256K x 36 9Mb Sync Burst SRAM

GS88037CT-xxxV
100-Pin TQFP
Commercial Temp
256K x 36
9Mb Sync Burst SRAM
Features
• Single Cycle Deselect (SCD) operation
• 1.8 V or 2.5 V +10%/–10% core power supply
• 1.8 V or 2.5 V I/O supply
• LBO pin for Linear or Interleaved Burst mode
• Internal input resistors on mode pins allow floating mode pins
• Default to Interleaved Pipeline mode
• Byte Write (BW) and/or Global Write (GW) operation
• Internal self-timed write cycle
• Automatic power-down for portable applications
• JEDEC-standard 100-lead TQFP package
• RoHS-compliant 100-lead TQFP package available
Functional Description
Applications
The GS88037CT-xxxV is a 9,437,184-bit (8,388,608-bit for
x32 version) high performance synchronous SRAM with a
2-bit burst address counter. Although of a type originally
developed for Level 2 Cache applications supporting high
performance CPUs, the device now finds application in
synchronous SRAM applications, ranging from DSP main
store to networking chip set support.
Controls
Addresses, data I/Os, chip enables (E1, E2, E3), address burst
control inputs (ADSP, ADSC, ADV), and write control inputs
(Bx, BW, GW) are synchronous and are controlled by a
positive-edge-triggered clock input (CK). Output enable (G)
and power down control (ZZ) are asynchronous inputs. Burst
cycles can be initiated with either ADSP or ADSC inputs. In
250 MHz–200 MHz
1.8 V or 2.5 V VDD
1.8 V or 2.5 V I/O
Burst mode, subsequent burst addresses are generated
internally and are controlled by ADV. The burst address
counter may be configured to count in either linear or
interleave order with the Linear Burst Order (LBO) input. The
Burst function need not be used. New addresses can be loaded
on every cycle with no degradation of chip performance.
SCD Pipelined Reads
The GS88037CT-xxxV is a SCD (Single Cycle Deselect)
pipelined synchronous SRAM. DCD (Dual Cycle Deselect)
versions are also available. SCD SRAMs pipeline deselect
commands one stage less than read commands. SCD RAMs
begin turning off their outputs immediately after the deselect
command has been captured in the input registers.
Byte Write and Global Write
Byte write operation is performed by using Byte Write enable
(BW) input combined with one or more individual byte write
signals (Bx). In addition, Global Write (GW) is available for
writing all bytes at one time, regardless of the Byte Write
control inputs.
Sleep Mode
Low power (Sleep mode) is attained through the assertion
(High) of the ZZ signal, or by stopping the clock (CK).
Memory data is retained during Sleep mode.
Core and Interface Voltages
The GS88037CT-xxxV operates on a 1.8 V or 2.5 V power
supply. All input are 2.5 V and 1.8 V compatible. Separate
output power (VDDQ) pins are used to decouple output noise
from the internal circuits and are 2.5 V and 1.8 V compatible.
Parameter Synopsis
Pipeline
3-1-1-1
Rev: 1.04 6/2012
tKQ
tCycle
Curr (x36)
-250
2.3
4.0
-200
2.7
5.0
Unit
ns
ns
225
195
mA
1/17
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2011, GSI Technology
GS88037CT-xxxV
A
A
E1
E2
BD
BC
BB
BA
E3
VDD
VSS
CK
GW
BW
G
ADSC
ADSP
ADV
A
A
GS88037CT-xxxV 100-Pin TQFP Pinout
DQPC
DQC
DQC
VDDQ
VSS
DQC
DQC
DQC
DQC
VSS
VDDQ
DQC
DQC
DQPB
DQB
DQB
VDDQ
VSS
DQB
DQB
DQB
DQB
VSS
VDDQ
DQB
DQB
VSS
NC
VDD
ZZ
DQA
DQA
VDDQ
VSS
DQA
DQA
DQA
DQA
VSS
VDDQ
DQA
DQA
DQPA
LBO
A
A
A
A
A1
A0
NC
NC
VSS
VDD
NC
A
A
A
A
A
A
A
A
VDDQ/DNU
VDD
NC
VSS
DQD
DQD
VDDQ
VSS
DQD
DQD
DQD
DQD
VSS
VDDQ
DQD
DQD
DQPD
100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81
1
80
2
79
3
78
4
77
5
76
6
75
7
74
8
73
9
72
256K x 36
10
71
Top View
11
70
12
69
13
68
14
67
15
66
16
65
17
64
18
63
19
62
20
61
21
60
22
59
23
58
24
57
25
56
26
55
27
54
28
53
29
52
30
51
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
Note:
Pins marked with NC can be tied to either VDD or VSS. These pins can also be left floating.
Rev: 1.04 6/2012
2/17
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2011, GSI Technology
GS88037CT-xxxV
GS88037CT-xxxV Block Diagram
Register
A0–An
D
Q
A0
A0
D0
Q0
A1
A1
D1
Q1
Counter
Load
A
LBO
ADV
Memory
Array
CK
ADSC
ADSP
Q
D
Register
GW
BW
BA
D
Q
Register
D
36
Q
BB
36
4
Register
D
Q
D
Q
D
Q
Register
Register
D
Q
Register
BC
BD
Register
D
Q
Register
E1
E2
E3
D
Q
Register
D
Q
1
G
ZZ
SCD=1
Power Down
DQx1–DQx9
Control
Note: Only x36 version shown for simplicity.
Rev: 1.04 6/2012
3/17
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2011, GSI Technology
GS88037CT-xxxV
Byte Write Truth Table
Function
GW
BW
BA
BB
BC
BD
Notes
Read
H
H
X
X
X
X
1
Write No Bytes
H
L
H
H
H
H
1
Write byte a
H
L
L
H
H
H
2, 3
Write byte b
H
L
H
L
H
H
2, 3
Write byte c
H
L
H
H
L
H
2, 3, 4
Write byte d
H
L
H
H
H
L
2, 3, 4
Write all bytes
H
L
L
L
L
L
2, 3, 4
Write all bytes
L
X
X
X
X
X
Notes:
1. All byte outputs are active in read cycles regardless of the state of Byte Write Enable inputs, BA, BB, BC and/or BD.
2. Byte Write Enable inputs BA, BB, BC and/or BD may be used in any combination with BW to write single or multiple bytes.
3. All byte I/Os remain High-Z during all write operations regardless of the state of Byte Write Enable inputs.
4. Bytes “C” and “D” are only available on the x32 and x36 versions.
Rev: 1.04 6/2012
4/17
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2011, GSI Technology
GS88037CT-xxxV
Synchronous Truth Table
Operation
Address
Used
State
Diagram
Key
E1
E2
E3
ADSP
ADSC
ADV
W
DQ3
Deselect Cycle, Power Down
None
X
L
X
H
X
L
X
X
High-Z
Deselect Cycle, Power Down
None
X
L
L
X
X
L
X
X
High-Z
Deselect Cycle, Power Down
None
X
L
X
H
L
X
X
X
High-Z
Deselect Cycle, Power Down
None
X
L
L
X
L
X
X
X
High-Z
Deselect Cycle, Power Down
None
X
H
X
X
X
L
X
X
High-Z
Read Cycle, Begin Burst
External
R
L
H
L
L
X
X
X
Q
Read Cycle, Begin Burst
External
R
L
H
L
H
L
X
F
Q
Write Cycle, Begin Burst
External
W
L
H
L
H
L
X
T
D
Read Cycle, Continue Burst
Next
CR
X
X
X
H
H
L
F
Q
Read Cycle, Continue Burst
Next
CR
H
X
X
X
H
L
F
Q
Write Cycle, Continue Burst
Next
CW
X
X
X
H
H
L
T
D
Write Cycle, Continue Burst
Next
CW
H
X
X
X
H
L
T
D
Read Cycle, Suspend Burst
Current
X
X
X
H
H
H
F
Q
Read Cycle, Suspend Burst
Current
H
X
X
X
H
H
F
Q
Write Cycle, Suspend Burst
Current
X
X
X
H
H
H
T
D
Write Cycle, Suspend Burst
Current
H
X
X
X
H
H
T
D
Notes:
1. X = Don’t Care, H = High, L = Low
2. E = T (True) if E2 = 1 and E1 = E3 = 0; E = F (False) if E2 = 0 or E1 = 1 or E3 = 1
3. W = T (True) and F (False) is defined in the Byte Write Truth Table preceding.
4. G is an asynchronous input. G can be driven high at any time to disable active output drivers. G low can only enable active drivers (shown
as “Q” in the Truth Table above).
5. All input combinations shown above are tested and supported. Input combinations shown in gray boxes need not be used to accomplish
basic synchronous or synchronous burst operations and may be avoided for simplicity.
6. Tying ADSP high and ADSC low allows simple non-burst synchronous operations. See BOLD items above.
7. Tying ADSP high and ADV low while using ADSC to load new addresses allows simple burst operations. See ITALIC items above.
Rev: 1.04 6/2012
5/17
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2011, GSI Technology
GS88037CT-xxxV
Simplified State Diagram
X
Deselect
W
R
Simple Burst Synchronous Operation
Simple Synchronous Operation
W
X
R
R
First Write
First Read
CR
CW
W
X
CR
R
R
X
Burst Write
Burst Read
X
CR
CW
CR
Notes:
1. The diagram shows only supported (tested) synchronous state transitions. The diagram presumes G is tied low.
2. The upper portion of the diagram assumes active use of only the Enable (E1, E2, and E3) and Write (BA, BB, BC, BD, BW, and GW)
control inputs, and that ADSP is tied high and ADSC is tied low.
3. The upper and lower portions of the diagram together assume active use of only the Enable, Write, and ADSC control inputs, and
assumes ADSP is tied high and ADV is tied low.
Rev: 1.04 6/2012
6/17
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2011, GSI Technology
GS88037CT-xxxV
Simplified State Diagram with G
X
Deselect
W
R
W
X
R
R
First Write
CR
CW
W
CW
W
X
First Read
X
CR
R
Burst Write
R
CR
CW
W
Burst Read
X
CW
CR
Notes:
1. The diagram shows supported (tested) synchronous state transitions plus supported transitions that depend upon the use of G.
2. Use of “Dummy Reads” (Read Cycles with G High) may be used to make the transition from Read cycles to Write cycles without passing
through a Deselect cycle. Dummy Read cycles increment the address counter just like normal read cycles.
3. Transitions shown in gray tone assume G has been pulsed high long enough to turn the RAM’s drivers off and for incoming data to meet
Data Input Set Up Time.
Rev: 1.04 6/2012
7/17
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2011, GSI Technology
GS88037CT-xxxV
Absolute Maximum Ratings
(All voltages reference to VSS)
Symbol
Description
Value
Unit
VDD
Voltage on VDD Pins
–0.5 to 4.6
V
VDDQ
Voltage on VDDQ Pins
–0.5 to VDD
V
VI/O1
Voltage on I/O Pins
–0.5 to VDD +0.5 (≤ 4.6 V max.)
V
VI/O2
Voltage on I/O Pins
–0.5 to VDDQ +0.5 (≤ 4.6 V max.)
V
VIN
Voltage on Other Input Pins
–0.5 to VDD +0.5 (≤ 4.6 V max.)
V
IIN
Input Current on Any Pin
+/–20
mA
IOUT
Output Current on Any I/O Pin
+/–20
mA
PD
Package Power Dissipation
1.5
W
TSTG
Storage Temperature
–55 to 125
oC
TBIAS
Temperature Under Bias
–55 to 125
oC
Notes:
1. Permanent damage to the device may occur if the Absolute Maximum Ratings are exceeded. Operation should be restricted to Recommended Operating Conditions. Exposure to conditions exceeding the Absolute Maximum Ratings, for an extended period of time, may affect
reliability of this component.
2. Both VI/O1 and VI/O2 must be met.
Power Supply Voltage Ranges (1.8 V/2.5 V Version)
Parameter
Symbol
Min.
Typ.
Max.
Unit
1.8 V Supply Voltage
VDD1
1.7
1.8
2.0
V
2.5 V Supply Voltage
VDD2
2.3
2.5
2.7
V
1.8 V VDDQ I/O Supply Voltage
VDDQ1
1.7
1.8
VDD
V
2.5 V VDDQ I/O Supply Voltage
VDDQ2
2.3
2.5
VDD
V
Note:
VDDQ must be less than or equal to VDD + 0.3 V at all times.
Rev: 1.04 6/2012
8/17
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2011, GSI Technology
GS88037CT-xxxV
VDDQ2 & VDDQ1 Range Logic Levels
Parameter
Symbol
Min.
Typ.
Max.
Unit
VDD Input High Voltage
VIH
0.6*VDD
—
VDD + 0.3
V
VDD Input High Voltage
VIH(I/O)1
0.6*VDD
—
VDD + 0.3
V
VDD Input High Voltage
VIH(I/O)2
0.6*VDD
—
VDDQ + 0.3
V
VDD Input Low Voltage
VIL
–0.3
—
0.3*VDD
V
Notes:
1. VIH (max) must be met for any instantaneous value of VDD.
2. VIH(I/O)1 (max) must be met for any instantaneous value of VDD.
3. VIH(I/O)2 (max) must be met for any instantaneous value of VDDQ.
4. VDD needs to power-up before or at the same time as VDDQ to make sure VIH (max) is not exceeded.
Recommended Operating Temperatures
Parameter
Symbol
Min.
Typ.
Max.
Unit
Ambient Temperature (Commercial Range Versions)
TA
0
25
70
°C
Note:
Unless otherwise noted, all performance specifications quoted are evaluated for worst case in the temperature range marked on the device.
Thermal Impedance
Package
Test PCB
Substrate
θ JA (C°/W)
Airflow = 0 m/s
θ JA (C°/W)
Airflow = 1 m/s
θ JA (C°/W)
Airflow = 2 m/s
θ JB (C°/W)
θ JC (C°/W)
100 TQFP
4-layer
38.7
33.5
31.9
27.6
10.6
Notes:
1. Thermal Impedance data is based on a number of of samples from mulitple lots and should be viewed as a typical number.
2. Please refer to JEDEC standard JESD51-6.
3. The characteristics of the test fixture PCB influence reported thermal characteristics of the device. Be advised that a good thermal path to
the PCB can result in cooling or heating of the RAM depending on PCB temperature.
Rev: 1.04 6/2012
9/17
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2011, GSI Technology
GS88037CT-xxxV
Undershoot Measurement and Timing
Overshoot Measurement and Timing
VIH
20% tKC
VDD + 2.0 V
VSS
50%
50%
VDD
VSS – 2.0 V
20% tKC
VIL
Note:
Input Under/overshoot voltage must be –2 V > Vi < VDDn+2 V not to exceed 4.6 V maximum, with a pulse width not to exceed 20% tKC.
Capacitance
(TA = 25oC, f = 1 MHZ, VDD = 2.5 V)
Parameter
Symbol
Test conditions
Typ.
Max.
Unit
Input Capacitance
CIN
VIN = 0 V
8
10
pF
Input/Output Capacitance
CI/O
VOUT = 0 V
12
14
pF
Note:
These parameters are sample tested.
AC Test Conditions
Parameter
Conditions
Input high level
VDD – 0.2 V
Input low level
0.2 V
Input slew rate
1 V/ns
Input reference level
VDD/2
Output reference level
VDDQ/2
Output load
Fig. 1
Figure 1
Output Load 1
DQ
Notes:
1. Include scope and jig capacitance.
2. Test conditions as specified with output loading as shown in Fig. 1
unless otherwise noted.
3. Device is deselected as defined by the Truth Table.
Rev: 1.04 6/2012
30pF*
50Ω
VDDQ/2
* Distributed Test Jig Capacitance
10/17
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2011, GSI Technology
GS88037CT-xxxV
DC Electrical Characteristics
Parameter
Symbol
Test Conditions
Min
Max
Input Leakage Current
(except mode pins)
IIL
VIN = 0 to VDD
–1 uA
1 uA
FT Input Current
IIN
VDD ≥ VIN ≥ 0 V
–100 uA
100 uA
Output Leakage Current
IOL
Output Disable, VOUT = 0 to VDD
–1 uA
1 uA
1.8 V Output High Voltage
VOH1
IOH = –4 mA, VDDQ = 1.7 V
VDDQ – 0.4 V
—
2.5 V Output High Voltage
VOH2
IOH = –8 mA, VDDQ = 2.375 V
1.7 V
—
1.8 V Output Low Voltage
VOL1
IOL = 4 mA
—
0.4 V
2.5 V Output Low Voltage
VOL2
IOL = 8 mA
—
0.4 V
Operating Currents
Mode
-250
-200
Symbol
0
to 70°C
0
to 70°C
IDD
IDDQ
195
30
170
25
mA
Parameter
Test Conditions
Unit
Operating
Current
Device Selected;
All other inputs
≥VIH or ≤ VIL
Output open
(x36)
Pipeline
Standby
Current
ZZ ≥ VDD – 0.2 V
—
Pipeline
ISB
25
25
mA
Deselect
Current
Device Deselected;
All other inputs
≥ VIH or ≤ VIL
—
Pipeline
IDD
65
65
mA
Notes:
1. IDD and IDDQ apply to any combination of VDD1, VDD2, VDDQ1, and VDDQ2 operation.
2. All parameters listed are worst case scenario.
Rev: 1.04 6/2012
11/17
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2011, GSI Technology
GS88037CT-xxxV
AC Electrical Characteristics
Pipeline
Parameter
Symbol
Clock Cycle Time
-250
-200
Unit
Min
Max
Min
Max
tKC
4.0
—
5.0
—
ns
Clock to Output Valid
tKQ
—
2.5
—
2.5
ns
Clock to Output Invalid
tKQX
1.0
—
1.0
—
ns
Clock to Output in Low-Z
tLZ1
1.0
—
1.0
—
ns
Setup time
tS
1.2
—
1.4
—
ns
Hold time
tH
0.2
—
0.4
—
ns
G to Output Valid
tOE
—
2.3
—
2.5
ns
G to output in High-Z
tOHZ1
—
2.3
—
2.5
ns
Clock HIGH Time
tKH
1.3
—
1.3
—
ns
Clock LOW Time
tKL
1.7
—
1.7
—
ns
Clock to Output in
High-Z
tHZ1
1.0
2.3
1.0
2.5
ns
G to output in Low-Z
tOLZ1
0
—
0
—
ns
ZZ setup time
tZZS2
5
—
5
—
ns
ZZ hold time
tZZH2
1
—
1
—
ns
ZZ recovery
tZZR
20
—
20
—
ns
Notes:
1. These parameters are sampled and are not 100% tested.
2. ZZ is an asynchronous signal. However, in order to be recognized on any given clock cycle, ZZ must meet the specified setup and hold
times as specified above.
Rev: 1.04 6/2012
12/17
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2011, GSI Technology
GS88037CT-xxxV
Pipeline Mode Timing (+1)
Begin
Read A
Cont
Cont
Deselect
Write B
Read C
Read C+1
Read C+2
Read C+3
Cont
Deselect
tKC
tKH
tKL
CK
ADSP
tS
ADSC initiated read
tH
ADSC
tS
tH
ADV#
tS
tH
A0–An
A
B
C
tS
GW
tS
tH
BW
tH
tS
Ba–Bd
tS
Deselected with E1
tH
E1
tS
E2 and E3 only sampled with ADSC
tH
E2
tS
tH
E3
G
tS
tOE
DQa–DQd
Rev: 1.04 6/2012
tOHZ
Q(A)
tKQ
tH
D(B)
tKQX
tLZ
tHZ
Q(C)
13/17
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
Q(C+1)
Q(C+2)
Q(C+3)
© 2011, GSI Technology
GS88037CT-xxxV
Sleep Mode
During normal operation, ZZ must be pulled low, either by the user or by its internal pull down resistor. When ZZ is pulled high,
the SRAM will enter a Power Sleep mode after 2 cycles. At this time, internal state of the SRAM is preserved. When ZZ returns to
low, the SRAM operates normally after ZZ recovery time.
Sleep mode is a low current, power-down mode in which the device is deselected and current is reduced to ISB2. The duration of
Sleep mode is dictated by the length of time the ZZ is in a High state. After entering Sleep mode, all inputs except ZZ become
disabled and all outputs go to High-Z The ZZ pin is an asynchronous, active high input that causes the device to enter Sleep mode.
When the ZZ pin is driven high, ISB2 is guaranteed after the time tZZI is met. Because ZZ is an asynchronous input, pending
operations or operations in progress may not be properly completed if ZZ is asserted. Therefore, Sleep mode must not be initiated
until valid pending operations are completed. Similarly, when exiting Sleep mode during tZZR, only a Deselect or Read commands
may be applied while the SRAM is recovering from Sleep mode.
Sleep Mode Timing Diagram
tKH
tKC
tKL
CK
Setup
Hold
ADSP
ADSC
tZZR
tZZS
tZZH
ZZ
Application Tips
Single and Dual Cycle Deselect
SCD devices (like this one) force the use of “dummy read cycles” (read cycles that are launched normally but that are ended with
the output drivers inactive) in a fully synchronous environment. Dummy read cycles waste performance but their use usually
assures there will be no bus contention in transitions from reads to writes or between banks of RAMs. DCD SRAMs do not waste
bandwidth on dummy cycles and are logically simpler to manage in a multiple bank application (wait states need not be inserted at
bank address boundary crossings) but greater care must be exercised to avoid excessive bus contention.
Rev: 1.04 6/2012
14/17
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2011, GSI Technology
GS88037CT-xxxV
Description
A1
Standoff
0.05
0.10
0.15
A2
Body Thickness
1.35
1.40
1.45
b
Lead Width
0.20
0.30
0.40
c
Lead Thickness
0.09
—
0.20
D
Terminal Dimension
21.9
22.0
22.1
D1
Package Body
19.9
20.0
20.1
E
Terminal Dimension
15.9
16.0
16.1
E1
Package Body
13.9
14.0
14.1
e
Lead Pitch
—
0.65
—
L
Foot Length
0.45
0.60
0.75
L1
Lead Length
—
1.00
—
Y
Coplanarity
θ
Lead Angle
D
D1
Symbol
Pin 1
TQFP Package Drawing (Package T)
θ
L
c
L1
Min. Nom. Max
e
b
A1
A2
0.10
Y
0°
—
7°
E1
E
Notes:
1. All dimensions are in millimeters (mm).
2. Package width and length do not include mold protrusion.
Rev: 1.04 6/2012
15/17
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2011, GSI Technology
GS88037CT-xxxV
Ordering Information for GSI Synchronous Burst RAMs
Org
Part Number1
Type
Voltage
Option
Package
Speed
(MHz)
TA2
256K x 36
GS88037CT-250V
Pipeline
1.8 V or 2.5 V
TQFP
250
C
256K x 36
GS88037CT-200V
Pipeline
1.8 V or 2.5 V
TQFP
200
C
256K x 36
GS88037CGT-250V
Pipeline
1.8 V or 2.5 V
RoHS-compliant TQFP
250
C
256K x 36
GS88037CGT-200V
Pipeline
1.8 V or 2.5 V
RoHS-compliant TQFP
200
C
Notes:
1. Customers requiring delivery in Tape and Reel should add the character “T” to the end of the part number. Example: GS88037CT-200T.
2. TA = C = Commercial Temperature Range.
3. GSI offers other versions this type of device in many different configurations and with a variety of different features, only some of which are
covered in this data sheet. See the GSI Technology web site (www.gsitechnology.com) for a complete listing of current offerings.
Rev: 1.04 6/2012
16/17
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2011, GSI Technology
GS88037CT-xxxV
9Mb Sync SRAM Datasheet Revision History
File Name
Types of Changes
Format or Content
Revision
• Creation of new datasheet
880V37C_r1
880V37C_r1_01
Content
• Update to MP datasheet
88037C_V_r1_02
Content
• Updated Absolute Maximum Ratings
• Deleted conditional text
88037C_V_r1_03
Content
• Updated Absolute Maximum Ratings
• Added thermal information
88037C_V_r1_04_Com
Content
• Updated Absolute Maximum Ratings
• Removed all Ind Temp references
Rev: 1.04 6/2012
17/17
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2011, GSI Technology