 2 1 0 8 7 6 5 4 3 2 1 0 Lch 15 1 8 7 6 5 4 3 2 1 0 8 7 6 5 4 3 2 1 0 Rch 15 14 0 15 14 14 2 15 16 17 18 30 31 15 14 32 33 34 46 47 48 49 50 62 63 BICK(64fs) Lch SDTO(o) Rch 15 14 2 1 0 2 1 0 2 1 0 2 1 0 Rch Lch SDTI(i) 15 14 15 14 15 14 1/fs 15:MSB, 0:LSB Figure 36. Mode 0 Timing (BCKP bit = “1”, MSBS bit = “0”) MS1403-E-04 2014/12 - 46 - [AK4678] LRCK (Master) LRCK (Slave) 15 0 1 8 2 9 10 11 12 13 14 15 16 17 18 24 25 26 27 26 29 30 31 0 BICK(32fs) Lch SDTO(o) 0 SDTI(i) 0 Rch 15 14 8 7 6 5 4 3 2 1 0 8 7 6 5 4 3 2 1 0 Lch 15 1 8 7 6 5 4 3 2 1 0 8 7 6 5 4 3 2 1 0 Rch 15 14 0 15 14 14 2 15 16 17 18 30 31 15 14 32 33 34 46 47 48 49 50 27 26 62 63 30 31 BICK(64fs) Lch SDTO(o) Rch 15 14 2 1 0 15 14 Lch SDTI(i) 2 1 0 2 1 0 Rch 15 14 2 1 0 15 14 1/fs 15:MSB, 0:LSB Figure 37. Mode 0 Timing (BCKP bit = “0”, MSBS bit = “1”) LRCK (Master) LRCK (Slave) 15 0 1 8 2 9 10 11 12 13 14 15 16 17 24 18 25 26 29 0 BICK(32fs) Lch SDTO(o) 0 SDTI(i) 0 Rch 15 14 8 7 6 5 4 3 2 1 0 8 7 6 5 4 3 2 1 0 Lch 15 1 8 7 6 5 4 3 2 1 0 8 7 6 5 4 3 2 1 0 Rch 15 14 0 15 14 14 2 15 16 17 18 30 31 15 14 32 33 34 46 47 48 49 50 62 63 BICK(64fs) Lch SDTO(o) Rch 15 14 2 1 0 Lch SDTI(i) 15 14 2 1 0 2 1 0 Rch 15 14 2 1 0 15 14 1/fs 15:MSB, 0:LSB Figure 38. Mode 0 Timing (BCKP bit = “1”, MSBS bit = “1”) MS1403-E-04 2014/12 - 47 - [AK4678] LRCK 0 1 2 3 7 8 9 10 12 13 14 15 0 1 2 3 8 9 10 11 12 13 14 15 0 1 BICK(32fs) SDTO(o) 23 22 21 15 14 13 12 11 10 9 23 22 21 8 3 SDTI(i) 15 14 13 0 1 2 7 3 6 15 5 16 17 4 3 18 23 2 24 1 9 8 23 7 1 0 15 15 14 13 0 31 30 15 14 13 12 11 10 2 0 1 2 3 6 15 5 16 17 4 18 3 23 2 24 25 31 30 1 BICK(64fs) SDTO(o) 23 22 21 SDTI(i) Don’t Care 8 7 6 5 15 14 13 8 23 22 21 0 2 1 8 Don’t Care 0 7 6 5 15 14 13 8 23 0 2 1 24 25 0 24bit: 23:MSB, 0:LSB 16bit: 15: MSB, 0:LSB Lch Data Rch Data Figure 39. Mode 1 Timing LRCK 0 1 2 18 19 20 21 22 23 24 25 0 1 2 18 19 20 21 22 23 0 1 BICK(64fs) SDTO(o) 23 22 5 4 3 2 1 0 23 22 5 4 3 2 1 0 SDTI(i) 23 22 5 4 3 2 1 0 Don’t Care 23 22 5 4 3 2 1 0 Don’t Care 23:MSB, 0:LSB Lch Data 23 Rch Data Figure 40. Mode 2 Timing LRCK 0 1 2 3 7 8 9 10 12 13 14 15 0 1 2 3 8 9 10 11 12 13 14 15 0 1 BICK(32fs) SDTO(o) 8 23 22 16 15 14 13 12 11 10 9 8 23 22 16 15 14 13 12 11 10 9 8 SDTI(i) 8 23 22 16 15 14 13 12 11 10 9 8 23 22 16 15 14 13 12 11 10 9 8 0 1 2 3 19 20 21 22 23 24 25 0 1 2 3 19 20 21 22 23 24 25 0 1 BICK(64fs) SDTO(o) 23 22 5 4 3 2 1 0 23 22 5 4 3 2 1 0 SDTI(i) 23 22 5 4 3 2 1 0 Don’t Care 23 22 5 4 3 2 1 0 Don’t Care 23:MSB, 0:LSB Lch Data Rch Data Figure 41. Mode 3 Timing MS1403-E-04 2014/12 - 48 - [AK4678] ■ MIC/LINE Input Selector The AK4678 has input selector. When MDIF1, MDIF2 and MDIF3 bits are “0”, INL1-0 and INR1-0 bits select LIN1/LIN2/LIN3/LIN4 and RIN1/RIN2/RIN3/RIN4, respectively. When MDIF1, MDIF2 and MDIF3 bits are “1”, LIN1/RIN1, LIN2/RIN2 and LIN3/RIN3 pins become IN1+/, IN2/+ and IN3+/ pins, respectively. In this case, full-differential input is available (Figure 43). Digital microphone input is selected when DMIC bit = “1”. MDIF1 bit 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 MDIF2 bit 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 1 MDIF3 bit 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 1 0 0 0 0 INL1 INL0 INR1 INR0 Lch Rch bit bit bit bit 0 0 0 0 LIN1 RIN1 0 0 0 1 LIN1 RIN2 0 0 1 0 LIN1 RIN3 0 0 1 1 LIN1 RIN4 0 1 0 0 LIN2 RIN1 0 1 0 1 LIN2 RIN2 0 1 1 0 LIN2 RIN3 0 1 1 1 LIN2 RIN4 1 0 0 0 LIN3 RIN1 1 0 0 1 LIN3 RIN2 1 0 1 0 LIN3 RIN3 1 0 1 1 LIN3 RIN4 1 1 0 0 LIN4 RIN1 1 1 0 1 LIN4 RIN2 1 1 1 0 LIN4 RIN3 1 1 1 1 LIN4 RIN4 1 0 0 0 RIN1 IN3+/ 1 0 0 1 RIN2 IN3+/ 1 0 1 1 RIN4 IN3+/ 0 0 0 1 LIN1 IN2+/ 1 0 0 1 LIN3 IN2+/ 1 1 0 1 LIN4 IN2+/ 1 0 0 1 IN3+/ IN2+/ 0 0 0 1 RIN2 IN1+/ 0 0 1 0 RIN3 IN1+/ 0 0 1 1 RIN4 IN1+/ 0 0 0 1 IN1+/ IN2+/ Others N/A Table 20. MIC-Amp Input Signal at DMIC bit = “0” (N/A: Not available) MS1403-E-04 (default) 2014/12 - 49 - [AK4678] AK4678 INL1-0 bits LIN1/IN1+ pin RIN1/IN1 pin ADC Lch MDIF1 bit MIC-Amp Lch MDIF3 bit INR1-0 bits LIN2/IN2 pin RIN2/IN2+ pin ADC Rch MDIF2 bit MIC-Amp Rch LIN3/IN3+ pin RIN3/IN3 pin LIN4 pin RIN4 pin Figure 42. Mic/Line Input Selector (DMIC bit = “0”) AK4678 MPWR pin 1k MIC-Amp IN1+ pin IN1 pin 1k Figure 43. Connection Example for Full-differential Mic Input (MDIF1/2/3 bits = “1”) AK4678 MIC-Amp IN1+ pin IN1 pin Figure 44. Connection Example for Full-differential Mic Input (MDIF1/2/3 bits = “1”) MS1403-E-04 2014/12 - 50 - [AK4678] ■ MIC Gain Amplifier The AK4678 has a gain amplifier for microphone input. The gain of MIC-Amp Lch and Rch is independently selected by the MGNL3-0 and MGNR3-0 bits (Table 21). Mode 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 MGNL3 MGNL2 MGNL1 MGNL0 /MGNR3 /MGNR2 /MGNR1 /MGNR0 Input Gain bits bits bits bits 0 0 0 0 N/A 0 0 0 1 N/A 0 0 1 0 N/A 0 0 1 1 6dB 0 1 0 0 3dB 0 1 0 1 0dB 0 1 1 0 +3dB 0 1 1 1 +6dB 1 0 0 0 +9dB 1 0 0 1 +12dB 1 0 1 0 +15dB 1 0 1 1 +18dB 1 1 0 0 +21dB 1 1 0 1 +24dB 1 1 1 0 N/A 1 1 1 1 N/A Table 21. Mic Input Gain (N/A: Not available) MS1403-E-04 (default) 2014/12 - 51 - [AK4678] ■ MIC Power When PMMP1 bit (PMMP2 bit) = “1”, the MPWR1 pin (MPWR2 pin) supplies power for the microphone. This output voltage is typically 2.5V @MICL1 bit (MICL2 bit) =“0” (SVDD=3.0 ~ 5.5V), and typically 2.8V@MICL1 bit (MICL2 bit) = “1” (SVDD=3.3 ~ 5.5V) (Table 22). The load resistance is minimum 1k for each MPWR1 pin and MPWR2 pin. In case of using two sets of stereo mic, the load resistance is minimum 2k for each channel. Any capacitor must not be connected directly to the MPWR1 pin (MPWR2 pin) (Figure 45). MICL1 bit MICL2 bit 0 1 Output Level (typ) AVDD=1.8V 3.0 ~ 5.5V 1.39 x AVDD 2.5V 3.3 ~ 5.5V 1.56 x AVDD 2.8V Table 22. MIC Power 1, MC Power 2 Output Level SVDD Voltage Range Output Level (typ) (default) PMMP1 bit MPWR1 pin 0 Hi-Z (default) 1 Output Table 23. MIC Power 1 Status PMMP2 bit MPWR2 pin 0 Hi-Z (default) 1 Output Table 24. MIC Power 2 Status MIC Power 2 MPWR2 pin MIC Power 1 2k 2k 2k 2k MPWR1 pin Microphone LIN1 pin Microphone RIN1 pin Microphone LIN2 pin AK4678 Microphone RIN2 pin Figure 45. MIC Block Circuit MS1403-E-04 2014/12 - 52 - [AK4678] ■ Digital MIC 1. Connection to Digital MIC The AK4678 can be connected to digital microphone by setting DMIC bit = “1”. When DMIC bit is set to “1”, the LIN1 and RIN1 pins become DMDAT (digital microphone data input) and DMCLK (digital microphone clock supply) pins respectively. The same power supply as AVDD must be provided to the digital microphone. The Figure 46 and Figure 47 show mono/stereo connection examples. The DMCLK signal is output from the AK4678, and the digital microphone outputs 1bit data, which generated by Modulator, from DMDAT. PMDML/R bits control power up/down of the digital block (Decimation Filter and HPF1). PMADL/PMADR bits settings do not affect the digital microphone power management. The DCLKE bit controls ON/OFF of the output clock from the DMCLK pin. When the AK4678 is powered down (PDN pin= “L”), the DMCLK and DMDAT pins are pulled-down by internal 2.7k(typ.) resistor. However, when the AK4678 is powered-up (PDN pin = “H”), path of the internal pulled-down resistor is OFF. Therefore, external pull-down resistor(R) should be connected to the DMDAT pin to avoid floating state. AVDD AK4678 VDD AMP DMCLK(64fs) MCKI PLL Modulator Decimation Filter DMDAT Lch HPF1 Programmable Filter SDTO ALC R VDD AMP Modulator Rch Figure 46. Connection Example of Stereo Digital MIC AVDD AK4678 VDD AMP DMCLK(64fs) PLL MCKI Modulator DMDAT Decimation Filter HPF1 Programmable Filter ALC SDTO R Figure 47. Connection Example of Mono Digital MIC MS1403-E-04 2014/12 - 53 - [AK4678] 2. Interface The input data channel of the DMDAT pin is set by DCLKP bit. When DCLKP bit = “1, Lch data is input to the Decimation Filter if DMCLK = “H”, Rch data is input if DMCLK = “L”. When DCLKP bit = “0”, Rch data is input to the Decimation Filter if DMCLK = “H”, Lch data is input if DMCLK = “L”. The DMCLK pin outputs “L” when DCLKE bit = “0”, and only supports 64fs. In this case, necessary clocks must be supplied to the AK4678 for ADC operation. The output data through “the Decimation and Digital Filters” is the negative full-scale with 0% 1’s density of 1bit output data and positive full-scale with the 100% 1’s density of 1bit output data. DCLKP bit 0 1 DMCLK pin = “H” DMCLK pin = “L” Rch Lch Lch Rch Table 25. Data In/Output Timing with Digital MIC (default) DMCLK(64fs) DMDAT (Lch) Valid Data Valid Data Valid Data DMDAT (Rch) Valid Data Valid Data Valid Data Valid Data Valid Data Figure 48. Data In/Output Timing with Digital MIC (DCLKP bit = “1”) DMCLK(64fs) DMDAT (Lch) DMDAT (Rch) Valid Data Valid Data Valid Data Valid Data Valid Data Valid Data Valid Data Valid Data Figure 49. Data In/Output Timing with Digital MIC (DCLKP bit = “0”) MS1403-E-04 2014/12 - 54 - [AK4678] ■ Digital Block Digital block is composed as Figure 50. Each block can be powered-down by power management bits (PMADL, PMADR, PMDAL, PMDAR, PMPFIL, PMEQ, PMDRC, PMSRAI, PMSRAO, PMSRBI and PMSRBO bits). PMADL or PMADR ADC HPF1 HPFAD PFSEL PMPFIL bit HPF2 HPF LPF LPF FIL3, EQ0, GN1-0 Stereo Separation 3-band Notch EQ1-3 ALC, IVL/R ALC ADM MIX PFSDO SDOD SDOL/R1-0 SDTO Lch PMDAL or PMDAR PMDRC S E L DAC SDTO Rch SVAL/R2-0 DRC PMEQ OVL/R, SMUTE SVOLA SDIM1-0 SRMXL/R1-0 5EQ S E L DATT-A 5-band SMUTE EQ SDTI Lch SDTI Rch PFMXL/R1-0 DASEL1-0 PMOSC PMMIX MX1L2-0 MIX1L OSC for SRC MX1R2-0 MIX1R PMSRAO MX2A1-0 MIX2A MIX2C MX2C1-0 Mono MX2B1-0 SDOAD SDTOA SRCAO MIX2B SVOLB SVB2-0 PMSRAI DATT-B SRCAI SDTIA BVL6-0 SBMX1-0 CVL6-0 DATT-C PMSRBO MXSB2-0 MIX3 Stereo SRCBO SDOBD BIVOL SDTOB Lch SDTOB Rch SDTIB Lch SDTIB Rch SRCBI BIV2-0 PMSRBI Figure 50. Path Select of Digital Block MS1403-E-04 2014/12 - 55 - [AK4678] 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. ADC: Include the Digital Filter (LPF) for ADC as shown in “FILTER CHRACTERISTICS”. HPF1: Include the Digital Filter (HPF) for ADC as shown in “FILTER CHRACTERISTICS”. DAC: Include the Digital Filter (LPF) for DAC as shown in “FILTER CHRACTERISTICS”. HPF2: High Pass Filter. Applicable to use as Wind-Noise Reduction Filter. (See “Digital Programmable Filter”.) LPF: Low Pass Filter (See “Digital Programmable Filter”.) Stereo Separation: Stereo Separation Emphasis Filter & Gain Compensation. (See “Digital Programmable Filter”.) Gain Compensation is composed with EQ0 and Gain blocks. This block adjusts the frequency response after Stereo Separation Emphasis. 3-Band Notch: Applicable to use as Equalizer or Notch Filter. (See “Digital Programmable Filter”.) ALC: Input Digital Volume with ALC function. (See “Input Digital Volume” and “ALC Operation”.) SVOLA: Side Tone Volume at Internal MIC/SPK or External Headset Phone Call. (See “Side Tone Volume”.) 5-Band EQ: Equalizer for playback path. (See “5-band Equalizer”.) DATT-A: Digital Volume for playback path. (See “Digital Output Volume”.) SMUTE: Soft mute. (See “Soft Mute”.) DRC: Dynamic Range Control for playback path. (See “Dynamic Range Control”.) DATT-B: Digital Volume for Recording of Received Voice. (See “Digital Volume for Recording of Received Voice”) DATT-C: Digital Volume of Received Voice. (See “Digital Volume for Received Voice”) SVOLB: Side Tone Volume at B/T Headset Phone Call. (See “Side Tone Volume for B/T Phone Call”.) MS1403-E-04 2014/12 - 56 - [AK4678] PMADL bit (PMDML bit) Mode Recording 1 PMADR bit (PMDMR bit) 1 1 0 1 1 0 0 0 Recording 1 & Playback 2 Playback 1 Playback 2 ADC PMPFIL bit PFSEL bit PFSDO PMDAL/R bit bits PMEQ bit PMDRC bit DASEL1-0 bits 0 0 0 1 1 1 1 1 x x x 01 01 01 01 01 1 1 0 1 00 0 0 1 0 1 00 0 1 1 0 1 00 0 1 1 0 1 11 1 0 1 0 1 11 1 1 1 0 1 11 1 0 1 1 1 11 1 0 0 0 1 11 1 Table 26. Recode/Playback Mode (x: Don’t care) 1st Order 1st Order 1st Order HPF1 HPF2 LPF Stereo Separation Gain Compensation 3 Band Figure Figure 51 Figure 52 Figure 53 Figure 54 ALC Notch (Volume) Figure 51. Path at Recording Mode 1 ADC DAC 1st Order 1st Order 1st Order HPF1 HPF2 LPF DRC SMUTE DATT-A Stereo Separation Gain Compensation 3 Band ALC Notch (Volume) 5 Band EQ Figure 52. Path at Recording Mode 1 & Playback Mode 2 DAC DRC SMUTE DATT-A 5 Band EQ ALC (Volume) 3 Band Notch Gain Compensation 1st Order 1st Order LPF HPF2 Stereo Separation Figure 53. Path at Playback Mode 1 DAC DRC SMUTE DATT-A 5 Band EQ Figure 54. Path at Playback Mode 2 MS1403-E-04 2014/12 - 57 - [AK4678] ■ Digital Programmable Filter (1) High Pass Filter (HPF2) Normally, this HPF is used for Wind-Noise Reduction. This is composed 1st order HPF. The coefficient of HPF is set by F1A13-0 bits and F1B13-0 bits. HPF bit controls ON/OFF of the HPF2. When the HPF2 is OFF, the audio data passes this block by 0dB gain. The coefficient must be set when HPF bit = “0” or PMPFIL bit = “0”. The HPF2 starts operation 4/fs(max) after when HPF bit = “1” and PMPFIL bit = “1” are set. fs: Sampling frequency fc: Cut-off frequency Register setting (Note 66) HPF: F1A[13:0] bits =A, F1B[13:0] bits =B (MSB=F1A13, F1B13; LSB=F1A0, F1B0) 1 1 / tan (fc/fs) 1 / tan (fc/fs) A= , B= 1 + 1 / tan (fc/fs) 1 + 1 / tan (fc/fs) Transfer function 1 z 1 H(z) = A 1 + Bz 1 The cut-off frequency should be set as below. fc/fs ≥ 0.0001 (fc min = 4.41Hz at 44.1kHz) (2) Low Pass Filter (LPF) This is composed with 1st order LPF. F2A13-0 bits and F2B13-0 bits set the coefficient of LPF. LPF bit controls ON/OFF of the LPF. When the LPF is OFF, the audio data passes this block by 0dB gain. The coefficient must be set when LPF bit = “0” or PMPFIL bit = “0”. The LPF starts operation 4/fs(max) after when LPF bit = “1” and PMPFIL bit = “1” are set. fs: Sampling frequency fc: Cut-off frequency Register setting (Note 66) LPF: F2A[13:0] bits =A, F2B[13:0] bits =B (MSB=F2A13, F1B13; LSB=F2A0, F2B0) 1 1 / tan (fc/fs) 1 A= , 1 + 1 / tan (fc/fs) B= 1 + 1 / tan (fc/fs) Transfer function 1 + z 1 H(z) = A 1 + Bz 1 The cut-off frequency should be set as below. fc/fs ≥ 0.05 (fc min = 2205Hz at 44.1kHz) MS1403-E-04 2014/12 - 58 - [AK4678] (3) Stereo Separation Emphasis Filter (FIL3) FIL3 is used to emphasize the stereo separation of stereo mic recording data or playback data. F3A13-0 and F3B13-0 bits set the filter coefficient of FIL3. FIL3 becomes High Pass Filter (HPF) at F3AS bit = “0”, and Low Pass Filter (LPF) at F3AS bit = “1”. FIL3 bit controls ON/OFF of FIL3. When Stereo Separation Emphasis Filter is OFF, the audio data passes this block by 0dB gain. The coefficient should be set when FIL3 bit = “0” or PMPFIL bit = “0”. The FIL3 starts operation 4/fs(max) after when FIL3 bit = “1” and PMPFIL bit = “1” are set. 1) When FIL3 is set to “HPF” fs: Sampling frequency fc: Cut-off frequency K: Filter gain [dB] (0dB ≥ K ≥ 10dB) Register setting (Note 66) FIL3: F3AS bit = “0”, F3A[13:0] bits =A, F3B[13:0] bits =B (MSB=F3A13, F3B13; LSB=F3A0, F3B0) 1 1 / tan (fc/fs) 1 / tan (fc/fs) A = 10K/20 x , B= 1 + 1 / tan (fc/fs) 1 + 1 / tan (fc/fs) Transfer function 1 z 1 H(z) = A 1 + Bz 1 2) When FIL3 is set to “LPF” fs: Sampling frequency fc: Cut-off frequency K: Filter gain [dB] (0dB ≥ K ≥ 10dB) Register setting (Note 66) FIL3: F3AS bit = “1”, F3A[13:0] bits =A, F3B[13:0] bits =B (MSB=F3A13, F3B13; LSB= F3A0, F3B0) 1 1 / tan (fc/fs) 1 A = 10K/20 x , 1 + 1 / tan (fc/fs) B= 1 + 1 / tan (fc/fs) Transfer function 1 + z 1 H(z) = A 1 + Bz 1 MS1403-E-04 2014/12 - 59 - [AK4678] (4) Gain Compensation (EQ0) Gain Compensation is used to compensate the frequency response and the gain that is changed by Stereo Separation Emphasis Filter. Gain Compensation is composed with Equalizer (EQ0) and the Gain (0dB/+12dB/+24dB). E0A15-0, E0B13-0 and E0C15-0 bits set the coefficient of EQ0. GN1-0 bits set the gain (Table 27). EQ0 bit controls ON/OFF of EQ0. When EQ is OFF and the gain is 0dB, the audio data passes this block by 0dB gain. The coefficient should be set when EQ0 bit = “0” or PMPFIL bit = “0”. EQ0 starts operation 4/fs(max) after when EQ0 bit = “1” and PMPFIL bit = “1” are set. fs: Sampling frequency fc1: Pole frequency fc2: Zero-point frequency K: Filter gain [dB] (Maximum +12dB) Register setting (Note 66) E0A[15:0] bits =A, E0B[13:0] bits =B, E0C[15:0] bits =C (MSB=E0A15, E0B13, E0C15; LSB=E0A0, E0B0, E0C0) A = 10K/20 x 1 1 / tan (fc1/fs) 1 + 1 / tan (fc2/fs) , 1 + 1 / tan (fc1/fs) B= , C =10K/20 x 1 + 1 / tan (fc1/fs) 1 1 / tan (fc2/fs) 1 + 1 / tan (fc1/fs) Transfer function A + Cz 1 H(z) = 1 + Bz 1 Gain[dB] K fc1 fc2 Frequency Figure 55. EQ0 Frequency Response GN1 bit GN0 bit Gain 0 0 0dB (default) 0 1 +12dB 1 x +24dB Table 27. Gain select of gain block (x: Don’t care) MS1403-E-04 2014/12 - 60 - [AK4678] (5) 3-band Equalizer This block can be used as Equalizer or Notch Filter. 3-band Equalizer (EQ1, EQ2 and EQ3) is selected ON/OFF independently by EQ1, EQ2 and EQ3 bits. When Equalizer is OFF, the audio data passes this block by 0dB gain. E1A15-0, E1B15-0 and E1C15-0 bits set the coefficient of EQ1. E2A15-0, E2B15-0 and E2C15-0 bits set the coefficient of EQ2. E3A15-0, E3B15-0 and E3C15-0 bits set the coefficient of EQ3. The EQx (x=13) coefficient must be set when EQx bit = “0” or PMPFIL bit = “0”. EQ1-3 start operation 4/fs(max) after when (EQx (x=1~3) = “1”) and PMPFIL bit = “1” is set fs: Sampling frequency fo1 ~ fo3: Center frequency fb1 ~ fb3: Band width where the gain is 3dB different from center frequency K1 ~ K3 : Gain (1 Kn 3) Register setting (Note 66) EQ1: E1A[15:0] bits =A1, E1B[15:0] bits =B1, E1C[15:0] bits =C1 EQ2: E2A[15:0] bits =A2, E2B[15:0] bits =B2, E2C[15:0] bits =C2 EQ3: E3A[15:0] bits =A3, E3B[15:0] bits =B3, E3C[15:0] bits =C3 (MSB=E1A15, E1B15, E1C15, E2A15, E2B15, E2C15, E3A15, E3B15, E3C15; LSB= E1A0, E1B0, E1C0, E2A0, E2B0, E2C0, E3A0, E3B0, E3C0) 1 tan (fbn/fs) 2 tan (fbn/fs) An = Kn x , Bn = cos(2 fon/fs) x 1 + tan (fbn/fs) , 1 + tan (fbn/fs) Cn = 1 + tan (fbn/fs) (n = 1, 2, 3) Transfer function H(z) = 1 + h1(z) + h2(z) + h3(z) 1 z 2 hn (z) = An 1 Bnz 1 Cnz 2 (n = 1, 2, 3) The center frequency should be set as below. 0.003 < fon / fs < 0.497 Note 66. [Translation the filter coefficient calculated by the equations above from real number to binary code (2’s complement)] X = (Real number of filter coefficient calculated by the equations above) x 213 X should be rounded to integer, and then should be translated to binary code (2’s complement). MSB of each filter coefficient setting register is sine bit. MS1403-E-04 2014/12 - 61 - [AK4678] ■ ALC Operation The ALC (Automatic Level Control) is executed by ALC block when ALC bit is “1”. ALC circuit operates at playback path for Playback mode (Figure 53 and Figure 54) and operates at recording path for Recording mode (Figure 51 and Figure 52). 1. ALC Limiter Operation During the ALC limiter operation, when either Lch or Rch exceeds the ALC limiter detection level (Table 28), the IVL and IVR values (same value) are attenuated automatically by the amount defined by the ALC limiter ATT step (Table 29). When ZELMN bit = “0” (zero cross detection is enabled), the IVL and IVR values are changed by ALC limiter operation at the individual zero crossing points of Lch and Rch or at the zero crossing timeout. ZTM1-0 bits set the zero crossing timeout period of both ALC limiter and recovery operation (Table 30). When ALC output level exceeds full-scale at LFST bit = “1”, IVL and IVR values are immediately (period: 1/fs) changed in 1 step(L/R common). When ALC output level is less than full-scale, the IVL and IVR values are changed at the individual zero crossing point of each channels or at the zero crossing timeout. When ZELMN bit = “1” (zero cross detection is disabled.), IVL and IVR values are immediately (period: 1/fs) changed by ALC limiter operation. Attenuation step is fixed to 1 step regardless of the setting LMAT1-0 bits. The attenuation operation is exceeded continuously until the input signal level becomes ALC limiter detection level (Table 28) or less. After completing the attenuate operation, unless ALC bit is changed to “0”, the operation repeats when the input signal level exceeds LMTH1-0 bits. LMTH1 bit 0 0 1 1 LMTH0 bit 0 1 0 1 ALC Limier Detection Level ALC Output ≥ 2.5dBFS 2.5dBFS > ALC Output ≥ 4.1dBFS ALC Output ≥ 4.1dBFS 4.1dBFS > ALC Output ≥ 6.0dBFS ALC Output ≥ 6.0dBFS 6.0dBFS > ALC Output ≥ 8.5dBFS ALC Output ≥ 8.5dBFS 8.5dBFS > ALC Output ≥ 12dBFS Table 28. ALC Limiter Detection Level / Recovery Counter Reset Level LMAT1 bit LMAT0 bit 0 0 1 1 0 1 0 1 ZTM1 bit 0 0 1 1 ALC Recovery Waiting Counter Reset Level ZTM0 bit 0 1 0 1 ALC Limiter ATT Step ALC Output ALC Output ALC Output ≥ LMTH ≥ FS ≥ FS + 6dB 1 1 1 2 2 2 2 4 4 1 2 4 Table 29. ALC Limiter ATT Step ALC Output ≥ FS + 12dB 1 2 8 8 Zero Crossing Timeout Period 8kHz 16kHz 44.1kHz 128/fs 16ms 8ms 2.9ms 256/fs 32ms 16ms 5.8ms 512/fs 64ms 32ms 11.6ms 1024/fs 128ms 64ms 23.2ms Table 30. ALC Zero Crossing Timeout Period MS1403-E-04 (default) (default) (default) 2014/12 - 62 - [AK4678] 2. ALC Recovery Operation The ALC recovery operation waits for the WTM2-0 bits (Table 31) to be set after completing the ALC limiter operation. If the input signal does not exceed “ALC recovery waiting counter reset level” (Table 28) during the wait time, the ALC recovery operation is executed. The IVL and IVR values are automatically incremented by RGAIN1-0 bits (Table 32) up to the set reference level (Table 33) with zero crossing detection which timeout period is set by ZTM1-0 bits (Table 30). Then the IVL and IVR are set to the same value for both channels. The ALC recovery operation is executed in a period set by WTM2-0 bits. When zero cross is detected at both channels during the wait period set by WTM2-0 bits, the ALC recovery operation waits until WTM2-0 bits period and the next recovery operation is executed. If ZTM1-0 bits are longer than WTM2-0 bits and no zero crossing occurs, the ALC recovery operation is executed in a period set by ZTM1-0 bits. For example, when the current IVL and IVR values are 30H and RGAIN1-0 bits are set to “01”, IVL and IVR values are changed to 32H by the auto limiter operation and then the input signal level is gained by 0.75dB (=0.375dB x 2). When the IVL and IVR values exceed the reference level (REF7-0 bits), the IVL and IVR values are not increased. When “ALC recovery waiting counter reset level (LMTH1-0) Output Signal < ALC limiter detection level (LMTH1-0)” during the ALC recovery operation, the waiting timer of ALC recovery operation is reset. When “ALC recovery waiting counter reset level (LMTH1-0) > Output Signal”, the waiting timer of ALC recovery operation starts. The ALC operation corresponds to the impulse noise. When the impulse noise is input, the ALC recovery operation becomes faster than a normal recovery operation (Fast Recovery Operation). When large noise is input to microphone instantaneously, the quality of small signal level in the large noise can be improved by this fast recovery operation. The speed of fast recovery operation is set by RFST1-0 bits (Table 34). WTM2 bit 0 0 0 0 1 1 1 1 WTM1 bit 0 0 1 1 0 0 1 1 ALC Recovery Operation Waiting Period WTM0 bit 8kHz 16kHz 44.1kHz 0 128/fs 16ms 8ms 2.9ms 1 256/fs 32ms 16ms 5.8ms 0 512/fs 64ms 32ms 11.6ms 1 1024/fs 128ms 64ms 23.2ms 0 2048/fs 256ms 128ms 46.4ms 1 4096/fs 512ms 256ms 92.9ms 0 8192/fs 1024ms 512ms 185.8ms 1 16384/fs 2048ms 1024ms 371.5ms Table 31. ALC Recovery Operation Waiting Period RGAIN1 bit 0 0 1 1 RGAIN0 GAIN STEP bit 0 1 step 0.375dB 1 2 step 0.750dB 0 3 step 1.125dB 1 4 step 1.500dB Table 32. ALC Recovery GAIN Step MS1403-E-04 (default) (default) 2014/12 - 63 - [AK4678] REF7-0 bits GAIN (dB) Step F1H +36.0 F0H +35.625 EFH +35.25 : : E1H +30.0 (default) : : 0.375dB 92H +0.375 91H 0.0 90H 0.375 : : 02H 53.625 01H 54.0 00H MUTE Table 33. Reference Level at ALC Recovery Operation RFST1 bit RFST0 bit Recovery Speed 0 0 4 times (default) 0 1 8 times 1 0 16times 1 1 N/A Table 34. Fast Recovery Speed Setting (N/A: Not available) MS1403-E-04 2014/12 - 64 - [AK4678] 3. Example of ALC Operation Table 35 and Table 36 show the examples of the ALC setting for mic recording and playback, respectively. Register Name Comment LMTH1-0 ZELMN Limiter detection Level Limiter zero crossing detection Zero crossing timeout period * ZTM1-0 bits should be equal to or shorter than WTM2-0 bits. Recovery waiting period Maximum gain at recovery operation ZTM1-0 WTM2-0 REF7-0 IVL7-0, IVR7-0 LMAT1-0 RGAIN1-0 RFST1-0 ALC Data 01 0 Gain of IVOL fs=8kHz Operation 4.1dBFS Enable Data 01 0 fs=44.1kHz Operation 4.1dBFS Enable 01 32ms 11 23.2ms 001 E1H 32ms +30dB 100 E1H 46.4ms +30dB E1H +30dB E1H +30dB 00 00 00 1 1 step 1 step 4 times Enable Limiter ATT step 00 1 step Recovery GAIN step 00 1 step Fast Recovery Speed 00 4 times ALC enable 1 Enable Table 35. Example of the ALC setting (Recording Path) fs=8kHz Operation 4.1dBFS Enable 32ms fs=44.1kHz Data Operation 01 4.1dBFS 0 Enable 11 23.2ms Register Name Comment LMTH1-0 ZELMN ZTM1-0 Limiter detection Level Limiter zero crossing detection Zero crossing timeout period Recovery waiting period *WTM2-0 bits should be the same or longer data as ZTM1-0 bits Maximum gain at recovery operation 001 32ms 100 46.4ms A1H +6dB A1H +6dB Gain of IVOL 91H 0dB 91H 0dB 00 00 00 1 1 step 1 step 4 times Enable WTM2-0 REF7-0 IVL7-0, IVR7-0 LMAT1-0 RGAIN1-0 RFST1-0 ALC Data 01 0 01 Limiter ATT step 00 1 step Recovery GAIN step 00 1 step Fast Recovery Speed 00 4 times ALC enable 1 Enable Table 36. Example of the ALC setting (Playback Path) MS1403-E-04 2014/12 - 65 - [AK4678] The following registers should not be changed during the ALC operation. These bits should be changed after the ALC operation is finished by ALC bit = “0”. LMTH1-0, LMAT1-0, WTM2-0, ZTM1-0, RGAIN1-0, REF7-0, ZELMN, RFST1-0, LFST and FR bits Example: Limiter = Zero crossing Enable Recovery Cycle = 32ms@8kHz Zero Crossing Timeout Period = 32ms@8kHz Limiter and Recovery Step = 1 Fast Recovery = Enable (4 step) Gain of IVOL = +30dB Maximum Gain = +30.0dB Limiter Detection Level = 4.1dBFS ALC bit = “1” Manual Mode WR (IVL7-0) (1) Addr=11H, Data=E1H WR (IVR7-0) (2) Addr=12H, Data=E1H WR (REF7-0) * The value of IVOL should be (3) Addr=13H, Data=E1H the same or smaller than REF’s WR (ZTM1-0, WTM2-0, RFST1-0, FR) (4) Addr=15H, Data=05H WR (LMTH1-0, RGAIN1-0, LMAT1-0, ZELMN, LFST) (5) Addr=16H, Data=01H WR (ALC = “1”) (6) Addr=17H, Data=03H ALC Operation Note : WR : Write Figure 56. Registers set-up sequence at ALC operation MS1403-E-04 2014/12 - 66 - [AK4678] ■ Input Digital Volume (Manual Mode) The input digital volume becomes a manual mode when ALC bit is “0”. This mode is used in the case shown below. 1. 2. 3. After exiting reset state, set-up the registers for the ALC operation (ZTM1-0, LMTH1-0 and etc) When the registers for the ALC operation (Limiter period, Recovery period and etc) are changed. For example, in case of changing the sampling frequency. When IVOL is used as a manual volume. IVL7-0 and IVR7-0 bits set the gain of the volume control (Table 37). When IVOLC bit is “0”, IVL7-0 and IVR7-0 bits control Lch and Rch volume values independently. When IVOLC bit is “1”, IVL7-0 bits controls both channels. The IVOL value is changed at zero crossing or timeout. Zero crossing timeout period is set by ZTM1-0 bits. If IVL7-0 or IVR7-0 bits are written during PMADL=PMADR=PMDML=PMDMR bits = “0”, IVOL operation starts with the written values at the end of the ADC initialization cycle after PMADL, PMADR, PMDML or PMMDR bit is changed to “1”. IVL7-0 bits IVR7-0 bits F1H F0H EFH : 92H 91H 90H : 03H 02H 01H 00H GAIN (dB) Step +36.0 +35.625 +35.25 : +0.375 0.0 0.375dB 0.375 : 53.25 53.625 54 MUTE Table 37. Input Digital Volume Setting MS1403-E-04 (default) 2014/12 - 67 - [AK4678] ■ Digital HPF1 A digital High Pass Filter (HPF) is integrated for DC offset cancellation of the ADC input. The cut-off frequencies of the HPF1 are set by HPFC1-0 bits (Table 38). It is proportional to the sampling frequency (fs) and default is 3.4Hz (@fs = 44.1kHz). HPFAD bit controls the ON/OFF of the HPF1 (Recommend HPF enable). HPFC1 bit HPFC0 bit 0 0 1 1 0 1 0 1 fc fs=44.1kHz fs=22.05kHz 3.4Hz 1.7Hz 13.6Hz 6.8Hz 108.8Hz 54.4Hz 217.6Hz 108.8Hz Table 38. HPF1 Cut-off Frequency fs=8kHz 0.62Hz 2.47Hz 19.7Hz 39.5Hz (default) ■ Side Tone Volume (SVOLA) The AK4678 has the channel independent side tone volume (5 levels, 6dB step). The volume can be set by the SVAL/R2-0 bits. The volume is included at mixing path from ALC to 5-band EQ. The output data of ALC is changed from 0 to –24dB. SVAL/R2-0 bits Gain 0H 0dB (default) 1H 6dB 2H 12dB 3H 18dB 4H 24dB Others N/A Table 39. Side Tone Volume A Code Table (N/A: Not available) MS1403-E-04 2014/12 - 68 - [AK4678] ■ 5-Band Equalizer The AK4678 has 5-Band Equalizer before DAC of Stereo CODEC. The 5-band Equalizer is selected ON/OFF by 5EQ bit. When 5-band Equalizer is OFF, the audio data passes this block by 0dB gain. Each coefficient and transfer function of 5-band Equalizer is as follows. The coefficient must be set when 5EQ bit = “0” or PMEQ bit = “0”. Gain range of 5-band equalizer is set from +12dB to -12dB (0.5dB step) independently by 5EQ1G5-0, 5EQ2G5-0, 5EQ3G5-0, 5EQ4G5-0 or 5EQ5G5-0 bits. The 5-band Equalizer starts operation 4/fs(max) after when 5EQ bit = “1” and PMEQ bit = “1” is set. 1. EQ1: 1st order Low Pass Filter <Low Pass Filter> fs: Sampling frequency fc: Cut-off frequency k: Filter gain Register setting (Note 67) 5E1A[13:0] bits =A, 5E1B[13:0] bits =B (MSB=5E1A13, 5E1B13; LSB=5E1A0, 5E1B0) 1 1 / tan (fc/fs) 1 A= k x , 1 + 1 / tan (fc/fs) B= 1 + 1 / tan (fc/fs) Transfer function 1 + z 1 h1L (z) = A 1 + Bz 1 The cut-off frequency should be set as below. fc/fs ≥ 0.05 (fc min = 2205Hz at 44.1kHz) MS1403-E-04 2014/12 - 69 - [AK4678] 2. EQ2, EQ3, EQ4: Equalizer 5E2A15-0, 5E2B15-0 and 5E2C15-0 bits set the coefficient of EQ2. 5E3A15-0, 5E3B15-0 and 5E3C15-0 bits set the coefficient of EQ3. 5E4A15-0, 5E4B15-0 and 5E4C15-0 bits set the coefficient of EQ4. fs: Sampling frequency fo2 ~ fo4: Center frequency fb2 ~ fb4: Band width where the gain is 3dB different from center frequency k2 ~ k4: Filter gain Register setting (Note 67) EQ2: 5E2A[15:0] bits =A1, 5E2B[15:0] bits =B1, 5E2C[15:0] bits =C2 EQ3: 5E3A[15:0] bits =A2, 5E3B[15:0] bits =B2, 5E3C[15:0] bits =C3 EQ4: 5E4A[15:0] bits =A3, 5E4B[15:0] bits =B3, 5E4C[15:0] bits =C4 (MSB=5E2A15, 5E2B15, 5E2C15, 5E3A15, 5E3B15, 5E3C15, 5E4A15, 5E4B15, 5E4C15; LSB= 5E2A0, 5E2B0, 5E2C0, 5E3A0, 5E3B0, 5E3C0, 5E4A0, 5E4B0, 5E4C0) 1 tan (fbn/fs) 2 tan (fbn/fs) An = kn x , Bn = cos(2 fon/fs) x 1 + tan (fbn/fs) , 1 + tan (fbn/fs) Cn = 1 + tan (fbn/fs) (n = 2, 3, 4) Transfer function 1 z 2 hn (z) = An 1 Bnz 1 Cnz 2 (n = 2, 3, 4) The center frequency should be set as below. fon / fs < 0.497 MS1403-E-04 2014/12 - 70 - [AK4678] 3. EQ5: 1st order High Pass Filter <High Pass Filter> fs: Sampling frequency fc: Cut-off frequency k: Filter gain Register setting (Note 67) 5E5A[13:0] bits =A, 5E5B[13:0] bits =B (MSB=5E5A13, 5E5B13; LSB=5E5A0, 5E5B0) 1 1 / tan (fc/fs) 1 / tan (fc/fs) A= k x , 1 + 1 / tan (fc/fs) B= 1 + 1 / tan (fc/fs) Transfer Function 1 z 1 h5H (z) = A 1 + Bz 1 The cut-off frequency should be set as below. fc/fs ≥ 0.0001 (fc min = 4.41Hz at 44.1kHz) Note 67. [Translation the filter coefficient calculated by the equations above from real number to binary code (2’s complement)] X = (Real number of filter coefficient calculated by the equations above) x 2 13 X should be rounded to integer, and then should be translated to binary code (2’s complement). MSB of each filter coefficient setting register is sine bit. Total Transfer Function: H(z) = K1 x h1L(z) + K2 x h2(z) + K3 x h3(z) + K4 x h4(z) + K5 x h5H(z) K1 ~ 5: EQ Gain (+12 ~ -12dB, 0.5dB step). This value is changed by control register. K1: 5EQ1G5-0 bits (Addr=6AH) K2: 5EQ2G5-0 bits (Addr=6BH) K3: 5EQ3G5-0 bits (Addr=6CH) K4: 5EQ4G5-0 bits (Addr=6DH) K5: 5EQ5G5-0 bits (Addr=6EH) Default Center Frequency (Sampling Frequency = 44.1kHz): EQ1: fc=100Hz EQ2: fo2=250Hz (fb2=50Hz) EQ3: fo3=1kHz (fb3=200Hz) EQ4: fo4=3.5kHz (fb4=700Hz) EQ5: fc=10kHz MS1403-E-04 2014/12 - 71 - [AK4678] EQ1G5-0 bits EQ1G5-0 bits EQ2G5-0 bits EQ2G5-0 bits EQ3G5-0 bits GAIN (dB) EQ3G5-0 bits GAIN (dB) EQ4G5-0 bits EQ4G5-0 bits EQ5G5-0 bits EQ5G5-0 bits 30H 17H +0.5 12 2FH 16H +1 11.5 2EH 15H +1.5 11 2DH 14H +2 10.5 2CH 13H +2.5 10 2BH 12H +3 9.5 2AH 11H +3.5 9 29H 10H +4 8.5 28H 0FH +4.5 8 27H 0EH +5 7.5 26H 0DH +5.5 7 25H 0CH +6 6.5 24H 0BH +6.5 6 23H 0AH +7 5.5 22H 09H +7.5 5 21H 08H +8 4.5 20H 07H +8.5 4 1FH 06H +9 3.5 1EH 05H +9.5 3 1DH 04H +10 2.5 1CH 03H +10.5 2 1BH 02H +11 1.5 1AH 01H +11.5 1 19H 00H +12 0.5 18H 0 Table 40. 5-band Equalizer Gain Setting (Default: 0dB) MS1403-E-04 2014/12 - 72 - [AK4678] ■ Dynamic Range Control DRC Block PMDRC LPF DLLPF1-0 DLLA13-0 DLLB13-0 DATT-A SMUTE Mono/ Stereo DRCM1-0 LPF NSLPF NSLA13-0 NSLB13-0 Noise Suppression HPF NSHPF NSHA13-0 NSHB13-0 NSCE NSTHL4-0 NSTHH4-0 NSREF3-0 NSATT2-0 NSGAIN2-0 NSIAFS1-0 NSOAFS1-0 HPF LPF DMHPF1-0 DMHA13-0 DMHB13-0 DMLPF1-0 DMLA13-0 DMLB13-0 HPF DHHPF1-0 DHHA13-0 DHHB13-0 VOLL DVLCL VL1X/Y5-0 VL2X/Y5-0 VL3X/Y4-0 L1G6-0 L2G6-0 L3G6-0 L4G6-0 VOLM DVLCM VM1X/Y5-0 VM2X/Y5-0 VM3X/Y4-0 M1G6-0 M2G6-0 M3G6-0 M4G6-0 VOLH VH1X/Y5-0 VH2X/Y5-0 VH3X/Y4-0 H1G6-0 H2G6-0 H3G6-0 H4G6-0 VOL DRC Limiter DRCC1-0 DLMAT1-0 DRGAIN1-0 DVLCH DAF1-0 DVLMAT2-0 DVRGAIN2-0 Figure 57. DRC Functions and Signal Path DRCM1-0 bits select stereo or mono of DRC input data. In case of mono mode, the same data is input to both channels. DRCM1 bit DRCM0 bit Lch Rch 0 0 L R (default) 0 1 L L 1 0 R R 1 1 N/A Table 41. DRC Stereo/Mono Select (N/A: Not available) 1. Noise Suppression Block (1) Low Pass Filter (LPF) This is composed with 1st order LPF. NSLA13-0 bits and NSLB13-0 bits set the coefficient of LPF. NSLPF bit controls ON/OFF of the LPF. When the LPF is OFF, the audio data passes this block by 0dB gain. The coefficient must be set when NSLPF bit = “0” or PMDRC bit = “0”. The LPF starts operation 4/fs(max) after when NSLPF bit = “1” and PMDRC bit = “1” are set. fs: Sampling frequency fc: Cut-off frequency Register setting LPF: NSLA[13:0] bits =A, NSLB[13:0] bits =B (MSB=NSLA13, NSLB13; LSB=NSLA0, NSLB0) 1 1 / tan (fc/fs) 1 A= , 1 + 1 / tan (fc/fs) B= 1 + 1 / tan (fc/fs) Transfer function 1 + z 1 H(z) = A 1 + Bz 1 The cut-off frequency should be set as below. fc/fs ≥ 0.05 (fc min = 2205Hz at 44.1kHz) MS1403-E-04 2014/12 - 73 - DAC [AK4678] (2) High Pass Filter (HPF) This is composed 1st order HPF. The coefficient of HPF is set by NSHA13-0 bits and NSHB13-0 bits. NSHPF bit controls ON/OFF of the HPF. When the HPF is OFF, the audio data passes this block by 0dB gain. The coefficient must be set when NSHPF bit = “0” or PMDRC bit = “0”. The HPF starts operation 4/fs(max) after when NSHPF bit = “1” and PMDRC bit = “1” are set. fs: Sampling frequency fc: Cut-off frequency Register setting HPF: NSHA[13:0] bits =A, NSHB[13:0] bits =B (MSB=NSHA13, NSHB13; LSB=NSHA0, NSHB0) 1 1 / tan (fc/fs) 1 / tan (fc/fs) A= , B= 1 + 1 / tan (fc/fs) 1 + 1 / tan (fc/fs) Transfer function 1 z 1 H(z) = A 1 + Bz 1 The cut-off frequency should be set as below. fc/fs ≥ 0.0001 (fc min = 4.41Hz at 44.1kHz) (3) Noise Suppression The Noise Suppression is enabled when NSCE bit (Noise suppression enable bit) = “1” during DRC operation (PMDRC bit = “1”). This function attenuates output signal level automatically when minute amount of the signal is input. NSCE bit: Noise Suppression Enable 0: Disable (default) 1: Enable (3-1) Noise Level Suppressing Operation The output signal is suppressed when the input moving average level set by NSIAF1-0 bits (Table 42) is lower than “Noise Suppression Threshold Low Level” set by NSTHL4-0 bits (Table 43) during the normal operation. This operation attenuats the volume automatically to the reference level set by NSREF3-0 bits (Table 44) with the soft transition of the attenuation speed set by NSATT2-0 bits (Table 45). Moving Average Parameter fs=8kHz fs=16kHz fs=44.1kHz 00 256/fs 32ms 16ms 5.8ms 01 512/fs 64ms 32ms 11.6ms 10 1024/fs 128ms 64ms 23.2ms (default) 11 2048/fs 256ms 128ms 46.4ms Table 42. Moving Average Parameter Setting at Noise Suppression Off NSIAF1-0 bits MS1403-E-04 2014/12 - 74 - [AK4678] Noise Suppression Step Threshold Low Level [dB] 36.0 37.5 39.0 : 1.5dB 60.0 : 81.0 82.5 Table 43. Noise Suppression Threshold Low Level NSTHL4-0 bits 00H 01H 02H : 10H : 1EH 1FH (default) NSREF3-0 bits GAIN [dB] Step 0H (default) 9 1H 12 2H 15 : : AH 39 3dB BH 42 CH 45 DH 48 EH 51 FH 54 Table 44. Reference Value Setting when Noise Suppression is ON NSATT2 bit 0 0 0 0 1 1 1 1 ATT Speed NSATT1 NSATT0 bit bit 8kHz 16kHz 44.1kHz 0 0 1.1dB/s 2.1dB/s 5.8dB/s 0 1 2.1dB/s 4.2dB/s 11.7dB/s 1 0 4.2dB/s 8.5dB/s 23.4dB/s 1 1 8.5dB/s 17.0dB/s 46.8dB/s 0 0 17.0dB/s 33.9dB/s 93.5dB/s 0 1 67.9dB/s 187.1dB/s 33.9dB/s 1 0 N/A 1 1 Table 45. Noise Suppression ATT Speed Setting (N/A: Not available) MS1403-E-04 (default) 2014/12 - 75 - [AK4678] (3-2) Noise Suppression → Normal Operation During noise suppressing operation, if the input moving average level set by NSOAF1-0 bits (Table 46) exceeds Noise Suppression Threshold High Level set by NSTHH4-0 bits (Table 47), the operation switches to normal operation from noise suppressing operation. This recovery operation sets the volume automatically to 0dB with the soft transition of the recovery speed set by NSGAIN2-0 bits (Table 48). Moving Average Parameter fs=8kHz fs=16kHz fs=44.1kHz 00 4/fs 0.5ms 0.3ms 0.1ms 01 8/fs 1.0ms 0.5ms 0.2ms 10 16/fs 2.0ms 1.0ms 0.4ms (default) 11 32/fs 4.0ms 2.0ms 0.7ms Table 46. Moving Average Parameter Setting at Noise Suppression On NSOAF1-0 bits Noise Suppression Step Threshold High Level [dB] 36.0 37.5 39.0 : 1.5dB 60.0 : 81.0 82.5 Table 47. Noise Suppression Threshold High Level NSTHH4-0 bits 00H 01H 02H : 10H : 1EH 1FH (default) Recovery Speed NSGAIN2 NSGAIN1 NSGAIN0 bit bit bit 8kHz 16kHz 44.1kHz 0 0 0 0.3dB/ms 0.5dB/ms 1.5dB/ms 0 0 1 0.5dB/ms 1.1dB/ms 3.0dB/ms (default) 0 1 0 1.1dB/ms 2.2dB/ms 6.0dB/ms 0 1 1 2.2dB/ms 4.4dB/ms 12.2dB/ms 1 0 0 4.5dB/ms 9.0dB/ms 24.7dB/ms 1 0 1 1 1 0 N/A 1 1 1 Table 48. Recovery Speed Setting from Noise Suppression to Normal Operation (N/A: Not available) MS1403-E-04 2014/12 - 76 - [AK4678] 2. Dynamic Volume Control Block The AK4678 has the dynamic volume control (DVLC) circuits before DRC. DVLC divides frequency range into three band (Low, Middle, High) and controls independently. (1) Low Frequency Range LPF VOLL DVLCL VL1X/Y5-0 VL2X/Y5-0 VL3X/Y4-0 L1G6-0 L2G6-0 L3G6-0 L4G6-0 DLLPF1-0 “0” data (DLLPF1-0 bits = “00”) DLLA13-0 DLLB13-0 Figure 58. DVLC Functions and Signal Path for Low Frequency Range (1-1) Low Pass Filter (LPF) This is composed with 1st or 2nd order LPF. DLLA13-0 bits and DLLB13-0 bits set the coefficient of LPF. DLLPF1-0 bits controls ON/OFF of the LPF. When the LPF is OFF, the audio data does not pass this block. The coefficient must be set when DLLPF1-0 bits = “00” or PMDRC bit = “0”. The LPF starts operation 4/fs(max) after when DLLPF1-0 bits = “01” or “10” and PMDRC bit = “1” are set. DLLPF1 bit DLLPF0 bit Mode 0 0 OFF (“0” data) (default) 0 1 1st order LPF 1 0 2nd order LPF 1 1 N/A Table 49. DLLPF Mode Setting (N/A: Not available) fs: Sampling frequency fc: Cut-off frequency Register setting LPF: DLLA[13:0] bits =A, DLLB[13:0] bits =B (MSB=DLLA13, DLLB13; LSB=DLLA0, DLLB0) 1 1 / tan (fc/fs) 1 A= , 1 + 1 / tan (fc/fs) B= 1 + 1 / tan (fc/fs) Transfer function (1st order) 1 + z 1 H(z) = A 1 + Bz 1 Transfer function (2nd order) 1 + z 1 1 + z 1 H(z) = A x A 1 + Bz 1 1 + Bz 1 The cut-off frequency should be set as below. fc/fs ≥ 0.002 (fc min = 88Hz at 44.1kHz) MS1403-E-04 2014/12 - 77 - [AK4678] (1-2) Dynamic Volume Control Curve The inflection points of the DVLC curve is set by three coordinate values (VL1X5-0, VL1Y5-0, VL2X5-0, VL2Y5-0, VL3X4-0 and VL3Y4-0 bits). The setting of three inflection points are calculated the values of (X1L, Y1L), (X2L, Y2L), (X3L, Y3L) in dB. The inflection points should be set in such a way that VL1X ≤ VL2X ≤ VL3X, VL1Y ≤ VL2Y ≤ VL3Y. And the each slope is set by L1G6-0, L2G6-0, L3G6-0 and L4G6-0 bits. X4L is fixed full-scale, Y4L is calculated by the L4G value. The initial value of the DVLC gain is set by the L1G. Full scale (X3L, Y3L) (X4L, Y4L) L4G DVLC Output Level (X2L, Y2L) (X1L, Y1L) L3G L2G L1G (0, 0) DVLC Input Level Full scale Figure 59. DVLC Curve for Low Frequency Range VL1X/Y5-0 bits Dynamic Volume Control Point Step VL2X/Y5-0 bits [dB] 00H 0 (default) 01H 1.5 02H 3.0 1.5dB : : 2EH 69.0 2FH 70.5 30H N/A : : N/A 3FH N/A Table 50. DVLC Point Setting for X/Y1, X/Y2 (N/A: Not available) VL3X/Y4-0 bits 00H 01H 02H : 1EH 1FH Dynamic Volume Control Point Step [dB] 0 1.5 3.0 1.5dB : 45.0 46.5 Table 51. DVLC Point Setting for X/Y3 MS1403-E-04 (default) 2014/12 - 78 - [AK4678] Slope Setting Y1L L1G = X1L L3G = x 16, L2G = (Y3L – Y2L) (X3L – X2L) (Y2L – Y1L) (X2L – X1L) x 16, L4G = x 16, (Y4L – Y3L) (X4L – X3L) x 16, The results calculated by the equations above should be rounded off to integer. These integers are slope data. L1G6-0 bits, L2G6-0 bits, Slope Data L3G6-0 bits, L4G6-0 bits 00H 0 (default) 01H 1 02H 2 : : 7EH 126 7FH 127 Table 52. DVLC Slope Setting for Low Frequency Range MS1403-E-04 2014/12 - 79 - [AK4678] (2) Middle Frequency Range Bypass (DMHPF1-0 = DMLPF1-0 bits = “00”) HPF LPF DMHPF1-0 DMHA13-0 DMHB13-0 DMLPF1-0 DMLA13-0 DMLB13-0 VOLM DVLCM VM1X/Y5-0 VM2X/Y5-0 VM3X/Y4-0 M1G6-0 M2G6-0 M3G6-0 M4G6-0 Figure 60. DVLC Functions and Signal Path for Middle Frequency Range (2-1) High Pass Filter (HPF) This is composed with 1st or 2nd order HPF. The coefficient of HPF is set by DMHA13-0 bits and DMHB13-0 bits. HPF bit controls ON/OFF of the HPF. When the HPF is OFF, the audio data passes this block by 0dB gain. The coefficient must be set when DMHPF1-0 bits = “00” or PMDRC bit = “0”. The HPF starts operation 4/fs(max) after when DMHPF1-0 bits = “01” or “10” and PMDRC bit = “1” are set. DMHPF1 bit DMHPF0 bit Mode 0 0 Bypass (default) 0 1 1st order HPF 1 0 2nd order HPF 1 1 N/A Table 53. DMHPF Mode Setting (N/A: Not available) fs: Sampling frequency fc: Cut-off frequency Register setting HPF: DMHA[13:0] bits =A, DMHB[13:0] bits =B (MSB=DMHA13, DMHB13; LSB=DMHA0, DMHB0) 1 1 / tan (fc/fs) 1 / tan (fc/fs) A= , 1 + 1 / tan (fc/fs) B= 1 + 1 / tan (fc/fs) Transfer function (1st order) 1 z 1 H(z) = A 1 + Bz 1 Transfer function (2nd order) 1 z 1 1 z 1 H(z) = A x A 1 + Bz 1 1 + Bz 1 The cut-off frequency should be set as below. fc/fs ≥ 0.0001 (fc min = 4.41Hz at 44.1kHz) MS1403-E-04 2014/12 - 80 - [AK4678] (2-2) Low Pass Filter (LPF) This is composed with 1st or 2nd order LPF. DLLA13-0 bits and DMLB13-0 bits set the coefficient of LPF. DMLPF1-0 bits controls ON/OFF of the LPF. When the LPF is OFF, the audio data passes this block by 0dB gain. The coefficient must be set when DMLPF1-0 bits = “00” or PMDRC bit = “0”. The LPF starts operation 4/fs(max) after when DMLPF1-0 bits = “01” or “10” and PMDRC bit = “1” are set. DMLPF1 bit DMLPF0 bit Mode 0 0 Bypass (default) 0 1 1st order LPF 1 0 2nd order LPF 1 1 N/A Table 54. DMLPF Mode Setting (N/A: Not available) fs: Sampling frequency fc: Cut-off frequency Register setting LPF: DMLA[13:0] bits =A, DMLB[13:0] bits =B (MSB=DMLA13, DMLB13; LSB=DMLA0, DMLB0) 1 1 / tan (fc/fs) 1 A= , 1 + 1 / tan (fc/fs) B= 1 + 1 / tan (fc/fs) Transfer function (1st order) 1 + z 1 H(z) = A 1 + Bz 1 Transfer function (2nd order) 1 + z 1 1 + z 1 H(z) = A x A 1 + Bz 1 1 + Bz 1 The cut-off frequency should be set as below. fc/fs ≥ 0.05 (fc min = 2205Hz at 44.1kHz) MS1403-E-04 2014/12 - 81 - [AK4678] (2-3) Dynamic Volume Control Curve The inflection points of the DVLC curve is set by three coordinate values (VM1X5-0, VM1Y5-0, VM2X5-0, VM2Y5-0, VM3X4-0 and VM3Y4-0 bits). The setting of three inflection points are calculated the values of (X1M, Y1M), (X2M, Y2M), (X3M, Y3M) in dB. The inflection points should be set in such a way that VM1X ≤ VM2X ≤ VM3X, VM1Y ≤ VM2Y ≤ VM3Y. And the each slope is set by M1G6-0, M2G6-0, M3G6-0 and M4G6-0 bits. X4M is fixed full-scale, Y4M is calculated by the M4G value. The initial value of the DVLC gain is set by the M1G. When the HPF and LPF is bypass (DMHPF1-0 = DMLPF1-0 bits = “00”), the audio data passes this block by 0dB gain. Full scale (X3M, Y3M) (X4M, Y4M) M4G DVLC Output Level (X2M, Y2M) (X1M, Y1M) M3G M2G M1G (0, 0) DVLC Input Level Full scale Figure 61. DVLC Curve for Middle Frequency Range VM1X/Y5-0 bits Dynamic Volume Control Point Step VM2X/Y5-0 bits [dB] 00H 0 (default) 01H 1.5 02H 3.0 1.5dB : : 2EH 69.0 2FH 70.5 30H N/A : : N/A 3FH N/A Table 55. DVLC Point Setting for X/Y1, X/Y2 (N/A: Not available) VM3X/Y4-0 bits 00H 01H 02H : 1EH 1FH Dynamic Volume Control Point Step [dB] 0 1.5 3.0 1.5dB : 45.0 46.5 Table 56. DVLC Point Setting for X/Y3 MS1403-E-04 (default) 2014/12 - 82 - [AK4678] Slope Setting Y1M M1G = X1M M3G = x 16, M2G = (Y3M – Y2M) (X3M – X2M) (Y2M – Y1M) (X2M – X1M) x 16, M4G = x 16, (Y4M – Y3M) (X4M – X3M) x 16, The results calculated by the equations above should be rounded off to integer. These integers are slope data. M1G6-0 bits, M2G6-0 bits, Slope Data M3G6-0 bits, M4G6-0 bits 00H 0 (default) 01H 1 02H 2 : : 7EH 126 7FH 127 Table 57. DVLC Slope Setting for Middle Frequency Range MS1403-E-04 2014/12 - 83 - [AK4678] (3) High Frequency Range HPF VOLH DHHPF1-0 “0” data (DHHPF1-0 bits = “00”) DHHA13-0 DHHB13-0 DVLCH VH1X/Y5-0 VH2X/Y5-0 VH3X/Y4-0 H1G6-0 H2G6-0 H3G6-0 H4G6-0 Figure 62. DVLC Functions and Signal Path for High Frequency Range (3-1) High Pass Filter (HPF) This is composed with 1st or 2nd order HPF. The coefficient of HPF is set by DHHA13-0 bits and DHHB13-0 bits. HPF bit controls ON/OFF of the HPF. When the HPF is OFF, the audio data does not pass this block. The coefficient must be set when DHHPF1-0 bits = “00” or PMDRC bit = “0”. The HPF starts operation 4/fs(max) after when DHHPF1-0 bits = “01” or “10” and PMDRC bit = “1” are set. DHHPF1 bit DHHPF0 bit Mode 0 0 OFF (“0” data) (default) 0 1 1st order HPF 1 0 2nd order HPF 1 1 N/A Table 58. DHHPF Mode Setting (N/A: Not available) fs: Sampling frequency fc: Cut-off frequency Register setting HPF: DHHA[13:0] bits =A, DHHB[13:0] bits =B (MSB=DHHA13, DMHB13; LSB=DHHA0, DHHB0) 1 1 / tan (fc/fs) 1 / tan (fc/fs) A= , 1 + 1 / tan (fc/fs) B= 1 + 1 / tan (fc/fs) Transfer function (1st order) 1 z 1 H(z) = A 1 + Bz 1 Transfer function (2nd order) 1 z 1 1 z 1 H(z) = A x A 1 + Bz 1 1 + Bz 1 The cut-off frequency should be set as below. fc/fs ≥ 0.0001 (fc min = 4.41Hz at 44.1kHz) MS1403-E-04 2014/12 - 84 - [AK4678] (3-2) Dynamic Volume Control Curve The inflection points of the DVLC curve is set by three coordinate values (VH1X5-0, VH1Y5-0, VH2X5-0, VH2Y5-0, VH3X4-0 and VH3Y4-0 bits). The setting of three inflection points are calculated the values of (X1H, Y1H), (X2H, Y2HH), (X3H, Y3H) in dB. The inflection points should be set in such a way that VH1X ≤ VH2X ≤ VH3X, VH1Y ≤ VH2Y ≤ VH3Y. And the each slope is set by H1G6-0, H2G6-0, H3G6-0 and H4G6-0 bits. X4H is fixed full-scale, Y4H is calculated by the H4G value. The initial value of the DVLC gain is set by the H1G. Full scale (X3H, Y3H) (X4H, Y4H) H4G DVLC Output Level (X2H, Y2H) (X1H, Y1H) H3G H2G H1G (0, 0) DVLC Input Level Full scale Figure 63. DVLC Curve for High Frequency Range VH1X/Y5-0 bits Dynamic Volume Control Point Step VH2X/Y5-0 bits [dB] 00H 0 (default) 01H 1.5 02H 3.0 1.5dB : : 2EH 69.0 2FH 70.5 30H N/A : : N/A 3FH N/A Table 59. DVLC Point Setting for X/Y1, X/Y2 (N/A: Not available) VH3X/Y4-0 bits 00H 01H 02H : 1EH 1FH Dynamic Volume Control Point Step [dB] 0 1.5 3.0 1.5dB : 45.0 46.5 Table 60. DVLC Point Setting for X/Y3 MS1403-E-04 (default) 2014/12 - 85 - [AK4678] Slope Setting Y1H H1G = X1H H3G = x 16, H2G = (Y3H – Y2H) (X3H – X2H) (Y2H – Y1H) (X2H – X1H) x 16, H4G = x 16, (Y4H – Y3H) (X4H – X3H) x 16 The results calculated by the equations above should be rounded off to integer. These integers are slope data. H1G6-0 bits, H2G6-0 bits, Slope Data H3G6-0 bits, H4G6-0 bits 00H 0 (default) 01H 1 02H 2 : : 7EH 126 7FH 127 Table 61. DVLC Slope Setting for High Frequency Range MS1403-E-04 2014/12 - 86 - [AK4678] (4) Dynamic Volume Control The DVLC automatically controls the volume at the attenuation speed set by DVLMAT2-0 bits (Table 63) or the recovery speed set by DVRGAIN2-0 bits (Table 64) in such a way that the input moving average level set by DAF1-0 bits (Table 62) is reached the output level of the DVLC curve set by each frequency range. DAF1-0 bits 00 01 10 11 DVLMAT2 bit 0 0 0 0 1 1 1 1 DVRGAIN2 bit 0 0 0 0 1 1 1 1 Moving Average Parameter fs=8kHz fs=16kHz fs=44.1kHz 256/fs 32ms 16ms 5.8ms 512/fs 64ms 32ms 11.6ms 1024/fs 128ms 64ms 23.2ms 2048/fs 256ms 128ms 46.4ms (default) Table 62. DVLC Moving Average Parameter Setting DVLMAT1 DVLMAT0 ATT Speed bit bit 8kHz 16kHz 44.1kHz 0 0 1.1dB/s 2.1dB/s 5.8dB/s 0 1 2.1dB/s 4.2dB/s 11.7dB/s 1 0 4.2dB/s 8.5dB/s 23.4dB/s 1 1 8.5dB/s 17.0dB/s 46.8dB/s 0 0 17.0dB/s 33.9dB/s 93.5dB/s 0 1 33.9dB/s 67.9dB/s 187.1dB/s 1 0 67.9dB/s 135.8dB/s 374.3dB/s 1 1 N/A Table 63. DVLC ATT Speed Setting (N/A: Not available) DVRGAIN1 bit (default) Recovery Speed DVRGAIN0 bit 8kHz 16kHz 44.1kHz 0 0 0.07dB/s 0.13dB/s 0.37dB/s 0 1 0.13dB/s 0.27dB/s 0.73dB/s 1 0 0.27dB/s 0.53dB/s 1.46dB/s 1 1 0.53dB/s 1.06dB/s 2.92dB/s 0 0 1.06dB/s 2.12dB/s 5.84dB/s 0 1 2.12dB/s 4.24dB/s 11.7dB/s 1 0 4.24dB/s 8.48dB/s 23.4dB/s 1 1 N/A Table 64. DVLC Recovery Speed Setting (N/A: Not available) MS1403-E-04 (default) 2014/12 - 87 - [AK4678] 3. Dynamic Range Control Block The AK4678 has the dynamic range control (DRC) circuits. The compression level is selected in three levels and set by DRCC1-0 bits (Table 65). When the DRC is OFF (DRCC1-0 bits = “00”), the audio data passes this block by 0dB gain. However limiter and recovery operation is always ON. The compression level must be set when PMDRC bit = “0”. DRC Off Low Mid DRC Output Level (dB) 0dB High -6dB -6dB 0dB +3.5dB DRC Input Level (dB) Figure 64. DRC Gain Curve DRCC1 bit 0 0 1 1 1. DRCC0 bit Compression Level 0 OFF 1 Low 0 Middle 1 High Table 65. DRC Compression Level Setting (default) DRC Limiter Operation During the DRC limiter operation, when the output level of DRC exceeds full-scale, the DRC volume are attenuated automatically with the soft transition in the attenuation speed set by DLMAT2-0 bits (Table 66). DLMAT2 bit 0 0 0 0 1 1 1 1 ATT Speed DLMAT1 DLMAT0 bit bit 8kHz 16kHz 44.1kHz 0 0 0.1dB/ms 0.3dB/ms 0.7dB/ms 0 1 0.3dB/ms 0.5dB/ms 1.5dB/ms 1 0 0.5dB/ms 1.1dB/ms 3.0dB/ms 1 1 1.1dB/ms 2.2dB/ms 6.0dB/ms 0 0 2.2dB/ms 4.4dB/ms 12.2dB/ms 0 1 4.5dB/ms 9.0dB/ms 24.7dB/ms 1 0 N/A 1 1 Table 66. DRC ATT Speed Setting (N/A: Not available) MS1403-E-04 (default) 2014/12 - 88 - [AK4678] 2. DRC Recovery Operation During the DRC recovery operation, when the DRC volume reaches 0dB or the output level of DRC exceeds limiter detection level, the DRC volume are set automatically with the soft transition in the recovery speed set by DRGAIN1-0 bits (Table 67). DRGAIN1 bit 0 0 1 1 Recovery Speed DRGAIN0 bit 8kHz 16kHz 44.1kHz 0 1.1dB/s 2.1dB/s 5.9dB/s 1 2.1dB/s 4.2dB/s 11.7dB/s 0 4.2dB/s 8.5dB/s 23.4dB/s 1 8.5dB/s 17.0dB/s 46.7dB/s Table 67. DRC Recovery Speed Setting MS1403-E-04 (default) 2014/12 - 89 - [AK4678] ■ Digital Output Volume (DATT-A) The AK4678 has a digital output volume (DATT-A: 128 levels, 0.5dB step, Mute). The volume can be set by the OVL6-0 and OVR6-0 bits. The volume is included in front of a DAC block. The input data of DAC is changed from +6 to –57dB or MUTE. When the OVOLC bit = “1”, the OVL6-0 bits control both Lch and Rch attenuation levels. When the OVOLC bit = “0”, the OVL6-0 bits control Lch level and OVR6-0 bits control Rch level. This volume has a soft transition function. The OVTM bit sets the transition time between set values of OVL/R6-0 bits as either 128/fs or 256/fs (Table 69). When OVTM bit = “1”, a soft transition between the set values occurs (256 levels). It takes 256/fs (=5.8ms@fs=44.1kHz) from 00H (+6dB) to 7FH (MUTE). OVL/R6-0 bits Gain Step 00H +6.0dB 01H +5.5dB 02H +5.0dB : : 0.5dB 0CH 0dB : : 7DH 56.5dB 7EH 57.0dB 7FH MUTE () Table 68. Digital Volume A Code Table OVTM bit 0 1 (default) Transition time between OVL/R6-0 bits = 00H and 7FH Setting fs=8kHz fs=44.1kHz 128/fs 16ms 2.9ms 256/fs 32ms 5.8ms Table 69. Transition Time Setting of Digital Output Volume A MS1403-E-04 (default) 2014/12 - 90 - [AK4678] ■ Soft Mute Soft mute operation is performed in the digital domain. When the SMUTE bit is changed to “1”, the output signal is attenuated to (“0”) during the cycle set by the OVTM bit. When the SMUTE bit is returned to “0”, the mute is cancelled and the output attenuation gradually changes to the value set by the OVL/R6-0 bits during the cycle set of the OVTM bit. If the soft mute is cancelled within the cycle set by the OVTM bit after starting the operation, the attenuation is discontinued and returned to the value set by the OVL/R6-0 bits. The soft mute is effective for changing the signal source without stopping the signal transmission (Figure 65). SMUTE bit OVTM bit OVL/R6-0 bits OVTM bit (1) (3) Attenuation - GD (2) GD Analog Output Figure 65. Soft Mute Function (1) The output signal is attenuated until (“0”) in the cycle set by the OVTM bit. (2) Analog output corresponding to digital input has the group delay (GD). (3) If the soft mute is cancelled within the cycle set by the OVTM bit, the attenuation is discounted and returned to the value set by the OVL/R6-0 bits. MS1403-E-04 2014/12 - 91 - [AK4678] ■ Digital Volume for Recording of Received Voice (DATT-B) The AK4678 has a digital output volume control (DATT-B: 128 levels, 0.5dB step, Mute) for recording of received voice. The volume can be set by the BVL6-0 bits. This volume is included in SRCAI blocks. The output data of SRCAI is changed from +6 to –57dB or MUTE. This volume control is in common for left and right channels. This volume has a soft transit function. The OVTMB bit sets the transition time between set values of BVL6-0 bits as either 128/fs or 256/fs (Table 71). When OVTMB bit = “1”, a soft transition between the set values occurs (256 levels). It takes 256/fs (=5.8ms @ fs=44.1kHz, PMMIX bit = “1”) from 00H (+6dB) to 7FH (MUTE). BVL6-0 bits 00H 01H 02H : 0CH : 7DH 7EH 7FH Gain Step +6.0dB +5.5dB +5.0dB : 0.5dB 0dB : 56.5dB 57.0dB MUTE () Table 70. Digital Volume B Table (default) Transition time between BVL6-0 bits = 00H and 7FH Setting fs=8kHz fs=44.1kHz 0 128/fs 16ms 2.9ms 1 256/fs 32ms 5.8ms (default) (PMMIX bit = “0”: fs = SYNCB Frequency, PMMIX bit = “1”: fs = LRCK Frequency) Table 71. Transition Time Setting of Digital Output Volume B OVTMB bit ■ Digital Volume for Received Voice (DATT-C) The AK4678 has a digital output volume control (DATT-C: 128 levels, 0.5dB step, Mute) for recording of received voice. The volume can be set by the CVL6-0 bits. The volume range is from +6 to –57dB or MUTE. This volume control is in common for left and right channels. This volume has a soft transit function. The OVTMB bit sets the transition time between set values of CVL6-0 bits as either 128/fs or 256/fs (Table 73). When OVTMB bit = “1”, a soft transition between the set values occurs (256 levels). It takes 256/fs (=5.8ms @ fs =44.1kHz, PMMIX bit = “1”) from 00H (+6dB) to 7FH (MUTE). CVL6-0 bits 00H 01H 02H : 0CH : 7DH 7EH 7FH Gain Step +6.0dB +5.5dB +5.0dB : 0.5dB 0dB : 56.5dB 57.0dB MUTE () Table 72. Digital Volume C Table (default) Transition time between CVL6-0 bits = 00H and 7FH Setting fs=8kHz fs=44.1kHz 0 128/fs 16ms 2.9ms 1 256/fs 32ms 5.8ms (default) (PMMIX bit = “0”: fs = SYNCB Frequency, PMMIX bit = “1”: fs = LRCK Frequency) Table 73. Transition Time Setting of Digital Output Volume C OVTMB bit MS1403-E-04 2014/12 - 92 - [AK4678] ■ Side Tone Volume for B/T Phone Call (SVOLB) The AK4678 has the side tone volume control (5 levels, 6dB step) for B/T phone call. The volume can be set by the SVB2-0 bits. The volume range is from 0dB to -24dB. SVB2-0 bits Gain 0H 0dB (default) 1H 6dB 2H 12dB 3H 18dB 4H 24dB Others N/A Table 74. Side Tone Volume B Table (N/A: Not available) ■ Digital Volume for B/T MIC Input (BIVOL) The AK4678 has the digital volume control (5 levels, 6dB step) for B/T mic input. The volume can be set by the BIV2-0 bits .The volume rage is from 0 to –24dB. BIV2-0 bits Gain 0H 0dB (default) 1H 6dB 2H 12dB 3H 18dB 4H 24dB Others N/A Table 75. SDTIB Volume Table (N/A: Not available) MS1403-E-04 2014/12 - 93 - [AK4678] ■ Path & Mixing Setting of Digital Block (Figure 50) PMADL, PMADR, PMDML and PMDMR bits set both ADC power management and output data selection. In case of mono operation, the same data is output to both channel slots. PMADL bit PMADR bit ADC Lch data ADC Rch data 0 0 All “0” All “0” (default) 0 1 Rch Input Signal Rch Input Signal 1 0 Lch Input Signal Lch Input Signal 1 1 Lch Input Signal Rch Input Signal Table 76. ADC Mono/Stereo Select (Analog MIC: DMIC bit = “0”) PMDML bit PMDMR bit ADC Lch data ADC Rch data 0 0 All “0” All “0” (default) 0 1 Rch Input Signal Rch Input Signal 1 0 Lch Input Signal Lch Input Signal 1 1 Lch Input Signal Rch Input Signal Table 77. ADC Mono/Stereo Select (Digital MIC: DMIC bit = “1) PFSEL bit select the input data of programmable filter. PFSEL Programmable Filter Input 0 ADC Output (selected by Table 76) (default) 1 SDTI Input (selected by Table 84) Table 78. Programmable Filter Input Signal Select When ADM bit is “1”, ALC output data is output to both channels of SDTO and SVOLA as (L+R)/2, respectively. ADM bit Lch Rch 0 L R (default) 1 (L+R)/2 (L+R)/2 Table 79. ALC Output Mono Mixing PFSDO bit select the input data both SDTO and SVOLA. PFSDO bit 0 1 SDTO and SVOLA Input ADC Output (selected by Table 76) Programmable Filter Output (selected by Table 79) Table 80. SDTO, SVOLA Input Signal Select MS1403-E-04 (default) 2014/12 - 94 - [AK4678] SDOL1-0 and SDOR1-0 bits set the data mixing for each channel of SDTO from the data selected by Table 80 and MIX1L/R output data. SDOL1 bit 0 0 1 1 SDOL0 bit 0 1 0 1 SDTO Lch Lch Signal selected by Table 80 MIX1L (Lch Signal selected by Table 80) + (MIX1L) (Lch Signal selected by Table 80)/2 + (MIX1L)/2 Table 81. SDTO Lch Output Mixing SDOR1 bit 0 0 1 1 SDOR0 bit 0 1 0 1 SDTO Rch Rch Signal selected by Table 80 MIX1R (Rch Signal selected by Table 80) + (MIX1R) (Rch Signal selected by Table 80)/2 + (MIX1R)/2 Table 82. SDTO Rch Output Mixing (default) (default) When SDOD bit is “1”, SDTO output data can be disabled (fixed to “L”). Input data of SVOLA is not disabled. SDOD bit 0 1 SDTO Enable (Output) Disable (“L” Output) Table 83. SDTO Disable (default) SDIM1-0 bits select stereo or mono of SDTI input data. In case of mono mode, the same data is input to both channels. SDIM1 bit SDIM0 bit Lch Rch 0 0 L R (default) 0 1 L L 1 0 R R 1 1 N/A Table 84. SDTI Stereo/Mono Select (N/A: Not available) PFMXL1-0 and PFMXR1-0 bits set the data mixing for each channel of 5-band EQ from the data selected by Table 84 and SVOLA output data. PFMXL1 bit 0 0 1 1 PFMXL0 bit 5-band EQ Lch Input 0 Lch Signal selected by Table 84 1 SVOLA Lch 0 (Lch Signal selected by Table 84) + (SVOLA Lch) 1 N/A Table 85. 5-band EQ Lch Input Mixing 1 (N/A: Not available) PFMXR1 bit 0 0 1 1 PFMXR0 bit 5-band EQ Rch Input 0 Rch Signal selected by Table 84 1 SVOLA Rch 0 (Rch Signal selected by Table 84) + (SVOLA Rch) 1 N/A Table 86. 5-band EQ Rch Input Mixing 1 (N/A: Not available) MS1403-E-04 (default) (default) 2014/12 - 95 - [AK4678] SRMXL1-0 and SRMXR1-0 bits set the data mixing for each channel of 5-band EQ from the data selected by Table 85/Table 86 and MIX1L/R output data. SRMXL1 bit SRMXL0 bit 5-band EQ Lch Input 0 0 Signal selected by Table 85 0 1 MIX1L 1 0 (Signal selected by Table 85) + (MIX1L) 1 1 N/A Table 87. 5-band EQ Lch Input Mixing 2 (N/A: Not available) SRMXR1 bit SRMXR0 bit 5-band EQ Rch Input 0 0 Signal selected by Table 86 0 1 MIX1R 1 0 (Signal selected by Table 86) + (MIX1R) 1 1 N/A Table 88. 5-band EQ Rch Input Mixing 2 (N/A: Not available) (default) (default) DASEL1-0 bits select the input data of DAC. DASEL1 bit 0 0 1 1 DASEL0 bit DAC Lch DAC Rch 0 DATT-A Lch DATT-A Rch 1 DRC Lch DRC Rch 0 SDTI Lch SDTI Rch 1 N/A Table 89. DAC Input Signal Select (N/A: Not available) (default) MX1L2-0 bits set the data mixing for Audio I/F Lch input. MX1L2 bit 0 0 0 0 1 1 1 1 MX1L1 bit MX1L0 bit Audio I/F Lch Input 0 0 DATT-B 0 1 BIVOL Lch 1 0 BIVOL Rch 1 1 ((BIVOL Lch) + (BIVOL Rch))/2 0 0 (DATT-B) + (BIVOL Lch) 0 1 (DATT-B) + (BIVOL Rch) 1 0 ((BIVOL Lch) + (BIVOL Rch))/2 + (DATT-B))/2 1 1 N/A Table 90. Audio I/F Lch Input Mixing (N/A: Not available) (default) MX1R2-0 bits set the data mixing for Audio I/F Rch input. MX1R2 bit 0 0 0 0 1 1 1 1 MX1R1 bit MX1R0 bit Audio I/F Rch Input 0 0 DATT-B 0 1 BIVOL Lch 1 0 BIVOL Rch 1 1 ((BIVOL Lch) + (BIVOL Rch))/2 0 0 (DATT-B) + (BIVOL Lch) 0 1 (DATT-B) + (BIVOL Rch) 1 0 ((BIVOL Lch) + (BIVOL Rch))/2 + (DATT-B))/2 1 1 N/A Table 91. Audio I/F Rch Input Mixing (N/A: Not available) MS1403-E-04 (default) 2014/12 - 96 - [AK4678] MX2A1-0 bits set the data mixing for MIX2C input. MX2A1 bit 0 0 1 1 MX2A0 bit MIX2C Input 0 BIVOL Lch 1 BIVOL Rch 0 (BIVOL Lch ) + (BIVOL Rch) 1 ((BIVOL Lch ) + (BIVOL Rch))/2 Table 92. MIX2C Input Mixing 1 (default) MX2B1-0 bits set the data mixing for MIX2C input. MX2B1 bit 0 0 1 1 MX2B0 bit MIX2C Input 0 DATT-A Lch 1 DATT-A Rch 0 (DATT-A Lch ) + (DATT-A Rch) 1 ((DATT-A Lch ) + (DATT-A Rch))/2 Table 93. MIX2C Input Mixing 2 (default) MX2C1-0 bits set the data mixing for SRCAO and SVOLB input. MX2C1 bit 0 0 1 1 MX2C0 bit SRCAO/SVOLB Input 0 MIX2A 1 MIX2B 0 (MIX2A) + (MIX2B) 1 ((MIX2A) + (MIX2B))/2 Table 94. SRCAO/SVOLB Input Mixing (default) MXSB2-0 bits set the data mixing for SRCBO input. MXSB2 bit MXSB1 bit MXSB0 bit 0 0 0 0 1 0 0 1 1 0 0 1 0 1 0 1 0 1 1 1 1 1 0 1 SRCBO Lch SRCBO Rch DATT-A Lch DATT-A Rch DATT-A Lch DATT-A Rch (DATT-A Lch) + (DATT-A Rch) ((DATT-A Lch) + (DATT-A Rch))/2 ((DATT-A Lch) + (DATT-A Rch))/2 + (DATT-C) Lch Signal selected by Table 80 Rch Signal selected by Table 80 DATT-C Table 95. SRCBO Input Mixing (default) When SDOAD bit is “1”, SDTOA output data can be disabled (fixed to “L”). Input data of SVOLB is not disabled. SDOAD bit SDTOA 0 Enable (Output) 1 Disable (“L” Output) Table 96. SDTOA Disable MS1403-E-04 (default) 2014/12 - 97 - [AK4678] SBMX1-0 bits set the data mixing from SDTIA input and SVOLB output. The mixed data is input to DATT-C. SBMX1 bit 0 0 1 1 SBMX0 bit DATT-C Input 0 SRCAI 1 SVOLB 0 (SRCAI) + (SVOLB) 1 N/A Table 97. SDTOB Mixing (N/A: Not available) (default) When SDOBD bit is “1”, SDTOB output data can be disabled (fixed to “L”). SDOBD bit SDTOB 0 Enable (Output) 1 Disable (“L” Output) Table 98. SDTOB Disable MS1403-E-04 (default) 2014/12 - 98 - [AK4678] ■ Stereo Line Output (LOUT/ROUT pins) When DACL and DACR bits are “1”, Lch/Rch signal of DAC is output from the LOUT/ROUT pins in single-ended. When DACL and DACR bits are “0” in normal operation (PMDAC=PML/RO bits = “1”, LOPS bit = “0”), output signal is muted and LOUT/ROUT pins output common voltage (typ. 0.8 x AVDD). The load impedance is 10k (min.). When the PMLO=PMRO=LOPS bits = “0”, LOUT/ROUT enters power-down mode and the output is pulled-down to VSS1 by 100k (typ). When the LOPS bit is “1”, LOUT/ROUT enters power-save mode. Pop noise at power-up/down can be reduced by changing PMLO and PMRO bits at LOPS bit = “1”. In this case, output signal line should be pulled-down to VSS1 by 20k after AC coupled as Figure 67. Rise/Fall time is 300ms (max) at C=1μF and AVDD=1.8V. When PMLO=PMRO bits = “1” and LOPS bit = “0”, LOUT/ROUT is in normal operation. LVL2-0 bits control the volume of LOUT/ROUT. When LOM bit = “1”, DAC output signal is output to LOUT and ROUT pins as (L+R) mono signal. LVL2-0 bits DACL bit DAC Lch DACR bit x LOM bit M I X LOUT pin M I X ROUT pin DACL bit x LOM bit DACR bit DAC Rch Figure 66. Stereo Line Output LOPS bit 0 1 LOPS bit 0 1 PMLO bit Mode LOUT pin 0 Power-down Pull-down to VSS1 1 Normal Operation Normal Operation 0 Power-save Fall down to VSS1 1 Power-save Rise up to common voltage Table 99. Stereo Line Output Mode Select (LOUT) PMRO bit Mode ROUT pin 0 Power-down Pull-down to VSS1 1 Normal Operation Normal Operation 0 Power-save Fall down to VSS1 1 Power-save Rise up to common voltage Table 100. Stereo Line Output Mode Select (ROUT) (default) (default) LVL2-0 bits Attenuation 7H N/A 6H N/A 5H +6dB 4H +3dB 3H 0dB (default) 2H 3dB 1H 6dB 0H 9dB Table 101. Stereo Line Output Volume Setting (N/A: Not available) MS1403-E-04 2014/12 - 99 - [AK4678] LOUT ROUT 1F 220 20k Figure 67. External Circuit for Stereo Line Output (in case of using Pop Noise Reduction Circuit) <Stereo Line Output Control Sequence (in case of using Pop Noise Reduction Circuit)> (2) (5) PMLO bit PMRO bit (1) (3) (4) (6) LOPS bit LOUT pin ROUT pin Normal Output 300 ms 300 ms Figure 68. Stereo Line Output Control Sequence (in case of using Pop Noise Reduction Circuit) (1) Set LOPS bit = “1”. Stereo line output enters power-save mode. (2) Set PMLO=PMRO bits = “1”. Stereo line output exits power-down mode. LOUT and ROUT pins rise up to common voltage (typ. 0.8 x AVDD). Rise time is 200ms (max 300ms) at C=1μF and AVDD=1.8V. (3) Set LOPS bit = “0” after LOUT and ROUT pins rise up. Stereo line output exits power-save mode. Stereo line output is enabled. (4) Set LOPS bit = “1”. Stereo line output enters power-save mode. (5) Set PMLO=PMRO bits = “0”. Stereo line output enters power-down mode. LOUT and ROUT pins fall down to VSS1. Fall time is 200ms (max 300ms) at C=1μF and AVDD=1.8V. (6) Set LOPS bit = “0” after LOUT and ROUT pins fall down. Stereo line output exits power-save mode. MS1403-E-04 2014/12 - 100 - [AK4678] ■ Full-differential Mono Line Output (LOP/LON pins) When LODIF bit = “1”, LOUT/ROUT pins become LOP/LON pins, respectively. Lch/Rch signal of DAC or LIN1/RIN1/LIN2/RIN2/LIN3/RIN3/LIN4/RIN4 is output from the LOP/LON pins in full-differential as (L+R) signal. The load impedance is 10k (min) for each LOP pin and LON pin. When the PMLO = PMRO bits = “0”, the mono line output enters power-down mode and the output is pulled-down to VSS1. When the PMLO = PMRO bits = “1” and LOPS bit = “1”, mono line output enters power-save mode. Pop noise at power-up/down can be reduced by changing PMLO and PMRO bits when LOPS bit = “1”. When PMLO = PMRO bits = “1” and LOPS bit = “0”, mono line output enters in normal operation. LVL2-0 bits set the volume of mono line output. LVL2-0 bits DACL bit LOP pin DAC Lch M I X DACR bit DAC Rch LON pin Figure 69. Full-differential Mono Line Output LVL2-0 bits Attenuation 7H N/A 6H N/A 5H +12dB 4H +9dB 3H +6dB (default) 2H +3dB 1H 0dB 0H 3dB Table 102. Mono Line Output Gain Setting (N/A: Not available) LOPS bit 0 1 PMLO/RO bits Mode LON/LOP pins 0 Power-down Pull-down to VSS1 1 Normal Operation Normal Operation 0 Power-save Fall down to VSS1 1 Power-save Rise up to common voltage Table 103. Mono Line Output Mode Setting MS1403-E-04 (default) 2014/12 - 101 - [AK4678] <Full-differential Mono Line Output Control Sequence (in case of using Pop Noise Reduction Circuit)> (2) (5) PMLO bit PMRO bit (1) (3) (4) (6) LOPS bit LOP, LON pins Normal Output 300 ms 300 ms Figure 70. Mono Line Output Control Sequence (in case of using Pop Noise Reduction Circuit) (1) Set LOPS bit = “1”. Mono line output enters power-save mode. (2) Set PMLO = PMRO bits = “1”. Mono line output exits power-down mode. LOP and LON pins rise up to common voltage (typ. 0.8 x AVDD). Rise time is 200ms (max 300ms) at C=1μF and AVDD=1.8V. (3) Set LOPS3 bit = “0” after LOP and LON pins rise up. Mono line output exits power-save mode. Mono line output is enabled. (4) Set LOPS bit = “1”. Mono line output enters power-save mode. (5) Set PMLO = PMRO bits = “0”. Mono line output enters power-down mode. LOP and LON pins fall down to VSS1. Fall time is 200ms (max 300ms) at C=1μF and AVDD=1.8V. (6) Set LOPS bit = “0” after LOP and LON pins fall down. Mono line output exits power-save mode. MS1403-E-04 2014/12 - 102 - [AK4678] ■ Receiver-Amp (RCP/RCN pins) Lch/Rch signal of DAC is output from the RCP/RCN pins which is BTL as (L+R) signal. The load impedance is 32 (min). When the PMRCV bit = “0”, the mono receiver output enters power-down mode and the output is Hi-Z. When the PMRCV bit = “1” and RCVPS bit = “1”, mono receiver output enters power-save mode. Pop noise at power-up/down can be reduced by changing PMRCV bit when RCVPS bit = “1”. When PMRCV bit = “1” and RCVPS bit = “0”, mono receiver output enters in normal operation. RCVG3-0 bits control the volume of mono receiver output. RCVG3-0 bits DACRL bit RCP pin DAC Lch M I X DACRR bit DAC Rch RCN pin Figure 71. Mono Receiver Output RCVG3-0 bits Attenuation FH +12dB EH +9dB DH +6dB CH +3dB BH 0dB (default) AH 3dB 9H 6dB 8H 9dB 7H 12dB 6H 15dB 5H 18dB 4H 21dB 3H 24dB 2H 27dB 1H 30dB 0H MUTE Table 104. Mono Receiver Output Volume Setting PMRCV bit 0 1 RCVPS bit x Mode Power-down RCP pin Hi-Z RCN pin Hi-Z Common Voltage 1 Power-save Hi-Z (typ. 0.8 x AVDD) 0 Normal Operation Normal Operation Normal Operation Table 105. Receiver-Amp Mode Setting (x: Don’t care) MS1403-E-04 (default) 2014/12 - 103 - [AK4678] PMRCV bit RCVPS bit RCP pin Hi-Z Hi-Z Common Voltage RCN pin Common Voltage Hi-Z Hi-Z >1ms >0 Figure 72. Power-up/Power-down Timing for Receiver-Amp MS1403-E-04 2014/12 - 104 - [AK4678] ■ Headphone Output (HPL/HPR pins) The headphone amplifiers are operated by positive and negative power supplied from charge pump circuit. The VEE pin outputs the negative voltage generated by the internal charge pump circuit from PVDD. This charge pump circuit is switched between VDD mode and 1/2VDD mode by the output level of the headphone amplifiers. The headphone amplifier output is single-ended and centered on 0V (VSS1). Therefore, the capacitor for AC-coupling can be removed. The minimum load resistance is 16. The output power is 20mW (@ 0dBFS, RL = 16, AVDD=1.8V, HPG = -4dB) and 25mW (@ 0dBFS, RL =32, AVDD=1.8V, HPG=0dB). The output level of headphone-amp can be controlled by HPG5-0 bits. This volume setting is in common for L/R channels and can attenuate/gain the mixer output from +6dB to –62dB in 2dB steps (Table 106). The HPG value is changed independently on L/R channels by zero crossing or timeout. Zero crossing timeout period is set by HPTM1-0 bits. When LOHM bit = “1”, the headphone-amp output to HPL and HPR pins as (L+R) mono signal. HPG5-0 bits DAC Lch LOMH bit M I X HPL pin M I X HPR pin LOMH bit DAC Rch Figure 73. Stereo Headphone Output HPG5-0 bits GAIN (dB) HPG5-0 bits GAIN (dB) 29H N/A 14H 30 28H N/A 13H 32 27H N/A 12H 34 26H +6 11H 36 25H +4 10H 38 24H +2 0FH 40 0EH 23H 0 42 22H 0DH 2 44 21H 0CH 4 46 20H 0BH 6 48 1FH 0AH 8 50 1EH 09H 10 52 1DH 08H 12 54 1CH 07H 14 56 1BH 06H 16 58 1AH 05H 18 60 19H 04H 20 62 18H 03H MUTE 22 17H 02H MUTE 24 16H 01H MUTE 26 15H 00H MUTE 28 Table 106. Headphone-Amp Volume Setting (Default: 0dB, N/A: Not available) MS1403-E-04 2014/12 - 105 - [AK4678] Zero Crossing Timeout Period HPTM0 bit 8kHz 16kHz 44.1kHz 0 128/fs 16ms 8ms 2.9ms 1 256/fs 32ms 16ms 5.8ms 0 512/fs 64ms 32ms 11.6ms 1 1024/fs 128ms 64ms 23.2ms Table 107. Headphone-Amp Volume Zero Crossing Timeout Period HPTM1 bit 0 0 1 1 CPMODE1 bit 0 0 1 1 VDDTM2 bit 0 0 0 0 1 1 1 1 (default) CPMODE0 bit Mode Operation Voltage 0 Class-G Operation Mode Automatic Switching 1 ± VDD Operation Mode ± VDD 0 ±1/2 VDD Operation Mode ±1/2 VDD 1 N/A Table 108. Charge Pump Mode Setting (N/A: Not available) VDD Mode Holding Period VDDTM1 VDDTM0 bit bit 8kHz 16kHz 44.1kHz 0 0 1024/fs 128ms 64ms 23.2ms 0 1 2048/fs 256ms 128ms 46.4ms 1 0 4096/fs 512ms 256ms 92.9ms 1 1 8192/fs 1024ms 512ms 186ms 0 0 16384/fs 2048ms 1024ms 372ms 0 1 32768/fs 4096ms 2048ms 743ms 1 0 65536/fs 8192ms 4096ms 1486ms 1 1 N/A Table 109. VDD Mode Waiting Period (N/A: Not available) MS1403-E-04 (default) (default) 2014/12 - 106 - [AK4678] <HP-Amp External Circuit> It is necessary to put an oscillation prevention circuit (0.22μF20% capacitor and 1520% resistor) because it has the possibility that Headphone-Amp oscillates. HP-Amp AK4678 Headphone 0.22F 16 15 Figure 74. HP-Amp oscillation prevention circuit example When PMHPL or PMHPR bit = “1”, headphone outputs are in normal operation after the charge pump circuit is powered up. When PMHPL and PMHPR bits = “0”, the headphone-amps and the charge pump circuit are powered-down completely. At that time, the HPL and HPR pins go to VSS1 voltage via the internal pulled-down resistor. The pulled-down resistor is 120 (typ). The power-up time of HP-Amp block is 28ms and then HPL and HPR pins output 0V (VSS1). The power-down is executed immediately. PMVCM bit x 1 PMHPL/R Mode HPL/R pins bits 0 Power-down & Mute Pull-down by 120 (typ) 1 Normal Operation Normal Operation Table 110. Headphone-Amp Mode Setting (x: Don’t’ care) MS1403-E-04 (default) 2014/12 - 107 - [AK4678] ■ Speaker Output (SPP/SPN pins) Lch/Rch signal of DAC is converted by PWM and is output from SPP/SPN pins by BTL. When Lch/Rch signal of DAC is 0dBFS, the speaker amplifier outputs 0.89W ( @ 8 AVDD=1.8V, SVDD=4.2V, SPKG=-6dB). The load impedance is 8 (min). A 2.2nF capacitor should be connected between SPFIL pin and VSS1 pin to reduce out-of-band noise from DAC. SPKG3-0 bits control the volume of SPP/SPN. SPKG3-0 bits DACSL bit SPP pin DAC Lch M I X DACSR bit DAC Rch SPN pin Figure 75. Mono Speaker Output SPKG3-0 bits Attenuation FH +12dB EH +9dB DH +6dB CH +3dB BH 0dB (default) AH 3dB 9H 6dB 8H 9dB 7H 12dB 6H 15dB 5H 18dB 4H 21dB 3H 24dB 2H 27dB 1H 30dB 0H MUTE Table 111. Speaker Output Volume Setting PMSPK bit Speaker-Amp 0 Power-down & Hi-Z 1 Power-up & Output Table 112. Speaker-Amp output state (default) When PMSPK bit is “1”, the speaker-amp is powered-up. The power-up time of SPK-Amp block is 32ms and then SPP and SPN pins output 0V (VSS3). When PMSPK bit is “0”, the SPK-Amp block can be powered-down. The clock supplied to SPK-Amp block must not be stopped for more than 0.5ms. Once SPK-Amp block is powered-down, the SPK-Amp block should be powered-up again with an interval of 0.5ms or more. MS1403-E-04 2014/12 - 108 - [AK4678] ■ Thermal Shutdown Function When PMVCM bit is “1” and the internal device temperature rises up irregularly (E.g. Output pins of speaker amplifier are shortened.), all amplifier blocks are automatically powered-down (PMLO, PMRO, PMRCV, PMHPL, PMHPR and PMSPK bits = “0”) and then THDET bit becomes “1”. The other control registers are not initialized. When the internal device temperature falls down, THDET bit becomes “0”, but the amplifier blocks do not return to normal operation unless the amplifier blocks are powered-up (PMLO, PMRO, PMRCV, PMHPL, PMHPR or PMSPK bits = “1”). The device status can be monitored by THDET bit. MS1403-E-04 2014/12 - 109 - [AK4678] ■ System Clock (PCM I/F) The AK4678 has two PCM I/F ports. PCM I/F A is for baseband module and PCM I/F B is for Bluetooth mode. PCM I/F A, PCM I/F B and Audio I/F can be operated by asynchronous clock because the AK4678 has four SRCs. PCM I/F A and PCM I/F B support slave mode only. The required clock PCM I/F is BICKA (BICKB) and SYNCA (SYNCB).When PMPCMA bit is “1”, PCM I/F A port is powered-up. When PMPCMB bit is “1”, PCM I/F B port is powered-up. AK4678 Baseband Module SYNCA BICKA 1fs2 16fs2 SYNC BICK SDTOA SDTI SDTIA SDTO Bluetooth Module SYNCB BICKB 1fs3 16fs3 or 32fs3 SYNC BICK SDTOB SDTI SDTIB SDTO Figure 76. PCM I/F A and B ■ SRC (Sample Rate Converter) The AK4678 has four asynchronous SRCs. The SRCs are operated by internal oscillator. When PMSRAI, PMSRAO, PMSRBI or PMSRBO bit is “1” and PMOSC bit is “1”, SRC starts operation. Initial time of SRC is 164/fs2(164/fs3) for SDTOA(SDTOB) output enable after power-down state is released by a clock input(SYNC clock). Until then, SDTOA and SDTOB output data as shown in Table 113. Ratio of Input / Output is decided by PMMIX bit. PMSRx bit = “1” After PMSRx bit = “0” “1” During initial time & Before SYNCA/SYNCB Input 16bit Linear L L 0000H 8bit A-Law L H 11010101b 8bit μ-Law L H 11111111b Table 113. SDTOA and SDTOB pins Output Data (PMSRx: PMSRAI, PMSRAO, PMSRBI, PMSRBO) Mode PMSRx bit = “0” PMMIX bit 0 1 Input Sampling Rate Output Sampling Rate (FSI) (FSO) SRCAI SYNCA SYNCB SRCAO SYNCB SYNCA SRCAI SYNCA LRCK SRCAO LRCK SYNCA SRCBI SYNCB LRCK SRCBO LRCK SYNCB Table 114. PCM I/F Input Output rate SRC MS1403-E-04 2014/12 - 110 - [AK4678] ■ PCM I/F A & B Format AK4678 supports dual PCM I/F (PCM I/F A & PCM I/F B) that supports 3 kind of I/F (16bit Linear, 8bit A-Law and 8bit μ-Law) independently (Table 115 and Table 116). Mode 0 1 2 3 LAWA1 bit LAWA0 bit Format 0 0 16bit Linear 0 1 N/A 1 0 8bit A-Law 1 1 8bit μ-Law Table 115. PCM I/F A Mode (N/A: Not available) Mode 0 1 2 3 LAWB1 bit LAWB0 bit Format 0 0 16bit Linear 0 1 N/A 1 0 8bit A-Law 1 1 8bit μ-Law Table 116. PCM I/F B Mode (N/A: Not available) (default) (default) Four types of data formats are available and are selected by setting the FMTA1-0 and FMTB1-0 bits independently (Table 117 and Table 118). In 16bit Linear mode, the serial data is MSB first, 2’s complement format. In 8bit A-Law and μ-Law Mode, the serial data is MSB first. PCM I/F formats support slave mode only. SYNCA/B and BICKA/B are input to the AK4678. Mode 0 1 2 3 Mode 0 1 2 3 FMTA1 bit 0 0 1 1 FMTB1 bit 0 0 1 1 FMTA0 bit Format BICKA 0 Short Frame Sync ≥ 16fs2 1 Long Frame Sync ≥ 16fs2 0 MSB justified ≥ 32fs2 1 I2S ≥ 32fs2 Table 117. PCM I/F A Format FMTB0 bit 0 1 0 1 Format BICKB Short Frame Sync 16fs3 or ≥ 32fs3 Long Frame Sync 16fs3 or ≥ 32fs3 MSB justified ≥ 32fs3 I2S ≥ 32fs3 Table 118. PCM I/F B Format Figure Table 119 Table 121 Figure 93 Figure 95 (default) Figure Table 120 Table 122 Figure 94 Figure 96 (default) In modes 2 and 3, the SDTOA/B is clocked out on the falling edge (“”) of BICKA/B and the SDTIA/B is latched on the rising edge (“”). In Modes 0 and 1, PCM I/F A timing is changed by BCKPA and MSBSA bits, and PCM I/F B timing is changed by BCKPB and MSBSB bits. When BCKPA bit = “0”, the SDTOA is clocked out on the rising edge (“”) of BICKA and the SDTIA is latched on the falling edge (“”). When BCKPA bit = “1”, the SDTOA is clocked out on the falling edge (“”) of BICKA and the SDTIA is latched on the rising edge (“”). MSBSA bit can shift the MSB position of SDTOA and SDTIA by half period of BICKA. When BCKPB bit = “0”, the SDTOB is clocked out on the rising edge (“”) of BICKB and the SDTIB is latched on the falling edge (“”). When BCKPB bit = “1”, the SDTOB is clocked out on the falling edge (“”) of BICKB and the SDTIB is latched on the rising edge (“”). MSBSB bit can shift the MSB position of SDTOB and SDTIB by half period of BICKB. MS1403-E-04 2014/12 - 111 - [AK4678] MSBSA bit BCKPA bit 0 0 0 1 1 0 1 1 MSBSB bit BCKPB bit 0 0 0 1 1 0 1 1 MSBSA bit BCKPA bit 0 0 0 1 1 0 1 1 Data Interface Format MSB of SDTOA is output by next rising edge (“”) of the falling edge (“”) of BICKA after the rising edge (“”) of SYNCA. MSB of SDTIA is latched by the falling edge (“”) of the BICKA just after the output timing of SDTOA’s MSB. MSB of SDTOA is output by next falling edge (“”) of the rising edge (“”) of BICKA after the rising edge (“”) of SYNCA. MSB of SDTIA is latched by the rising edge (“”) of the BICKA just after the output timing of SDTOA’s MSB. MSB of SDTOA is output by the 2nd rising edge (“”) of BICKA after the rising edge (“”) of SYNCA. MSB of SDTIA is latched by the falling edge (“”) of the BICKA just after the output timing of SDTOA’s MSB. MSB of SDTOA is output by the 2nd falling edge (“”) of BICKA after the rising edge (“”) of SYNCA. MSB of SDTIA is latched by the rising edge (“”) of the BICKA just after the output timing of SDTOA’s MSB. Table 119. PCM I/F A Format in Mode 0 Data Interface Format MSB of SDTOB is output by next rising edge (“”) of the falling edge (“”) of BICKB after the rising edge (“”) of SYNCB. MSB of SDTIB is latched by the falling edge (“”) of the BICKB just after the output timing of SDTOB’s MSB. MSB of SDTOB is output by next falling edge (“”) of the rising edge (“”) of BICKB after the rising edge (“”) of SYNCB. MSB of SDTIB is latched by the rising edge (“”) of the BICKB just after the output timing of SDTOB’s MSB. MSB of SDTOB is output by the 2nd rising edge (“”) of BICKB after the rising edge (“”) of SYNCB. MSB of SDTIB is latched by the falling edge (“”) of the BICKB just after the output timing of SDTOB’s MSB. MSB of SDTOB is output by the 2nd falling edge (“”) of BICKB after the rising edge (“”) of SYNCB. MSB of SDTIB is latched by the rising edge (“”) of the BICKB just after the output timing of SDTOB’s MSB. Table 120. PCM I/F B Format in Mode 0 Data Interface Format MSB of SDTOA is output by the rising edge (“”) of SYNCA. MSB of SDTIA is latched by the falling edge (“”) of the BICKA just after the output timing of SDTOA’s MSB. MSB of SDTOA is output by the rising edge (“”) of SYNCA. MSB of SDTIA is latched by the rising edge (“”) of the BICKA just after the output timing of SDTOA’s MSB. MSB of SDTOA is output by the rising edge (“”) of the first BICKA after the rising edge (“”) of SYNCA. MSB of SDTIA is latched by the falling edge (“”) of the BICKA just after the output timing of SDTOA’s MSB. MSB of SDTOA is output by the falling edge (“”) of the first BICKA after the rising edge (“”) of SYNCA. MSB of SDTIA is latched by the rising edge (“”) of the BICKA just after the output timing of SDTOA’s MSB. Table 121. PCM I/F A Format in Mode 1 MS1403-E-04 Figure Figure 77 Figure 78 Figure 79 Figure 80 Figure Figure 85 Figure 86 Figure 87 Figure 88 Figure Figure 81 Figure 82 Figure 83 Figure 84 2014/12 - 112 - [AK4678] MSBSB bit BCKPB bit 0 0 0 1 1 0 1 1 Data Interface Format Figure MSB of SDTOB is output by the rising edge (“”) of SYNCB. MSB of SDTIB is latched by the falling edge (“”) of the BICKB just after the output timing of SDTOB’s MSB. MSB of SDTOB is output by the rising edge (“”) of SYNCB. MSB of SDTIB is latched by the rising edge (“”) of the BICKB just after the output timing of SDTOB’s MSB. MSB of SDTOB is output by the rising edge (“”) of the first BICKB after the rising edge (“”) of SYNCB. MSB of SDTIB is latched by the falling edge (“”) of the BICKB just after the output timing of SDTOB’s MSB. MSB of SDTOB is output by the falling edge (“”) of the first BICKB after the rising edge (“”) of SYNCB. MSB of SDTIB is latched by the rising edge (“”) of the BICKB just after the output timing of SDTOB’s MSB. Table 122. PCM I/F B Format in Mode 1 Figure 89 Figure 90 Figure 91 Figure 92 1/fs2 SYNCA BICKA (16bit Linear) SDTOA SDTIA Don’t Care (8bit A-Law/-Law) SDTOA SDTIA D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 D15 D14 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 D15 D14 D7 D6 D5 D4 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0 Don’t Care Don’t Care Don’t Care D7 D6 Don’t Care D7 D6 Figure 77. Timing of Short Frame Sync (PCM I/F A: MSBSA bit = “0”, BCKPA bit = “0”) 1/fs2 SYNCA BICKA (16bit Linear) SDTOA SDTIA Don’t Care (8bit A-Law/-Law) SDTOA SDTIA Don’t Care D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 D15 D14 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 D15 D14 D7 D6 D5 D4 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0 Don’t Care Don’t Care D7 D6 D7 D6 Figure 78. Timing of Short Frame Sync (PCM I/F A: MSBSA bit = “0”, BCKPA bit = “1”) MS1403-E-04 2014/12 - 113 - [AK4678] 1/fs2 SYNCA BICKA (16bit Linear) SDTOA SDTIA Don’t Care (8bit A-Law/-Law) SDTOA SDTIA D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 D15 D14 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 D15 D14 D7 D6 D5 D4 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0 Don’t Care Don’t Care Don’t Care D7 D6 D7 D6 Figure 79. Timing of Short Frame Sync (PCM I/F A: MSBSA bit = “1”, BCKPA bit = “0”) 1/fs2 SYNCA BICKA (16bit Linear) SDTOA SDTIA Don’t Care (8bit A-Law/-Law) SDTOA SDTIA D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 D15 D14 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 D15 D14 D7 D6 D5 D4 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0 Don’t Care Don’t Care Don’t Care Don’t Care D7 D6 D7 D6 Figure 80. Timing of Short Frame Sync (PCM I/F A: MSBSA bit = “1”, BCKPA bit = “1”) 1/fs2 SYNCA BICKA (16bit Linear) D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 D15 D14 D13 Don’t Care D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 D15 D14 D13 SDTOA SDTIA (8bit A-Law/-Law) SDTOA SDTIA Don’t Care D7 D6 D5 D4 D3 D2 D1 D0 Don’t Care D7 D6 D5 D4 D3 D2 D1 D0 Don’t Care D7 D6 D5 D7 D6 D5 Figure 81. Timing of Long Frame Sync (PCM I/F A: MSBSA bit = “0”, BCKPA bit = “0”) MS1403-E-04 2014/12 - 114 - [AK4678] 1/fs2 SYNCA BICKA (16bit Linear) D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 D15 D14 D13 Don’t Care D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 D15 D14 D13 SDTOA SDTIA (8bit A-Law/-Law) SDTOA SDTIA Don’t Care D7 D6 D5 D4 D3 D2 D1 D0 Don’t Care D7 D6 D5 D4 D3 D2 D1 D0 Don’t Care D7 D6 D5 D7 D6 D5 Figure 82. Timing of Long Frame Sync (PCM I/F A: MSBSA bit = “0”, BCKPA bit = “1”) 1/fs2 SYNCA BICKA (16bit Linear) D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 D15 D14 D13 Don’t Care D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 D15 D14 D13 SDTOA SDTIA (8bit A-Law/-Law) SDTOA SDTIA Don’t Care D7 D6 D5 D4 D3 D2 D1 D0 Don’t Care D7 D6 D5 D4 D3 D2 D1 D0 Don’t Care D7 D6 D5 Don’t Care D7 D6 D5 Figure 83. Timing of Long Frame Sync (PCM I/F A: MSBSA bit = “1”, BCKPA bit = “0”) 1/fs2 SYNCA (Slave) BICKA (16bit Linear) D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 D15 D14 D13 Don’t Care D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 D15 D14 D13 SDTOA SDTIA (8bit A-Law/-Law) SDTOA SDTIA Don’t Care D7 D6 D5 D4 D3 D2 D1 D0 Don’t Care D7 D6 D5 D4 D3 D2 D1 D0 Don’t Care D7 D6 D5 Don’t Care D7 D6 D5 Figure 84. Timing of Long Frame Sync (PCM I/F A: MSBSA bit = “1”, BCKPA bit = “1”) MS1403-E-04 2014/12 - 115 - [AK4678] 1/fs3 SYNCB BICKB (16fs3) (16bit Linear) SDTOB L2 SDTIB L1 L0 L15 L14 L13 L12 L11 L10 L9 L8 L7 L6 L5 L4 L3 L2 L1 D0 L0 L15 L14 R1 R0 R7 R3 R2 R1 D0 R0 (8bit A-Law/-Law) SDTOB SDTIB R2 L7 L6 L5 L4 L3 L2 L1 L0 R6 R5 R4 L15 L14 L13 L8 L7 L1 L1 L0 R15 R13 R1 R0 L15 L14 L13 L8 L7 L1 L1 L0 R15 D6 R1 R0 R1 R1 R0 R1 R0 L7 L6 BICKB (64fs3) (16bit Linear) SDTOB SDTIB Don’t Care (8bit A-Law/-Law) SDTOB SDTIB Don’t Care L7 L6 L6 L0 R7 L7 L6 D5 L0 R7 D2 L15 L14 Don’t Care L15 L14 Don’t Care L7 L6 L7 L6 <16bit Linear> Lch Data: L15-0, MSB(L15), LSB(L0) Rch Data: R15-0, MSB(R15), LSB(R0) <8bit A-Law/-Law> Lch Data: L7-0, MSB(L7), LSB(L0) Rch Data: R7-0, MSB(R7), LSB(R0) Figure 85. Timing of Short Frame Sync (PCM I/F B: MSBSB bit = “0”, BCKPB bit = “0”) 1/fs3 SYNCB BICKB (16fs3) (16bit Linear) SDTOB L2 SDTIB L1 L0 L15 L14 L13 L12 L11 L10 L9 L8 L7 L6 L5 L4 L3 L2 L1 D0 L0 L15 L14 R1 R0 R7 R3 R2 R1 D0 R0 (8bit A-Law/-Law) SDTOB SDTIB R2 L7 L6 L5 L4 L3 L2 L1 L0 R6 R5 R4 L15 L14 L13 L8 L7 L1 L1 L0 R15 R13 R1 R0 L15 L14 L13 L8 L7 L1 L1 L0 R15 D6 R1 R0 R1 R1 R0 R1 R0 L7 L6 BICKB (64fs3) (16bit Linear) SDTOB SDTIB Don’t Care (8bit A-Law/-Law) SDTOB SDTIB Don’t Care L7 L6 L6 L0 R7 L7 L6 D5 L0 R7 D2 Don’t Care L15 L14 Don’t Care L15 L14 L7 L6 L7 L6 <16bit Linear> Lch Data: L15-0, MSB(L15), LSB(L0) Rch Data: R15-0, MSB(R15), LSB(R0) <8bit A-Law/-Law> Lch Data: L7-0, MSB(L7), LSB(L0) Rch Data: R7-0, MSB(R7), LSB(R0) Figure 86. Timing of Short Frame Sync (PCM I/F B: MSBSB bit = “0”, BCKPB bit = “1”) MS1403-E-04 2014/12 - 116 - [AK4678] 1/fs3 SYNCB BICKB (16fs3) (16bit Linear) SDTOB SDTIB L2 L1 L0 L15 L14 L13 L12 L11 L10 L9 L8 L7 L6 L5 L4 L3 L2 L1 D0 L0 L15 L14 R1 R0 R7 R3 R2 R1 D0 R0 (8bit A-Law/-Law) SDTOB SDTIB R2 L7 L6 L5 L4 L3 L2 L1 L0 R6 R5 R4 L15 L14 L13 L8 L7 L1 L1 L0 R15 R13 R1 R0 L15 L14 L13 L8 L7 L1 L1 L0 R15 D6 R1 R0 R1 R1 R0 R1 R0 L7 L6 BICKB (64fs3) (16bit Linear) SDTOB SDTIB Don’t Care (8bit A-Law/-Law) SDTOB SDTIB Don’t Care L7 L6 L6 L0 R7 L7 L6 D5 L0 R7 D2 L15 L14 Don’t Care L15 L14 Don’t Care L7 L6 L7 L6 <16bit Linear> Lch Data: L15-0, MSB(L15), LSB(L0) Rch Data: R15-0, MSB(R15), LSB(R0) <8bit A-Law/-Law> Lch Data: L7-0, MSB(L7), LSB(L0) Rch Data: R7-0, MSB(R7), LSB(R0) Figure 87. Timing of Short Frame Sync (PCM I/F B: MSBSB bit = “1”, BCKPB bit = “0”) 1/fs3 SYNCB BICKB (16fs3) (16bit Linear) SDTOB SDTIB L2 L1 L0 L15 L14 L13 L12 L11 L10 L9 L8 L7 L6 L5 L4 L3 L2 L1 D0 L0 L15 L14 R1 R0 R7 R3 R2 R1 D0 R0 (8bit A-Law/-Law) SDTOB SDTIB R2 L7 L6 L5 L4 L3 L2 L1 L0 R6 R5 R4 L15 L14 L13 L8 L7 L1 L1 L0 R15 R13 R1 R0 L15 L14 L13 L8 L7 L1 L1 L0 R15 D6 R1 R0 R1 R1 R0 R1 R0 L7 L6 BICKB (64fs3) (16bit Linear) SDTOB SDTIB Don’t Care (8bit A-Law/-Law) SDTOB SDTIB Don’t Care L7 L6 L6 L0 R7 L7 L6 D5 L0 R7 D2 Don’t Care L15 L14 Don’t Care L15 L14 L7 L6 L7 L6 <16bit Linear> Lch Data: L15-0, MSB(L15), LSB(L0) Rch Data: R15-0, MSB(R15), LSB(R0) <8bit A-Law/-Law> Lch Data: L7-0, MSB(L7), LSB(L0) Rch Data: R7-0, MSB(R7), LSB(R0) Figure 88. Timing of Short Frame Sync (PCM I/F B: MSBSB bit = “1”, BCKPB bit = “1”) MS1403-E-04 2014/12 - 117 - [AK4678] 1/fs3 SYNCB BICKB (16fs3) (16bit Linear) SDTOB L1 SDTIB L0 L15 L14 L13 L12 L11 L10 L9 L8 L7 L6 L5 L4 L3 L2 L1 D0 L0 L15 L14 L13 R0 R7 R3 R2 R1 D0 R0 L5 (8bit A-Law/-Law) SDTOB SDTIB R1 L7 L6 L5 L4 L3 L2 L1 L0 R6 R5 R4 L15 L14 L13 L8 L7 L1 L1 L0 R15 R13 R1 R0 L14 L13 L8 L7 L1 L1 L0 R15 D6 R1 R0 L7 L6 L6 L0 R7 R1 R1 R0 L7 L6 D5 L0 R7 D2 R1 R0 L7 L6 BICKB (64fs3) (16bit Linear) SDTOB SDTIB Don’t Care L15 (8bit A-Law/-Law) SDTOB SDTIB Don’t Care L15 L14 L13 Don’t Care L15 L14 L13 Don’t Care L7 L6 L5 L7 L6 L5 <16bit Linear> Lch Data: L15-0, MSB(L15), LSB(L0) Rch Data: R15-0, MSB(R15), LSB(R0) <8bit A-Law/-Law> Lch Data: L7-0, MSB(L7), LSB(L0) Rch Data: R7-0, MSB(R7), LSB(R0) Figure 89. Timing of Long Frame Sync (PCM I/F B: MSBSB bit = “0”, BCKPB bit = “0”) 1/fs3 SYNCB BICKB (16fs3) (16bit Linear) SDTOB L1 SDTIB L0 L15 L14 L13 L12 L11 L10 L9 L8 L7 L6 L5 L4 L3 L2 L1 D0 L0 L15 L14 L13 R0 R7 R3 R2 R1 D0 R0 L5 (8bit A-Law/-Law) SDTOB SDTIB R1 L7 L6 L5 L4 L3 L2 L1 L0 R6 R5 R4 L15 L14 L13 L8 L7 L1 L1 L0 R15 R13 R1 R0 L14 L13 L8 L7 L1 L1 L0 R15 D6 R1 R0 L7 L6 L6 L0 R7 R1 R1 R0 L7 L6 D5 L0 R7 D2 R1 R0 L7 L6 BICKB (64fs3) (16bit Linear) SDTOB SDTIB Don’t Care L15 (8bit A-Law/-Law) SDTOB SDTIB Don’t Care Don’t Care L15 L14 L13 Don’t Care L15 L14 L13 L7 L6 L5 L7 L6 L5 <16bit Linear> Lch Data: L15-0, MSB(L15), LSB(L0) Rch Data: R15-0, MSB(R15), LSB(R0) <8bit A-Law/-Law> Lch Data: L7-0, MSB(L7), LSB(L0) Rch Data: R7-0, MSB(R7), LSB(R0) Figure 90. Timing of Long Frame Sync (PCM I/F B: MSBSB bit = “0”, BCKPB bit = “1”) MS1403-E-04 2014/12 - 118 - [AK4678] 1/fs3 SYNCB BICKB (16fs3) (16bit Linear) SDTOB L1 SDTIB L0 L15 L14 L13 L12 L11 L10 L9 L8 L7 L6 L5 L4 L3 L2 L1 D0 L0 L15 L14 L13 R0 R7 R3 R2 R1 D0 R0 L5 (8bit A-Law/-Law) SDTOB SDTIB R1 L7 L6 L5 L4 L3 L2 L1 L0 R6 R5 R4 L15 L14 L13 L8 L7 L1 L1 L0 R15 R13 R1 R0 L14 L13 L8 L7 L1 L1 L0 R15 D6 R1 R0 L7 L6 L6 L0 R7 R1 R1 R0 L7 L6 D5 L0 R7 D2 R1 R0 L7 L6 BICKB (64fs3) (16bit Linear) SDTOB SDTIB Don’t Care L15 (8bit A-Law/-Law) SDTOB Don’t Care SDTIB L15 L14 L13 Don’t Care L15 L14 L13 Don’t Care L7 L6 L5 L7 L6 L5 <16bit Linear> Lch Data: L15-0, MSB(L15), LSB(L0) Rch Data: R15-0, MSB(R15), LSB(R0) <8bit A-Law/-Law> Lch Data: L7-0, MSB(L7), LSB(L0) Rch Data: R7-0, MSB(R7), LSB(R0) Figure 91. Timing of Long Frame Sync (PCM I/F B MSBSB bit = “1”, BCKPB bit = “0”) 1/fs3 SYNCB BICKB (16fs3) (16bit Linear) SDTOB L1 SDTIB L0 L15 L14 L13 L12 L11 L10 L9 L8 L7 L6 L5 L4 L3 L2 L1 D0 L0 L15 L14 L13 L0 R7 R3 R2 R1 D0 R0 L5 (8bit A-Law/-Law) SDTOB SDTIB R1 L7 L6 L5 L4 L3 L2 L1 L0 R6 R5 R4 L15 L14 L13 L8 L7 L1 L1 L0 R15 R13 R1 R0 L14 L13 L8 L7 L1 L1 L0 R15 D6 R1 R0 L7 L6 L6 L0 R7 R1 R1 R0 L7 L6 D5 L0 R7 D2 R1 R0 L7 L6 BICKB (64fs3) (16bit Linear) SDTOB SDTIB Don’t Care L15 (8bit A-Law/-Law) SDTOB SDTIB Don’t Care Don’t Care L15 L14 L13 Don’t Care L15 L14 L13 L7 L6 L5 L7 L6 L5 <16bit Linear> Lch Data: L15-0, MSB(L15), LSB(L0) Rch Data: R15-0, MSB(R15), LSB(R0) <8bit A-Law/-Law> Lch Data: L7-0, MSB(L7), LSB(L0) Rch Data: R7-0, MSB(R7), LSB(R0) Figure 92. Timing of Long Frame Sync (PCM I/F B: MSBSB bit = “1”, BCKPB bit = “1”) MS1403-E-04 2014/12 - 119 - [AK4678] SYNCA 0 1 2 3 9 10 11 12 13 14 15 0 1 2 3 BICKA (32fs2) SDTOA(o) 15 14 13 7 6 5 4 3 2 1 0 SDTIA(i) 15 14 13 7 6 5 4 3 2 1 0 BICKA (64fs2) 0 1 2 3 15 16 17 18 SDTOA(o) 15 14 13 1 0 SDTIA(i) 15 14 13 1 0 9 10 11 12 13 14 15 0 1 15 Don't Care 31 0 1 2 3 15 Don't Care 15 16 17 18 31 0 1 15 Don't Care Don't Care 15 15:MSB, 0:LSB Figure 93. Timing of MSB justified (PCM I/F A) SYNCB BICKB (32fs3) 0 1 2 3 9 10 11 12 13 14 15 0 1 2 3 9 10 11 12 13 14 15 0 1 SDTOB(o) 15 14 13 7 6 5 4 3 2 1 0 15 14 13 7 6 5 4 3 2 1 0 15 SDTIB(i) 15 14 13 7 6 5 4 3 2 1 0 15 14 13 7 6 5 4 3 2 1 0 15 BICKB (64fs3) 0 1 2 3 15 16 17 18 SDTOB(o) 15 14 13 1 0 SDTIB(i) 15 14 13 1 0 31 0 1 2 3 Don't Care 15 16 17 18 15 14 13 1 0 15 14 13 1 0 31 0 1 15 Don't Care 15 15:MSB, 0:LSB Lch Data Rch Data Figure 94. Timing of MSB justified (PCM I/F B) MS1403-E-04 2014/12 - 120 - [AK4678] SYNCA BICKA (32fs2) 0 1 2 3 9 10 11 12 13 14 15 0 1 2 3 SDTOA(o) 15 14 8 7 6 5 4 3 2 1 0 SDTIA(i) 15 14 8 7 6 5 4 3 2 1 0 BICKA (64fs2) 0 1 2 3 15 16 17 18 SDTOA(o) 15 14 2 1 0 SDTIA(i) 15 14 2 1 0 9 10 11 12 13 14 15 0 1 Don't Care 31 0 1 2 3 15 16 17 18 Don't Care 31 0 1 Don't Care 15:MSB, 0:LSB Figure 95. Timing of I2S (PCM I/F A) SYNCB BICKB (32fs3) 0 1 2 3 9 10 11 12 13 14 15 0 1 2 3 9 10 11 12 13 14 15 0 1 SDTOB(o) 0 15 14 8 7 6 5 4 3 2 1 0 15 14 8 7 6 5 4 3 2 1 0 SDTIB(i) 0 15 14 8 7 6 5 4 3 2 1 0 15 14 8 7 6 5 4 3 2 1 0 BICKB (64fs3) 0 1 2 3 15 16 17 18 SDTOB(o) 15 14 2 1 0 SDTIB(i) 15 14 2 1 0 31 0 1 2 3 Don't Care 15 16 17 18 15 14 2 1 0 15 14 2 1 0 31 0 1 Don't Care 15:MSB, 0:LSB Lch Data Rch Data Figure 96. Timing of I2S (PCM I/F B) MS1403-E-04 2014/12 - 121 - [AK4678] ■ Serial Control Interface (I2C-bus) The AK4678 supports the fast-mode I2C-bus (max: 400kHz). Pull-up resistors at SDA and SCL pins must be connected to (TVDD+0.3)V or less voltage. (2)-1. WRITE Operations Figure 97 shows the data transfer sequence for the I2C-bus mode. All commands are preceded by a START condition. A HIGH to LOW transition on the SDA line while SCL is HIGH indicates a START condition (Figure 103). After the START condition, a slave address is sent. This address is 7 bits long followed by the eighth bit that is a data direction bit (R/W). The most significant seven bits of the slave address are fixed as “0010010” (Figure 98). If the slave address matches that of the AK4678, the AK4678 generates an acknowledge and the operation is executed. The master must generate the acknowledge-related clock pulse and release the SDA line (HIGH) during the acknowledge clock pulse (Figure 104). A R/W bit value of “1” indicates that the read operation is to be executed. A “0” indicates that the write operation is to be executed. The second byte consists of the control register address of the AK4678. This address is 8bits and the format is MSB first (Figure 99). The data after the second byte contains control data. The format is MSB first, 8bits (Figure 100). The AK4678 generates an acknowledge after each byte is received. A data transfer is always terminated by a STOP condition generated by the master. A LOW to HIGH transition on the SDA line while SCL is HIGH defines a STOP condition (Figure 103). The AK4678 can perform more than one byte write operation per sequence. After receipt of the third byte the AK4678 generates an acknowledge and awaits the next data. The master can transmit more than one byte instead of terminating the write cycle after the first data byte is transferred. After receiving each data packet the internal 8-bit address counter is incremented by one, and the next data is automatically taken into the next address. If the address exceeds AFH prior to generating a stop condition, the address counter will “roll over” to 00H and the previous data will be overwritten. The data on the SDA line must remain stable during the HIGH period of the clock. The HIGH or LOW state of the data line can only change when the clock signal on the SCL line is LOW (Figure 105) except for the START and STOP conditions. S T A R T SDA S T O P R/W="0" Slave S Address Sub Address(n) Data(n) A C K A C K Data(n+1) A C K Data(n+x) A C K A C K P A C K Figure 97. Data Transfer Sequence at the I2C-Bus Mode 0 0 1 0 0 1 0 R/W A2 A1 A0 D2 D1 D0 Figure 98. The First Byte A7 A6 A5 A4 A3 Figure 99. The Second Byte D7 D6 D5 D4 D3 Figure 100. Byte Structure after the second byte MS1403-E-04 2014/12 - 122 - [AK4678] (2)-2. READ Operations Set the R/W bit = “1” for the READ operation of the AK4678. After transmission of data, the master can read the next address’s data by generating an acknowledge instead of terminating the write cycle after the receipt of the first data word. After receiving each data packet the internal 8-bit address counter is incremented by one, and the next data is automatically taken into the next address. If the address exceeds AFH prior to generating a stop condition, the address counter will “roll over” to 00H and the data of 00H will be read out. The AK4678 supports two basic read operations: CURRENT ADDRESS READ and RANDOM ADDRESS READ. (2)-2-1. CURRENT ADDRESS READ The AK4678 contains an internal address counter that maintains the address of the last word accessed, incremented by one. Therefore, if the last access (either a read or write) were to address “n”, the next CURRENT READ operation would access data from the address “n+1”. After receipt of the slave address with R/W bit set to “1”, the AK4678 generates an acknowledge, transmits 1-byte of data to the address set by the internal address counter and increments the internal address counter by 1. If the master does not generate an acknowledge but instead generates a stop condition, the AK4678 ceases transmission. S T A R T SDA S T O P R/W="1" Slave S Address Data(n) Data(n+1) MA AC SK T E R A C K Data(n+2) MA AC SK T E R Data(n+x) MA AC SK T E R MA AC SK T E R P MN AA SC T EK R Figure 101. CURRENT ADDRESS READ (2)-2-2. RANDOM ADDRESS READ The random read operation allows the master to access any memory location at random. Prior to issuing the slave address with the R/W bit “1”, the master must first perform a “dummy” write operation. The master issues a start request, a slave address (R/W bit = “0”) and then the register address to read. After the register address is acknowledged, the master immediately reissues the start request and the slave address with the R/W bit “1”. The AK4678 then generates an acknowledge, 1 byte of data and increments the internal address counter by 1. If the master does not generate an acknowledge but instead generates a stop condition, the AK4678 ceases transmission. S T A R T SDA S T A R T R/W="0" Slave S Address Sub Address(n) A C K Slave S Address A C K S T O P R/W="1" Data(n) A C K Data(n+1) MA AC S K T E R Data(n+x) MA AC S T K E R MA AC S T K E R P MN A A S T C E K R Figure 102. RANDOM ADDRESS READ MS1403-E-04 2014/12 - 123 - [AK4678] SDA SCL S P start condition stop condition Figure 103. START and STOP Conditions DATA OUTPUT BY TRANSMITTER not acknowledge DATA OUTPUT BY RECEIVER acknowledge SCL FROM MASTER 2 1 8 9 S clock pulse for acknowledgement START CONDITION Figure 104. Acknowledge on the I2C-Bus SDA SCL data line stable; data valid change of data allowed Figure 105. Bit Transfer on the I2C-Bus MS1403-E-04 2014/12 - 124 - [AK4678] ■ Register Map Addr 00H 01H 02H 03H 04H 05H 06H 07H 08H 09H 0AH 0BH 0CH 0DH 0EH 0FH 10H 11H 12H 13H 14H 15H 16H 17H 18H 19H 1AH 1BH 1CH 1DH 1EH 1FH 20H 21H 22H 23H 24H 25H 26H 27H 28H 29H 2AH 2BH 2CH 2DH 2EH 2FH 30H 31H 32H 33H 34H 35H 36H 37H 38H 39H 3AH Register Name Power Management 0 Power Management 1 Power Management 2 PLL Mode Select 0 PLL Mode Select 1 Audio I/F Format Select MIC Signal Select MIC Amp Gain Digital MIC DAC Signal Pass Select LINEOUT Power Management HP Power Management Charge Pump Control SPK&RCV Power Management LINEOUT Volume Control HP Volume Control SPK & RCV Volume Control Lch Input Volume Control Rch Input Volume Control ALC Reference Select Digital Mixing Control ALC Timer Select ALC Mode Control Mode Control 0 Mode Control 1 Digital Filter Select 0 Digital Filter Select 1 Digital Filter Select 2 Side Tone Volume A Control Lch Output Volume Control Rch Output Volume Control PCM I/F Power Management PCM I/F Control 0 PCM I/F Control 1 Side Tone Volume B Control Digital Volume B Control Digital Volume C Control Digital Mixing Control 0 Digital Mixing Control 1 Digital Mixing Control 2 Digital Mixing Control 3 FIL1 Co-efficient 0 FIL1 Co-efficient 1 FIL1 Co-efficient 2 FIL1 Co-efficient 3 FIL2 Co-efficient 0 FIL2 Co-efficient 1 FIL2 Co-efficient 2 FIL2 Co-efficient 3 FIL3 Co-efficient 0 FIL3 Co-efficient 1 FIL3 Co-efficient 2 FIL3 Co-efficient 3 EQ Co-efficient 0 EQ Co-efficient 1 EQ Co-efficient 2 EQ Co-efficient 3 EQ Co-efficient 4 EQ Co-efficient 5 D7 0 0 ADRST FS3 CM1 0 0 MGNR3 0 DACSR 0 HPTM1 D6 0 0 0 FS2 CM0 0 MDIF3 MGNR2 0 DACSL 0 HPTM0 D5 PMADR 0 0 FS1 BCKO 0 MDIF2 MGNR1 PMDMR DACRR 0 0 D4 PMADL 0 0 FS0 0 SDOD MDIF1 MGNR0 PMDML DACRL LODIF 0 0 VDDTM2 VDDTM1 VDDTM0 THDET 0 0 RCVG3 IVL7 IVR7 REF7 0 0 0 RCVG2 IVL6 IVR6 REF6 TEST 0 HPG5 RCVG1 IVL5 IVR5 REF5 PMSPK 0 HPG4 RCVG0 IVL4 IVR4 REF4 D3 0 PMDAR MICL2 PLL3 0 MSBS INR1 MGNL3 DCLKE 0 LOM LOMH 0 0 0 HPG3 SPKG3 IVL3 IVR3 REF3 SRMXR1 SRMXR0 SRMXL1 SRMXL0 PFMXR1 FR LFST 0 0 0 GN1 0 0 0 0 PMMIX SDOAD SDOBD 0 0 0 0 0 0 SDOR1 F1A7 0 F1B7 0 F2A7 0 F2B7 0 F3A7 F3AS F3B7 0 E0A7 E0A15 E0B7 0 E0C7 E0C15 RFST1 ZELMN 0 OVTMB HPFC1 GN0 0 SVAR2 OVL6 OVR6 RFST0 LMAT1 SDIM1 BIV2 HPFC0 LPF 0 SVAR1 OVL5 OVR5 PMSRBI MSBSA MSBSB 0 BVL5 CVL5 MX1R2 MX2C1 0 SDOL1 F1A5 F1A13 F1B5 F1B13 F2A5 F2A13 F2B5 F2B13 F3A5 F3A13 F3B5 F3B13 E0A5 E0A13 E0B5 E0B13 E0C5 E0C13 WTM2 LMAT0 SDIM0 BIV1 HPFAD HPF EQ5 SVAR0 OVL4 OVR4 WTM1 RGAIN1 5EQ BIV0 DASEL1 EQ0 EQ4 0 OVL3 OVR3 PMOSC LAWA1 LAWB1 0 BVL3 CVL3 MX1R0 MX2B1 0 0 F1A3 F1A11 F1B3 F1B11 F2A3 F2A11 F2B3 F2B11 F3A3 F3A11 F3B3 F3B11 E0A3 E0A11 E0B3 E0B11 E0C3 E0C11 PMSRBO 0 0 0 BVL6 CVL6 0 0 0 SDOR0 F1A6 0 F1B6 0 F2A6 0 F2B6 0 F3A6 0 F3B6 0 E0A6 E0A14 E0B6 0 E0C6 E0C14 MS1403-E-04 PMPCMB BCKPA BCKPB 0 BVL4 CVL4 MX1R1 MX2C0 0 SDOL0 F1A4 F1A12 F1B4 F1B12 F2A4 F2A12 F2B4 F2B12 F3A4 F3A12 F3B4 F3B12 E0A4 E0A12 E0B4 E0B12 E0C4 E0C12 D2 0 PMDAL PMMP2 PLL2 0 BCKP INR0 MGNL2 0 0 LOPS 0 0 0 LVL2 HPG2 SPKG2 IVL2 IVR2 REF2 D1 PMPFIL PMDRC MICL1 PLL1 M/S DIF1 INL1 MGNL1 DCLKP DACR PMRO PMHPR D0 PMVCM PMEQ PMMP1 PLL0 PMPLL DIF0 INL0 MGNL0 DMIC DACL PMLO PMHPL CPMODE1 CPMODE0 RCVPS LVL1 HPG1 SPKG1 IVL1 IVR1 REF1 PMRCV LVL0 HPG0 SPKG0 IVL0 IVR0 REF0 PFMXR0 PFMXL1 PFMXL0 WTM0 RGAIN0 ADM SMUTE DASEL0 FIL3 EQ3 SVAL2 OVL2 OVR2 ZTM1 LMTH1 IVOLC OVTM PFSDO 0 EQ2 SVAL1 OVL1 OVR1 PMSRAI FMTA1 FMTB1 SVB1 BVL1 CVL1 MX1L1 MX2A1 MXSB1 SBMX1 F1A1 F1A9 F1B1 F1B9 F2A1 F2A9 F2B1 F2B9 F3A1 F3A9 F3B1 F3B9 E0A1 E0A9 E0B1 E0B9 E0C1 E0C9 ZTM0 LMTH0 ALC OVOLC PFSEL 0 EQ1 SVAL0 OVL0 OVR0 PMSRAO LAWA0 LAWB0 SVB2 BVL2 CVL2 MX1L2 MX2B0 MXSB2 0 F1A2 F1A10 F1B2 F1B10 F2A2 F2A10 F2B2 F2B10 F3A2 F3A10 F3B2 F3B10 E0A2 E0A10 E0B2 E0B10 E0C2 E0C10 PMPCMA FMTA0 FMTB0 SVB0 BVL0 CVL0 MX1L0 MX2A0 MXSB0 SBMX0 F1A0 F1A8 F1B0 F1B8 F2A0 F2A8 F2B0 F2B8 F3A0 F3A8 F3B0 F3B8 E0A0 E0A8 E0B0 E0B8 E0C0 E0C8 2014/12 - 125 - [AK4678] Addr 3BH 3CH 3DH 3EH 3FH 40H 41H 42H 43H 44H 45H 46H 47H 48H 49H 4AH 4BH 4CH 4DH 4EH 4FH 50H 51H 52H 53H 54H 55H 56H 57H 58H 59H 5AH 5BH 5CH 5DH 5EH 5FH 60H 61H 62H 63H 64H 65H 66H 67H 68H 69H 6AH 6BH 6CH 6DH 6EH 6FH Register Name E1 Co-efficient 0 E1 Co-efficient 1 E1 Co-efficient 2 E1 Co-efficient 3 E1 Co-efficient 4 E1 Co-efficient 5 E2 Co-efficient 0 E2 Co-efficient 1 E2 Co-efficient 2 E2 Co-efficient 3 E2 Co-efficient 4 E2 Co-efficient 5 E3 Co-efficient 0 E3 Co-efficient 1 E3 Co-efficient 2 E3 Co-efficient 3 E3 Co-efficient 4 E3 Co-efficient 5 Reserved Reserved Reserved 5band E1 Co-efficient 0 5band E1 Co-efficient 1 5band E1 Co-efficient 2 5band E1 Co-efficient 3 5band E2 Co-efficient 0 5band E2 Co-efficient 1 5band E2 Co-efficient 2 5band E2 Co-efficient 3 5band E2 Co-efficient 4 5band E2 Co-efficient 5 5band E3 Co-efficient 0 5band E3 Co-efficient 1 5band E3 Co-efficient 2 5band E3 Co-efficient 3 5band E3 Co-efficient 4 5band E3 Co-efficient 5 5band E4 Co-efficient 0 5band E4 Co-efficient 1 5band E4 Co-efficient 2 5band E4 Co-efficient 3 5band E4 Co-efficient 4 5band E4 Co-efficient 5 5band E5 Co-efficient 0 5band E5 Co-efficient 1 5band E5 Co-efficient 2 5band E5 Co-efficient 3 5band EQ1 Gain 5band EQ2 Gain 5band EQ3 Gain 5band EQ4 Gain 5band EQ5 Gain Reserved D7 E1A7 E1A15 E1B7 E1B15 E1C7 E1C15 E2A7 E2A15 E2B7 E2B15 E2C7 E2C15 E3A7 E3A15 E3B7 E3B15 E3C7 E3C15 0 0 0 5E1A7 0 5E1B7 0 5E2A7 5E2A15 5E2B7 5E2B15 5E2C7 5E2C15 5E3A7 5E3A15 5E3B7 5E3B15 5E3C7 5E3C15 5E4A7 5E4A15 5E4B7 5E4B15 5E4C7 5E4C15 5E5A7 0 5E5B7 0 0 0 0 0 0 0 D6 E1A6 E1A14 E1B6 E1B14 E1C6 E1C14 E2A6 E2A14 E2B6 E2B14 E2C6 E2C14 E3A6 E3A14 E3B6 E3B14 E3C6 E3C14 0 0 0 5E1A6 0 5E1B6 0 5E2A6 5E2A14 5E2B6 5E2B14 5E2C6 5E2C14 5E3A6 5E3A14 5E3B6 5E3B14 5E3C6 5E3C14 5E4A6 5E4A14 5E4B6 5E4B14 5E4C6 5E4C14 5E5A6 0 5E5B6 0 0 0 0 0 0 0 D5 E1A5 E1A13 E1B5 E1B13 E1C5 E1C13 E2A5 E2A13 E2B5 E2B13 E2C5 E2C13 E3A5 E3A13 E3B5 E3B13 E3C5 E3C13 0 0 0 5E1A5 5E1A13 5E1B5 5E1B13 5E2A5 5E2A13 5E2B5 5E2B13 5E2C5 5E2C13 5E3A5 5E3A13 5E3B5 5E3B13 5E3C5 5E3C13 5E4A5 5E4A13 5E4B5 5E4B13 5E4C5 5E4C13 5E5A5 5E5A13 5E5B5 5E5B13 EQ1G5 EQ2G5 EQ3G5 EQ4G5 EQ5G5 0 MS1403-E-04 D4 E1A4 E1A12 E1B4 E1B12 E1C4 E1C12 E2A4 E2A12 E2B4 E2B12 E2C4 E2C12 E3A4 E3A12 E3B4 E3B12 E3C4 E3C12 0 0 0 5E1A4 5E1A12 5E1B4 5E1B12 5E2A4 5E2A12 5E2B4 5E2B12 5E2C4 5E2C12 5E3A4 5E3A12 5E3B4 5E3B12 5E3C4 5E3C12 5E4A4 5E4A12 5E4B4 5E4B12 5E4C4 5E4C12 5E5A4 5E5A12 5E5B4 5E5B12 EQ1G4 EQ2G4 EQ3G4 EQ4G4 EQ5G4 0 D3 E1A3 E1A11 E1B3 E1B11 E1C3 E1C11 E2A3 E2A11 E2B3 E2B11 E2C3 E2C11 E3A3 E3A11 E3B3 E3B11 E3C3 E3C11 0 0 0 5E1A3 5E1A11 5E1B3 5E1B11 5E2A3 5E2A11 5E2B3 5E2B11 5E2C3 5E2C11 5E3A3 5E3A11 5E3B3 5E3B11 5E3C3 5E3C11 5E4A3 5E4A11 5E4B3 5E4B11 5E4C3 5E4C11 5E5A3 5E5A11 5E5B3 5E5B11 EQ1G3 EQ2G3 EQ3G3 EQ4G3 EQ5G3 0 D2 E1A2 E1A10 E1B2 E1B10 E1C2 E1C10 E2A2 E2A10 E2B2 E2B10 E2C2 E2C10 E3A2 E3A10 E3B2 E3B10 E3C2 E3C10 0 0 0 5E1A2 5E1A10 5E1B2 5E1B10 5E2A2 5E2A10 5E2B2 5E2B10 5E2C2 5E2C10 5E3A2 5E3A10 5E3B2 5E3B10 5E3C2 5E3C10 5E4A2 5E4A10 5E4B2 5E4B10 5E4C2 5E4C10 5E5A2 5E5A10 5E5B2 5E5B10 EQ1G2 EQ2G2 EQ3G2 EQ4G2 EQ5G2 0 D1 E1A1 E1A9 E1B1 E1B9 E1C1 E1C9 E2A1 E2A9 E2B1 E2B9 E2C1 E2C9 E3A1 E3A9 E3B1 E3B9 E3C1 E3C9 0 0 0 5E1A1 5E1A9 5E1B1 5E1B9 5E2A1 5E2A9 5E2B1 5E2B9 5E2C1 5E2C9 5E3A1 5E3A9 5E3B1 5E3B9 5E3C1 5E3C9 5E4A1 5E4A9 5E4B1 5E4B9 5E4C1 5E4C9 5E5A1 5E5A9 5E5B1 5E5B9 EQ1G1 EQ2G1 EQ3G1 EQ4G1 EQ5G1 0 D0 E1A0 E1A8 E1B0 E1B8 E1C0 E1C8 E2A0 E2A8 E2B0 E2B8 E2C0 E2C8 E3A0 E3A8 E3B0 E3B8 E3C0 E3C8 0 0 0 5E1A0 5E1A8 5E1B0 5E1B8 5E2A0 5E2A8 5E2B0 5E2B8 5E2C0 5E2C8 5E3A0 5E3A8 5E3B0 5E3B8 5E3C0 5E3C8 5E4A0 5E4A8 5E4B0 5E4B8 5E4C0 5E4C8 5E5A0 5E5A8 5E5B0 5E5B8 EQ1G0 EQ2G0 EQ3G0 EQ4G0 EQ5G0 0 2014/12 - 126 - [AK4678] Addr 70H 71H 72H 73H 74H 75H 76H 77H 78H 79H 7AH 7BH 7CH 7DH 7EH 7FH 80H 81H 82H 83H 84H 85H 86H 87H 88H 89H 8AH 8BH 8CH 8DH 8EH 8FH 90H 91H 92H 93H 94H 95H 96H 97H 98H 99H 9AH 9BH 9CH 9DH 9EH 9FH Register Name DRC Mode Control NS Control NS Gain & ATT Control NS On Level NS Off Level NS Reference Select NS LPF Co-efficient 0 NS LPF Co-efficient 1 NS LPF Co-efficient 2 NS LPF Co-efficient 3 NS HPF Co-efficient 0 NS HPF Co-efficient 1 NS HPF Co-efficient 2 NS HPF Co-efficient 3 Reserved Reserved DVLC Filter Select DVLC Mode Control DVLCL Curve X1 DVLCL Curve Y1 DVLCL Curve X2 DVLCL Curve Y2 DVLCL Curve X3 DVLCL Curve Y3 DVLCL Slope 1 DVLCL Slope 2 DVLCL Slope 3 DVLCL Slope 4 DVLCM Curve X1 DVLCM Curve Y1 DVLCM Curve X2 DVLCM Curve Y2 DVLCM Curve X3 DVLCM Curve Y3 DVLCM Slope 1 DVLCM Slope 2 DVLCM Slope 3 DVLCM Slope 4 DVLCH Curve X1 DVLCH Curve Y1 DVLCH Curve X2 DVLCH Curve Y2 DVLCH Curve X3 DVLCH Curve Y3 DVLCH Slope 1 DVLCH Slope 2 DVLCH Slope 3 DVLCH Slope 4 D7 0 0 0 NSIAF1 NSOAF1 0 NSLA7 0 NSLB7 0 NSHA7 0 NSHB7 0 0 0 DLLPF1 D6 D5 DLMAT2 DLMAT1 0 DRCM1 NSGAIN2 NSGAIN1 NSIAF0 0 NSOAF0 0 0 0 NSLA6 NSLA5 0 NSLA13 NSLB6 NSLB5 0 NSLB13 NSHA6 NSHA5 0 NSHA13 NSHB6 NSHB5 0 NSHB13 0 0 0 0 DLLPF0 DMHPF1 DVRGAIN2 DVRGAIN1 DVRGAIN0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 L1G6 L2G6 L3G6 L4G6 0 0 0 0 0 0 M1G6 M2G6 M3G6 M4G6 0 0 0 0 0 0 H1G6 H2G6 H3G6 H4G6 VL1X5 VL1Y5 VL2X5 VL2Y5 0 0 L1G5 L2G5 L3G5 L4G5 VM1X5 VM1Y5 VM2X5 VM2Y5 0 0 M1G5 M2G5 M3G5 M4G5 VH1X5 VH1Y5 VH2X5 VH2Y5 0 0 H1G5 H2G5 H3G5 H4G5 MS1403-E-04 D4 D3 D2 DLMAT0 DRGAIN1 DRGAIN0 D1 DRCC1 DRCM0 0 NSLPF NSHPF NSGAIN0 0 NSATT2 NSATT1 NSTHL4 NSTHL3 NSTHL2 NSTHL1 NSTHH4 NSTHH3 NSTHH2 NSTHH1 0 NSREF3 NSREF2 NSREF1 NSLA4 NSLA3 NSLA2 NSLA1 NSLA12 NSLA11 NSLA10 NSLA9 NSLB4 NSLB3 NSLB2 NSLB1 NSLB12 NSLB11 NSLB10 NSLB9 NSHA4 NSHA3 NSHA2 NSHA1 NSHA12 NSHA11 NSHA10 NSHA9 NSHB4 NSHB3 NSHB2 NSHB1 NSHB12 NSHB11 NSHB10 NSHB9 0 0 0 0 0 0 0 0 DMHPF0 DMLPF1 DMLPF0 DHHPF1 DVLMAT2 DVLMAT1 DVLMAT0 DAF1 VL1X4 VL1X3 VL1X2 VL1X1 VL1Y4 VL1Y3 VL1Y2 VL1Y1 VL2X4 VL2X3 VL2X2 VL2X1 VL2Y4 VL2Y3 VL2Y2 VL2Y1 VL3X4 VL3X3 VL3X2 VL3X1 VL3Y4 VL3Y3 VL3Y2 VL3Y1 L1G4 L1G3 L1G2 L1G1 L2G4 L2G3 L2G2 L2G1 L3G4 L3G3 L3G2 L3G1 L4G4 L4G3 L4G2 L4G1 VM1X4 VM1X3 VM1X2 VM1X1 VM1Y4 VM1Y3 VM1Y2 VM1Y1 VM2X4 VM2X3 VM2X2 VM2X1 VM2Y4 VM2Y3 VM2Y2 VM2Y1 VM3X4 VM3X3 VM3X2 VM3X1 VM3Y4 VM3Y3 VM3Y2 VM3Y1 M1G4 M1G3 M1G2 M1G1 M2G4 M2G3 M2G2 M2G1 M3G4 M3G3 M3G2 M3G1 M4G4 M4G3 M4G2 M4G1 VH1X4 VH1X3 VH1X2 VH1X1 VH1Y4 VH1Y3 VH1Y2 VH1Y1 VH2X4 VH2X3 VH2X2 VH2X1 VH2Y4 VH2Y3 VH2Y2 VH2Y1 VH3X4 VH3X3 VH3X2 VH3X1 VH3Y4 VH3Y3 VH3Y2 VH3Y1 H1G4 H1G3 H1G2 H1G1 H2G4 H2G3 H2G2 H2G1 H3G4 H3G3 H3G2 H3G1 H4G4 H4G3 H4G2 H4G1 D0 DRCC0 NSCE NSATT0 NSTHL0 NSTHH0 NSREF0 NSLA0 NSLA8 NSLB0 NSLB8 NSHA0 NSHA8 NSHB0 NSHB8 0 0 DHHPF0 DAF0 VL1X0 VL1Y0 VL2X0 VL2Y0 VL3X0 VL3Y0 L1G0 L2G0 L3G0 L4G0 VM1X0 VM1Y0 VM2X0 VM2Y0 VM3X0 VM3Y0 M1G0 M2G0 M3G0 M4G0 VH1X0 VH1Y0 VH2X0 VH2Y0 VH3X0 VH3Y0 H1G0 H2G0 H3G0 H4G0 2014/12 - 127 - [AK4678] Addr A0H A1H A2H A3H A4H A5H A6H A7H A8H A9H AAH ABH ACH ADH AEH AFH Register Name DVLCL LPF Co-efficient 0 DVLCL LPF Co-efficient 1 DVLCL LPF Co-efficient 2 DVLCL LPF Co-efficient 3 DVLCM HPF Co-efficient 0 DVLCM HPF Co-efficient 1 DVLCM HPF Co-efficient 2 DVLCM HPF Co-efficient 3 DVLCM LPF Co-efficient 0 DVLCM LPF Co-efficient 1 DVLCM LPF Co-efficient 2 DVLCM LPF Co-efficient 3 DVLCH HPF Co-efficient 0 DVLCH HPF Co-efficient 1 DVLCH HPF Co-efficient 2 DVLCH HPF Co-efficient 3 D7 DLLA7 0 DLLB7 0 DMHA7 0 DMHB7 0 DMLA7 0 DMLB7 0 DHHA7 0 DHHB7 0 D6 DLLA6 0 DLLB6 0 DMHA6 0 DMHB6 0 DMLA6 0 DMLB6 0 DHHA6 0 DHHB6 0 D5 DLLA5 DLLA13 DLLB5 DLLB13 DMHA5 DMHA13 DMHB5 DMHB13 DMLA5 DMLA13 DMLB5 DMLB13 DHHA5 DHHA13 DHHB5 DHHB13 D4 D3 D2 DLLA4 DLLA3 DLLA2 DLLA12 DLLA11 DLLA10 DLLB4 DLLB3 DLLB2 DLLB12 DLLB11 DLLB10 DMHA4 DMHA3 DMHA2 DMHA12 DMHA11 DMHA10 DMHB4 DMHB3 DMHB2 DMHB12 DMHB11 DMHB10 DMLA4 DMLA3 DMLA2 DMLA12 DMLA11 DMLA10 DMLB4 DMLB3 DMLB2 DMLB12 DMLB11 DMLB10 DHHA4 DHHA3 DHHA2 DHHA12 DHHA11 DHHA10 DHHB4 DHHB3 DHHB2 DHHB12 DHHB11 DHHB10 D1 DLLA1 DLLA9 DLLB1 DLLB9 DMHA1 DMHA9 DMHB1 DMHB9 DMLA1 DMLA9 DMLB1 DMLB9 DHHA1 DHHA9 DHHB1 DHHB9 D0 DLLA0 DLLA8 DLLB0 DLLB8 DMHA0 DMHA8 DMHB0 DMHB8 DMLA0 DMLA8 DMLB0 DMLB8 DHHA0 DHHA8 DHHB0 DHHB8 Note 68. PDN pin = “L” resets the registers to their default values. Note 69. The bits defined as 0 must contain a “0” value. Note 70. For Addresses B0H to FFH, data must not be written. MS1403-E-04 2014/12 - 128 - [AK4678] ■ Register Definitions Addr 00H Register Name Power Management 0 R/W Default D7 0 R 0 D6 0 R 0 D5 PMADR R/W 0 D4 PMADL R/W 0 D3 0 R 0 D2 0 R 0 D1 PMPFIL R/W 0 D0 PMVCM R/W 0 PMVCM: VCOM Power Management 0: Power down (default) 1: Power up When any blocks are powered-up, the PMVCM bit must be set to “1”. PMVCM bit can be set to “0” only when all power management bits are “0”. PMPFIL: Programmable Filter Block Power Management 0: Power down (default) 1: Power up PMADL: MIC-Amp Lch & ADC Lch Power Management 0: Power down (default) 1: Power up When the PMADL(PMDML) or PMADR(PMDMR) bit is changed from “0” to “1”, the digital initialization cycle (1059/fs=24ms @ 44.1kHz, ADRST bit = “0”) starts. After initializing, digital data of the ADC is output. PMADR: MIC-Amp Rch & ADC Rch Power Management 0: Power down (default) 1: Power up Each block can be powered-down respectively by writing “0” in each bit of this address. When the PDN pin is “L”, all blocks are powered-down regardless of setting of this address. In this case, register is initialized to the default value. When all power management bits are “0”, all blocks are powered-down. The register values remain unchanged. Power supply current is 50μA(typ) in this case. For fully shut down (typ. 1μA), the PDN pin should be “L”. MS1403-E-04 2014/12 - 129 - [AK4678] Addr 01H Register Name Power Management 1 R/W Default D7 0 R 0 D6 0 R 0 D5 0 R 0 D4 0 R 0 D3 PMDAR R/W 0 D2 PMDAL R/W 0 D1 PMDRC R/W 0 D0 PMEQ R/W 0 PMEQ: 5-band Parametric Equalizer Block Power Management 0: Power down (default) 1: Power up PMDRC: Dynamic Range Control Block Power Management 0: Power down (default) 1: Power up PMDAL: DAC Lch Power Management 0: Power down (default) 1: Power up PMDAR: DAC Rch Power Management 0: Power down (default) 1: Power up Each block can be powered-down respectively by writing “0” in each bit of this address. When the PDN pin is “L”, all blocks are powered-down regardless of setting of this address. In this case, register is initialized to the default value. When all power management bits are “0”, all blocks are powered-down. The register values remain unchanged. Power supply current is 50μA(typ) in this case. For fully shut down (typ. 1μA), the PDN pin should be “L”. Addr 02H Register Name Power Management 1 R/W Default D7 ADRST R/W 0 D6 0 R 0 D5 0 R 0 D4 0 R 0 D3 MICL2 R/W 0 D2 PMMP2 R/W 0 D1 MICL1 R/W 0 D0 PMMP1 R/W 0 PMMP1: MPWR1 pin Power Management 0: Power down: Hi-Z (default) 1: Power up MICL1: MIC Power (MPWR1 pin) Output Level select Default “0”, typ. 2.5V (Table 22) PMMP2: MPWR2 pin Power Management 0: Power down: Hi-Z (default) 1: Power up MICL2: MIC Power (MPWR2 pin) Output Level Select Default “0”, typ. 2.5V (Table 22) ADRST: ADC Initialization Cycle Setting 0: 1059/fs (default) 1: 267/fs MS1403-E-04 2014/12 - 130 - [AK4678] Addr 03H Register Name PLL Mode Select 0 R/W Default D7 FS3 R/W 1 D6 FS2 R/W 1 D5 FS1 R/W 1 D4 FS0 R/W 1 D3 PLL3 R/W 0 D2 PLL2 R/W 1 D1 PLL1 R/W 1 D0 PLL0 R/W 0 D3 0 R 0 D2 0 R 0 D1 M/S R/W 0 D0 PMPLL R/W 0 D3 MSBS R/W 0 D2 BCKP R/W 0 D1 DIF1 R/W 1 D0 DIF0 R/W 0 PLL3-0: PLL Reference Clock Select (Table 5) Default: “0110” (MCKI pin, 12MHz) FS3-0: Sampling Frequency Select (Table 6, Table 11 and Table 14) Default: “1111” (fs=44.1kHz) Addr 04H Register Name PLL Mode Select 1 R/W Default D7 CM1 R/W 0 D6 CM0 R/W 0 D5 BCKO R/W 0 D4 0 R 0 PMPLL: PLL Power Management 0: EXT Mode and Power Down (default) 1: PLL Mode and Power up M/S: Master / Slave Mode Select 0: Slave Mode (default) 1: Master Mode BCKO: BICK Output Frequency Select at Master Mode (Table 9) CM1-0: MCKI Frequency Select at EXT Mode (Table 10 and Table 13) Default: “00” (256fs) Addr 05H Register Name Audio I/F Format Select R/W Default D7 0 R 0 D6 0 R 0 D5 0 R 0 D4 SDOD R/W 0 DIF1-0: Audio Interface Format (Table 18) Default: “10” (24bit Left justified) BCKP: BICK Polarity at DSP Mode (Table 19) “0”: SDTO is output by the rising edge (“”) of BICK and SDTI is latched by the falling edge (“”). (default) “1”: SDTO is output by the falling edge (“”) of BICK and SDTI is latched by the rising edge (“”). MSBS: LRCK Phase at DSP Mode (Table 19) “0”: The rising edge (“”) of LRCK is half clock of BICK before the channel change. (default) “1”: The rising edge (“”) of LRCK is one clock of BICK before the channel change. SDOD: SDTO Disable (Table 83) “0”: Enable (default) “1”: Disable (“L”) MS1403-E-04 2014/12 - 131 - [AK4678] Addr 06H Register Name MIC Signal Select R/W Default D7 0 R 0 D6 MDIF3 R/W 0 D5 MDIF2 R/W 0 D4 MDIF1 R/W 0 D3 INR1 R/W 0 D2 INR0 R/W 0 D1 INL1 R/W 0 D0 INL0 R/W 0 D5 MGNR1 R/W 0 D4 MGNR0 R/W 1 D3 MGNL3 R/W 0 D2 MGNL2 R/W 1 D1 MGNL1 R/W 0 D0 MGNL0 R/W 1 D5 D4 PMDMR PMDML R/W 0 R/W 0 D3 DCLKE R/W 0 D2 0 R 0 D1 DCLKP R/W 0 D0 DMIC R/W 0 INL1-0: MIC-Amp Lch Input Source Select (Table 20) Default: “00” (LIN1) INR1-0: MIC-Amp Rch Input Source Select (Table 20) Default: “00” (RIN1) MDIF1: Line1 Input Type Select 0: Single-ended input (LIN1/RIN1 pins: default) 1: Full-differential input (IN1+/IN1 pins) MDIF2: Line2 Input Type Select 0: Single-ended input (LIN2/RIN2 pins: default) 1: Full-differential input (IN2/IN2+ pins) MDIF3: Line3 Input Type Select 0: Single-ended input (LIN3/RIN3 pins: default) 1: Full-differential input (IN3+/IN3 pins) Addr 07H Register Name MIC Amp Gain R/W Default D7 MGNR3 R/W 0 D6 MGNR2 R/W 1 MGNL3-0: MIC-Amp Lch Gain Control (Table 21) Default: “0101” (0dB) MGNR3-0: MIC-Amp Rch Gain Control (Table 21) Default: “0101” (0dB) Addr 08H Register Name Digital MIC R/W Default D7 0 R 0 D6 0 R 0 DMIC: Digital Microphone Connection Select 0: Analog Microphone (default) 1: Digital Microphone DCLKP: Data Latching Edge Select 0: Lch data is latched on the DMCLK rising edge (“”). (default) 1: Lch data is latched on the DMCLK falling edge (“”). DCLKE: DMCLK pin Output Clock Control 0: “L” Output (default) 1: 64fs Output PMDML/R: Input Signal Select with Digital Microphone (Table 77) Default: “0” When DMIC bit is “1”, these registers are enabled. ADC digital block is powered-down by PMDML = PMDMR bits = “0” when selecting a digital microphone input (DMIC bit = “1”). MS1403-E-04 2014/12 - 132 - [AK4678] Addr 09H Register Name DAC Signal Pass Select R/W Default D7 DACSR R/W 0 D6 DACSL R/W 0 D5 DACRR R/W 0 D4 DACRL R/W 0 D3 0 R 0 D2 0 R 0 D1 DACR R/W 0 D0 DACL R/W 0 DACL: Switch Control from DAC Lch to LOUT 0: OFF (default) 1: ON DACR: Switch Control from DAC Rch to ROUT 0: OFF (default) 1: ON DACRL: Switch Control from DAC Lch to RCV-Amp 0: OFF (default) 1: ON DACRR: Switch Control from DAC Rch to RCV-Amp 0: OFF (default) 1: ON DACSL: Switch Control from DAC Lch to SPK-Amp 0: OFF (default) 1: ON DACSR: Switch Control from DAC Rch to SPK-Amp 0: OFF (default) 1: ON MS1403-E-04 2014/12 - 133 - [AK4678] Addr 0AH Register Name D7 0 R 0 LINEOUT Power Management R/W Default D6 0 R 0 D5 0 R 0 D4 LODIF R/W 0 D3 LOM R/W 0 D2 LOPS R/W 0 D1 PMRO R/W 0 D0 PMLO R/W 0 D3 LOMH R/W 0 D2 0 R 0 D1 PMHPR R/W 0 D0 PMHPL R/W 0 PMLO: LOUT Power Management 0: Power down (default) 1: Power up PMRO: ROUT Power Management 0: Power down (default) 1: Power up LOPS: LOUT/ROUT Power Management 0: Normal Operation (default) 1: Power Save Mode LOM: Mono Mixing from DAC to LOUT/ROUT 0: Stereo Mixing (default) 1: Mono Mixing LODIF: Lineout Mode Select 0: Stereo Single-ended Line Output (LOUT/ROUT pins) (default) 1: Mono Full-differential Output (LOP/LON pins) Addr 0BH Register Name HP Power Management R/W Default D7 HPTM1 R/W 0 D6 HPTM0 R/W 0 D5 0 R 0 D4 0 R 0 PMHPL: HPL Power Management 0: Power down (default) 1: Power up PMHPR: HPR Power Management 0: Power down (default) 1: Power up LOMH: Mono Mixing from DAC to HPL/HPR 0: Stereo Mixing (default) 1: Mono Mixing HPTM1-0: Headphone-Amp Volume Zero Crossing Timeout Period (Table 107) Default: “00” (128/fs) MS1403-E-04 2014/12 - 134 - [AK4678] Addr 0CH Register Name Charge Pump Control R/W Default D7 0 R 0 D6 D5 D4 VDDTM2 VDDTM1 VDDTM0 R/W 1 R/W 0 R/W 1 D3 0 R 0 D2 0 R 0 D1 D0 CPMODE1 CPMODE0 R/W 0 R/W 0 D1 RCVPS R/W 0 D0 PMRCV R/W 0 D1 LVL1 R/W 1 D0 LVL0 R/W 1 CPMODE1-0: Charge-pump Mode Setting (Table 108) Default: “00” (Automatic Switching) VDDTM2-0: VDD Mode Waiting Period (Table 109) Default: “101” (32768/fs) Addr 0DH Register Name SPK & RCV Power Management R/W Default D7 THDET R 0 D6 0 R 0 D5 TEST R/W 0 D6 0 R 0 D5 0 R 0 D4 PMSPK R/W 0 D3 0 R 0 D2 0 R 0 PMRCV: Receiver-Amp Power Management 0: Power down (default) 1: Power up RCVPS: Receiver-Amp Power Save Mode 0: Normal Operation (default) 1: Power Save Mode PMSPK: Speaker-Amp Power Management 0: Power down (default) 1: Power up TEST: Device TEST mode Enable. 0: Normal operation (default) 1: TEST mode TEST bit must be always “0”. THDET: Thermal Shutdown Detection 0: Normal Operation (default) 1: Thermal Shutdown status Addr 0EH Register Name LINEOUT Volume Control R/W Default D7 0 R 0 D4 0 R 0 D3 0 R 0 D2 LVL2 R/W 0 LVL2-0: LINEOUT Volume Control (Table 101) Default: “3H” (0dB) MS1403-E-04 2014/12 - 135 - [AK4678] Addr 0FH Register Name HP Volume Control R/W Default D7 0 R 0 D6 0 R 0 D5 HPG5 R/W 1 D4 HPG4 R/W 0 D3 HPG3 R/W 0 D2 HPG2 R/W 0 D1 HPG1 R/W 1 D0 HPG0 R/W 1 D5 RCVG1 R/W 1 D4 RCVG0 R/W 1 D3 SPKG3 R/W 1 D2 SPKG2 R/W 0 D1 SPKG1 R/W 1 D0 SPKG0 R/W 1 D5 IVL5 IVR5 R/W 0 D4 IVL4 IVR4 R/W 1 D3 IVL3 IVR3 R/W 0 D2 IVL2 IVR2 R/W 0 D1 IVL1 IVR1 R/W 0 D0 IVL0 IVR0 R/W 1 D3 REF3 R/W 0 D2 REF2 R/W 0 D1 REF1 R/W 0 D0 REF0 R/W 1 HPG5-0: Headphone Volume Control (Table 106) Default: “23H” (0dB) Addr 10H Register Name SPK & RCV Volume Control R/W Default D7 RCVG3 R/W 1 D6 RCVG2 R/W 0 SPKG3-0: Speaker Volume Control (Table 111) Default: “BH” (0dB) RCVG3-0: Receiver Volume Control (Table 104) Default: “BH” (0dB) Addr 11H 12H Register Name Lch Input Volume Control Rch Input Volume Control R/W Default D7 IVL7 IVR7 R/W 1 D6 IVL6 IVR6 R/W 0 IVL7-0, IVR7-0: Input Digital Volume; 0.375dB step, 242 Level (Table 37) Default: “91H” (0dB) Addr 13H Register Name ALC Reference Select R/W Default D7 REF7 R/W 1 D6 REF6 R/W 1 D5 REF5 R/W 1 D4 REF4 R/W 0 REF7-0: Reference Value at ALC Recovery Operation (Recording); 0.375dB step, 242 Level (Table 33) Default: “E1H” (+30.0dB) Addr 14H Register Name Digital Mixing Control R/W Default D7 D6 D5 D4 D3 D2 D1 D0 SRMXR1 SRMXR0 SRMXL1 SRMXL0 PFMXR1 PFMXR0 PFMXL1 PFMXL0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 PFMXL1-0: 5-band EQ Lch Input Mixing 1 (Table 85) Default: “00” (SDTI) PFMXR1-0: 5-band EQ Rch Input Mixing 1 (Table 86) Default: “00” (SDTI) SRMXL1-0: 5-band EQ Lch Input Mixing 2 (Table 87) Default: “00” (SDTI) SRMXR1-0: 5-band EQ Rch Input Mixing 2 (Table 88) Default: “00” (SDTI) MS1403-E-04 2014/12 - 136 - [AK4678] Addr 15H Register Name ALC Timer Select R/W Default D7 FR R/W 0 D6 RFST1 R/W 0 D5 RFST0 R/W 0 D4 WTM2 R/W 0 D3 WTM1 R/W 0 D2 WTM0 R/W 0 D1 ZTM1 R/W 0 D0 ZTM0 R/W 0 D2 RGAIN0 R/W 0 D1 LMTH1 R/W 0 D0 LMTH0 R/W 0 ZTM1-0: ALC Limiter/Recovery Operation Zero Crossing Timeout Period (Table 30) Default: “00” (128/fs) WTM2-0: ALC Recovery Waiting Period (Table 31) Default: “000” (128/fs) RFST1-0: ALC Fast recovery Speed (Table 34) Default: “00” (4times) FR: Fast recovery Enable 0: Enable (default) 1: Disable ddr 16H Register Name ALC Mode Control R/W Default D7 LFST R/W 0 D6 ZELMN R/W 0 D5 LMAT1 R/W 0 D4 LMAT0 R/W 0 D3 RGAIN1 R/W 0 LMTH1-0: ALC Limiter Detection Level / Recovery Counter Reset Level (Table 28) Default: “00” RGAIN1-0: ALC Recovery GAIN Step (Table 32) Default: “00” LMAT1-0: ALC Limiter ATT Step (Table 29) Default: “00” ZELMN: Zero Crossing Detection Enable at ALC Limiter Operation 0: Enable (default) 1: Disable LFST: ALC Limiter operation when the output level exceeds FS(full-scale) level. 0: The volume is changed at zero crossing or zero crossing time out (default) 1: When output of ALC is larger than FS, IVL/IVR values are changed immediately (1/fs). MS1403-E-04 2014/12 - 137 - [AK4678] Addr 17H Register Name Mode Control 0 R/W Default D7 0 R 0 D6 0 R 0 D5 SDIM1 R/W 0 D4 SDIM0 R/W 0 D3 5EQ R/W 0 D2 ADM R/W 0 D1 IVOLC R/W 1 D0 ALC R/W 0 ALC: ALC Enable 0: ALC Disable (default) 1: ALC Enable IVOLC: Input Digital Volume Control Mode Select 0: Independent 1: Dependent (default) When IVOLC bit = “1”, IVL7-0 bits control both Lch and Rch volume level, while register values of IVL7-0 bits are not written to IVR7-0 bits. When IVOLC bit = “0”, IVL7-0 bits control Lch level and IVR7-0 bits control Rch level, respectively. ADM: Mono Recording (Table 79) 0: Stereo (default) 1: Mono: (L+R)/2 5EQ: Select 5-Band Equalizer 0: OFF (default) 1: ON SDIM1-0: SDTI Input Signal Select (Table 84) Default: “00” (L=Lch, R=Rch) Addr 18H Register Name Mode Control 0 R/W Default D7 0 R 0 D6 OVTMB R/W 1 D5 BIV2 R/W 0 D4 BIV1 R/W 0 D3 BIV0 R/W 0 D2 SMUTE R/W 0 D1 OVTM R/W 1 D0 OVOLC R/W 1 OVOLC: Output Digital Volume Control Mode Select 0: Independent 1: Dependent (default) When OVOLC bit = “1”, OVL6-0 bits control both Lch and Rch volume level, while register values of OVL6-0 bits are not written to OVR6-0 bits. When OVOLC bit = “0”, OVL6-0 bits control Lch level and OVR6-0 bits control Rch level, respectively. OVTM: Digital Volume Transition Time Setting 0: 128/fs 1: 256/fs (default) This is the transition time between OVL/R6-0 bits = 00H and 7FH. SMUTE: Soft Mute Control 0: Normal Operation (default) 1: DAC outputs soft-muted BIV2-0: SDTIB Input Volume Control (Table 75) Default: “0H” (0dB) OVTMB: Digital Volume Control (DATT-B and DATT-C) Transition Time Setting 0: 128/fs 1: 256/fs (default) This is the transition time between BVL6-0 bits or CVL6-0 bits = 00H and 7FH. MS1403-E-04 2014/12 - 138 - [AK4678] Addr 19H Register Name Digital Filter Select 0 R/W Default D7 0 R 0 D6 HPFC1 R/W 0 D5 HPFC0 R/W 0 D4 HPFAD R/W 1 D3 D2 DASEL1 DASEL0 R/W R/W 0 0 D1 PFSDO R/W 1 D0 PFSEL R/W 0 PFSEL: Signal Select of Programmable Filter Block (Table 78) 0: ADC Output Data (default) 1: SDTI Input Data PFSDO: SDTO Output and SVOLA Input Signal Select (Table 80) 0: ADC (+1st HPF) Output 1: Programmable Filter Output (default) DASEL1-0: DAC Input Signal Select (Table 89) Default: “00” (L= DATT-A Lch, R= DATT-A Rch) HPFAD: HPF1 Control of ADC 0: OFF 1: ON (default) When HPFAD bit is “1”, the settings of HPFC1-0 bits are enabled. When HPFAD bit is “0”, HPFAD block is through (0dB). When PMADL bit = “1” or PMADR bit = “1”, set HPFAD bit to “1”. HPFC1-0: Cut-off Frequency Setting of HPF1 (ADC) (Table 38) Default: “00” (3.4Hz @ fs = 44.1kHz) MS1403-E-04 2014/12 - 139 - [AK4678] Addr 1AH Register Name Digital Filter Select 1 R/W Default D7 GN1 R/W 0 D6 GN0 R/W 0 D5 LPF R/W 0 D4 HPF R/W 0 D3 EQ0 R/W 0 D2 FIL3 R/W 0 D1 0 R 0 D0 0 R 0 FIL3: FIL3 (Stereo Separation Emphasis Filter) Coefficient Setting Enable 0: Disable (default) 1: Enable When FIL3 bit is “1”, the settings of F3A13-0 and F3B13-0 bits are enabled. When FIL3 bit is “0”, FIL3 block is OFF (MUTE). EQ0: EQ0 (Gain Compensation Filter) Coefficient Setting Enable 0: Disable (default) 1: Enable When EQ0 bit is “1”, the settings of E0A15-0, E0B13-0 and E0C15-0 bits are enabled. When EQ0 bit is “0”, EQ0 block is through (0dB). HPF: HPF Coefficient Setting Enable 0: Disable (default) 1: Enable When HPF bit is “1”, the settings of F1A13-0 and F1B13-0 bits are enabled. When HPF bit is “0”, HPF block is through (0dB). LPF: LPF Coefficient Setting Enable 0: Disable (default) 1: Enable When LPF bit is “1”, the settings of F2A13-0 and F2B13-0 bits are enabled. When LPF bit is “0”, LPF block is through (0dB). GN1-0: Gain Select at GAIN block (Table 27) Default: “00” (0dB) Addr 1BH Register Name Digital Filter Select 2 R/W Default D7 0 R 0 D6 0 R 0 D5 0 R 0 D4 0 R 0 D3 0 R 0 D2 EQ3 R/W 0 D1 EQ2 R/W 0 D0 EQ1 R/W 0 EQ1: Equalizer 1 Coefficient Setting Enable 0: Disable (default) 1: Enable When EQ1 bit is “1”, the settings of E1A15-0, E1B15-0 and E1C15-0 bits are enabled. When EQ1 bit is “0”, EQ1 block is through (0dB). EQ2: Equalizer 2 Coefficient Setting Enable 0: Disable (default) 1: Enable When EQ2 bit is “1”, the settings of E2A15-0, E2B15-0 and E2C15-0 bits are enabled. When EQ2 bit is “0”, EQ2 block is through (0dB). EQ3: Equalizer 3 Coefficient Setting Enable 0: Disable (default) 1: Enable When EQ3 bit is “1”, the settings of E3A15-0, E3B15-0 and E3C15-0 bits are enabled. When EQ3 bit is “0”, EQ3 block is through (0dB). MS1403-E-04 2014/12 - 140 - [AK4678] Addr 1CH Register Name Side Tone A Control R/W Default D7 0 R 0 D6 SVAR2 R/W 0 D5 SVAR1 R/W 0 D4 SVAR0 R/W 0 D3 0 R 0 D2 SVAL2 R/W 0 D1 SVAL1 R/W 0 D0 SVAL0 R/W 0 D4 OVL4 OVR4 R/W 0 D3 OVL3 OVR3 R/W 1 D2 OVL2 OVR2 R/W 1 D1 OVL1 OVR1 R/W 0 D0 OVL0 OVR0 R/W 0 SVAL2-0, SVAR2-0: Side Tone Volume A (SVOLA) (Table 39) Default: “000” (0dB) Addr 1DH 1EH Register Name Lch Output Volume Control Rch Output Volume Control R/W Default D7 0 0 R 0 D6 OVL6 OVR6 R/W 0 D5 OVL5 OVR5 R/W 0 OVL6-0, OVR6-0: Output Digital Volume (Table 68) Default: “0CH” (0dB) Addr 1FH Register Name PCM I/F Power Management R/W Default D7 PMMIX R/W 0 D6 D5 D4 D3 D2 D1 D0 PMSRBO PMSRBI PMPCMB PMOSC PMSRAO PMSRAI PMPCMA R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 PMPCMA: PCM I/F A Power Management 0: Power down (default) 1: Power up PMSRAI: SRCAI Power Management 0: Power down (default) 1: Power up PMSRAO: SRCAO Power Management 0: Power down (default) 1: Power up PMOSC: Internal Oscillator Power Management 0: Power down (default) 1: Power up PMPCMB: PCM I/F B Power Management 0: Power down (default) 1: Power up PMSRBI: SRCBI Power Management 0: Power down (default) 1: Power up PMSRBO: SRCBO Power Management 0: Power down (default) 1: Power up PMMIX: MIX1 Block Power Management 0: Power down (default) 1: Power up MS1403-E-04 2014/12 - 141 - [AK4678] Addr 20H Register Name PCM I/F Control 0 R/W Default D7 SDOAD R/W 0 D6 0 R 0 D5 MSBSA R/W 0 D4 BCKPA R/W 0 D3 LAWA1 R/W 0 D2 LAWA0 R/W 0 D1 FMTA1 R/W 0 D0 FMTA0 R/W 0 FMTA1-0: PCM I/F A Format (Table 117) Default: “00” (Mode 0) LAWA1-0: PCM I/F A Mode (Table 115) Default: “00” (Mode 0) BCKPA: P BICKA Polarity of PCM I/F A (Table 119) “0”: SDTOA is output by the rising edge (“”) of BICKA and SDTIA is latched by the falling edge (“”). (default) “1”: SDTOA is output by the falling edge (“”) of BICKA and SDTIA is latched by the rising edge (“”). MSBSA: SYNCA Phase of PCM I/F A (Table 119) “0”: The rising edge (“”) of SYNCA is half clock of BICKA before the channel change. (default) “1”: The rising edge (“”) of SYNCA is one clock of BICKA before the channel change. SDOAD: SDTOA Disable (Table 96) “0”: Enable (default) “1”: Disable (“L”) Addr 21H Register Name PCM I/F Control 1 R/W Default D7 SDOBD R/W 0 D6 0 R 0 D5 MSBSB R/W 0 D4 BCKPB R/W 0 D3 LAWB1 R/W 0 D2 LAWB0 R/W 0 D1 FMTB1 R/W 0 D0 FMTB0 R/W 0 FMTB1-0: PCM I/F B Format (Table 118) Default: “00” (Mode 0) LAWB1-0: PCM I/F B Mode (Table 116) Default: “00” (Mode 0) BCKPB: BICKB Polarity of PCM I/F B (Table 120) “0”: SDTOB is output by the rising edge (“”) of BICKB and SDTIB is latched by the falling edge (“”). (default) “1”: SDTOB is output by the falling edge (“”) of BICKB and SDTIB is latched by the rising edge (“”). MSBSB: SYNCB Phase of PCM I/F B (Table 120) “0”: The rising edge (“”) of SYNCB is half clock of BICKB before the channel change. (default) “1”: The rising edge (“”) of SYNCB is one clock of BICKB before the channel change. SDOBD: SDTOB Disable (Table 98) “0”: Enable (default) “1”: Disable (“L”) Addr 22H Register Name Side Tone Volume B Control R/W Default D7 0 R 0 D6 0 R 0 D5 0 R 0 D4 0 R 0 D3 0 R 0 D2 SVB2 R/W 0 D1 SVB1 R/W 0 D0 SVB0 R/W 0 SVB2-0: Side Tone Volume B (Table 74) Default: “0H” (0dB) MS1403-E-04 2014/12 - 142 - [AK4678] Addr 23H Register Name Digital Volume B Control R/W Default D7 0 R 0 D6 BVL6 R/W 0 D5 BVL5 R/W 0 D4 BVL4 R/W 0 D3 BVL3 R/W 1 D2 BVL2 R/W 1 D1 BVL1 R/W 0 D0 BVL0 R/W 0 D6 CVL6 R/W 0 D5 CVL5 R/W 0 D4 CVL4 R/W 0 D3 CVL3 R/W 1 D2 CVL2 R/W 1 D1 CVL1 R/W 0 D0 CVL0 R/W 0 D6 0 R 0 D5 MX1R2 R/W 0 D4 MX1R1 R/W 0 D3 MX1R0 R/W 0 D2 MX1L2 R/W 0 D1 MX1L1 R/W 0 D0 MX1L0 R/W 0 D5 MX2C1 R/W 0 D4 MX2C0 R/W 0 D3 MX2B1 R/W 0 D2 MX2B0 R/W 0 D1 MX2A1 R/W 0 D0 MX2A0 R/W 0 D5 0 R 0 D4 0 R 0 D3 0 R 0 D2 MXSB2 R/W 0 D1 MXSB1 R/W 0 D0 MXSB0 R/W 0 BVL6-0: Digital Volume B (Table 70) Default: “0CH” (0dB) Addr 24H Register Name Digital Volume C Control R/W Default D7 0 R 0 CVL6-0: Digital Volume C (Table 72) Default: “0CH” (0dB) Addr 25H Register Name Digital Mixing Control 0 R/W Default D7 0 R 0 MX1L2-0: MIX1 Lch Output Signal Select (Table 90) Default: “000” (DATT-B) MX1R2-0: MIX1 Rch Output Signal Select (Table 91) Default: “000” (DATT-B) Addr 26H Register Name Digital Mixing Control 1 R/W Default D7 0 R 0 D6 0 R 0 MX2A1-0: MIX2A Output Signal Select (Table 92) Default: “00” (BIVOL Lch) MX2B1-0: MIX2B Output Signal Select (Table 93) Default: “00” (DATT-A Lch) MX2C1-0: MIX2C Output Signal Select (Table 94) Default: “00” (MIX2A) Addr 27H Register Name Digital Mixing Control 2 R/W Default D7 0 R 0 D6 0 R 0 MXSB2-0: MIX3 Output Signal Select (Table 95) Default: “000” (DATT-A Lch, DATT-A Rch) MS1403-E-04 2014/12 - 143 - [AK4678] Addr 28H Register Name Digital Mixing Control 3 R/W Default D7 SDOR1 R/W 0 D6 SDOR0 R/W 0 D5 SDOL1 R/W 0 D4 SDOL0 R/W 0 D3 0 R 0 D2 0 R 0 D1 SBMX1 R/W 0 D0 SBMX0 R/W 0 SBXM1-0: DATT-C Input Signal Selec (Table 97) Default: “00” (SRCAI) SDOL1-0: SDTO Lch Output Mixing (Table 81) Default: “00” (Lch Signal Selected by Table 80) SDOR1-0: SDTO Rch Output Mixing (Table 82) Default: “00” (Rch Signal Selected by Table 80) MS1403-E-04 2014/12 - 144 - [AK4678] Addr 29H 2AH 2BH 2CH Register Name FIL1 Co-efficient 0 FIL1 Co-efficient 1 FIL1 Co-efficient 2 FIL1 Co-efficient 3 R/W Default D7 F1A7 0 F1B7 0 R/W D6 F1A6 0 F1B6 0 R/W D5 F1A5 F1A13 F1B5 F1B13 R/W D4 F1A4 F1A12 F1B4 F1B12 R/W D3 F1A3 F1A11 F1B3 F1B11 R/W D2 F1A2 F1A10 F1B2 F1B10 R/W D1 F1A1 F1A9 F1B1 F1B9 R/W D0 F1A0 F1A8 F1B0 F1B8 R/W F1A13-0 bits = “1FA9H”, F1B13-0 bits = “20ADH” F1A13-0, F1B13-B0: FIL1 (Wind-noise Reduction Filter) Coefficient (14bit x 2) Default: F1A13-0 bits = “1FA9H”, F1B13-0 bits = “20ADH” (fc=150Hz@fs=44.1kHz) Addr 2DH 2EH 2FH 30H Register Name FIL2 Co-efficient 0 FIL2 Co-efficient 1 FIL2 Co-efficient 2 FIL2 Co-efficient 3 R/W Default D7 F2A7 0 F2B7 0 R/W 0 D6 F2A6 0 F2B6 0 R/W 0 D5 F2A5 F2A13 F2B5 F2B13 R/W 0 D4 F2A4 F2A12 F2B4 F2B12 R/W 0 D3 F2A3 F2A11 F2B3 F2B11 R/W 0 D2 F2A2 F2A10 F2B2 F2B10 R/W 0 D1 F2A1 F2A9 F2B1 F2B9 R/W 0 D0 F2A0 F2A8 F2B0 F2B8 R/W 0 D4 F3A4 F3A12 F3B4 F3B12 E0A4 E0A12 E0B4 E0B12 E0C4 E0C12 R/W 0 D3 F3A3 F3A11 F3B3 F3B11 E0A3 E0A11 E0B3 E0B11 E0C3 E0C11 R/W 0 D2 F3A2 F3A10 F3B2 F3B10 E0A2 E0A10 E0B2 E0B10 E0C2 E0C10 R/W 0 D1 F3A1 F3A9 F3B1 F3B9 E0A1 E0A9 E0B1 E0B9 E0C1 E0C9 R/W 0 D0 F3A0 F3A8 F3B0 F3B8 E0A0 E0A8 E0B0 E0B8 E0C0 E0C8 R/W 0 F2A13-0, F2B13-B0: FIL2 (LPF) Coefficient (14bit x 2) Default: “0000H” Addr 31H 32H 33H 34H 35H 36H 37H 38H 39H 3AH Register Name FIL3 Co-efficient 0 FIL3 Co-efficient 1 FIL3 Co-efficient 2 FIL3 Co-efficient 3 EQ Co-efficient 0 EQ Co-efficient 1 EQ Co-efficient 2 EQ Co-efficient 3 EQ Co-efficient 4 EQ Co-efficient 5 R/W Default D7 F3A7 F3AS F3B7 0 E0A7 E0A15 E0B7 0 E0C7 E0C15 R/W 0 D6 F3A6 0 F3B6 0 E0A6 E0A14 E0B6 0 E0C6 E0C14 R/W 0 D5 F3A5 F3A13 F3B5 F3B13 E0A5 E0A13 E0B5 E0B13 E0C5 E0C13 R/W 0 F3A13-0, F3B13-0: FIL3 (Stereo Separation Emphasis Filter) Coefficient (14bit x 2) Default: “0000H” F3AS: FIL3(Stereo Separation Emphasis Filter) Select 0: HPF (default) 1: LPF E0A15-0, E0B13-0, E0C15-C0: EQ0 (Gain Compensation Filter) Coefficient (14bit x 1 + 16bit x 2) Default: “0000H” MS1403-E-04 2014/12 - 145 - [AK4678] Addr 3BH 3CH 3DH 3EH 3FH 40H 41H 42H 43H 44H 45H 46H 47H 48H 49H 4AH 4BH 4CH Register Name E1 Co-efficient 0 E1 Co-efficient 1 E1 Co-efficient 2 E1 Co-efficient 3 E1 Co-efficient 4 E1 Co-efficient 5 E2 Co-efficient 0 E2 Co-efficient 1 E2 Co-efficient 2 E2 Co-efficient 3 E2 Co-efficient 4 E2 Co-efficient 5 E3 Co-efficient 0 E3 Co-efficient 1 E3 Co-efficient 2 E3 Co-efficient 3 E3 Co-efficient 4 E3 Co-efficient 5 R/W Default D7 E1A7 E1A15 E1B7 E1B15 E1C7 E1C15 E2A7 E2A15 E2B7 E2B15 E2C7 E2C15 E3A7 E3A15 E3B7 E3B15 E3C7 E3C15 R/W 0 D6 E1A6 E1A14 E1B6 E1B14 E1C6 E1C14 E2A6 E2A14 E2B6 E2B14 E2C6 E2C14 E3A6 E3A14 E3B6 E3B14 E3C6 E3C14 R/W 0 D5 E1A5 E1A13 E1B5 E1B13 E1C5 E1C13 E2A5 E2A13 E2B5 E2B13 E2C5 E2C13 E3A5 E3A13 E3B5 E3B13 E3C5 E3C13 R/W 0 D4 E1A4 E1A12 E1B4 E1B12 E1C4 E1C12 E2A4 E2A12 E2B4 E2B12 E2C4 E2C12 E3A4 E3A12 E3B4 E3B12 E3C4 E3C12 R/W 0 D3 E1A3 E1A11 E1B3 E1B11 E1C3 E1C11 E2A3 E2A11 E2B3 E2B11 E2C3 E2C11 E3A3 E3A11 E3B3 E3B11 E3C3 E3C11 R/W 0 D2 E1A2 E1A10 E1B2 E1B10 E1C2 E1C10 E2A2 E2A10 E2B2 E2B10 E2C2 E2C10 E3A2 E3A10 E3B2 E3B10 E3C2 E3C10 R/W 0 D1 E1A1 E1A9 E1B1 E1B9 E1C1 E1C9 E2A1 E2A9 E2B1 E2B9 E2C1 E2C9 E3A1 E3A9 E3B1 E3B9 E3C1 E3C9 R/W 0 D0 E1A0 E1A8 E1B0 E1B8 E1C0 E1C8 E2A0 E2A8 E2B0 E2B8 E2C0 E2C8 E3A0 E3A8 E3B0 E3B8 E3C0 E3C8 R/W 0 E1A15-0, E1B15-0, E1C15-0: Equalizer 1 Coefficient (16bit x3) Default: “0000H” E2A15-0, E2B15-0, E2C15-0: Equalizer 2 Coefficient (16bit x3) Default: “0000H” E3A15-0, E3B15-0, E3C15-0: Equalizer 3 Coefficient (16bit x3) Default: “0000H” MS1403-E-04 2014/12 - 146 - [AK4678] Addr 50H 51H 52H 53H 54H 55H 56H 57H 58H 59H 5AH 5BH 5CH 5DH 5EH 5FH 60H 61H 62H 63H 64H 65H 66H 67H 68H 69H Register Name 5band E1 Co-efficient 0 5band E1 Co-efficient 1 5band E1 Co-efficient 2 5band E1 Co-efficient 3 5band E2 Co-efficient 0 5band E2 Co-efficient 1 5band E2 Co-efficient 2 5band E2 Co-efficient 3 5band E2 Co-efficient 4 5band E2 Co-efficient 5 5band E3 Co-efficient 0 5band E3 Co-efficient 1 5band E3 Co-efficient 2 5band E3 Co-efficient 3 5band E3 Co-efficient 4 5band E3 Co-efficient 5 5band E4 Co-efficient 0 5band E4 Co-efficient 1 5band E4 Co-efficient 2 5band E4 Co-efficient 3 5band E4 Co-efficient 4 5band E4 Co-efficient 5 5band E5 Co-efficient 0 5band E5 Co-efficient 1 5band E5 Co-efficient 2 5band E5 Co-efficient 3 R/W D7 5E1A7 0 5E1B7 0 5E2A7 5E2A15 5E2B7 5E2B15 5E2C7 5E2C15 5E3A7 5E3A15 5E3B7 5E3B15 5E3C7 5E3C15 5E4A7 5E4A15 5E4B7 5E4B15 5E4C7 5E4C15 5E5A7 0 5E5B7 0 R/W D6 5E1A6 0 5E1B6 0 5E2A6 5E2A14 5E2B6 5E2B14 5E2C6 5E2C14 5E3A6 5E3A14 5E3B6 5E3B14 5E3C6 5E3C14 5E4A6 5E4A14 5E4B6 5E4B14 5E4C6 5E4C14 5E5A6 0 5E5B6 0 R/W D5 5E1A5 5E1A13 5E1B5 5E1B13 5E2A5 5E2A13 5E2B5 5E2B13 5E2C5 5E2C13 5E3A5 5E3A13 5E3B5 5E3B13 5E3C5 5E3C13 5E4A5 5E4A13 5E4B5 5E4B13 5E4C5 5E4C13 5E5A5 5E5A13 5E5B5 5E5B13 R/W D4 5E1A4 5E1A12 5E1B4 5E1B12 5E2A4 5E2A12 5E2B4 5E2B12 5E2C4 5E2C12 5E3A4 5E3A12 5E3B4 5E3B12 5E3C4 5E3C12 5E4A4 5E4A12 5E4B4 5E4B12 5E4C4 5E4C12 5E5A4 5E5A12 5E5B4 5E5B12 R/W D3 5E1A3 5E1A11 5E1B3 5E1B11 5E2A3 5E2A11 5E2B3 5E2B11 5E2C3 5E2C11 5E3A3 5E3A11 5E3B3 5E3B11 5E3C3 5E3C11 5E4A3 5E4A11 5E4B3 5E4B11 5E4C3 5E4C11 5E5A3 5E5A11 5E5B3 5E5B11 R/W D2 5E1A2 5E1A10 5E1B2 5E1B10 5E2A2 5E2A10 5E2B2 5E2B10 5E2C2 5E2C10 5E3A2 5E3A10 5E3B2 5E3B10 5E3C2 5E3C10 5E4A2 5E4A10 5E4B2 5E4B10 5E4C2 5E4C10 5E5A2 5E5A10 5E5B2 5E5B10 R/W D1 5E1A1 5E1A9 5E1B1 5E1B9 5E2A1 5E2A9 5E2B1 5E2B9 5E2C1 5E2C9 5E3A1 5E3A9 5E3B1 5E3B9 5E3C1 5E3C9 5E4A1 5E4A9 5E4B1 5E4B9 5E4C1 5E4C9 5E5A1 5E5A9 5E5B1 5E5B9 R/W D0 5E1A0 5E1A8 5E1B0 5E1B8 5E2A0 5E2A8 5E2B0 5E2B8 5E2C0 5E2C8 5E3A0 5E3A8 5E3B0 5E3B8 5E3C0 5E3C8 5E4A0 5E4A8 5E4B0 5E4B8 5E4C0 5E4C8 5E5A0 5E5A8 5E5B0 5E5B8 R/W 5E1A13-0, 5E1B13-B0: 5-band Equalizer 1 Coefficient (14bit x 2) Default: 5E1A13-0 bits = “003AH”, 5E1B13-0 bits = “2074H” (fc=100Hz@fs=44.1kHz) 5E2A15-0, 5E2B15-0, 5E2C15-0: 5-band Equalizer 2 Coefficient (16bit x3) Default: 5E2A15-0 bits = “001DH”, 5E2B15-0 bits = “ 3FBB H”, 5E2C15-0 bits = “E03AH” (fo2=250Hz, fb2=50Hz@fs=44.1kHz) 5E3A15-0, 5E3B15-0, 5E3C15-0: 5-band Equalizer 3 Coefficient (16bit x3) Default: 5E3A15-0 bits = “0073H”, 5E3B15-0 bits = “3E76H”, 5E3C15-0 bits = “E0E6H” (fo3=1kHz, fb3=200Hz@fs=44.1kHz) 5E4A15-0, 5E4B15-0, 5E4C15-0: 5-band Equalizer 4 Coefficient (16bit x3) Default: 5E4A15-0 bits = “0185H”, 5E4B15-0 bits = “3589H”, 5E4C15-0 bits = “E30BH” (fo4=3.5kHz, fb4=700Hz@fs=44.1kHz) 5E5A13-0, 5E5B13-B0: 5-band Equalizer 5 Coefficient (14bit x 2) Default: 5E5A13-0 bits = “112CH”, 5E5B13-0 bits = “3DA9H” (fc=10kHz@fs=44.1kHz) MS1403-E-04 2014/12 - 147 - [AK4678] Addr 6AH 6BH 6CH 6DH 6EH Register Name 5band EQ1 Gain 5band EQ2 Gain 5band EQ3 Gain 5band EQ4 Gain 5band EQ5 Gain R/W Default D7 0 0 0 0 0 R 0 D6 0 0 0 0 0 R 0 D5 5EQ1G5 5EQ2G5 5EQ3G5 5EQ4G5 5EQ5G5 R/W 0 D4 5EQ1G4 5EQ2G4 5EQ3G4 5EQ4G4 5EQ5G4 R/W 1 D3 5EQ1G3 5EQ2G3 5EQ3G3 5EQ4G3 5EQ5G3 R/W 1 D2 5EQ1G2 5EQ2G2 5EQ3G2 5EQ4G2 5EQ5G2 R/W 0 D1 5EQ1G1 5EQ2G1 5EQ3G1 5EQ4G1 5EQ5G1 R/W 0 D0 5EQ1G0 5EQ2G0 5EQ3G0 5EQ4G0 5EQ5G0 R/W 0 5EQ1G5-0: 5-band Equalizer 1 Gain Setting Default: 18H (0dB) 5EQ2G5-0: 5-band Equalizer 2 Gain Setting Default: 18H (0dB) 5EQ3G5-0: 5-band Equalizer 3 Gain Setting Default: 18H (0dB) 5EQ4G5-0: 5-band Equalizer 4 Gain Setting Default: 18H (0dB) 5EQ5G5-0: 5-band Equalizer 5 Gain Setting Default: 18H (0dB) EQ gain: +12dB(00H) ~ -12dB(30H), 0.5dB step MS1403-E-04 2014/12 - 148 - [AK4678] Addr Register Name 70H DRC Mode Control R/W Default D7 0 R 0 D6 DLMAT2 R/W 0 D5 DLMAT1 R/W 0 D4 DLMAT0 R/W 0 D3 D2 DRGAIN1 DRGAIN0 R/W 0 D1 DRCC1 R/W 0 D0 DRCC0 R/W 0 R/W 0 D3 0 R 0 D2 NSLPF R/W 0 D1 NSHPF R/W 0 D0 NSCE R/W 0 DRCC1-0: DRC Enable (Table 65) 00: Disable (default) 01: Low 10: Middle 11: High When DRCC1-0 bits are “00”, DRC is through (0dB). DRGAIN1-0: DRC Recovery Speed Setting (Table 67) Default: “00” DLMAT2-0: DRC ATT Speed Setting (Table 66) Default: “000” Addr Register Name 71H NS Control R/W Default D7 0 R 0 D6 0 R 0 D5 DRCM1 R/W 0 D4 DRCM0 R/W 0 NSCE: Noise Suppression Enable 0: Disable (default) 1: Enable When NSCE bit is “0”, Noise Suppression is through (0dB). NSHPF: HPF for Noise Suppression Coefficient Setting Enable 0: Disable (default) 1: Enable When NSHPF bit is “1”, the settings of NSHA13-0 and NSHB13-0 bits are enabled. When NSHPF bit is “0”, HPF block is through (0dB). NSLPF: LPF for Noise Suppression Coefficient Setting Enable 0: Disable (default) 1: Enable When NSLPF bit is “1”, the settings of NSLA13-0 and NSLB13-0 bits are enabled. When NSLPF bit is “0”, LPF block is through (0dB). DRCM1-0: DRC Input Signal Setting (Table 41) Default: “00” (L = Lch, R = Rch) Addr Register Name 72H NS Gain & ATT Control R/W Default D7 0 R 0 D6 D5 D4 NSGAIN2 NSGAIN1 NSGAIN0 R/W 0 R/W 0 R/W 1 D3 0 R 0 D2 NSATT2 R/W 0 D1 D0 NSATT1 NSATT0 R/W R/W 0 1 NSATT2-0: Noise Suppression ATT Speed Setting (Table 45) Default: “001” NSGAIN2-0: Noise Suppression Recovery Speed Setting (Table 48) Default: “001” MS1403-E-04 2014/12 - 149 - [AK4678] Addr Register Name 73H NS On Level R/W Default D7 NSIAF1 R/W 1 D6 NSIAF0 R/W 0 D5 0 R 0 D4 NSTHL4 R/W 0 D3 D2 D1 NSTHL3 NSTHL2 NSTHL1 R/W R/W R/W 0 0 0 D0 NSTHL0 R/W 0 NSTHL4-0: Noise Suppression Threshold Low Level Setting (Table 43) Default: “00H” (-36dB) NSIAF1-0: Moving Average Parameter Setting at Noise Suppression Off (Table 42) Default: “10” (1024/fs) Addr Register Name 74H NS Off Level R/W Default D7 NSOAF1 R/W 1 D6 NSOAF0 R/W 0 D5 0 R 0 D4 NSTHH4 R/W 0 D3 D2 D1 NSTHH3 NSTHH2 NSTHH1 R/W R/W R/W 0 0 0 D0 NSTHH0 R/W 0 NSTHH4-0: Noise Suppression Threshold High Level Setting (Table 47) Default: “00H” (-36dB) NSOAF1-0: Moving Average Parameter Setting at Noise Suppression On (Table 46) Default: “10” (16/fs) Addr Register Name 75H NS Reference Select R/W Default D7 0 R 0 D6 0 R 0 D5 0 R 0 D4 0 R 0 D3 NSREF3 R/W 0 D2 NSREF2 R/W 0 D1 NSREF1 R/W 0 D0 NSREF0 R/W 0 D3 D2 NSLA3 NSLA2 NSLA11 NSLA10 NSLB3 NSLB2 NSLB11 NSLB10 NSHA3 NSHA2 NSHA11 NSHA10 NSHB3 NSHB2 NSHB11 NSHB10 R/W R/W D1 NSLA1 NSLA9 NSLB1 NSLB9 NSHA1 NSHA9 NSHB1 NSHB9 R/W D0 NSLA0 NSLA8 NSLB0 NSLB8 NSHA0 NSHA8 NSHB0 NSHB8 R/W NSREF3-0: Reference Value at Noise Suppression (Table 44) Default: “0H” (-9dB) Addr 76H 77H 78H 79H 7AH 7BH 7CH 7DH Register Name NS LPF Co-efficient 0 NS LPF Co-efficient 1 NS LPF Co-efficient 2 NS LPF Co-efficient 3 NS HPF Co-efficient 0 NS HPF Co-efficient 1 NS HPF Co-efficient 2 NS HPF Co-efficient 3 R/W D7 NSLA7 0 NSLB7 0 NSHA7 0 NSHB7 0 R/W D6 NSLA6 0 NSLB6 0 NSHA6 0 NSHB6 0 R/W D5 NSLA5 NSLA13 NSLB5 NSLB13 NSHA5 NSHA13 NSHB5 NSHB13 R/W D4 NSLA4 NSLA12 NSLB4 NSLB12 NSHA4 NSHA12 NSHB4 NSHB12 R/W NSLA13-0, NSLB13-0: Noise Suppression LPF Coefficient (14bit x 2) Default: “0000H” NSHA13-0, NSHB13-0: Noise Suppression HPF Coefficient (14bit x 2) Default: “0000H” MS1403-E-04 2014/12 - 150 - [AK4678] Addr 80H Register Name DVLC Filter Select R/W Default D7 DLLPF1 R/W 0 D6 DLLPF0 R/W 0 D5 DMHPF1 R/W 0 D4 DMHPF0 R/W 0 D3 DMLPF1 R/W 0 D2 D1 D0 DMLPF0 DHHPF1 DHHPF0 R/W R/W R/W 0 0 0 DHHPF1-0: DVLC High Frequency Range HPF Coefficient Setting Enable (Table 58) 00: Disable (default) 01: 1st order HPF 10: 2nd order HPF 11: N/A When DHHPF1-0 bits are “01” or “10”, the settings of DHHA13-0 and DHHB13-0 bits are enabled. When DHHPF1-0 bits are “00”, HPF block outputs “0” data. DMLPF1-0: DVLC Middle Frequency Range LPF Coefficient Setting Enable (Table 54) 00: Disable (default) 01: 1st order LPF 10: 2nd order LPF 11: N/A When DMLPF1-0 bits are “01” or “10”, the settings of DMLA13-0 and DMLB13-0 bits are enabled. When DMLPF1-0 bits are “00”, LPF block of DVLC middle frequency range is through (0dB). DMHPF1-0: DVLC Middle Frequency Range HPF Coefficient Setting Enable (Table 53) 00: Disable (default) 01: 1st order HPF 10: 2nd order HPF 11: N/A When DMHPF1-0 bits are “01” or “10”, the settings of DMHA13-0 and DMHB13-0 bits are enabled. When DMHPF1-0 bits are “00”, HPF block of DVLC middle frequency range is through (0dB). DLLPF1-0: DVLC Low Frequency Range LPF Coefficient Setting Enable (Table 49) 00: Disable (default) 01: 1st order LPF 10: 2nd order LPF 11: N/A When DLLPF1-0 bits are “01” or “10”, the settings of DLLA13-0 and DLLB13-0 bits are enabled. When DLLPF1-0 bits are “00”, LPF block outputs “0” data. Addr 81H Register Name DVLC Mode Control R/W Default D7 D6 D5 DVRGAIN2 DVRGAIN1 DVRGAIN0 R/W 0 R/W 1 R/W 1 D4 D3 D2 DVLMAT2 DVLMAT1 DVLMAT0 R/W 0 R/W 1 R/W 1 D1 DAF1 R/W 1 D0 DAF0 R/W 1 DAF1-0: Moving Average Parameter Setting for DVLC (Table 62) Default: “11” (Default: 2048/fs) DVLMAT2-0: DVLC ATT Speed Setting (Table 63) Default: “011” DVRGAIN2-0: DVLC Recovery Speed Setting (Table 64) Default: “011” MS1403-E-04 2014/12 - 151 - [AK4678] Addr 82H 83H 84H 85H 86H 87H 88H 89H 8AH 8BH 8CH 8DH 8EH 8FH 90H 91H 92H 93H 94H 95H 96H 97H 98H 99H 9AH 9BH 9CH 9DH 9EH 9FH Register Name DVLCL Curve X1 DVLCL Curve Y1 DVLCL Curve X2 DVLCL Curve Y2 DVLCL Curve X3 DVLCL Curve Y3 DVLCL Slope 1 DVLCL Slope 2 DVLCL Slope 3 DVLCL Slope 4 DVLCM Curve X1 DVLCM Curve Y1 DVLCM Curve X2 DVLCM Curve Y2 DVLCM Curve X3 DVLCM Curve Y3 DVLCM Slope 1 DVLCM Slope 2 DVLCM Slope 3 DVLCM Slope 4 DVLCH Curve X1 DVLCH Curve Y1 DVLCH Curve X2 DVLCH Curve Y2 DVLCH Curve X3 DVLCH Curve Y3 DVLCH Slope 1 DVLCH Slope 2 DVLCH Slope 3 DVLCH Slope 4 R/W Default D7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 R 0 D6 0 0 0 0 0 0 L1G6 L2G6 L3G6 L4G6 0 0 0 0 0 0 M1G6 M2G6 M3G6 M4G6 0 0 0 0 0 0 H1G6 H2G6 H3G6 H4G6 R/W 0 D5 VL1X5 VL1Y5 VL2X5 VL2Y5 0 0 L1G5 L2G5 L3G5 L4G5 VM1X5 VM1Y5 VM2X5 VM2Y5 0 0 M1G5 M2G5 M3G5 M4G5 VH1X5 VH1Y5 VH2X5 VH2Y5 0 0 H1G5 H2G5 H3G5 H4G5 R/W 0 D4 VL1X4 VL1Y4 VL2X4 VL2Y4 VL3X4 VL3Y4 L1G4 L2G4 L3G4 L4G4 VM1X4 VM1Y4 VM2X4 VM2Y4 VM3X4 VM3Y4 M1G4 M2G4 M3G4 M4G4 VH1X4 VH1Y4 VH2X4 VH2Y4 VH3X4 VH3Y4 H1G4 H2G4 H3G4 H4G4 R/W 0 D3 VL1X3 VL1Y3 VL2X3 VL2Y3 VL3X3 VL3Y3 L1G3 L2G3 L3G3 L4G3 VM1X3 VM1Y3 VM2X3 VM2Y3 VM3X3 VM3Y3 M1G3 M2G3 M3G3 M4G3 VH1X3 VH1Y3 VH2X3 VH2Y3 VH3X3 VH3Y3 H1G3 H2G3 H3G3 H4G3 R/W 0 D2 VL1X2 VL1Y2 VL2X2 VL2Y2 VL3X2 VL3Y2 L1G2 L2G2 L3G2 L4G2 VM1X2 VM1Y2 VM2X2 VM2Y2 VM3X2 VM3Y2 M1G2 M2G2 M3G2 M4G2 VH1X2 VH1Y2 VH2X2 VH2Y2 VH3X2 VH3Y2 H1G2 H2G2 H3G2 H4G2 R/W 0 D1 VL1X1 VL1Y1 VL2X1 VL2Y1 VL3X1 VL3Y1 L1G1 L2G1 L3G1 L4G1 VM1X1 VM1Y1 VM2X1 VM2Y1 VM3X1 VM3Y1 M1G1 M2G1 M3G1 M4G1 VH1X1 VH1Y1 VH2X1 VH2Y1 VH3X1 VH3Y1 H1G1 H2G1 H3G1 H4G1 R/W 0 D0 VL1X0 VL1Y0 VL2X0 VL2Y0 VL3X0 VL3Y0 L1G0 L2G0 L3G0 L4G0 VM1X0 VM1Y0 VM2X0 VM2Y0 VM3X0 VM3Y0 M1G0 M2G0 M3G0 M4G0 VH1X0 VH1Y0 VH2X0 VH2Y0 VH3X0 VH3Y0 H1G0 H2G0 H3G0 H4G0 R/W 0 VL1X5-0, VL2X5-0, VL3X4-0: Input Gain Setting for Low Range DVLC Point (Table 50, Table 51) Default: “00H” (0dB) VL1Y5-0, VL2Y5-0, VL3Y4-0: Output Gain Setting for Low Range DVLC Point (Table 50, Table 51) Default: “00H” (0dB) L1G6-0, L2G6-0, L3G6-0, L4G6-0: DVLC Slope Setting for Low Range (Table 52) Default: “00H” VM1X5-0, VM2X5-0, VM3X4-0: Input Gain Setting for Middle Range DVLC Point (Table 50, Table 51) Default: “00H” (0dB) VM1Y5-0, VM2Y5-0, VM3Y4-0: Output Gain Setting for Middle Range DVLC Point (Table 50, Table 51) Default: “00H” (0dB) M1G6-0, M2G6-0, M3G6-0, M4G6-0: DVLC Slope Setting for Middle Range (Table 52) Default: “00H” VH1X5-0, VH2X5-0, VH3X4-0: Input Gain Setting for High Range DVLC Point (Table 50, Table 51) Default: “00H” (0dB) VH1Y5-0, VH2Y5-0, VH3Y4-0: Output Gain Setting for High Range DVLC Point (Table 50, Table 51) Default: “00H” (0dB) H1G6-0, H2G6-0, H3G6-0, H4G6-0: DVLC Slope Setting for High Range (Table 52) Default: “00H” MS1403-E-04 2014/12 - 152 - [AK4678] Addr A0H A1H A2H A3H A4H A5H A6H A7H A8H A9H AAH ABH ACH ADH AEH AFH Register Name DVLCL LPF Co-efficient 0 DVLCL LPF Co-efficient 1 DVLCL LPF Co-efficient 2 DVLCL LPF Co-efficient 3 DVLCM HPF Co-efficient 0 DVLCM HPF Co-efficient 1 DVLCM HPF Co-efficient 2 DVLCM HPF Co-efficient 3 DVLCM LPF Co-efficient 0 DVLCM LPF Co-efficient 1 DVLCM LPF Co-efficient 2 DVLCM LPF Co-efficient 3 DVLCH HPF Co-efficient 0 DVLCH HPF Co-efficient 1 DVLCH HPF Co-efficient 2 DVLCH HPF Co-efficient 3 R/W D7 DLLA7 0 DLLB7 0 DMHA7 0 DMHB7 0 DMLA7 0 DMLB7 0 DHHA7 0 DHHB7 0 R/W D6 DLLA6 0 DLLB6 0 DMHA6 0 DMHB6 0 DMLA6 0 DMLB6 0 DHHA6 0 DHHB6 0 R/W D5 DLLA5 DLLA13 DLLB5 DLLB13 DMHA5 DMHA13 DMHB5 DMHB13 DMLA5 DMLA13 DMLB5 DMLB13 DHHA5 DHHA13 DHHB5 DHHB13 R/W D4 D3 D2 DLLA4 DLLA3 DLLA2 DLLA12 DLLA11 DLLA10 DLLB4 DLLB3 DLLB2 DLLB12 DLLB11 DLLB10 DMHA4 DMHA3 DMHA2 DMHA12 DMHA11 DMHA10 DMHB4 DMHB3 DMHB2 DMHB12 DMHB11 DMHB10 DMLA4 DMLA3 DMLA2 DMLA12 DMLA11 DMLA10 DMLB4 DMLB3 DMLB2 DMLB12 DMLB11 DMLB10 DHHA4 DHHA3 DHHA2 DHHA12 DHHA11 DHHA10 DHHB4 DHHB3 DHHB2 DHHB12 DHHB11 DHHB10 R/W R/W R/W D1 DLLA1 DLLA9 DLLB1 DLLB9 DMHA1 DMHA9 DMHB1 DMHB9 DMLA1 DMLA9 DMLB1 DMLB9 DHHA1 DHHA9 DHHB1 DHHB9 R/W D0 DLLA0 DLLA8 DLLB0 DLLB8 DMHA0 DMHA8 DMHB0 DMHB8 DMLA0 DMLA8 DMLB0 DMLB8 DHHA0 DHHA8 DHHB0 DHHB8 R/W DLLA13-0, DLLB13-0: DVLC Low Frequency Range LPF Coefficient (14bit x 2) Default: “0000H” DMHA13-0, DMHB13-0: DVLC Middle Frequency Range HPF Coefficient (14bit x 2) Default: “0000H” DMLA13-0, DMLB13-0: DVLC Middle Frequency Range LPF Coefficient (14bit x 2) Default: “0000H” DHHA13-0, DHHB13-0: DVLC High Frequency Range HPF Coefficient (14bit x 2) Default: “0000H” MS1403-E-04 2014/12 - 153 - [AK4678] SYSTEM DESIGN Figure 106, Figure 107and Figure 108 show the system connection diagram for the AK4678. An evaluation board [AKD4678] demonstrates the optimum layout, power supply arrangements and measurement results. Digital Ground Analog Ground Top View 2.2u 2.2u 2.2u Digital I/F 1.6 3.6V 0.1u CNB CNA VEE HPR LIN3 IN1+ IN1- CPB CPA PVDD HPL RIN3 IN2- VSS1 0.1u 10u 0.1u TVDD VSS2 SDA LIN4 IN2+ VCOM AVDD + 1u Analog 1.7 2.0V AK4678 SDTO SCL PDN RIN4 LOUT MPWR1 MPWR2 BICK SDTI LRCK SYNCA ROUT RCP RCN 10u + Analog 3.0 5.5V 0.1u MCKI SYNCB SDTOB BICKA SPFIL SVDD SPN BICKB SDTIB SDTOA SDTIA DVDD SPP VSS3 Digital Core 1.7 2.0V 0.1u Note: - VSS1, VSS2 and VSS3 of the AK4678 should be distributed separately from the ground of external controllers. - 0.1μF capacitors at power supply pins should be ceramic capacitors. 2.2μF±50% capacitors between the CPA to CNA pins, the CPB to CNB pins and the VEE to VSS2 pins should be low ESR ceramic capacitors. These capacitors must be connected as close as possible to the pins. Figure 106. Typical Connection Diagram (Power Supply Block) MS1403-E-04 2014/12 - 154 - [AK4678] Digital Ground Analog Ground Head Phone 0.22u 15 0.22u 15 Line In Top View 1u Internal MIC 1u CNB CNA VEE HPR LIN3 CPB CPA PVDD HPL RIN3 IN1+ IN1- 1k 1k 1u IN2- VSS1 1u TVDD VSS2 SDA LIN4 IN2+ VCOM AVDD MPWR1 MPWR2 External MIC 2.2k AK4678 SDTO SCL PDN RIN4 LOUT BICK SDTI LRCK SYNCA ROUT MCKI SYNCB SDTOB BICKA SPFIL RCP SVDD RCN Receiver SPN Speaker SDTIB SDTOA SDTIA DVDD SPP VSS3 2.2n BICKB Line In Line Out Figure 107. Typical Connection Diagram (Analog Input/Output Block) (In case of Internal Full-differential Mic and External pseudo differential Mic) MS1403-E-04 2014/12 - 155 - [AK4678] Digital Ground Analog Ground Top View CNB CNA VEE HPR LIN3 IN1+ IN1- CPB CPA PVDD HPL RIN3 IN2- VSS1 TVDD VSS2 SDA LIN4 IN2+ VCOM AVDD AK4678 Application Processor Bluetooth Module SDTO SCL PDN RIN4 LOUT MPWR1 MPWR2 BICK SDTI LRCK SYNCA ROUT RCP RCN MCKI SYNCB SDTOB BICKA SPFIL SVDD SPN BICKB SDTIB SDTOA DVDD SPP VSS3 SDTIA Base Band Note: - All digital input pins should not be left floating. - When the AK4678 is used by master mode, LRCK and BICK pins are a Hi-Z state until M/S bit becomes “1”. LRCK and BICK pins of the AK4678 should be pulled-down or pulled-up by the resistor (about 100k) externally to avoid the floating state. Figure 108. Typical Connection Diagram (Digital Block) MS1403-E-04 2014/12 - 156 - [AK4678] 1. Grounding and Power Supply Decoupling The AK4678 requires careful attention to power supply and grounding arrangements. AVDD, PVDD and SVDD are usually supplied from the system’s analog supply, and DVDD and TVDD are supplied from the system’s digital power supply. The power-up sequence between supplies (AVDD, PVDD, SVDD, DVDD or TVDD) is not critical. The PDN pin should be held “L” when power supplies are tuning on. The PDN pin is allowed to be “H” after all power supplies are applied and settled. To avoid pop noise at receiver output, headphone outputs, speaker output and line outputs, the AK4678 should be operated along the following recommended power-up/down sequence. 1) Power-up - The PDN pin should be held “L” when power supplies are turning on. The AK4678 can be reset by keeping the PDN pin “L” for 1.5μs or longer after all power supplies are applied and settled. - In the case that the power supplies are separated in two or more groups, SVDD should be powered ON first. 2) Power-down - Each of power supplies can be powered OFF after the PDN pin is set to “L”. - In the case that the power supplies are separated in two or more groups, SVDD should be powered OFF last. VSS1, VSS2 and VSS3 of the AK4678 should be connected to the analog ground plane. System analog ground and digital ground should be connected together near where the supplies are brought onto the printed circuit board. Decoupling capacitors should be as near the AK4678 as possible. Especially, the small value ceramic capacitor is to be closest. 2. Voltage Reference VCOM is a signal ground of this chip. A 1μF electrolytic capacitor attached to the VCOM pin eliminates the effects of high frequency noise. No load current is allowed to be drawn from the VCOM pin. All signals, especially clocks, should be kept away from the VCOM pin in order to avoid unwanted coupling into the AK4678. 3. Charge Pump 2.2μF±50% capacitors between the CPA to CNA pins, the CPB to CNB pins and the VEE to VSS2 pins should be low ESR ceramic capacitors. These capacitors must be connected as close as possible to the pins. No load current may be drawn from the VEE pin. 4. Analog Inputs The input signal range scales with 1.0 x AVDD Vpp (typ) at MGNL=MGNR=0dB, AVDD=1.8V and single-ended input, centered around the internal common voltage (typ. 0.47 x AVDD). The input signal must be AC coupled using a capacitor. The cut-off frequency (fc) is 1/(2RC). 5. Analog Outputs Stereo Line outputs and Mono Receiver output are centered at typ. 0.8 x AVDD. Stereo line output (LOUT/ROUT pins) must be AC –coupled using a capacitor. Receiver output (RCP/RCN pins) should be connected directly to a receiver. Headphone outputs (HPL/HPR pin) are centered at 0V and should be directly connected to a headphone. Speaker output is PWM output (Class-D) and it is not necessary to add an external filter such as LC filters. MS1403-E-04 2014/12 - 157 - [AK4678] CONTROL SEQUENCE (AUDIO) ■ Clock Set-up When ADC, DAC or Programmable Filter is powered-up, the clocks must be supplied. 1. PLL Master Mode Example: Audio I/F Format: MSB justified (ADC & DAC) BICK frequency at Master Mode: 64fs Input Master Clock Select at PLL Mode: 11.2896MHz Sampling Frequency: 44.1kHz Power Supply (1) PDN pin (2) (1) Power Supply & PDN pin = “L” “H” (3) PMVCM bit (Addr:00H, D0) (2)Addr:00H, Data:00H Addr:03H, Data:F4H Addr:04H, Data:22H Addr:05H, Data:02H PMPLL bit (Addr:04H, D0) MCKI pin (4) Input M/S bit (3)Addr:00H, Data:01H (Addr:04H, D1) 10msec(max) (5) BICK pin LRCK pin Output (4)Addr:04H, Data:23H BICK and LRCK output Figure 109. Clock Set Up Sequence (1) <Example> (1) After Power Up, PDN pin = “L” “H”. “L” time of 1.5μs or more is needed to reset the AK4678. (2) Dummy command(Addr:00H, Data:00H) must be executed before control register is set. DIF1-0, PLL3-0, FS3-0, BCKO and M/S bits should be set during this period. (3) Power Up VCOM: PMVCM bit = “0” “1” VCOM should first be powered-up before the other block operates. Rise-up time of the VCOM pin is 1.5ms (max) when the external capacitance is 1μF. (4) PLL lock time is 10ms(max.) after PMPLL bit changes from “0” to “1” and MCKI is supplied from an external source. (5) The AK4678 starts to output the LRCK and BICK clocks after the PLL becomes stable. Then normal operation starts. MS1403-E-04 2014/12 - 158 - [AK4678] 2. PLL Slave Mode (BICK pin) Example: Audio I/F Format : MSB justified (ADC & DAC) PLL Reference clock: BICK BICK frequency: 64fs Sampling Frequency: 44.1kHz Power Supply (1) PDN pin (2) 4fs (1)ofPower Supply & PDN pin = “L” “H” (3) PMVCM bit (Addr:00H, D0) (2)Addr:00H, Data:00H Addr:03H, Data:F3H Addr:05H, Data:02H PMPLL bit (Addr:04H, D0) LRCK pin BICK pin Input (3) Addr:00H, Data:01H (4) Internal Clock (5) (4) Addr:04H, Data:01H Figure 110. Clock Set Up Sequence (2) <Example> (1) After Power Up, PDN pin = “L” “H”. “L” time of 1.5μs or more is needed to reset the AK4678. (2) Dummy command (Addr:00H, Data:00H) must be executed before control register is set. DIF1-0, FS3-0 and PLL3-0 bits should be set during this period. (3) Power Up VCOM: PMVCM bit = “0” “1” VCOM should first be powered up before the other block operates. Rise-up time of the VCOM pin is 1.5ms (max) when the external capacitance is 1μF. (4) PLL starts after the PMPLL bit changes from “0” to “1” and PLL reference clock (BICK pin) is supplied. PLL lock time is 2ms(max.). (5) Normal operation starts after that the PLL is locked. MS1403-E-04 2014/12 - 159 - [AK4678] 3. EXT Slave Mode Example: : Audio I/F Format: MSB justified (ADC and DAC) Input MCKI frequency: 256fs Sampling Frequency: 44.1kHz Power Supply (1) Power Supply & PDN pin = “L” “H” (1) PDN pin (2) (3) PMVCM bit Input (2)Addr:00H, Data:00H Addr:03H, Data:F0H Addr:04H, Data:00H Addr:05H, Data:02H Input (3) Addr:00H, Data:01H (Addr:00H, D0) (4) MCKI pin (4) LRCK pin BICK pin MCKI, BICK and LRCK input Figure 111. Clock Set Up Sequence (3) <Example> (1) After Power Up, PDN pin = “L” “H”. “L” time of 1.5μs or more is needed to reset the AK4678. (2) Dummy command (Addr:00H, Data:00H) must be executed before control register is set. DIF1-0, CM1-0 and FS3-0 bits should be set during this period. (3) Power Up VCOM: PMVCM bit = “0” “1” VCOM should first be powered up before the other block operates. Rise-up time of the VCOM pin is 1.5ms (max) when the external capacitance is 1μF. (4) Normal operation starts after the MCKI, LRCK and BICK are supplied. MS1403-E-04 2014/12 - 160 - [AK4678] 4. EXT Master Mode Example: : Audio I/F Format: MSB justified (ADC and DAC) Input MCKI frequency: 256fs Sampling Frequency: 44.1kHz Power Supply (1) Power Supply & PDN pin = “L” “H” (1) PDN pin (4) (2) MCKI input PMVCM bit (Addr:00H, D0) (2) MCKI pin (3)Addr:00H, Data:00H Addr:03H, Data:F0H Addr:04H, Data:02H Addr:05H, Data02H Input (3) M/S bit (Addr:04H, D1) LRCK pin BICK pin BICK and LRCK output Output (4) Addr:00H, Data:01H Figure 112. Clock Set Up Sequence (4) <Example> (1) After Power Up, PDN pin = “L” “H”. “L” time of 1.5μs or more is needed to reset the AK4678. (2) MCKI should be input. (3) Dummy command (Addr:00H, Data:00H) must be executed before control register is set. After DIF1-0, CM1-0 and FS3-0 bits are set, M/S bit should be set to “1”. Then LRCK and BICK are output. (4) Power Up VCOM: PMVCM bit = “0” “1” VCOM should first be powered up before the other block operates. Rise-up time of the VCOM pin is 1.5ms (max) when the external capacitance is 1μF. MS1403-E-04 2014/12 - 161 - [AK4678] ■ MIC Input Recording (Stereo) Example: FS3-0 bits (Addr:03H, D7-4) 0000 PLL Master Mode Audio I/F Format: MSB justified (ADC & DAC) Sampling Frequency: 44.1kHz Pre MIC AMP: +15dB MIC Power 1: 2.5V Output ALC setting: Refer to Table 34 ALC: Enable 1111 (1) MIC Control (Addr:07H, D7-0) 55H AAH MIC Signal Select 00H (Addr:06H) ALC Setting (Addr:13H, 15H, 16H) (1) Addr:04H, Data:FxH (2) (2) Addr:07H, Data: AAH xxH (3) xxH (3) Addr:06H, Data: xxH xxH (4) ALC Enable (Addr:17H) (4) Addr:13H, 15H, 16H, Data:xxH 02H 03H 02H (5) ALC State (10) ALC Disable (5) Addr:17H, Data:03H ALC Disable ALC Enable (6) (9) (6) Addr:02H, Data:01H PMMP1 bit (Addr:02H, D0) (7) Addr:00H, Data:33H PMADL/R bits PMPFILbit (7) (8) Recording (Addr:00H, D5-4, D1) 1059/fs (8) Addr:00H, Data:01H ADC Output Data "L" Output Initialize Normal State "L" Output (9) Addr:02H, Data:00H (10) Addr:17H, Data:02H Figure 113. Stereo MIC Input Sequence (MIC Recording: LINx/RINx MICL/R ADCL/R ALC Audio I/F SDTO) <Example> This sequence is an example of ALC setting at fs=44.1kHz. If the parameter of the ALC is changed, please refer to “Example of the ALC setting (Recording Path)”. At first, clocks should be supplied according to “Clock Set Up” sequence. (1) Set up a sampling frequency (FS3-0 bits). MIC, ADC and Programmable Filter should be powered-up in consideration of VCOM rise time and PLL lock time after a sampling frequency is changed when the AK4678 is PLL mode. (2) Set up Gain for MIC-Amp (Addr: 07H) (3) Set up MIC Input Selector (Addr: 06H) (4) Set up REF value for ALC (Addr: 13H) , Timer Select for ALC (Addr: 15H) and ALC mode (Addr: 16H) (5) ALC Enable (Addr: 17H): ALC bit = “0” “1” (6) Power Up MIC Power1: PMMP1 bit = “0” “1” (7) Power Up MIC-Amp, ADC and Programmable Filter: PMADL/R = PMPFIL bits = “0”“1” The initialization cycle time of ADC is 1059/fs=24ms @ fs=44.1kHz, ADRST bit = “0”. ADC outputs “0” data during the initialization cycle. After the ALC bit is set to “1”, the ALC operation starts from IVOL value (8) Power Down MIC-Amp, ADC and Programmable Filter: PMADL/R= PMPFIL bits = “1” “0” When the registers for the ALC operation are not changed, ALC bit may be keeping “1”. The ALC operation is disabled because the ADC block is powered-down. If the registers for the ALC operation are also changed when the sampling frequency is changed, it should be done after the AK4678 goes to the manual mode (ALC bit = “0”) or ADC block is powered-down (PMADL = PMADR bits = “0”). IVOL gain is not reset when PMADL = PMADR bits = “0”, and then IVOL operation starts from the setting value when PMADL or PMADR bit is changed to “1”. (9) Power Down MIC Power 1: PMMP1 bit = “1” “0” (10) ALC Disable: ALC bit = “1” “0” MS1403-E-04 2014/12 - 162 - [AK4678] ■ Headphone-Amp Output Example : FS3-0 bits (Addr:03H, D7-4) 0000 PLL Master Mode Audio I/F Format: MSB justified (ADC & DAC) Sampling Frequency: 44.1kHz HP Volume Level: 6dB 5 band EQ: Enable 1111 (1) (1) Addr:03H, Data FxH (2) HPG5-0 bits (Addr:0FH, D5-0) 23H 20H (2) Addr:0FH, Data 20H (3) 5EQ bit (Addr:17H, D3) (8) 0 1 PMDAL/R bits PMEQ bit 0 (4) (3) Addr:17H, Data 0AH (4) Addr:01H, Data 0DH (7) (Addr:01H, D3-2, D0) (5) Addr:0BH, Data 03H (5) PMHPL/R bits 28ms (Addr:0BH, D1-0) (6) HPL/R pins 0V Normal Output Playback 0V (6) Addr:0BH, Data 00H (7) Addr:01H, Data 00H (8) Addr:17H, Data 02H Figure 114. Headphone-Amp Output Sequence (Headphone Playback: SDTI Audio I/F 5-band EQ DATT-A DACL/R HPL/HPR) <Example> At first, clocks should be supplied according to “Clock Set Up” sequence. (1) Set up a sampling frequency (FS3-0 bits). DAC and Headphone-Amp should be powered-up in consideration of VCOM rise time and PLL lock time after a sampling frequency is changed when the AK4678 is PLL mode. (2) Set up analog volume for HP-Amp (Addr: 0FH, HPG5-0 bits) (3) Enable 5-band Equalizer: 5EQ bit = “0” “1” (Frequency Response and gain are selected by Addr = 50H-6EH.) (4) Power up DAC and EQ : PMDAL = PMDAR = PMEQ bits = “0” “1” (5) Power up Headphone-Amp and charge pump circuit: PMHPL = PMHPR bits = “0” “1” The power-up time of HP-Amp block is 28ms. HPL and HPR pins output 0V until the power-up time of HP-Amp block passes. (6) Power down Headphone-Amp and charge pump circuit: PMHPL = PMHPR bits = “1” “0” HPL and HPR pins go to 0V. (7) Power down DAC and EQ: PMDAL = PMDAR = PMEQ bits = “1” “0” (8) Disable 5-band Equalizer: 5EQ bit = “1” “0” MS1403-E-04 2014/12 - 163 - [AK4678] ■ Speaker-Amp Output Example : FS3-0 bits (Addr:03H, D7-4) 0000 PLL Master Mode Audio I/F Format: MSB justified (ADC & DAC) Sampling Frequency: 44.1kHz SPK Volume Level: 9dB 5 band EQ: Enable 1111 (1) (1) Addr:03H, Data FxH (2) SPKG3-0 bits (Addr:10H, D3-0) 1011 1000 (2) Addr:10H, Data B8H (3) DACSL/R bits (10) (3) Addr:09H, Data C0H (Addr:09H, D7-6) (4) 5EQ bit (Addr:17H, D3) (9) 0 1 PMDAL/R bits PMEQ bit 0 (5) (4) Addr:17H, Data 0AH (5) Addr:01H, Data 0DH (8) (Addr:01H, D3-2, D0) (6) Addr:0DH, Data 08H (6) PMSPK bit 32ms (Addr:0DH, D4) (7) SPP/SPN pins Hi-Z 0V Normal Output Playback Hi-Z (7) Addr:0DH, Data 00H (8) Addr:01H, Data 00H (9) Addr:17H, Data 02H (10) Addr:09H, Data 00H Figure 115. Speaker-Amp Output Sequence (Headphone Playback: SDTI Audio I/F 5-band EQ DATT-A DACL/R SPP/SPN) <Example> At first, clocks should be supplied according to “Clock Set Up” sequence. (1) Set up a sampling frequency (FS3-0 bits). DAC and Speaker-Amp should be powered-up in consideration of VCOM rise time and PLL lock time after a sampling frequency is changed when the AK4678 is PLL mode. (2) Set up analog volume for SPK-Amp (Addr: 10H, SPKG3-0 bits) (3) Set up the path of “SDTI DAC SPK-Amp”: DACSL = DACSR bits = “0” “1” (4) Enable 5-band Equalizer: 5EQ bit = “0” “1” (Frequency Response and gain are selected by Addr = 50H-6EH.) (5) Power up DAC and EQ: PMDAL = PMDAR = PMEQ bits = “0” “1” (6) Power up SP-Amp block: PMSPK bit = “0” “1” The power-up time of SPK-Amp block is 32ms. SPP and SPN pins output 0V until the power-up time of SPK-Amp block passes. (7) Power down SPK-Amp block: PMSPK bit = “1” “0” SPN and SPP pins go to 0V. (8) Power down DAC and EQ: PMDAL = PMDAR = PMEQ bits = “1” “0” (9) Disable 5-band Equalizer: 5EQ bit = “1” “0” (10) Disable the path of “DAC Speaker-Amp”: DACSL = DACSR bits = “1” “0” MS1403-E-04 2014/12 - 164 - [AK4678] ■ Stereo Line Output Example: FS3-0 bits (Addr:03H, D7-4) 0000 PLL, Master Mode Audio I/F Format: MSB justified (ADC & DAC) Sampling Frequency: 44.1kHz OVOLC bit = “1”(default) Digital Volume Level: 8dB LINEOUT Volume Level: 3dB 1111 (1) LVL2-0 bits (Addr:0EH, D2-0) 011 010 (1) Addr:03H, Data:FxH (2) (2) Addr:0EH, Data:02H Addr:19H, Data:03H Addr:14H, Data:05H Addr:09H, Data:03H PFSEL bis (Addr:19H, D0) PFMXL/R1-0 bits (Addr:14H, D3-0) 0000 0101 (3) Addr:1DH&1EH, Data:1CH DACL/R bits (9) (Addr:09H, D1-0) OVL/R6-0 bits (Addr:1DH&1EH, D6-0) 0CH (4) Addr:0AH, Data:04H (5) Addr:01H, Data:0CH Addr:00H, Data:03H Addr:0AH, Data:07H 1CH (3) LOPS bit (6) Addr:0AH, Data:03H (Addr:0AH, D2) (4) (6) (7) (10) PMDAL/R bits PMPFIL bit (Addr:00H, D7-6, D1) (5) (8) PML/RO bits (Addr:0AH, D1-0) LOUT pin ROUT pin >300 ms >300 ms Playback (7) Addr:0AH, Data:07H (8) Addr:0AH, Data:04H Addr:00H, Data:01H Addr:01H, Data:00H Normal Output (9) Addr:09H, Data:00H (10) Addr:0AH, Data:00H Figure 116. Stereo Lineout Sequence (Lineout Playback: SDTI Audio I/F SVOLA DATT-A DACL/R LOUT/ROUT) <Example> At first, clocks should be supplied according to “Clock Set Up” sequence. (1) Set up the sampling frequency (FS3-0 bits). DAC and Stereo Line-Amp should be powered-up in consideration of VCOM rise time and PLL lock time after the sampling frequency is changed when the AK4678 is PLL mode. (2) Set up the path of “SDTI DAC Stereo Line-Amp”: PFSEL = “0” “1”, PFMXL1-0 = PFMXR1-0 bits = “0000” “0101”, DACL = DACR bits = “0” “1” Set up analog volume for Stereo Line-Amp (Addr: 0EH, LVL2-0 bits) (3) Set up the output digital volume (Addr: 1DH and 1EH) When OVOLC bit is “1” (default), OVL6-0 bits (1DH) set the volume of both channels. After DAC is powered-up, the digital volume changes from default value (0dB) to the register setting value by the soft transition. (4) Enter power-save mode of Stereo Line-Amp: LOPS bit = “0” “1” (5) Power-up DAC, Programmable Filter and Stereo Line-Amp: PMDAL = PMDAR = PMPFIL = PMLO = PMRO bits = “0” “1” LOUT and ROUT pins rise up to VCOM voltage after PMLO and PMRO bits are changed to “1”. Rise time is 300ms (max.) at C=1μF and AVDD=1.8V. (6) Exit power-save mode of Stereo Line-Amp: LOPS bit = “1” “0” LOPS bit should be set to “0” after LOUT and ROUT pins rise up. Stereo Line-Amp goes to normal operation by setting LOPS bit to “0”. (7) Enter power-save mode of Stereo Line-Amp: LOPS bit: “0” “1” (8) Power-down DAC, Programmable Filter and Stereo Line-Amp: PMDAL = PMDAR = PMPFIL = PMLO = PMRO bits = “1” “0” LOUT and ROUT pins fall down to VSS1. Fall time is 300ms(max.) at C=1μF and AVDD=1.8V. (9) Disable the path of “DAC Stereo Line-Amp”: DACL = DACR bits = “1” “0” (10) Exit power-save mode of Stereo Line-Amp: LOPS bit = “1” “0” LOPS bit should be set to “0” after LOUT and ROUT pins fall down. MS1403-E-04 2014/12 - 165 - [AK4678] ■ Stop of Clock 1. PLL Master Mode Example: Audio I/F Format: MSB justified (ADC & DAC) BICK frequency at Master Mode: 64fs Input Master Clock Select at PLL Mode: 11.2896MHz Sampling Frequency: 44.1kHz (1) PMPLL bit (Addr:04H, D0) External MCKI Input (1) Addr:04H, Data:02H (2) (2) Stop an external MCKI Figure 117. Clock Stopping Sequence (1) <Example> (1) Power down PLL: PMPLL bit = “1” “0” (2) Stop an external MCKI clock. 2. PLL Slave Mode (BICK pin) Example : Audio I/F Format: MSB justified (ADC & DAC) (1) PLL Reference clock: BICK BICK frequency: 64fs Sampling Frequency: 44.1kHz PMPLL bit (Addr:04H, D0) (2) External BICK Input (1) Addr:04H, Data:00H (2) External LRCK Input (2) Stop the external clocks Figure 118. Clock Stopping Sequence (2) <Example> (1) Power down PLL: PMPLL bit = “1” “0” (2) Stop the external BICK and LRCK clocks. MS1403-E-04 2014/12 - 166 - [AK4678] 3. EXT Slave Mode (1) External MCKI Input Example :Audio I/F Format:MSB justified(ADC & DAC) (1) External BICK Input External LRCK Input Input MCKI frequency:256fs Sampling Frequency:44.1kHz (1) (1) Stop the external clocks Figure 119. Clock Stopping Sequence (3) <Example> (1) Stop the external MCKI, BICK and LRCK clocks. 4. EXT Master Mode (1) External MCKI Input Example :Audio I/F Format:MSB justified(ADC & DAC) BICK Output "H" or "L" LRCK Output "H" or "L" Input MCKI frequency:256fs Sampling Frequency:44.1kHz (1) Stop the external MCKI Figure 120. Clock Stopping Sequence (4) <Example> (1) Stop MCKI clock. BICK and LRCK are fixed to “H” or “L”. ■ Power down Power supply current can be shut down (typ. 50μA) by stopping clocks and setting PMVCM bit = “0” after all blocks except for VCOM are powered-down. Power supply current can be also shut down (typ. 1μA) by stopping clocks and setting the PDN pin = “L”. When the PDN pin = “L”, the registers are initialized. MS1403-E-04 2014/12 - 167 - [AK4678] CONTROL SEQUENCE (PCM) ■ PCM I/F A(Baseband) to PCM I/F B(Bluetooth) Example: PCM I/F A/B Format: Linear, Long Frame MSBSA=BCKPA= “0”, MSBSB=BCKPB=”0” Power Supply PCM I/F A Sampling Frequency: 16kHz PCM I/F B Sampling Frequency: 44.1kHz (1) PDN pin BIVOL: -6dB, DATT-C: -6dB (2) (6) (3) (1) Power Supply & PDN pin = “L” “H” PMVCM bit (Addr:00H, D0) (4) (5) PMOSC bit PMPCMA/B bit PMSRx bits (2)Addr:00H, Data:00H Addr:18H, Data:0BH Addr:20H, Data:01H Addr:21H, Data:01H Addr:24H, Data:18H Addr:26H: Data:02H Addr:27H, Data:07H Addr:28H, Data:00H (Addr:1FH, D6-0) SYNCA/B pins BICKA/B pins SDTOA pin Input 164/fs2 "0" data Normal State "0" data (3) Addr:00H, Data:01H 164/fs3 SDTOB pin "0" data Normal State "0" data (4) Addr:1FH, Data:7FH Phone Call (5) Addr:1FH, Data:00H (6) Addr:00H, Data:00H Note: PMSRx bit means PMSRAI, PMSRAO, PMSRBI and PMSRBO bits Figure 121. Sequence of PCM I/F A to PCM I/F B (Baseband RX to Bluetooth TX: SDTIAPCM I/F ASRCAIDATT-CMIX3PCM I/F BSDTOB & Bluetooth RX to Baseband TX: SDTIBPCM I/F BBIVOLMIX2AMIX2CSRCAOPCM I/F ASDTOA) <Example> (1) After Power Up, PDN pin = “L” “H”. “L” time of 1.5μs or more is needed to reset the AK4678. (2) Dummy command (Addr:00H, Data:00H) must be executed before control register is set. OVTMB, BIV2-0, SDOA/BD, FMTA/B1-0, LAWA/B1-0, BCKPA/B, MSBSA/B, CVL6-0, MX2A1-0, MX2C1-0, MXSB2-0, SBMX1-0 bits should be set during this period. (3) Power Up VCOM: PMVCM bit = “0” “1” VCOM should first be powered up before the other block operates. (4) Power Up Internal Oscillator, SRCAI, SRCAO, SRCBI, SRCBO, PCM I/F A port and PCM I/F B port. PMSRBO=PMSRBI=PMPCMB=PMOSC=PMSRAO=PMSRAI=PMPCMA bits: “0” “1” SDTOA(SDTOB) outputs data after power-down state is released by inputting SYNCA(SYNCB). This initial of SRCAO(SRCBO) is 164/fs2(164/fs3) for SDTOA(SDTOB) output enable after power-down state is released by inputting SYNCA(SYNCB). (5) Power down Internal Oscillator, SRCAI, SRCAO, SRCBI, SRCBO, PCM I/F A port and PCM I/F B port. PMSRBO=PMSRBI=PMPCMB=PMOSC=PMSRAO=PMSRAI=PMPCMA bits: “1” “0” (6) Power Down VCOM: PMVCM bit = “1” “0” MS1403-E-04 2014/12 - 168 - [AK4678] ■ Receiver-Amp Output PCM I/F A Format & Path Setting Example: xxxx (1) PMMIX bit PMOSC bit PMPCMA bit PMSRAI bit (Addr:10H, D7-4) (2) Addr:1FH, Data:1BH (3) (3) Addr:10H, Data:90H 1001 1011 (4) 5EQ bit (Addr:17H, D3) (1) Addr:09H, Data:20H Addr:14H, Data:40H Addr:20H, Data:01H Addr:25H, Data:00H (12) (2) (Addr:1FH, D7,3, 1-0) RCVG3-0 bits PCM I/F A Format : Linear, Long MSBSA=BCKPA= “0” DATT: 8dB, DATT-B: 0dB(default) RCV Volume Level: 6dB 5 band EQ: Enable xxxx (4) Addr:17H, Data:0AH (11) 0 1 0 (6) Addr:0DH, Data:02H (5) OVR6-0 bits (Addr:1EH, D6-0) (5) Addr:1EH, Data:1CH 0CH 1CH (7) Addr:01H, Data:09H Addr:0DH, Data:03H 156/fs2 (8) Addr:0DH, Data:01H RCVPS bit (Addr:0DH, D1) (6) (8) PMDAR bit PMEQ bit (Addr:01H, D3, 0) (13) (9) (10) Phone Call (9) Addr:0DH, Data:03H (10) Addr:0DH, Data:02H Addr:01H, Data:00H (7) PMRCV bit (Addr:0DH, D0) RCP pin RCN pin >1 ms (11) Addr:17H, Data:02H Normal Output (12) Addr:1FH, Data:00H (13) Addr:0DH, Data:00H Figure 122. Receiver-Amp Output Sequence (Baseband Rx: SDTIAPCM I/F ASRCAIDATT-BMIX1R5-Band EQDATT-ADACRRCP/RCN) <Example> At first, audio clocks should be supplied according to “Clock Set Up” sequence. DAC and Receiver-Amp should be powered-up in consideration of VCOM rise time (1) Set up the format of PCM I/F A(FMTA1-0, LAWA1-0, BCKPA, MSBSA bits) and the path of “SDTIA DAC Receiver-Amp”(MX1R2-0 bits = “000” “000”, SRMXR1-0 bits = “00” “01”, DACRR bit = “0” “1”) (2) Power-up Internal Oscillator, MIX1 block and SRCAI: PMMIX = PMOSC= PMSRAI = PMPCMA bits = “0” “1”. The initial time of SRCAI is 164/fs2 after SYNCA clock is supplied. (3) Set up analog volume for Receiver-Amp (Addr: 10H, RCVG3-0 bits) (4) Enable 5-band Equalizer: 5EQ bit = “0” “1” (Frequency Response and gain are selected by Addr = 50H-6EH.) (5) Set up the output digital volume (Addr: 1EH) After DAC is powered-up, the digital volume changes from default value (0dB) to the register setting value by the soft transition. (6) Enter power-save mode of Receiver-Amp: RCVPS bit = “0” “1” After passing the initial time of SRCAI, the Receiver-Amp should enter power-save mode. (7) Power-up DAC, EQ and Receiver-Amp: PMDAR = PMEQ = PMRCV bits = “0” “1” The RCN pin rises up to VCOM voltage after PMRCV bit is changed to “1”. (8) Exit power-save mode of Receiver-Amp: RCVPS bit = “1” “0” RCVPS bit should be set to “0” after the RCN pin rises up. Receiver-Amp goes to normal operation by setting RCVPS bit to “0”. (9) Enter power-save mode of Receiver-Amp: RCVPS bit: “0” “1” (10) Power-down DAC, EQ and Receiver-Amp: PMDAR = PMEQ = PMRCV bit = “1” “0” Receiver-Amp becomes to power-down mode. (11) Disable 5-band Equalizer: 5EQ bit = “1” “0” (12) Power-down Internal Oscillator, MIX1 block and SRCAI: PMOSC = PMMIX = PMSRAI and PMPCMA bits = “1” “0” (13) Exit power-save mode of Receiver-Amp: RCVPS bit = “1” “0” RCVPS bit should be set to “0” after Receiver-Amp power-down. MS1403-E-04 2014/12 - 169 - [AK4678] PACKAGE 49pin CSP 0.4 (0.022) Top View 0.134 0.02 0.385 0.016 2.96 0.03 4678 XXXX 0.519 0.029 0.4 2.96 0.03 49 - 0.237 + 0.035/ - 0.027 0.015 M C A B Bottom View S 0.03 C ■ Material & Lead finish Package molding compound: Solder ball material: Epoxy, Halogen (bromine and chlorine) free SnAgCuNi MS1403-E-04 2014/12 - 170 - [AK4678] MARKING 4678 XXXX 1 A XXXX: Date code (4 digit) Pin #A1 indication MS1403-E-04 2014/12 - 171 - [AK4678] REVISION HISTORY Date (Y/M/D) 12/04/20 12/05/14 Revision 00 01 Reason First Edition Error Correction 12/10/31 02 Specification Change 13/01/30 03 Description Addition Page/Line Contents 3, 5~8, 47, 48, 130, 152~154 20 Pin names were corrected. LIN2/IN2+ → LIN2/IN2RIN2/IN2- → RIN2/IN2+ Switching Characteristics External Slave Mode BICK Input Timing, Period: 312.5ns → 312.5ns or 1/(126fs)s Note 48 was added. ■ PLL Mode A detailed description was added: Note 63 and Note 64 were added. Table 7 was added. ■ PLL Master Mode The description was changed. Package dimension was changed. Top surface coating thickness: 0.025mm → 0.022mm 37, 38, 39 40 14/12/25 04 Specification Change 170 MS1403-E-04 2014/12 - 172 - [AK4678] IMPORTANT NOTICE 0. Asahi Kasei Microdevices Corporation (“AKM”) reserves the right to make changes to the information contained in this document without notice. When you consider any use or application of AKM product stipulated in this document (“Product”), please make inquiries the sales office of AKM or authorized distributors as to current status of the Products. 1. All information included in this document are provided only to illustrate the operation and application examples of AKM Products. AKM neither makes warranties or representations with respect to the accuracy or completeness of the information contained in this document nor grants any license to any intellectual property rights or any other rights of AKM or any third party with respect to the information in this document. You are fully responsible for use of such information contained in this document in your product design or applications. AKM ASSUMES NO LIABILITY FOR ANY LOSSES INCURRED BY YOU OR THIRD PARTIES ARISING FROM THE USE OF SUCH INFORMATION IN YOUR PRODUCT DESIGN OR APPLICATIONS. 2. The Product is neither intended nor warranted for use in equipment or systems that require extraordinarily high levels of quality and/or reliability and/or a malfunction or failure of which may cause loss of human life, bodily injury, serious property damage or serious public impact, including but not limited to, equipment used in nuclear facilities, equipment used in the aerospace industry, medical equipment, equipment used for automobiles, trains, ships and other transportation, traffic signaling equipment, equipment used to control combustions or explosions, safety devices, elevators and escalators, devices related to electric power, and equipment used in finance-related fields. Do not use Product for the above use unless specifically agreed by AKM in writing. 3. Though AKM works continually to improve the Product’s quality and reliability, you are responsible for complying with safety standards and for providing adequate designs and safeguards for your hardware, software and systems which minimize risk and avoid situations in which a malfunction or failure of the Product could cause loss of human life, bodily injury or damage to property, including data loss or corruption. 4. Do not use or otherwise make available the Product or related technology or any information contained in this document for any military purposes, including without limitation, for the design, development, use, stockpiling or manufacturing of nuclear, chemical, or biological weapons or missile technology products (mass destruction weapons). When exporting the Products or related technology or any information contained in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. The Products and related technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. 5. Please contact AKM sales representative for details as to environmental matters such as the RoHS compatibility of the Product. Please use the Product in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. AKM assumes no liability for damages or losses occurring as a result of noncompliance with applicable laws and regulations. 6. Resale of the Product with provisions different from the statement and/or technical features set forth in this document shall immediately void any warranty granted by AKM for the Product and shall not create or extend in any manner whatsoever, any liability of AKM. 7. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of AKM. MS1403-E-04 2014/12 - 173 -