SiP11205/SiP11206DB

SiP11205/06DB
Vishay Siliconix
Intermediate Bus Converter Demo Board
Using SiP11205 or SiP11206
INTRODUCTION
Both SiP11205 and SiP11206 are controllers for half-bridge
intermediate bus converters. The difference between
SiP11205 and SiP11206 is that SiP11205 has built-in feedforward circuitry and SiP11206 does not. The feed-forward
circuitry adjusts duty cycle when input voltage changes. The
duty cycle increases with the decrease of input voltage and
the duty cycle decreases while input voltage increases. This
feed-forward feature allows an IBC to be semi-regulated.
While SiP11206 allows better efficiency throughout the
whole range of input voltage, since its duty cycle can be set
to an optimized value for the whole range of input voltage.
Therefore SiP11205 is more suited for point of load
applications that require tighter range of input voltage, which
is the output of an SiP11205 controlled IBC, and SiP11206 is
better for applications that efficiency is a key for whole input
voltage range.
This demo board is an eighth-brick IBC power converter,
which plugs into a baseboard. The IBC board has the
following specifications and options:
• Narrow input voltage range (42 to 55 V) with SiP11205 or
SiP11206 controller IC
• Wide input voltage range (36 to 75 V) with SiP11205
controller IC
• Nominal 12 V output, nominal load current 15 A
• PolarPAK SO-8 or PowerPAK SO-8 options for primary
and secondary power MOSFETs
The baseboard contains input fuse, input, output, and remote
enable connectors, enable switch, input bulk capacitance
and output voltage measurement SMC connector. The
cutout in the baseboard allows for probing of both sides of
the IBC board. Photos are shown in Figure 1.
Figure 1. Photos of Demo Board with PolarPAK MOSFET Options
This document details the following of the demo board:
1. Set up
2. Operation
3. Waveforms and Performance curves
4. Schematic and BOM
5. Board Layout
Document Number: 69636
S-72177-Rev. A, 22-Oct-07
www.vishay.com
1
SiP11205/06DB
Vishay Siliconix
SET UP
The connection diagram for the demo board is depicted in
Figure 2. Power and sense connections are provided at the
input and output for the main current path and for voltage
sensing for efficiency monitoring. Wire rated at 5 A should be
used for the input connections and 2 x 8 A rated wire should
be used for the output lines. The board can be enabled/
disabled manually by using the on-board switch S1 or by
connecting a 0 V/5 V logic signal in the disable connector.
5 V represents ‘Disable’.
Wiring lengths should be kept as short as possible,
especially at the output in order to avoid excessive voltage
drop across the cable length. If the input cables are less than
Enable/disable
Signal
R2
S1
R3
D1
Q1
Vins+
Input
Connector
-
+
C2
Enable/disable
Switch
D2
DISABLE +
1 meter long, connection of one bulk capacitor on the
baseboard is sufficient. However if longer lengths are
utilized, both capacitors should be connected. It should be
noted that with long cable lengths, the input voltage might be
quite oscillatory on power up, potentially leading to undervoltage or the converter cycling in and out of operation until
the voltage becomes steady.
A small fan should be placed so that cooling air is blown over
the demo board in the direction shown. If the temperature of
the board exceeds 105 ºC, the board will be disabled by the
over temperature shutdown mechanism.
VosVo-
Vin+
Vo-
F1
Vin-
Vo+
Vins-
Output
Connector
Vo+
P1
+
Vos+
TP1
TP4
TP2
C1
SiP11205/6 Demonstrator Board
TP3
C3
Airflow
Figure 2. Connection Diagram
OPERATION AND TEST RESULTS
The power circuit is a half-bridge converter controlled by the
SiP11205/6 IC. In the SiP11206 version, the converter duty
cycle is fixed and is set by R2. It is typically set to a value
close to 50 % for maximum efficiency. The output voltage is
then determined by the input voltage variation and the
transformer turns ratio. In this demo board, the transformer
turns ratio is 2:1. In the SiP11205 version, the maximum duty
cycle is set at the minimum input voltage. The duty cycle will
then decrease as the input voltage increases, in a feedforward manner, resulting in a much smaller variation in
output voltage over the line voltage range.
The controller IC is powered at startup by its own internal
9.5 V pre-regulator, which is driven from the line voltage.
Once converter switching commences, a separate 10.3 V
VCC supply is supplied from an auxiliary transformer winding,
and linear regulator R18, Q7, D8.
The secondary side synchronous rectifiers are self-driven,
but with a controlled gate voltage that does not vary with
input voltage. This results in improved efficiency and safer
drive voltages. A local 10 V bias supply is generated on the
secondary side through D9, R19, C12 and D10. MOSFETs Q8
and Q3 are triggered by the opposite transformer node, and
the 10 V is coupled to the synchronous rectifier gate less a
threshold voltage drop.
www.vishay.com
2
In the feed-forward version, a Schottky diode is connected
across the output filter. There are longer dead times in the
feedforward version due to the smaller duty cycle at higher
line voltages. During this dead time, the synchronous
rectifiers are off as there is no transformer voltage available
to turn them on. Hence, without the Schottky diode present,
the inductor current will flow through the two body diodes of
the synchronous rectifiers. The Schottky diode has a smaller
on voltage drop than the body diodes, and so will enhance
efficiency. Some typical converter waveforms are shown in
Figure 3 to 10.
This demo board is laid out in such a way that Vishay
Siliconix's PowerPAK and PolarPAK MOSFETs can both be
used as long as they satisfy voltage and current
requirements for primary and secondary. Therefore system
performance may be slightly different when different
MOSFETs with different footprints are used. Figure 11 to 14
illustrate typical system efficiency and line and load
regulation curves when the PolarPAK MOSFETs SiE818DF
and SiE812DF are used respectively for primary and
secondary.
Document Number: 69636
S-72177-Rev. A, 22-Oct-07
SiP11205/06DB
Vishay Siliconix
(a) 42 V with 0.5 A load
(b) 42 V with 15 A load
(c) 48 V with 0.5 A Load
(d) 48 V with 15 A Load
(e) 55 V with 0.5 A Load
(f) 55 V with 15 A Load
Figure 3. SiP11205 Driving Signal and Inductor Voltage
Document Number: 69636
S-72177-Rev. A, 22-Oct-07
www.vishay.com
3
SiP11205/06DB
Vishay Siliconix
Figure 4. SiP11205 Startup Waveforms
Figure 5. SiP11205 Shutdown Waveforms
Figure 6. SiP11205 Hiccup Waveforms when Output is Shorted
www.vishay.com
4
Figure 7. SiP11206 Switching Waveforms
Document Number: 69636
S-72177-Rev. A, 22-Oct-07
SiP11205/06DB
Vishay Siliconix
Figure 8. SiP11206 Startup Waveforms
Figure 9. SiP11206 Shutdown Waveforms
100
95
90
85
80
0
3
6
9
Efficiency 48 V
Efficiency 42 V
15
Figure 11. SiP11206 Efficiency at fSW = 135 kHz
100
100
98
98
96
96
94
94
Efficiency (%)
Efficiency (%)
Figure 10. SiP11206 Hiccup Waveforms when Output is Shorted
12
Efficiency 55 V
92
90
88
86
92
90
88
86
84
84
82
82
80
80
0
3
6
9
12
15
0
3
6
Io (A)
42 Vin
48 Vin
9
12
15
Io (A)
55 Vin
36 Vin
a) 42 to 55 V Input Range
48 Vin
72 Vin
b) 36 to 72 V Input Range
Figure 12. SiP11205 Efficiency
Document Number: 69636
S-72177-Rev. A, 22-Oct-07
www.vishay.com
5
SiP11205/06DB
Vishay Siliconix
14
18
12
16
14
10
Vo (V)
Vo (V)
12
8
6
10
8
6
4
4
2
2
0
0
0
3
6
9
12
15
0
3
6
Io (A)
42 Vin
9
12
15
Io (A)
48 Vin
55 Vin
36 Vin
48 Vin
72 Vin
b) 36 to 72 V Input Range
a) 42 to 55 V Input Range
Figure 13. SiP11205 Line and Load Regulation at fSW = 135 kHz
14
12
Vo (V)
10
8
6
4
2
0
0
3
6
9
12
15
Io (A)
42 Vin
48 Vin
55 Vin
Figure 14. SiP11206 Line and Load Regulation at fSW = 135 kHz
PCB LAYOUT
The demo board is an 8 layer board in the eighth-brick form
factor, manufactured with 3 oz copper on the outer layers
and 4 oz copper on the inner layers. The circuit schematics
for the demo board are illustrated in Figure 17 to 19.
www.vishay.com
6
The transformer is a planar magnetic component with an
E22/6/16 core. The primary winding has 4 turns, located on
layers 2 and 7, with 2 turns per layer. Each secondary
winding has 2 turns, located on layers 3, 4, 5, and 6, with 1
turn per layer. The auxiliary winding has 3 turns, consisting
of 2 turns on the top layer and 1 turn on the bottom layer. The
PCB layout plots are shown in Figure 14 to 16.
Document Number: 69636
S-72177-Rev. A, 22-Oct-07
SiP11205/06DB
Vishay Siliconix
Figure 15. Layers 1 to 4 of PCB (l - r)
Figure 16. Layers 5 to 8 of PCB (l - r)
Document Number: 69636
S-72177-Rev. A, 22-Oct-07
www.vishay.com
7
SiP11205/06DB
Vishay Siliconix
Figure 17. Top and Bottom PCB Component Placement (l - r)
The schematics are shown in Figure 18 to 20, and parts list are shown in table 1 and 2.
TABLE 1 - IBC PARTS LIST
Item
Ref.
Description
Value
Footprint
1
C1
Capacitor
Part Number
100 nF, 50 V
0603
2
C2
Capacitor
3.3 nF, 10 V
0603
3
C3
Capacitor
1 µF, 25 V
0603
4
C4
Capacitor
100 pF, 10 V (270 kHz)
0603
220 pF, 10 V (135 kHz)
0603
5
C5
Capacitor
22 nF, 10 V
0603
6
C6
Capacitor
220 pF, 10 V
0603
7
C7
Capacitor
22 nF, 10 V
0603
8
C8
Capacitor
9
C10
Capacitor
10
C12
Capacitor
11
C13
Capacitor
C4532X7R1H475M
C4532X7R1H475M
Manufacturer
4.7 µF, 50 V
1812
TDK
4.7 µF, 50 V
1812
TDK
100 nF, 50 V
0603
1 µF, 25 V
0603
12
C14
Capacitor
GRM32ER61C226KE20L
22 µF, 16 V
1210
Murata
13
C15
Capacitor (Tantalum)
TAJB226K016R
22 µF, 16 V
Case B
AVX
14
C17
Capacitor
100 nF, 50 V
0603
15
C18
Capacitor
1 µF, 25 V
0603
16
D1
Small Signal switching diode
BAV19WS-V
0.2 A, 100 V
SOD323
Vishay
17
D5
SSC54 Schottky Diode
5 A, 40 V
SMC
Vishay
18
D7
Schottky Diode
BAS170WS
70 V, 70 mA
SOD323
Vishay
19
D8
Zener Diode
BZX384B11-V
11 V, 2 %
SOD323
Vishay
www.vishay.com
8
Document Number: 69636
S-72177-Rev. A, 22-Oct-07
SiP11205/06DB
Vishay Siliconix
TABLE 1 - IBC PARTS LIST
Item
Ref.
Description
Part Number
Value
20
D9
21
D10
22
Schottky Diode
BAS170WS
Zener Diode
BZX384B11-V
J1
1.02 mm Pin
3102-3-00-xx-00-00-08-0
Mill-Max
23
J2
1.02 mm Pin
3102-3-00-xx-00-00-08-0
Mill-Max
24
J3
1.02 mm Pin
3102-3-00-xx-00-00-08-0
Mill-Max
25
J4
1.58 mm Pin
3144-3-00-xx-00-00-08-0
Mill-Max
26
J5
1.58 mm Pin
3144-3-00-xx-00-00-08-0
27
28
L1
Q1
Inductor
IHLP4040DZ-01
Si7852DP
Power MOSFET
29
Q2
Power MOSFET
30
Q3
MOSFET
31
Q4
Synch MOSFET
b
Footprint
Manufacturer
70 V, 70 mA
SOD323
Vishay
11 V, 2 %
SOD323
Vishay
Mill-Max
1 µH (3.3
80
µH)b
Vb
4040
Vishay
PowerPAK SO8
Vishay
Si7138DP
60 V
PowerPAK SO8
Vishay
Si7852DPb
80 V
b
PowerPAK SO8
Vishay
Si7138DP
60 Vb
PowerPAK SO8
Vishay
Si2308
60 V, 2 A
SOT23
Vishay
Si7156DP
40 V
PowerPAK SO8
Vishay
b
60 V
b
PowerPAK SO8
Vishay
Si7156DP
40 V
PowerPAK SO8
Vishay
b
Vb
Si7138DP
32
Q5
Synch MOSFET
PowerPAK SO8
Vishay
33
Q6
Power MOSFET
SiE818DF
75 V
PolarPAK
Vishay
34
Q7
Small signal npn BJT
ZXTN2031F
50 V, 3 A
SOT23
Zetex
35
Q8
MOSFET
Si2308
60 V, 2 A
SOT23
Vishay
Si7138DP
60
36
Q9
Power MOSFET
SiE818DF
75 V
PolarPAK
Vishay
37
Q10
Synch MOSFET
SiE812DF
40 V
PolarPAK
Vishay
38
Q11
Synch MOSFET
SiE812DF
40 V
PolarPAK
Vishay
39
R1
Resistor
82k 1%
0603
40
R2
Resistor
82k, (82k)a, (80k6)b, 1 %
0603
41
R3
Resistor
220 R, 1 %
0603
42
R5
Resistor
36k, (36k)a, (33k)b, 1 %
0603
43
R6
Resistor
3k6, 1 %
0603
44
R9
Resistor
100k, 1 %
0603
45
R10
Resistor
100k, 1 %
0603
46
R12
Resistor
NC (75k)a, (82k)b
0603
47
R15
Resistor
10k, 1 %
0603
48
R16
Resistor
10k, 1 %
0603
49
R17
Current Sense Resistor
50
R18
Resistor
51
R19
Resistor
1k5, 1 %
0603
52
T1
Power Transformer
4:2:2 + 3 (Aux)
E22/6/16+I
53
U1
IBC Control IC
SiP11205/11206
54
U2
Temperature Sensor
LM26CIMM
Z1
Micropower Voltage
Reference
LM4120
55
WSLP1206R01000DEA
0R01
1206
1k5, 1 %
0603
3.3 V, 0.2 %
Vishay
TSSOP-16
Vishay
SOT23-5
National Semi
Notes:
a. Part values are for narrow input feed-forward version
b. Part values are for wide input feed-forward version
Document Number: 69636
S-72177-Rev. A, 22-Oct-07
www.vishay.com
9
SiP11205/06DB
Vishay Siliconix
TABLE 2 - BASE BOARD PARTS LIST
Item
Designator
Part Number
Manufacturer
1
C1
EEUED2C470
Panasonic
2
C2
EEUED2C470
Panasonic
3
C3
2238 911 15649
Phycomp
4
D1
BAS16
Philips
5
D2
BAS16
Philips
6
F1
3216FF5-R
Bussmann
7
J1
1727036
Phoenix Contact
8
J2
1727010
Phoenix Contact
Phoenix Contact
9
J3
1727052
10
J4
R112426000
Radiall
11
J5
H3183-05
Harwin
12
J6
H3183-05
Harwin
13
J7
H3183-05
Harwin
14
J8
0364-0-15-01-13-27-10-0
Mill-Max
15
J9
0364-0-15-01-13-27-10-0
Mill-Max
16
Q1
MMUN2213LT1G
ON Semi
17
R2
16K 1206
18
R3
1K5 1206
19
S1
ET01MD1ABE
20
TP1
20-313137
Vero
21
TP2
20-2137
Vero
22
TP3
20-313137
Vero
23
TP4
20-2137
Vero
www.vishay.com
10
C&K
Document Number: 69636
S-72177-Rev. A, 22-Oct-07
MILL_MAX_1_02_PIN
J3-1
CS
1
R3
2
C6
C13
C4
LM26
U2
1 HYST
5
OS
2
3 GND
Vtemp V+
SHDN
PRIGND
PRIGND
C3
PRIGND
VCC
1
R1
2
1
R2
2
1
R5
2
1
R6
2
DH 15
LX 14
4
MUNTZ
PRIGND
C7 2
5
4
VCC
Z1
C5
PRIGND
Only populate on
feedforward version
U1
8 Rosc
DL 13
9 Cosc PGND 12
10 Rdb
SS 11
6 GND
7 Vref
Vin 2
Vcc
4 Comp Vindet 1
5 CS
BST 16
3
SHDN
1
R12
2
PRIGND
T1-H
T1-I
D1
PRIGND
T1-G
13
14
J2-1
15
16
17
18
C1
VCC
PRIGND
D7
C17
1
Q6
R18
2
PRIGND
R17
Q2 Q9
Q1
1
2
MILL_MAX_1_02_PIN
T1-A
CS
1
3
J1-1
Q7
1
PolarPAK or PowerPAK options
2
D8
2 3
T1-B
C18
VCC
1
R9
4
2
1
R10
Document Number: 69636
S-72177-Rev. A, 22-Oct-07
2
MILL_MAX_1_02_PIN
PRIGND
C10
C8
SiP11205/06DB
Vishay Siliconix
Figure 18. Schematic - Primary Side
www.vishay.com
11
T1-E
Q8
1
11
12
9
10
T1-F
1
R15
2
7
8
5
6
T1-C
D10
Q4
Q10
D9
SECGND
C12
Q3
2
3
SECGND
1
1
R19
2
1
R16
Q5 Q11
360 nH
L1
IHLP4040
1
2
D5
Feedforward version only
PolarPAK or PowerPAK options
2
www.vishay.com
12
T1-D
C14
+
1
C15
J4
MILL_MAX_1_58_PIN
J5
MILL_MAX_1_58_PIN
1
SiP11205/06DB
Vishay Siliconix
Figure 19. Schematic - Secondary Side
Document Number: 69636
S-72177-Rev. A, 22-Oct-07
2
3
SiP11205/06DB
Vishay Siliconix
TP1
TESTPOINT_LOOP
TP2
TESTPOINT_LOOP
J1-A
VIN_REFUSE
1
VIN_REFUSE
SCREW_TERMINAL_4WAY
J1-B
SEC_VOUT
1 F1 2
2
SCREW_TERMINAL_4WAY
J1-C
VIN
PRI_GND
C1
J5-1
C2
J3-1
SEC_GND
TP4-1
TESTPOINT_LOOP
SCREW_TERMINAL_6WAY
J3-2
J6-1
4
J8
SCREW_TERMINAL_4WAY
PIN_RECEPTICLE
PIN_RECEPTIBLE_HICURRENT
PRI_GND
VIN
J9
R2
PIN_RECEPTIBLE_HICURRENT
S1
1
J4
SCREW_TERMINAL_6WAY
J3-3
C3
SCREW_TERMINAL_6WAY
J3-4
SMC_CONN
SCREW_TERMINAL_6WAY
J3-5
SEC_GND
2
3
4
5
J3-6
SCREW_TERMINAL_6WAY
D2
PRI_GND
R3
TESTPOINT_LOOP
3
SCREW_TERMINAL_4WAY
J1-D
TP3-1
SCREW_TERMINAL_6WAY
PIN_RECEPTICLE
SEC_VOUT
J7-1
PIN_RECEPTICLE
PRI_GND
3
D1
1
Q1
J2-1
2
SCREW_TERMINAL_2WAY
J2-2
SCREW_TERMINAL_2WAY
PRI_GND
Figure 20. Schematic - Base Board
Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon
Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and
reliability data, see http://www.vishay.com/ppg?69636.
Document Number: 69636
S-72177-Rev. A, 22-Oct-07
www.vishay.com
13