SiP11205/06DB Vishay Siliconix Intermediate Bus Converter Demo Board Using SiP11205 or SiP11206 INTRODUCTION Both SiP11205 and SiP11206 are controllers for half-bridge intermediate bus converters. The difference between SiP11205 and SiP11206 is that SiP11205 has built-in feedforward circuitry and SiP11206 does not. The feed-forward circuitry adjusts duty cycle when input voltage changes. The duty cycle increases with the decrease of input voltage and the duty cycle decreases while input voltage increases. This feed-forward feature allows an IBC to be semi-regulated. While SiP11206 allows better efficiency throughout the whole range of input voltage, since its duty cycle can be set to an optimized value for the whole range of input voltage. Therefore SiP11205 is more suited for point of load applications that require tighter range of input voltage, which is the output of an SiP11205 controlled IBC, and SiP11206 is better for applications that efficiency is a key for whole input voltage range. This demo board is an eighth-brick IBC power converter, which plugs into a baseboard. The IBC board has the following specifications and options: • Narrow input voltage range (42 to 55 V) with SiP11205 or SiP11206 controller IC • Wide input voltage range (36 to 75 V) with SiP11205 controller IC • Nominal 12 V output, nominal load current 15 A • PolarPAK SO-8 or PowerPAK SO-8 options for primary and secondary power MOSFETs The baseboard contains input fuse, input, output, and remote enable connectors, enable switch, input bulk capacitance and output voltage measurement SMC connector. The cutout in the baseboard allows for probing of both sides of the IBC board. Photos are shown in Figure 1. Figure 1. Photos of Demo Board with PolarPAK MOSFET Options This document details the following of the demo board: 1. Set up 2. Operation 3. Waveforms and Performance curves 4. Schematic and BOM 5. Board Layout Document Number: 69636 S-72177-Rev. A, 22-Oct-07 www.vishay.com 1 SiP11205/06DB Vishay Siliconix SET UP The connection diagram for the demo board is depicted in Figure 2. Power and sense connections are provided at the input and output for the main current path and for voltage sensing for efficiency monitoring. Wire rated at 5 A should be used for the input connections and 2 x 8 A rated wire should be used for the output lines. The board can be enabled/ disabled manually by using the on-board switch S1 or by connecting a 0 V/5 V logic signal in the disable connector. 5 V represents ‘Disable’. Wiring lengths should be kept as short as possible, especially at the output in order to avoid excessive voltage drop across the cable length. If the input cables are less than Enable/disable Signal R2 S1 R3 D1 Q1 Vins+ Input Connector - + C2 Enable/disable Switch D2 DISABLE + 1 meter long, connection of one bulk capacitor on the baseboard is sufficient. However if longer lengths are utilized, both capacitors should be connected. It should be noted that with long cable lengths, the input voltage might be quite oscillatory on power up, potentially leading to undervoltage or the converter cycling in and out of operation until the voltage becomes steady. A small fan should be placed so that cooling air is blown over the demo board in the direction shown. If the temperature of the board exceeds 105 ºC, the board will be disabled by the over temperature shutdown mechanism. VosVo- Vin+ Vo- F1 Vin- Vo+ Vins- Output Connector Vo+ P1 + Vos+ TP1 TP4 TP2 C1 SiP11205/6 Demonstrator Board TP3 C3 Airflow Figure 2. Connection Diagram OPERATION AND TEST RESULTS The power circuit is a half-bridge converter controlled by the SiP11205/6 IC. In the SiP11206 version, the converter duty cycle is fixed and is set by R2. It is typically set to a value close to 50 % for maximum efficiency. The output voltage is then determined by the input voltage variation and the transformer turns ratio. In this demo board, the transformer turns ratio is 2:1. In the SiP11205 version, the maximum duty cycle is set at the minimum input voltage. The duty cycle will then decrease as the input voltage increases, in a feedforward manner, resulting in a much smaller variation in output voltage over the line voltage range. The controller IC is powered at startup by its own internal 9.5 V pre-regulator, which is driven from the line voltage. Once converter switching commences, a separate 10.3 V VCC supply is supplied from an auxiliary transformer winding, and linear regulator R18, Q7, D8. The secondary side synchronous rectifiers are self-driven, but with a controlled gate voltage that does not vary with input voltage. This results in improved efficiency and safer drive voltages. A local 10 V bias supply is generated on the secondary side through D9, R19, C12 and D10. MOSFETs Q8 and Q3 are triggered by the opposite transformer node, and the 10 V is coupled to the synchronous rectifier gate less a threshold voltage drop. www.vishay.com 2 In the feed-forward version, a Schottky diode is connected across the output filter. There are longer dead times in the feedforward version due to the smaller duty cycle at higher line voltages. During this dead time, the synchronous rectifiers are off as there is no transformer voltage available to turn them on. Hence, without the Schottky diode present, the inductor current will flow through the two body diodes of the synchronous rectifiers. The Schottky diode has a smaller on voltage drop than the body diodes, and so will enhance efficiency. Some typical converter waveforms are shown in Figure 3 to 10. This demo board is laid out in such a way that Vishay Siliconix's PowerPAK and PolarPAK MOSFETs can both be used as long as they satisfy voltage and current requirements for primary and secondary. Therefore system performance may be slightly different when different MOSFETs with different footprints are used. Figure 11 to 14 illustrate typical system efficiency and line and load regulation curves when the PolarPAK MOSFETs SiE818DF and SiE812DF are used respectively for primary and secondary. Document Number: 69636 S-72177-Rev. A, 22-Oct-07 SiP11205/06DB Vishay Siliconix (a) 42 V with 0.5 A load (b) 42 V with 15 A load (c) 48 V with 0.5 A Load (d) 48 V with 15 A Load (e) 55 V with 0.5 A Load (f) 55 V with 15 A Load Figure 3. SiP11205 Driving Signal and Inductor Voltage Document Number: 69636 S-72177-Rev. A, 22-Oct-07 www.vishay.com 3 SiP11205/06DB Vishay Siliconix Figure 4. SiP11205 Startup Waveforms Figure 5. SiP11205 Shutdown Waveforms Figure 6. SiP11205 Hiccup Waveforms when Output is Shorted www.vishay.com 4 Figure 7. SiP11206 Switching Waveforms Document Number: 69636 S-72177-Rev. A, 22-Oct-07 SiP11205/06DB Vishay Siliconix Figure 8. SiP11206 Startup Waveforms Figure 9. SiP11206 Shutdown Waveforms 100 95 90 85 80 0 3 6 9 Efficiency 48 V Efficiency 42 V 15 Figure 11. SiP11206 Efficiency at fSW = 135 kHz 100 100 98 98 96 96 94 94 Efficiency (%) Efficiency (%) Figure 10. SiP11206 Hiccup Waveforms when Output is Shorted 12 Efficiency 55 V 92 90 88 86 92 90 88 86 84 84 82 82 80 80 0 3 6 9 12 15 0 3 6 Io (A) 42 Vin 48 Vin 9 12 15 Io (A) 55 Vin 36 Vin a) 42 to 55 V Input Range 48 Vin 72 Vin b) 36 to 72 V Input Range Figure 12. SiP11205 Efficiency Document Number: 69636 S-72177-Rev. A, 22-Oct-07 www.vishay.com 5 SiP11205/06DB Vishay Siliconix 14 18 12 16 14 10 Vo (V) Vo (V) 12 8 6 10 8 6 4 4 2 2 0 0 0 3 6 9 12 15 0 3 6 Io (A) 42 Vin 9 12 15 Io (A) 48 Vin 55 Vin 36 Vin 48 Vin 72 Vin b) 36 to 72 V Input Range a) 42 to 55 V Input Range Figure 13. SiP11205 Line and Load Regulation at fSW = 135 kHz 14 12 Vo (V) 10 8 6 4 2 0 0 3 6 9 12 15 Io (A) 42 Vin 48 Vin 55 Vin Figure 14. SiP11206 Line and Load Regulation at fSW = 135 kHz PCB LAYOUT The demo board is an 8 layer board in the eighth-brick form factor, manufactured with 3 oz copper on the outer layers and 4 oz copper on the inner layers. The circuit schematics for the demo board are illustrated in Figure 17 to 19. www.vishay.com 6 The transformer is a planar magnetic component with an E22/6/16 core. The primary winding has 4 turns, located on layers 2 and 7, with 2 turns per layer. Each secondary winding has 2 turns, located on layers 3, 4, 5, and 6, with 1 turn per layer. The auxiliary winding has 3 turns, consisting of 2 turns on the top layer and 1 turn on the bottom layer. The PCB layout plots are shown in Figure 14 to 16. Document Number: 69636 S-72177-Rev. A, 22-Oct-07 SiP11205/06DB Vishay Siliconix Figure 15. Layers 1 to 4 of PCB (l - r) Figure 16. Layers 5 to 8 of PCB (l - r) Document Number: 69636 S-72177-Rev. A, 22-Oct-07 www.vishay.com 7 SiP11205/06DB Vishay Siliconix Figure 17. Top and Bottom PCB Component Placement (l - r) The schematics are shown in Figure 18 to 20, and parts list are shown in table 1 and 2. TABLE 1 - IBC PARTS LIST Item Ref. Description Value Footprint 1 C1 Capacitor Part Number 100 nF, 50 V 0603 2 C2 Capacitor 3.3 nF, 10 V 0603 3 C3 Capacitor 1 µF, 25 V 0603 4 C4 Capacitor 100 pF, 10 V (270 kHz) 0603 220 pF, 10 V (135 kHz) 0603 5 C5 Capacitor 22 nF, 10 V 0603 6 C6 Capacitor 220 pF, 10 V 0603 7 C7 Capacitor 22 nF, 10 V 0603 8 C8 Capacitor 9 C10 Capacitor 10 C12 Capacitor 11 C13 Capacitor C4532X7R1H475M C4532X7R1H475M Manufacturer 4.7 µF, 50 V 1812 TDK 4.7 µF, 50 V 1812 TDK 100 nF, 50 V 0603 1 µF, 25 V 0603 12 C14 Capacitor GRM32ER61C226KE20L 22 µF, 16 V 1210 Murata 13 C15 Capacitor (Tantalum) TAJB226K016R 22 µF, 16 V Case B AVX 14 C17 Capacitor 100 nF, 50 V 0603 15 C18 Capacitor 1 µF, 25 V 0603 16 D1 Small Signal switching diode BAV19WS-V 0.2 A, 100 V SOD323 Vishay 17 D5 SSC54 Schottky Diode 5 A, 40 V SMC Vishay 18 D7 Schottky Diode BAS170WS 70 V, 70 mA SOD323 Vishay 19 D8 Zener Diode BZX384B11-V 11 V, 2 % SOD323 Vishay www.vishay.com 8 Document Number: 69636 S-72177-Rev. A, 22-Oct-07 SiP11205/06DB Vishay Siliconix TABLE 1 - IBC PARTS LIST Item Ref. Description Part Number Value 20 D9 21 D10 22 Schottky Diode BAS170WS Zener Diode BZX384B11-V J1 1.02 mm Pin 3102-3-00-xx-00-00-08-0 Mill-Max 23 J2 1.02 mm Pin 3102-3-00-xx-00-00-08-0 Mill-Max 24 J3 1.02 mm Pin 3102-3-00-xx-00-00-08-0 Mill-Max 25 J4 1.58 mm Pin 3144-3-00-xx-00-00-08-0 Mill-Max 26 J5 1.58 mm Pin 3144-3-00-xx-00-00-08-0 27 28 L1 Q1 Inductor IHLP4040DZ-01 Si7852DP Power MOSFET 29 Q2 Power MOSFET 30 Q3 MOSFET 31 Q4 Synch MOSFET b Footprint Manufacturer 70 V, 70 mA SOD323 Vishay 11 V, 2 % SOD323 Vishay Mill-Max 1 µH (3.3 80 µH)b Vb 4040 Vishay PowerPAK SO8 Vishay Si7138DP 60 V PowerPAK SO8 Vishay Si7852DPb 80 V b PowerPAK SO8 Vishay Si7138DP 60 Vb PowerPAK SO8 Vishay Si2308 60 V, 2 A SOT23 Vishay Si7156DP 40 V PowerPAK SO8 Vishay b 60 V b PowerPAK SO8 Vishay Si7156DP 40 V PowerPAK SO8 Vishay b Vb Si7138DP 32 Q5 Synch MOSFET PowerPAK SO8 Vishay 33 Q6 Power MOSFET SiE818DF 75 V PolarPAK Vishay 34 Q7 Small signal npn BJT ZXTN2031F 50 V, 3 A SOT23 Zetex 35 Q8 MOSFET Si2308 60 V, 2 A SOT23 Vishay Si7138DP 60 36 Q9 Power MOSFET SiE818DF 75 V PolarPAK Vishay 37 Q10 Synch MOSFET SiE812DF 40 V PolarPAK Vishay 38 Q11 Synch MOSFET SiE812DF 40 V PolarPAK Vishay 39 R1 Resistor 82k 1% 0603 40 R2 Resistor 82k, (82k)a, (80k6)b, 1 % 0603 41 R3 Resistor 220 R, 1 % 0603 42 R5 Resistor 36k, (36k)a, (33k)b, 1 % 0603 43 R6 Resistor 3k6, 1 % 0603 44 R9 Resistor 100k, 1 % 0603 45 R10 Resistor 100k, 1 % 0603 46 R12 Resistor NC (75k)a, (82k)b 0603 47 R15 Resistor 10k, 1 % 0603 48 R16 Resistor 10k, 1 % 0603 49 R17 Current Sense Resistor 50 R18 Resistor 51 R19 Resistor 1k5, 1 % 0603 52 T1 Power Transformer 4:2:2 + 3 (Aux) E22/6/16+I 53 U1 IBC Control IC SiP11205/11206 54 U2 Temperature Sensor LM26CIMM Z1 Micropower Voltage Reference LM4120 55 WSLP1206R01000DEA 0R01 1206 1k5, 1 % 0603 3.3 V, 0.2 % Vishay TSSOP-16 Vishay SOT23-5 National Semi Notes: a. Part values are for narrow input feed-forward version b. Part values are for wide input feed-forward version Document Number: 69636 S-72177-Rev. A, 22-Oct-07 www.vishay.com 9 SiP11205/06DB Vishay Siliconix TABLE 2 - BASE BOARD PARTS LIST Item Designator Part Number Manufacturer 1 C1 EEUED2C470 Panasonic 2 C2 EEUED2C470 Panasonic 3 C3 2238 911 15649 Phycomp 4 D1 BAS16 Philips 5 D2 BAS16 Philips 6 F1 3216FF5-R Bussmann 7 J1 1727036 Phoenix Contact 8 J2 1727010 Phoenix Contact Phoenix Contact 9 J3 1727052 10 J4 R112426000 Radiall 11 J5 H3183-05 Harwin 12 J6 H3183-05 Harwin 13 J7 H3183-05 Harwin 14 J8 0364-0-15-01-13-27-10-0 Mill-Max 15 J9 0364-0-15-01-13-27-10-0 Mill-Max 16 Q1 MMUN2213LT1G ON Semi 17 R2 16K 1206 18 R3 1K5 1206 19 S1 ET01MD1ABE 20 TP1 20-313137 Vero 21 TP2 20-2137 Vero 22 TP3 20-313137 Vero 23 TP4 20-2137 Vero www.vishay.com 10 C&K Document Number: 69636 S-72177-Rev. A, 22-Oct-07 MILL_MAX_1_02_PIN J3-1 CS 1 R3 2 C6 C13 C4 LM26 U2 1 HYST 5 OS 2 3 GND Vtemp V+ SHDN PRIGND PRIGND C3 PRIGND VCC 1 R1 2 1 R2 2 1 R5 2 1 R6 2 DH 15 LX 14 4 MUNTZ PRIGND C7 2 5 4 VCC Z1 C5 PRIGND Only populate on feedforward version U1 8 Rosc DL 13 9 Cosc PGND 12 10 Rdb SS 11 6 GND 7 Vref Vin 2 Vcc 4 Comp Vindet 1 5 CS BST 16 3 SHDN 1 R12 2 PRIGND T1-H T1-I D1 PRIGND T1-G 13 14 J2-1 15 16 17 18 C1 VCC PRIGND D7 C17 1 Q6 R18 2 PRIGND R17 Q2 Q9 Q1 1 2 MILL_MAX_1_02_PIN T1-A CS 1 3 J1-1 Q7 1 PolarPAK or PowerPAK options 2 D8 2 3 T1-B C18 VCC 1 R9 4 2 1 R10 Document Number: 69636 S-72177-Rev. A, 22-Oct-07 2 MILL_MAX_1_02_PIN PRIGND C10 C8 SiP11205/06DB Vishay Siliconix Figure 18. Schematic - Primary Side www.vishay.com 11 T1-E Q8 1 11 12 9 10 T1-F 1 R15 2 7 8 5 6 T1-C D10 Q4 Q10 D9 SECGND C12 Q3 2 3 SECGND 1 1 R19 2 1 R16 Q5 Q11 360 nH L1 IHLP4040 1 2 D5 Feedforward version only PolarPAK or PowerPAK options 2 www.vishay.com 12 T1-D C14 + 1 C15 J4 MILL_MAX_1_58_PIN J5 MILL_MAX_1_58_PIN 1 SiP11205/06DB Vishay Siliconix Figure 19. Schematic - Secondary Side Document Number: 69636 S-72177-Rev. A, 22-Oct-07 2 3 SiP11205/06DB Vishay Siliconix TP1 TESTPOINT_LOOP TP2 TESTPOINT_LOOP J1-A VIN_REFUSE 1 VIN_REFUSE SCREW_TERMINAL_4WAY J1-B SEC_VOUT 1 F1 2 2 SCREW_TERMINAL_4WAY J1-C VIN PRI_GND C1 J5-1 C2 J3-1 SEC_GND TP4-1 TESTPOINT_LOOP SCREW_TERMINAL_6WAY J3-2 J6-1 4 J8 SCREW_TERMINAL_4WAY PIN_RECEPTICLE PIN_RECEPTIBLE_HICURRENT PRI_GND VIN J9 R2 PIN_RECEPTIBLE_HICURRENT S1 1 J4 SCREW_TERMINAL_6WAY J3-3 C3 SCREW_TERMINAL_6WAY J3-4 SMC_CONN SCREW_TERMINAL_6WAY J3-5 SEC_GND 2 3 4 5 J3-6 SCREW_TERMINAL_6WAY D2 PRI_GND R3 TESTPOINT_LOOP 3 SCREW_TERMINAL_4WAY J1-D TP3-1 SCREW_TERMINAL_6WAY PIN_RECEPTICLE SEC_VOUT J7-1 PIN_RECEPTICLE PRI_GND 3 D1 1 Q1 J2-1 2 SCREW_TERMINAL_2WAY J2-2 SCREW_TERMINAL_2WAY PRI_GND Figure 20. Schematic - Base Board Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see http://www.vishay.com/ppg?69636. Document Number: 69636 S-72177-Rev. A, 22-Oct-07 www.vishay.com 13