CAN TRANSCEIVER ILA82C251

TECHNICAL DATA
CAN TRANSCEIVER
ILA82C251
The ILA82C251 is the interface between the CAN protocol
controller and the physical bus. The device provides
differential transmit capability to the bus and differential
receive capability to the CAN controller. The IC is intended
MS-012AA (SO-8)
plastic package
for automotive electronic applications
ORDERING INFORMATION
Fig 1 – External view of
packaged IC
Operating
Temperature
Range
Package
ILA82C251D
Tj = -40 to 125 C
SOP-8
Tube
ILA82C251DT
Tj = -40 to 125 C
SOP-8
Tape & Reel
Device
Shipping
FEATURES








Fully compatible with the “ISO 11898-24 V”
standard
Thermally protected
Short-circuit proof
Three mode operation
An unpowered node does not disturb the bus lines
At least 110 nodes can be connected
High speed of data transfer (up to 1 Mbit/s)
High immunity against electromagnetic
interference.
Permissible value of electrostatic potential is 2000V.
The IC is realized in 8-pin plastic SO package ( MS-012AA)
TXD
01
08
RS
GND
02
07
CANL
VCC
03
06
CANL
RXD
04
05
Vref
Fig. 2 – Pin layout
1
May 2011, Ver.01
ILA82C251
Table 1 – Pin description
Pin number
01
02
03
04
05
06
07
08
-
Pad
number
01
02
03
05
06
07
08
09
04
Symbol
TXD
GND
VCC
RXD
Vref
CANL
CANH
RS
-
Description
Transmit data input (transmitter)
Ground
Supply voltage
Receive data output (receiver)
Reference voltage output
LOW-level CAN voltage input/output
HIGH-level CAN voltage input/output
Mode set input
Not bonded
VCC
01
TXD
Protection
block
Input signal
block
03
VT1
Driver
VD1
08
RS
Switch mode
block
07
CAN
HIGH
04
RXD
Receiver
06
CANL
VD2
05
Vref
Reference
voltage
VT2
02
GND
VD1, VD2 – diodes;
VT1, VT2 - transistors
Fig. 3 – Block diagram
May 2011, Ver.01
2
ILA82C251
Table 2 – Absolute maximum ratings
Symbol
Target
Parameter
Unit
VCC
Supply voltage
Min
-0.3
Max
7.0
V
Vn
01, 04, 05, 08 pin voltage
-0.3
VCC + 0.3
V
Vtr
06, 07 pin transient voltage
-200
200
V
Tstg
Storage temperature
-60
150
o
Tj
Junction temperature
-
150
o
C
C
* Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the
device.
These are stress ratings only and functional operation of the device at these or any other conditions beyond
those indicated under “recommended operating conditions” is not implied.
Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
Table 3 – Recommended operating condition
Symbol
VCC
VCAN
Target
Parameter
Supply voltage
Input/output high and low level
voltage of CAN - signal
Min
4.5
Max
5.5
-36
36
Unit
V
V
May 2011, Ver.01
3
ILA82C251
Table 4 – Electric parameters at -40 ≤Tamb ≤ +125C
Symbol
I3
VIH
VIL
IIH
IIL
V6,7
ILO
V7
V6
Parameter
Supply current
Measurement mode
Supply
Dominant;
V1 = 1.0 V, VCC  5.1 V
Dominant;
V1 = 1.0 V, VCC  5.25 V
Dominant;
V1 = 1.0 V, VCC  5.5 V
Recessive;
V1 = 4.0 V, R8 = 47 k
Standby mode 1)
Standby mode 2)
Transmitter
Output recessive
High-level input
voltage
Low-level input voltage Output dominant
High-level input
4.5 V VCC  5.5 V
current
V1 = 4.0 V
4.5 V VCC  5.5 V
Low-level input current
V1 = 1.0 V
4.5 V VCC  5.5 V
Recessive bus voltage
V1 = 4.0 V, no load
4.5 V VCC  5.5 V
Off-state output leak-2.0 V (V6, V7)  7.0 V
age
4. 5 V VCC  5.5 V
current
-5.0 V (V6, V7)  36 V
CANH output voltage
4.75 V VСС  5.5 V
V1 = 1.0 V
V1 = 1.0 V
4.5 V VСС  4.75 V
4.5 V VCC  5.5 V
CANL output voltage
V1 = 1.0 V
Target
Min
Max
-
78
-
80
-
85
-
10
-
0.315
0.275
0.7 VCC VCC+0.3
Unit
mA
V
-0.3
-200
0.3 VCC
30
V
A
-200
-100
A
2.0
3.0
V
-2.0
2.0
mA
-10
10
3.0
4.5
2.75
4.5
0.5
2.0
V
V
May 2011, Ver.01
4
ILA82C251
Table 4 continued
Symbol
V6,7
Parameter
Measurement mode
Target
Min
Max
1.5
3.0
Unit
V
4.5 V VCC  5.5 V
V1 = 1.0 V
1.5
V1 = 1.0 V, RL = 45 
V1 = 4.0 V, no load
-0.5
0.05
CANH
short-circuit
mA
4.5 V VCC  5.5 V
ISC7 current
-200
V7 = -5.0 V
CANL signal shortmA
4.5 V VCC  5.5 V
ISC6 circuit current
200
V6 = 36 V
Receiver
(pins 06, 07 are externally controlled, V4 = 4.0 V, -2.0 V (V6, V7)  7.0 V, unless otherwise
specified)
3)
VDIFF(R)
-1.0
0.5
V
Differential input volt-1.0
0.4
4.5 V VCC  5.5 V
age
-7.0 V (V6, V7)  12 V
(recessive mode)
difference between
output
voltage at pins 6 and 7
3)
VDIFF(D)
Differential input voltage
(dominant mode)
0.9
1.0
5.0
5.0
0.97
0.91
5.0
5.0
4.5 V VCC  5.5 V
I4 = -100 A
4.5 V VCC  5.5 V
I4 = 1.0 mA
4.5 V VCC  5.5 V
I4 = 10 mA
4.5 V VCC  5.5 V
0.8 VCC
VCC
V
0
0.2 VCC
V
0
1.5
5.0
25
k
4.5 V VCC  5.5 V
20
100
k
4.5 V VCC  5.5 V
-7.0 V (V6, V7)  12 V
4)
4.5 V VCC  5.1 V
V
4)
VOH
VOL
RI
RDIFF
VREF
High-level output voltage (pin 4)
Low-level output voltage (pin 4)
CANL and CANH input
resistance l
Differential input
resistance
Reference voltage
Reference voltage
4.5 V VCC  5.5 V
V8 = 1.0 V, I5  50 мкА
4.5 V VCC  5.5 V
V8 = 4.0 V, I5  5.0 A
0.45 VCC 0.55
VCC
0.4 VCC 0.6 VCC
V
May 2011, Ver.01
5
ILA82C251
Table 4 continued
Symbol
tbit
tonTXD
toffTXD
tonRXD
toffRXD
tWAKE
tdRXDL
Vstb
Islope
Vslope
Target
Min
Max
Timing parameters (RL = 60 , CL = 100 pF, unless otherwise specified)
One bit transmitting
1.0
4.5 V VCC  5.5 V
minimum time
R8 = 0 
Input data transfer to
50
4.5 V VCC  5.5 V
active bus delay
R8 = 0 
Input data transfer to
80
4.5 V VCC  5.5 V
inactive bus delay
R8 = 0 
Input data transfer to
120
4.5 V VCC  5.5 V
active receiver delay
R8 = 0 
550
4.5 V VCC  5.5 V
R8 = 47 k
Input data transfer to
190
4.5 V VCC  5.5 V
inactive receiver delay
R8 = 0 
400
4.5 V VCC  5.5 V
R8 = 47 k
Wake-up time from
20
4.5 V VCC  5.5 V
standby mode (via 08
pin)
Bus input data transfer
3.0
4.5 V VCC  5.5 V
delay to low on output
V8 = 4.0 V
of received data
Standby mode and low RFI mode
Input voltage for
0.75 VCC
4.5 V VCC  5.5 V
standby mode
Input current for low
- 200
- 10
4.5 V VCC  5.5 V
RFI mode
Input voltage for low
0.4 VCC 0.6 VCC
4.5 V VCC  5.5 V
RFI mode
Parameter
Measurement mode
Unit
s
ns
ns
ns
ns
s
s
V
A
V
_______
1)
I1 = I4 = I5 = 0 mA, V8 = VCC
I1 = I4 = I5 = 0 mA, V8 = VCC, Tamb  90 oC.
3)
For the receiver in all modes.
4)
Standby mode
2)
May 2011, Ver.01
6
ILA82C251
Table 5 Typical values of electric parameters
Symbol
Parameter
Vdiff(hys) Differential hysteresis
voltage
|SR| CANH, CANL slew rate
ISC7
High level CAN short circuit
current
Measurement mode
Typical value
Unit
VCC from 4.5 to 5.5 V
150
mV
VCC from 4.5 to 5.5 V;
R8 = 47 k
VCC from 4.5 to 5.5 V;
V7 = -36 V
7.0
V/s
-100
mA
FUNCTIONAL DESCRIPTION
The INA82C251 provides differential transmit capability to the bus and differential receive
capability to the CAN controller. Data transfer rate is up to 1 Mbit/s.
Output stage has good load capacity. It guarantees 2V peak-to-peak output voltage for
60 load. ILA82C251D has thermal and short circuit protection, high immunity to EMI
and is fully compatible with the “ISO 11898-24 V” standard.
The IC provides three operation modes: high-speed, reduced RFI mode, standby mode.
The design of ILA82C251D permits possibility of adjustment of rise and fall slope of output stages (transistors).
Pin RS is used to select one of three modes of operation: high-speed, reduced
RFI or standby. High level applied to this pin switches the IC to standby mode, low level –
to high-speed mode. The high-speed mode is selected by connecting pin RS to ground.To
reduce RFI, connect pin RS by resistor Rext to ground. The rise and fall slope of output
stages (transistors) can be regulated with Rext resistance.
To select high-speed dominant mode a low level voltage (~ 1 V) is applied to TXD
pin and RS is connected to ground, CANH and CANL pins are connected by 60 resistor.
Guaranteed peak-to-peak output voltage (high and low level) will be 1.5 V for all operating
supply voltage range
To select recessive mode a high level voltage (~ 4 V) is applied to TXD pin and RS is connected to ground. In recessive mode bus output voltage V6,7 is about (~ 2.5 V).
High level (~ 4V) applied to pin RS switches IC to standby mode (with low power
consumption); in this mode consumption current doesn`t exceed 270 A. In this mode
transmitter is turn off and consumption current of receiver and all circuit is significantly decreased.
Reference voltage value VREF per 05 output is half of supply voltage.
May 2011, Ver.01
7
ILA82C251
Table 6 - Truth table of the transceiver
Supply voltage range,
VCC, V
TXD
CANH
CANL
Bus state
RXD
pin
pin
pin
4.5  5.5
L
H
L
Dominant
L
4.5  5.5
H
Floating
Floating
Recessive
H*
4.5  5.5
X
Floating, if
VRs  0.75 VCC
Floating, if
VRs  0.75 VCC
Floating
H*
0  5.5
Floating
Floating
Floating
Floating
X
output
Notes
1 H – high level voltage; L – low level voltage; X – б don’t care (H or L).
2 Floating state – half of sum of output levels on pins 06 and 07 (VO(CANL) +
VO(CANH) / 2).
__________
* If another bus node is transmitting a dominant bit, then RXD shall be low
Table 7 – Transceiver mode table
RS pin state
Mode
VRs  0.75 VCC
10 A  -IRs  200 A
Standby
Slope control
(Reduced RFI)
High – speed
VRs  0.3 VCC
RS pin resulting
voltage or current
- IRs  10 A
0.4 VCC  VRs  0.6 VCC
- IRs  500 A
May 2011, Ver.01
8
ILA82C251
Table 8 - Truth table of the receiver
Input differential voltage VDIFF*, В
RXD pin
VDIFF  0.9 V
L
0.5 V  VDIFF  0.9 V
**
VDIFF  0.5 V
H
Absent
H
_________
* Input difference voltage VDIFF, V is determined by formula
VDIFF = V7 – V6 ,
(1)
V7 – CANH output voltage, V;
V6 - CANL output voltage, V
** Not determined (hysteresis zone)
U
V
Pin 01 (TXD)
UCC
0V
Pins 06, 07
(CANL, CAN
HIGH)
0,9 V
0,5V
U7,6
UO(D)
UO( R)
UCC
Pin 04 (RXD)
0,7UCC
0,3UCC
0V
0
toffTXD
tonTXD
t
s
toffRXD
tonRXD
Fig. 4 –tonTXD, tonRXD, toffTXD, toffRXD parameters measurement timing diagram
May 2011, Ver.01
9
ILA82C251
U
V
High level
Pin 04
(RXD)
Low level
Hysteresis
Udiff
V
0,9
0,5
Fig. 5 –Vdiff(hys) parameter measurement timing diagram
U
V
UCC
Pin 08
(RS)
0
Pin 04
(RXD)
0
t
s
tWAKE
Fig. 6 – tWAKE parameter measurement timing diagram
May 2011, Ver.01
10
ILA82C251
U
V
1,5 V
Pins 07,06
(CAN HIGH,
CANL)
0
Pin 04
(RXD)
0
t
s
tdRXDL
tdRXDL≤15s
Fig. 7 –tdRXDL parameter measurement timing diagram
May 2011, Ver.01
11
ILA82C251
P8C592
MCU
CTX0
CTX0
CTX1
PX, Y
Rext
TXD
RXD
Vref
+5V
RS
VCC
ILA82C251D
GND
C1
100nF
CANL
CAN
HIGH
R1
120 CAN bus line
R2
120
Fig. 8 – Application diagramm
May 2011, Ver.01
12
ILA82C251
Package Dimensions
D
05
01
H
E
1
08
04
hx45
C
A
1
c
Mounting plane
e
L
b
0,25 (0,010) M
D
min
max
4.80
4.95
E1
3.86
4.00
H
b
5.84 0.35
6.20 0.51
C
e

mm
0
1.27 8
A
A1
1.35 0.10
1.75 0.25
c
L
h
0.19 0.40 0.25
0.25 0.89 0.50
Fig. 9 –MS-012AA package dimensions
May 2011, Ver.01
13