MX25L1605A DATASHEET

MX25L1605A
MX25L1605A
DATASHEET
The MX25L1605A product will be phase-out, and is not recommended for new
design. The MX25L1605A will be migrated to MX25L1605D, which is a functional
compatible product. Please refer to MX25L1605D datasheet for new design.
P/N: PM1211
1
REV. 1.6, APR. 18, 2008
MX25L1605A
16M-BIT [x 1] CMOS SERIAL FLASH
The MX25L1605A product will be phase-out, and is not recommended for new
design. The MX25L1605A will be migrated to MX25L1605D, which is a functional
compatible product. Please refer to MX25L1605D datasheet for new design.
FEATURES
GENERAL
• Serial Peripheral Interface (SPI) compatible -- Mode 0 and Mode 3
• 16,777,216 x 1 bit structure
• 512 Equal Sectors with 4K byte each
- Any Sector can be erased individually
• 32 Equal Blocks with 64K byte each
- Any Block can be erased individually
• Single Power Supply Operation
- 2.7 to 3.6 volt for read, erase, and program operations
• Latch-up protected to 100mA from -1V to Vcc +1V
• Low Vcc write inhibit is from 1.5V to 2.5V
PERFORMANCE
• High Performance
- Fast access time: 85MHz serial clock (15pF + 1TTL Load) and 66MHz serial clock (30pF + 1TTL Load)
- Fast program time: 1.4ms(typ.) and 5ms(max.)/page (256-byte per page)
- Fast erase time: 60ms(typ.) and 120ms(max.)/sector (4K-byte per sector) ; 1s(typ.) and 2s(max.)/block (64K-byte per
block); 14s(typ.) and 30s(max.)/chip(16Mb)
• Low Power Consumption
- Low active read current: 12mA(max.) at 85MHz, 8mA(max.) at 66MHz and 4mA(max.) at 33MHz
- Low active programming current: 15mA (max.)
- Low active erase current: 15mA (max.)
- Low standby current: 20uA (max.)
- Deep power-down mode 1uA (typical)
• Minimum 100,000 erase/program cycles
SOFTWARE FEATURES
• Input Data Format
- 1-byte Command code
• Block Lock protection
- The BP0~BP2 status bit defines the size of the area to be software protected against Program and Erase instructions.
• Auto Erase and Auto Program Algorithm
- Automatically erases and verifies data at selected sector
- Automatically programs and verifies data at selected page by an internal algorithm that automatically times the
program pulse widths (Any page to be programed should have page in the erased state first)
P/N: PM1211
REV. 1.6, APR. 18, 2008
2
MX25L1605A
• Status Register Feature
• Electronic Identification
- JEDEC 2-byte Device ID
- RES command, 1-byte Device ID
HARDWARE FEATURES
• SCLK Input
- Serial clock input
• SI Input
- Serial Data Input
• SO Output
- Serial Data Output
• WP# pin
- Hardware write protection
• HOLD# pin
- pause the chip without diselecting the chip
• PACKAGE
- 16-pin SOP (300mil)
- 8-land SON (8x6mm)
- 8-pin SOP (200mil)
- All Pb-free devices are RoHS Compliant
GENERAL DESCRIPTION
The MX25L1605A is a CMOS 16,777,216 bit serial Flash memory, which is configured as 2,097,152 x 8 internally. The
MX25L1605A features a serial peripheral interface and software protocol allowing operation on a simple 3-wire bus. The
three bus signals are a clock input (SCLK), a serial data input (SI), and a serial data output (SO). SPI access to the device
is enabled by CS# input.
The MX25L1605A provides sequential read operation on whole chip.
After program/erase command is issued, auto program/ erase algorithms which program/ erase and verify the specified
page or sector/block locations will be executed. Program command is executed on page (256 bytes) basis, and erase
command is executes on chip or sector(4K-bytes) or block(64K-bytes).
To provide user with ease of interface, a status register is included to indicate the status of the chip. The status read
command can be issued to detect completion status of a program or erase operation via WIP bit.
When the device is not in operation and CS# is high, it is put in standby mode and draws less than 20uA DC current.
The MX25L1605A utilizes MXIC's proprietary memory cell, which reliably stores memory contents even after 100,000
program and erase cycles.
P/N: PM1211
3
REV. 1.6, APR. 18, 2008
MX25L1605A
PIN CONFIGURATIONS
PIN DESCRIPTION
16-PIN SOP (300mil)
HOLD#
VCC
NC
NC
NC
NC
CS#
SO
1
2
3
4
5
6
7
8
16
15
14
13
12
11
10
9
SCLK
SI
NC
NC
NC
NC
GND
WP#
SYMBOL
DESCRIPTION
CS#
Chip Select
SI
Serial Data Input
SO
Serial Data Output
SCLK
Clock Input
HOLD#
Hold, to pause the device without
deselecting the device
8-LAND SON (8x6mm)
CS#
SO
WP#
GND
1
2
3
4
8
7
6
5
VCC
HOLD#
SCLK
SI
VCC
+ 3.3V Power Supply
GND
Ground
CS#
SO
WP#
GND
1
2
3
4
8
7
6
5
VCC
HOLD#
SCLK
SI
8-PIN SOP (200mil)
P/N: PM1211
4
REV. 1.6, APR. 18, 2008
MX25L1605A
BLOCK DIAGRAM
X-Decoder
Address
Generator
Memory Array
Page Buffer
SI
Data
Register
Y-Decoder
SRAM
Buffer
CS#
Mode
Logic
State
Machine
Sense
Amplifier
Output
Buffer
HV
Generator
SO
SCLK
Clock Generator
P/N: PM1211
5
REV. 1.6, APR. 18, 2008
MX25L1605A
DATA PROTECTION
The MX25L1605A is designed to offer protection against accidental erasure or programming caused by spurious system
level signals that may exist during power transition. During power up the device automatically resets the state machine in
the Read mode. In addition, with its control register architecture, alteration of the memory contents only occurs after
successful completion of specific command sequences. The device also incorporates several features to prevent inadvertent
write cycles resulting from VCC power-up and power-down transition or system noise.
•
Power-on reset and tPUW: to avoid sudden power switch by system power supply transition, the power-on reset and
tPUW (internal timer) may protect the Flash.
• Valid command length checking: The command length will be checked whether it is at byte base and completed on byte
boundary.
• Write Enable (WREN) command: WREN command is required to set the Write Enable Latch bit (WEL) before other
command to change data. The WEL bit will return to reset stage under following situation:
- Power-up
- Write Disable (WRDI) command completion
- Write Status Register (WRSR) command completion
- Page Program (PP) command completion
- Sector Erase (SE) command completion
- Block Erase (BE) command completion
- Chip Erase (CE) command completion
•
Software Protection Mode (SPM): by using BP0-BP2 bits to set the part of Flash protected from data change.
•
Hardware Protection Mode (HPM): by using WP# going low to protect the BP0-BP2 bits and SRWD bit from data change.
•
Deep Power Down Mode: By entering deep power down mode, the flash device also is under protected from writing all
commands except Release from deep power down mode command (RDP) and Read Electronic Signature command
(RES).
P/N: PM1211
6
REV. 1.6, APR. 18, 2008
MX25L1605A
Table 1. Protected Area Sizes
Status bit
Protection Area
MX25L1605A
BP2
BP1
BP0
0
0
0
0 (none)
None
0
0
1
1 (1 block)
Upper 32nd (Block 31)
0
1
0
2 (2 blocks)
Upper sixteenth (two blocks: 30 and 31)
0
1
1
3 (4 blocks)
Upper eighth (four blocks: 28 to 31)
1
0
0
4 (8 blocks)
Upper quarter (eight blocks: 24 to 31)
1
0
1
5 (16 blocks)
Upper half (sixteen blocks: 16 to 31)
1
1
0
6 (All)
All
1
1
1
7 (All)
All
P/N: PM1211
7
REV. 1.6, APR. 18, 2008
MX25L1605A
HOLD FEATURE
HOLD# pin signal goes low to hold any serial communications with the device. The HOLD feature will not stop the operation
of write status register, programming, or erasing in progress.
The operation of HOLD requires Chip Select(CS#) keeping low and starts on falling edge of HOLD# pin signal while Serial
Clock (SCLK) signal is being low (if Serial Clock signal is not being low, HOLD operation will not start until Serial Clock
signal being low). The HOLD condition ends on the rising edge of HOLD# pin signal while Serial Clock(SCLK) signal is
being low( if Serial Clock signal is not being low, HOLD operation will not end until Serial Clock being low), see Figure 1.
Figure 1. Hold Condition Operation
CS#
SCLK
HOLD#
Hold
Condition
(standard)
Hold
Condition
(non-standard)
The Serial Data Output (SO) is high impedance, both Serial Data Input (SI) and Serial Clock (SCLK) are don't care during
the HOLD operation. If Chip Select (CS#) drives high during HOLD operation, it will reset the internal logic of the device.
To re-start communication with chip, the HOLD# must be at high and CS# must be at low.
P/N: PM1211
8
REV. 1.6, APR. 18, 2008
MX25L1605A
Table 2. COMMAND DEFINITION
COMMAND WREN
(byte)
(write
Enable)
1st
06 Hex
2nd
3rd
4th
5th
Action
sets the
(WEL)
write
enable
latch bit
WRDI
(write
disable)
04 Hex
RDID
(read identification)
9F Hex
RDSR
(read status
register)
05 Hex
reset the
(WEL)
write
enable
latch bit
output the
to read out
manufacturer the status
ID and 2-byte register
device ID
COMMAND SE
(byte)
(Sector
Erase)
BE
(Block
Erase)
CE
(Chip
Erase)
PP
(Page
Program)
1st
20 Hex
60 or
C7 Hex
02 Hex
2nd
3rd
4th
5th
Action
AD1
AD2
AD3
52 or
D8 Hex
AD1
AD2
AD3
DP
(Deep
Power
Down)
B9 Hex
AD1
AD2
AD3
WRSR
(write status
register)
01 Hex
READ
(read data)
Fast Read
(fast read
data)
0B Hex
AD1
AD2
AD3
x
03 Hex
AD1
AD2
AD3
to write new
n bytes
values to the read out
status register until
CS# goes
high
RDP
(Release
from Deep
Power-down)
AB Hex
RES
(Read
Electronic
ID)
AB Hex
REMS (Read
Electronic
Manufacturer
& Device ID)
90 Hex
x
x
x
x
x
ADD(1)
Output the
manufacturer
ID and device
ID
(1) ADD=00H will output the manufacturer's ID first and ADD=01H will output device ID first.
(2) It is not recommended to adopt any other code which is not in the above command definition table.
P/N: PM1211
9
REV. 1.6, APR. 18, 2008
MX25L1605A
Table 3. Memory Organization
17
110000h
10F000h
…
272
271
16
100000h
0FF000h
…
256
255
15
240
0F0000h
3
48
47
130FFFh
12FFFFh
2
1
0
100FFFh
0FFFFFh
0F0FFFh
P/N: PM1211
10
4
3
2
1
0
…
…
…
…
…
…
…
…
…
…
…
…
…
…
020000h
01F000h
16
15
110FFFh
10FFFFh
010000h
00F000h
004000h
003000h
002000h
001000h
000000h
… …
… …
…
… …
030000h
02F000h
32
31
120FFFh
11FFFFh
050FFFh
04FFFFh
040000h
03F000h
…
64
63
140FFFh
13FFFFh
050000h
04F000h
040FFFh
03FFFFh
…
4
080FFFh
07FFFFh
030FFFh
02FFFFh
…
150FFFh
14FFFFh
…
…
80
79
090FFFh
08FFFFh
020FFFh
01FFFFh
…
5
0A0FFFh
09FFFFh
060FFFh
05FFFFh
… …
160FFFh
15FFFFh
0B0FFFh
0AFFFFh
060000h
05F000h
…
…
96
95
0C0FFFh
0BFFFFh
070FFFh
06FFFFh
…
…
6
0D0FFFh
0CFFFFh
070000h
06F000h
…
…
112
111
… …
7
170FFFh
16FFFFh
080000h
07F000h
… …
…
128
127
180FFFh
17FFFFh
…
…
…
…
…
…
090000h
08F000h
…
8
190FFFh
18FFFFh
…
…
…
…
…
…
…
…
…
144
143
0E0FFFh
0DFFFFh
010FFFh
00FFFFh
…
120000h
11F000h
…
288
287
9
1A0FFFh
19FFFFh
0A0000h
09F000h
…
18
160
159
…
130000h
12F000h
…
304
303
10
1B0FFFh
1AFFFFh
0B0000h
0AF000h
…
19
176
175
…
140000h
13F000h
…
320
319
11
1C0FFFh
1BFFFFh
0C0000h
0BF000h
…
20
0D0000h
0CF000h
192
191
…
150000h
14F000h
…
336
335
12
1D0FFFh
1CFFFFh
Address Range
0EF000h 0EFFFFh
0E0000h
0DF000h
208
207
…
21
13
1E0FFFh
1DFFFFh
…
160000h
15F000h
…
352
351
224
223
…
22
Sector
239
14
1F0FFFh
1EFFFFh
…
170000h
16F000h
…
368
367
Bolck
…
23
…
180000h
17F000h
…
384
383
…
24
…
190000h
18F000h
…
400
399
…
25
…
1A0000h
19F000h
…
416
415
…
26
…
1B0000h
1AF000h
…
432
431
…
27
…
1C0000h
1BF000h
…
448
447
…
28
…
1D0000h
1CF000h
…
464
463
…
29
…
1E0000h
1DF000h
…
480
479
…
30
…
1F0000h
1EF000h
…
496
495
…
31
Address Range
1FF000h 1FFFFFh
…
Sector
511
…
Bolck
004FFFh
003FFFh
002FFFh
001FFFh
000FFFh
REV. 1.6, APR. 18, 2008
MX25L1605A
DEVICE OPERATION
1. Before a command is issued, status register should be checked to ensure device is ready for the intended operation.
2. When incorrect command is inputted to this LSI, this LSI becomes standby mode and keeps the standby mode until
next CS# falling edge. In standby mode, SO pin of this LSI should be High-Z.
3. When correct command is inputted to this LSI, this LSI becomes active mode and keeps the active mode until next
CS# rising edge.
4. Input data is latched on the rising edge of Serial Clock(SCLK) and data shifts out on the falling edge of SCLK. The
difference of SPI mode 0 and mode 3 is shown as Figure 2.
5. For the following instructions: RDID, RDSR, READ, FAST_READ, RES and REMS the shifted-in instruction sequence
is followed by a data-out sequence. After any bit of data being shifted out, the CS# can be high. For the following
instructions: WREN, WRDI, WRSR, SE, BE, CE, PP, RDP and DP the CS# must go high exactly at the byte boundary;
otherwise, the instruction will be rejected and not executed.
6. During the progress of Write Status Register, Program, Erase operation, to access the memory array is neglected and
not affect the current operation of Write Status Register, Program, Erase.
Figure 2. SPI Modes Supported
CPOL
CPHA
shift in
(SPI mode 0)
0
0
SCLK
(SPI mode 3)
1
1
SCLK
SI
shift out
MSB
SO
MSB
Note:
CPOL indicates clock polarity of SPI master, CPOL=1 for SCLK high while idle, CPOL=0 for SCLK low while not
transmitting. CPHA indicates clock phase. The combination of CPOL bit and CPHA bit decides which SPI mode is
supported.
P/N: PM1211
11
REV. 1.6, APR. 18, 2008
MX25L1605A
COMMAND DESCRIPTION
(1) Write Enable (WREN)
The Write Enable (WREN) instruction is for setting Write Enable Latch (WEL) bit. For those instructions like PP, SE, BE,
CE, and WRSR, which are intended to change the device content, should be set every time after the WREN instruction
setting the WEL bit.
The sequence of issuing WREN instruction is: CS# goes low-> sending WREN instruction code-> CS# goes high. (see
Figure 11)
(2) Write Disable (WRDI)
The Write Disable (WRDI) instruction is for resetting Write Enable Latch (WEL) bit.
The sequence of issuing WRDI instruction is: CS# goes low-> sending WRDI instruction code-> CS# goes high. (see Figure
12)
The WEL bit is reset by following situations:
- Power-up
- Write Disable (WRDI) instruction completion
- Write Status Register (WRSR) instruction completion
- Page Program (PP) instruction completion
- Sector Erase (SE) instruction completion
- Block Erase (BE) instruction completion
- Chip Erase (CE) instruction completion
(3) Read Identification (RDID)
The RDID instruction is for reading the manufacturer ID of 1-byte and followed by Device ID of 2-byte. The MXIC
Manufacturer ID is C2(hex), the memory type ID is 20(hex) as the first-byte device ID, and the individual device ID of
second-byte ID is: 15(hex).
The sequence of issuing RDID instruction is: CS# goes low-> sending RDID instruction code -> 24-bits ID data out on SO
-> to end RDID operation can use CS# to high at any time during data out. (see Figure. 13)
While Program/Erase operation is in progress, it will not decode the RDID instruction, so there's no effect on the cycle of
program/erase operation which is currently in progress. When CS# goes high, the device is at standby stage.
P/N: PM1211
12
REV. 1.6, APR. 18, 2008
MX25L1605A
(4) Read Status Register (RDSR)
The RDSR instruction is for reading Status Register Bits. The Read Status Register can be read at any time (even in
program/erase/write status register condition) and continuously. It is recommended to check the Write in Progress (WIP)
bit before sending a new instruction when a program, erase, or write status register operation is in progress.
The sequence of issuing RDSR instruction is: CS# goes low-> sending RDSR instruction code-> Status Register data out
on SO (see Figure. 14)
The definition of the status register bits is as below:
WIP bit. The Write in Progress (WIP) bit, a volatile bit, indicates whether the device is busy in program/erase/write status
register progress. When WIP bit sets to 1, which means the device is busy in program/erase/write status register progress.
When WIP bit sets to 0, which means the device is not in progress of program/erase/write status register cycle.
WEL bit. The Write Enable Latch (WEL) bit, a volatile bit, indicates whether the device is set to internal write enable latch.
When WEL bit sets to 1, which means the internal write enable latch is set, the device can accept program/erase/write
status register instruction. When WEL bit sets to 0, which means no internal write enable latch; the device will not accept
program/erase/write status register instruction.
BP2, BP1, BP0 bits. The Block Protect (BP2, BP1, BP0) bits, non-volatile bits, indicate the protected area(as defined
in table 1) of the device to against the program/erase instruction without hardware protection mode being set. To write the
Block Protect (BP2, BP1, BP0) bits requires the Write Status Register (WRSR) instruction to be executed. Those bits
define the protected area of the memory to against Page Program (PP), Sector Erase (SE), Block Erase (BE) and Chip
Erase(CE) instructions (only if all Block Protect bits set to 0, the CE instruction can be executed)
SRWD bit. The Status Register Write Disable (SRWD) bit, non-volatile bit, is operated together with Write Protection (WP#)
pin for providing hardware protection mode. The hardware protection mode requires SRWD sets to 1 and WP# pin signal
is low stage. In the hardware protection mode, the Write Status Register (WRSR) instruction is no longer accepted for
execution and the SRWD bit and Block Protect bits (BP2, BP1, BP0) are read only.
bit 7
SRWD
Status
Register Write
Protect
1= status
register write
disable
bit 6
bit 5
0
0
bit 4
bit 3
bit 2
BP2
BP1
BP0
the level of the level of the level of
protected
protected
protected
block
block
block
(note 1)
(note 1)
(note 1)
bit 1
WEL
(write enable
latch)
bit 0
WIP
(write in progress
bit)
1=write enable 1=write operation
0=not write
0=not in write
enable
operation
Note: 1. See the table "Protected Area Sizes".
2. The endurance cycles of protect bits are 100,000 cycles; however, the tW time out spec of protect bits is relaxed
as tW = N x 15ms (N is a multiple of 10,000 cycles, ex. N = 2 for 20,000 cycles) after 10,000 cycles on those bits.
P/N: PM1211
13
REV. 1.6, APR. 18, 2008
MX25L1605A
(5) Write Status Register (WRSR)
The WRSR instruction is for changing the values of Status Register Bits. Before sending WRSR instruction, the Write
Enable (WREN) instruction must be decoded and executed to set the Write Enable Latch (WEL) bit in advance. The WRSR
instruction can change the value of Block Protect (BP2, BP1, BP0) bits to define the protected area of memory (as shown
in table 1). The WRSR also can set or reset the Status Register Write Disable (SRWD) bit in accordance with Write
Protection (WP#) pin signal. The WRSR instruction cannot be executed once the Hardware Protected Mode (HPM) is
entered.
The sequence of issuing WRSR instruction is: CS# goes low-> sending WRSR instruction code-> Status Register data
on SI-> CS# goes high. (see Figure 15)
The WRSR instruction has no effect on b6, b5, b1, b0 of the status register.
The CS# must go high exactly at the byte boundary; otherwise, the instruction will be rejected and not executed. The selftimed Write Status Register cycle time (tW) is initiated as soon as Chip Select (CS#) goes high. The Write in Progress
(WIP) bit still can be check out during the Write Status Register cycle is in progress. The WIP sets 1 during the tW timing,
and sets 0 when Write Status Register Cycle is completed, and the Write Enable Latch (WEL) bit is reset.
Table 4. Protection Modes
Mode
Software protection
mode(SPM)
Hardware protection
mode (HPM)
Status register condition
WP# and SRWD bit status
Status register can be written
in (WEL bit is set to "1") and
the SRWD, BP0-BP2
bits can be changed
WP#=1 and SRWD bit=0, or
WP#=0 and SRWD bit=0, or
WP#=1 and SRWD=1
The SRWD, BP0-BP2 of
status register bits cannot be
changed
WP#=0, SRWD bit=1
Memory
The protected area cannot
be program or erase.
The protected area cannot
be program or erase.
Note:
1. As defined by the values in the Block Protect (BP2, BP1, BP0) bits of the Status Register, as shown in Table 1.
As the above table showing, the summary of the Software Protected Mode (SPM) and Hardware Protected Mode (HPM).
Software Protected Mode (SPM):
- When SRWD bit=0, no matter WP# is low or high, the WREN instruction may set the WEL bit and can change the values
of SRWD, BP2, BP1, BP0. The protected area, which is defined by BP2, BP1, BP0, is at software protected mode
(SPM).
- When SRWD bit=1 and WP# is high, the WREN instruction may set the WEL bit can change the values of SRWD, BP2,
BP1, BP0. The protected area, which is defined by BP2, BP1, BP0, is at software protected mode (SPM)
P/N: PM1211
14
REV. 1.6, APR. 18, 2008
MX25L1605A
Note: If SRWD bit=1 but WP# is low, it is impossible to write the Status Register even if the WEL bit has previously been
set. It is rejected to write the Status Register and not be executed.
Hardware Protected Mode (HPM):
- When SRWD bit=1, and then WP# is low (or WP# is low before SRWD bit=1), it enters the hardware protected mode
(HPM). The data of the protected area is protected by software protected mode by BP2, BP1, BP0 and hardware
protected mode by the WP# to against data modification.
Note: to exit the hardware protected mode requires WP# driving high once the hardware protected mode is entered. If the
WP# pin is permanently connected to high, the hardware protected mode can never be entered; only can use software
protected mode via BP2, BP1, BP0.
(6) Read Data Bytes (READ)
The read instruction is for reading data out. The address is latched on rising edge of SCLK, and data shifts out on the falling
edge of SCLK at a maximum frequency fR. The first address byte can be at any location. The address is automatically
increased to the next higher address after each byte data is shifted out, so the whole memory can be read out at a single
READ instruction. The address counter rolls over to 0 when the highest address has been reached.
The sequence of issuing READ instruction is: CS# goes low-> sending READ instruction code-> 3-byte address on SI
-> data out on SO-> to end READ operation can use CS# to high at any time during data out. (see Figure. 16)
(7) Read Data Bytes at Higher Speed (FAST_READ)
The FAST_READ instruction is for quickly reading data out. The address is latched on rising edge of SCLK, and data of
each bit shifts out on the falling edge of SCLK at a maximum frequency fC. The first address byte can be at any location.
The address is automatically increased to the next higher address after each byte data is shifted out, so the whole memory
can be read out at a single FAST_READ instruction. The address counter rolls over to 0 when the highest address has
been reached.
The sequence of issuing FAST_READ instruction is: CS# goes low-> sending FAST_READ instruction code-> 3-byte
address on SI-> 1-dummy byte address on SI->data out on SO-> to end FAST_READ operation can use CS# to high at
any time during data out. (see Figure. 17)
While Program/Erase/Write Status Register cycle is in progress, FAST_READ instruction is rejected without any impact
on the Program/Erase/Write Status Register current cycle.
(8) Sector Erase (SE)
The Sector Erase (SE) instruction is for erasing the data of the chosen sector to be "1". A Write Enable (WREN) instruction
must execute to set the Write Enable Latch (WEL) bit before sending the Sector Erase (SE). Any address of the sector
(see table 3) is a valid address for Sector Erase (SE) instruction. The CS# must go high exactly at the byte boundary (the
latest eighth of address byte been latched-in); otherwise, the instruction will be rejected and not executed.
Address bits [Am-A12] (Am is the most significant address) select the sector address.
The sequence of issuing SE instruction is: CS# goes low -> sending SE instruction code-> 3-byte address on SI -> CS#
goes high. (see Figure 19)
P/N: PM1211
15
REV. 1.6, APR. 18, 2008
MX25L1605A
The self-timed Sector Erase Cycle time (tSE) is initiated as soon as Chip Select (CS#) goes high. The Write in Progress
(WIP) bit still can be check out during the Sector Erase cycle is in progress. The WIP sets 1 during the tSE timing, and
sets 0 when Sector Erase Cycle is completed, and the Write Enable Latch (WEL) bit is reset. If the page is protected by
BP2, BP1, BP0 bits, the Sector Erase (SE) instruction will not be executed on the page.
(9) Block Erase (BE)
The Block Erase (BE) instruction is for erasing the data of the chosen block to be "1". A Write Enable (WREN) instruction
must execute to set the Write Enable Latch (WEL) bit before sending the Block Erase (BE). Any address of the block
(see table 3) is a valid address for Block Erase (BE) instruction. The CS# must go high exactly at the byte boundary (the
latest eighth of address byte been latched-in); otherwise, the instruction will be rejected and not executed.
The sequence of issuing BE instruction is: CS# goes low -> sending BE instruction code-> 3-byte address on SI -> CS#
goes high. (see Figure 20)
The self-timed Block Erase Cycle time (tBE) is initiated as soon as Chip Select (CS#) goes high. The Write in Progress
(WIP) bit still can be check out during the Sector Erase cycle is in progress. The WIP sets 1 during the tBE timing, and
sets 0 when Sector Erase Cycle is completed, and the Write Enable Latch (WEL) bit is reset. If the page is protected by
BP2, BP1, BP0 bits, the Block Erase (BE) instruction will not be executed on the page.
(10) Chip Erase (CE)
The Chip Erase (CE) instruction is for erasing the data of the whole chip to be "1". A Write Enable (WREN) instruction must
execute to set the Write Enable Latch (WEL) bit before sending the Chip Erase (CE). Any address of the sector (see table
3) is a valid address for Chip Erase (CE) instruction. The CS# must go high exactly at the byte boundary( the latest eighth
of address byte been latched-in); otherwise, the instruction will be rejected and not executed.
The sequence of issuing CE instruction is: CS# goes low-> sending CE instruction code-> CS# goes high. (see Figure
20)
The self-timed Chip Erase Cycle time (tCE) is initiated as soon as Chip Select (CS#) goes high. The Write in Progress
(WIP) bit still can be check out during the Chip Erase cycle is in progress. The WIP sets 1 during the tCE timing, and
sets 0 when Chip Erase Cycle is completed, and the Write Enable Latch (WEL) bit is reset. If the chip is protected by BP2,
BP1, BP0 bits, the Chip Erase (CE) instruction will not be executed. It will be only executed when BP2, BP1, BP0 all set
to "0".
(11) Page Program (PP)
The Page Program (PP) instruction is for programming the memory to be "0". A Write Enable (WREN) instruction must
execute to set the Write Enable Latch (WEL) bit before sending the Page Program (PP). If the eight least significant
address bits (A7-A0) are not all 0, all transmitted data which goes beyond the end of the current page are programmed
from the start address if the same page (from the address whose 8 least significant address bits (A7-A0) are all 0). The
CS# must keep during the whole Page Program cycle. The CS# must go high exactly at the byte boundary( the latest
eighth of address byte been latched-in); otherwise, the instruction will be rejected and not executed. If more than 256 bytes
are sent to the device, the data of the last 256-byte is programmed at the request page and previous data will be
disregarded. If less than 256 bytes are sent to the device, the data is programmed at the request address of the page
without effect on other address of the same page.
The sequence of issuing PP instruction is: CS# goes low-> sending PP instruction code-> 3-byte address on SI-> at least
1-byte on data on SI-> CS# goes high. (see Figure 18)
P/N: PM1211
16
REV. 1.6, APR. 18, 2008
MX25L1605A
The self-timed Page Program Cycle time (tPP) is initiated as soon as Chip Select (CS#) goes high. The Write in Progress
(WIP) bit still can be check out during the Page Program cycle is in progress. The WIP sets 1 during the tPP timing, and
sets 0 when Page Program Cycle is completed, and the Write Enable Latch (WEL) bit is reset. If the page is protected by
BP2, BP1, BP0 bits, the Page Program (PP) instruction will not be executed.
(12) Deep Power-down (DP)
The Deep Power-down (DP) instruction is for setting the device on the minimizing the power consumption (to entering the
Deep Power-down mode), the standby current is reduced from ISB1 to ISB2). The Deep Power-down mode requires the
Deep Power-down (DP) instruction to enter, during the Deep Power-down mode, the device is not active and all Write/
Program/Erase instruction are ignored. When CS# goes high, it's only in standby mode not deep power-down mode. It's
different from Standby mode.
The sequence of issuing DP instruction is: CS# goes low-> sending DP instruction code-> CS# goes high. (see Figure 22)
Once the DP instruction is set, all instruction will be ignored except the Release from Deep Power-down mode (RDP) and
Read Electronic Signature (RES) instruction. (RES instruction to allow the ID been read out). When Power-down, the deep
power-down mode automatically stops, and when power-up, the device automatically is in standby mode. For RDP
instruction the CS# must go high exactly at the byte boundary (the latest eighth bit of instruction code been latched-in);
otherwise, the instruction will not executed. As soon as Chip Select (CS#) goes high, a delay of tDP is required before
entering the Deep Power-down mode and reducing the current to ISB2.
(13) Release from Deep Power-down (RDP), Read Electronic Signature (RES)
The Release from Deep Power-down (RDP) instruction is terminated by driving Chip Select (CS#) High. When Chip Select
(CS#) is driven High, the device is put in the Stand-by Power mode. If the device was not previously in the Deep Powerdown mode, the transition to the Stand-by Power mode is immediate. If the device was previously in the Deep Power-down
mode, though, the transition to the Stand-by Power mode is delayed by tRES2, and Chip Select (CS#) must remain High
for at least tRES2(max), as specified in Table 6. Once in the Stand-by Power mode, the device waits to be selected, so
that it can receive, decode and execute instructions.
RES instruction is for reading out the old style of 8-bit Electronic Signature, whose values are shown as table of ID
Definitions. This is not the same as RDID instruction. It is not recommended to use for new design. For new deisng, please
use RDID instruction. Even in Deep power-down mode, the RDP and RES are also allowed to be executed, only except
the device is in progress of program/erase/write cycle; there's no effect on the current program/erase/write cycle in
progress.
The sequence is shown as Figure 23,24.
The RES instruction is ended by CS# goes high after the ID been read out at least once. The ID outputs repeatedly if
continuously send the additional clock cycles on SCLK while CS# is at low. If the device was not previously in Deep Powerdown mode, the device transition to standby mode is immediate. If the device was previously in Deep Power-down mode,
there's a delay of tRES2 to transit to standby mode, and CS# must remain to high at least tRES2(max). Once in the standby
mode, the device waits to be selected, so it can be receive, decode, and execute instruction.
The RDP instruction is for releasing from Deep Power Down Mode.
P/N: PM1211
17
REV. 1.6, APR. 18, 2008
MX25L1605A
(14) Read Electronic Manufacturer ID & Device ID (REMS)
The REMS instruction is an alternative to the Release from Power-down/Device ID instruction that provides both the JEDEC
assigned manufacturer ID and the specific device ID.
The REMS instruction is very similar to the Release from Power-down/Device ID instruction. The instruction is initiated
by driving the CS# pin low and shift the instruction code "90h" followed by two dummy bytes and one bytes address (A7~A0).
After which, the Manufacturer ID for MXIC (C2h) and the Device ID are shifted out on the falling edge of SCLK with most
significant bit (MSB) first as shown in figure 25. The Device ID values are listed in Table of ID Definitions on page 16. If
the one-byte address is initially set to 01h, then the device ID will be read first and then followed by the Manufacturer ID.
The Manufacturer and Device IDs can be read continuously, alternating from one to the other. The instruction is completed
by driving CS# high.
Table of ID Definitions:
RDID
manufacturer ID
memory type
C2
memory density
20
RES
15
electronic ID
14
REMS
manufacturer ID
device ID
C2
14
P/N: PM1211
18
REV. 1.6, APR. 18, 2008
MX25L1605A
POWER-ON STATE
The device is at below states when power-up:
- Standby mode ( please note it is not deep power-down mode)
- Write Enable Latch (WEL) bit is reset
The device must not be selected during power-up and power-down stage unless the VCC achieves below correct level:
- VCC minimum at power-up stage and then after a delay of tVSL
- GND at power-down
Please note that a pull-up resistor on CS# may ensure a safe and proper power-up/down level.
An internal power-on reset (POR) circuit may protect the device from data corruption and inadvertent data change during
power up state. When VCC is lower than VWI (POR threshold voltage value), the internal logic is reset and the flash device
has no response to any command.
For further protection on the device, after VCC reaching the VWI level, a tPUW time delay is required before the device
is fully accessible for commands like write enable(WREN), page program (PP), sector erase(SE), chip erase(CE) and write
status register(WRSR). If the VCC does not reach the VCC minimum level, the correct operation is not guaranteed. The
write, erase, and program command should be sent after the below time delay:
- tPUW after VCC reached VWI level
- tVSL after VCC reached VCC minimum level
The device can accept read command after VCC reached VCC minimum and a time delay of tVSL, even time of tPUW
has not passed.
Please refer to the figure of "power-up timing".
Note:
- To stabilize the VCC level, the VCC rail decoupled by a suitable capacitor close to package pins is
recommended.(generally around 0.1uF)
- At power-down stage, the VCC drops below VWI level, all operations are disable and device has no response to any
command. The data corruption might occur during the stage while a write, program, erase cycle is in progress.
P/N: PM1211
19
REV. 1.6, APR. 18, 2008
MX25L1605A
ELECTRICAL SPECIFICATIONS
ABSOLUTE MAXIMUM RATINGS
RATING
NOTICE:
1. Stresses greater than those listed under ABSOLUTE
MAXIMUM RATINGS may cause permanent damage
to the device. This is stress rating only and functional
operational sections of this specification is not implied.
Exposure to absolute maximum rating conditions for
extended period may affect reliability.
2. Specifications contained within the following tables are
subject to change.
3. During voltage transitions, all pins may overshoot Vss
to -2.0V and Vcc to +2.0V for periods up to 20ns, see
Figure 3,4.
VALUE
Ambient Operating Temperature -40°C to 85°C for
Industrial grade
0°C to 70°C for
Commercial grade
Storage Temperature
-55°C to 125°C
Applied Input Voltage
-0.5V to 4.6V
Applied Output Voltage
-0.5V to 4.6V
VCC to Ground Potential
-0.5V to 4.6V
Figure 4. Maximum Positive Overshoot Waveform
Figure 3.Maximum Negative Overshoot Waveform
20ns
20ns
20ns
Vss
Vcc + 2.0V
Vss - 2.0V
Vcc
20ns
20ns
20ns
CAPACITANCE TA = 25°°C, f = 1.0 MHz
SYMBOL
PARAMETER
CIN
COUT
MIN.
MAX.
UNIT
Input Capacitance
6
pF
VIN = 0V
Output Capacitance
8
pF
VOUT = 0V
P/N: PM1211
20
TYP
CONDITIONS
REV. 1.6, APR. 18, 2008
MX25L1605A
Figure 5. INPUT TEST WAVEFORMS AND MEASUREMENT LEVEL
Input timing referance level
0.8VCC
0.7VCC
0.3VCC
Output timing referance level
AC
Measurement
Level
0.5VCC
0.2VCC
Note: Input pulse rise and fall time are <5ns
Figure 6. OUTPUT LOADING
DEVICE UNDER
TEST
2.7K ohm
+3.3V
CL
6.2K ohm
DIODES=IN3064
OR EQUIVALENT
CL=30pF Including jig capacitance
(CL=15pF Including jig capacitance for 85MHz and 70MHz)
P/N: PM1211
21
REV. 1.6, APR. 18, 2008
MX25L1605A
Table 5. DC CHARACTERISTICS (Temperature = -40°°C to 85°°C for Industrial grade, Temperature =
0°°C to 70°°C for Commercial grade, VCC = 2.7V ~ 3.6V)
SYMBOL PARAMETER
ILI
Input Load
NOTES
MIN.
TYP
MAX. UNITS
±2
1
uA
Current
ILO
Output Leakage
VCC Standby
±2
1
uA
1
20
uA
Deep Power-down
VCC Read
VIN = VCC or GND
CS# = VCC
1
10
uA
Current
ICC1
VCC = VCC Max
VIN = VCC or GND
Current
ISB2
VCC = VCC Max
VIN = VCC or GND
Current
ISB1
TEST CONDITIONS
VIN = VCC or GND
CS# = VCC
1
12
mA
f=85MHz and 70MHz
SCLK=0.1VCC/0.9VCC, SO=Open
8
mA
f=66MHz
SCLK=0.1VCC/0.9VCC, SO=Open
4
mA
f=33MHz
SCLK=0.1VCC/0.9VCC, SO=Open
ICC2
VCC Program
1
15
mA
Current (PP)
ICC3
Program in Progress
CS# = VCC
VCC Write Status
15
mA
Register (WRSR)
Program status register in progress
CS#=VCC
Current
ICC4
VCC Sector Erase
1
15
mA
Current (SE)
ICC5
VCC Chip Erase
Erase in Progress
CS#=VCC
1
15
mA
Current (CE)
Erase in Progress
CS#=VCC
VIL
Input Low Voltage
-0.5
0.3VCC
V
VIH
Input High Voltage
0.7VCC
VCC+0.4
V
VOL
Output Low Voltage
0.4
V
IOL = 1.6mA
VOH
Output High Voltage
V
IOH = -100uA
VCC-0.2
Notes :
1. Typical values at VCC = 3.3V, T = 25°C. These currents are valid for all product versions (package and speeds).
2. Typical value is calculated by simulation.
P/N: PM1211
22
REV. 1.6, APR. 18, 2008
MX25L1605A
Table 6. AC CHARACTERISTICS (Temperature = -40°°C to 85°°C for Industrial grade, Temperature =
0°°C to 70°°C for Commercial grade, VCC = 2.7V ~ 3.6V)
Symbol
fSCLK
fRSCLK
tCH(1)
tCL(1)
tCLCH(2)
tCHCL(2)
tSLCH
tCHSL
tDVCH
tCHDX
tCHSH
tSHCH
tSHSL
tSHQZ(2)
tCLQV
tCLQX
tHLCH
tCHHH
tHHCH
tCHHL
tHHQX(2)
tHLQZ(2)
tWHSL(4)
tSHWL(4)
tDP(2)
tRES1(2)
tRES2(2)
tW
tPP
tSE
tBE
tCE
Alt.
fC
Parameter
Clock Frequency for the following instructions:
FAST_READ, PP, SE, BE, CE, DP, RES,RDP
WREN, WRDI, RDID, RDSR, WRSR
Min.
1KHz
Typ.
Max.
Unit
70 & 85 MHz
(Condition:15pF)
66
MHz
(Condition:30pF)
fR
Clock Frequency for READ instructions
1KHz
33
MHz
tCLH Clock High Time
7
ns
tCLL Clock Low Time
7
ns
Clock Rise Time (3) (peak to peak)
0.1
V/ns
Clock Fall Time (3) (peak to peak)
0.1
V/ns
tCSS CS# Active Setup Time (relative to SCLK)
5
ns
CS# Not Active Hold Time (relative to SCLK)
5
ns
tDSU Data In Setup Time
2
ns
tDH
Data In Hold Time
5
ns
CS# Active Hold Time (relative to SCLK)
5
ns
CS# Not Active Setup Time (relative to SCLK)
5
ns
tCSH CS# Deselect Time
100
ns
tDIS Output Disable Time
6
ns
tV
Clock Low to Output Valid @33MHz 30pF
8
ns
@85MHz/70MHz 15pF or @66MHz 30pF
6
ns
tHO
Output Hold Time
0
ns
HOLD# Setup Time (relative to SCLK)
5
ns
HOLD# Hold Time (relative to SCLK)
5
ns
HOLD Setup Time (relative to SCLK)
5
ns
HOLD Hold Time (relative to SCLK)
5
ns
tLZ
HOLD to Output Low-Z
6
ns
tHZ
HOLD# to Output High-Z
6
ns
Write Protect Setup Time
20
ns
Write Protect Hold Time
100
ns
CS# High to Deep Power-down Mode
3
us
CS# High to Standby Mode without Electronic Signature Read
3
us
CS# High to Standby Mode with Electronic Signature Read
1.8
us
Write Status Register Cycle Time
5
15
ms
Page Program Cycle Time
1.4
5
ms
Sector Erase Cycle Time
60
120
ms
Block Erase Cycle Time
1
2
s
Chip Erase Cycle Time
14
30
s
Notes:
1. tCH + tCL must be greater than or equal to 1/ fC
2. Value guaranteed by characterization, not 100% tested in production.
3. Expressed as a slew-rate.
4. Only applicable as a constraint for a WRSR instruction when SRWD is set at 1.
5. Test condition is shown as Figure 3.
P/N: PM1211
23
REV. 1.6, APR. 18, 2008
MX25L1605A
Table 7. Power-Up Timing and VWI Threshold
Symbol
tVSL(1)
tPUW(1)
VWI(1)
Parameter
VCC(min) to CS# low
Time delay to Write instruction
Write Inhibit Voltage
Min.
30
1
1.5
Max.
10
2.5
Unit
us
ms
V
Note: 1. These parameters are characterized only.
INITIAL DELIVERY STATE
The device is delivered with the memory array erased: all bits are set to 1 (each byte contains FFh). The Status Register
contains 00h (all Status Register bits are 0).
P/N: PM1211
24
REV. 1.6, APR. 18, 2008
MX25L1605A
Figure 7. Serial Input Timing
tSHSL
CS#
tCHSL
tSLCH
tCHSH
tSHCH
SCLK
tDVCH
tCHCL
tCHDX
tCLCH
LSB
MSB
SI
High-Z
SO
Figure 8. Output Timing
CS#
tCH
SCLK
tCLQV
tCLQX
tCL
tCLQV
tSHQZ
tCLQX
LSB
SO
tQLQH
tQHQL
SI
ADDR.LSB IN
P/N: PM1211
25
REV. 1.6, APR. 18, 2008
MX25L1605A
Figure 9. Hold Timing
CS#
tHLCH
tCHHL
tHHCH
SCLK
tCHHH
tHLQZ
tHHQX
SO
HOLD#
* SI is "don't care" during HOLD operation.
Figure 10. WP# Disable Setup and Hold Timing during WRSR when SRWD=1
WP#
tSHWL
tWHSL
CS#
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
SCLK
01
SI
SO
High-Z
P/N: PM1211
26
REV. 1.6, APR. 18, 2008
MX25L1605A
Figure 11. Write Enable (WREN) Sequence (Command 06)
CS#
0
1
2
3
4
5
6
7
SCLK
Command
SI
06
High-Z
SO
Figure 12. Write Disable (WRDI) Sequence (Command 04)
CS#
0
1
2
3
4
5
6
7
SCLK
Command
SI
04
High-Z
SO
Figure 13. Read Identification (RDID) Sequence (Command 9F)
CS#
0
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15 16 17 18
28 29 30 31
SCLK
Command
SI
9F
Manufacturer Identification
SO
High-Z
7
6
5
MSB
3
2
1
Device Identification
0 15 14 13
3
2
1
0
MSB
P/N: PM1211
27
REV. 1.6, APR. 18, 2008
MX25L1605A
Figure 14. Read Status Register (RDSR) Sequence (Command 05)
CS#
0
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15
SCLK
command
05
SI
Status Register Out
Status Register Out
High-Z
SO
7
6
5
4
3
2
1
0
MSB
7
6
5
4
3
2
1
0
7
MSB
Figure 15. Write Status Register (WRSR) Sequence (Command 01)
CS#
0
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15
SCLK
command
SI
Status
Register In
01
7
5
4
3
2
0
1
MSB
High-Z
SO
6
Figure 16. Read Data Bytes (READ) Sequence (Command 03)
CS#
0
1
2
3
4
5
6
7
8
9 10
28 29 30 31 32 33 34 35 36 37 38 39
SCLK
command
SI
03
24-Bit Address
23 22 21
3
2
1
0
MSB
Data Out 1
High-Z
7
SO
6
5
4
3
2
Data Out 2
1
0
7
MSB
P/N: PM1211
28
REV. 1.6, APR. 18, 2008
MX25L1605A
Figure 17. Read at Higher Speed (FAST_READ) Sequence (Command 0B)
CS#
0
1
2
3
4
5
6
7
8
9 10
28 29 30 31
SCLK
Command
SI
SO
24 BIT ADDRESS
23 22 21
0B
3
2
1
0
High-Z
CS#
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
SCLK
Dummy Byte
SI
7
6
5
4
3
2
1
0
DATA OUT 2
DATA OUT 1
SO
7
6
5
4
3
2
1
0
7
MSB
MSB
P/N: PM1211
29
6
5
4
3
2
1
0
7
MSB
REV. 1.6, APR. 18, 2008
MX25L1605A
Figure 18. Page Program (PP) Sequence (Command 02)
CS#
0
1
2
3
4
5
6
7
8
9 10
28 29 30 31 32 33 34 35 36 37 38 39
SCLK
Command
24-Bit Address
23 22 21
02
SI
3
2
Data Byte 1
1
0
7
6
5
4
3
2
0
1
MSB
MSB
2078
2079
2077
2076
2075
2074
2073
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
2072
CS#
1
0
SCLK
Data Byte 2
SI
7
6
MSB
5
4
3
2
Data Byte 3
1
0
7
6
5
4
MSB
3
2
Data Byte 256
1
0
7
6
5
4
3
2
MSB
P/N: PM1211
30
REV. 1.6, APR. 18, 2008
MX25L1605A
Figure 19. Sector Erase (SE) Sequence (Command 20)
CS#
0
1
2
3
4
5
6
7
8
9
29 30 31
SCLK
24 Bit Address
Command
SI
7
20
6
2
1
0
MSB
Note: SE command is 20(hex).
Figure 20. Block Erase (BE) Sequence (Command 52 or D8)
CS#
0
1
2
3
4
5
6
7
8
9
29 30 31
SCLK
Command
SI
24 Bit Address
23 22
52 or D8
2
1
0
MSB
Note: BE command is 52 or D8(hex).
P/N: PM1211
31
REV. 1.6, APR. 18, 2008
MX25L1605A
Figure 21. Chip Erase (CE) Sequence (Command 60 or C7)
CS#
0
1
2
3
4
5
6
7
SCLK
Command
SI
60 or C7
Note: CE command is 60(hex) or C7(hex).
Figure 22. Deep Power-down (DP) Sequence (Command B9)
CS#
0
1
2
3
4
5
6
tDP
7
SCLK
Command
B9
SI
Deep Power-down Mode
Stand-by Mode
Figure 23. Release from Deep Power-down and Read Electronic Signature (RES)
(Command AB)
Sequence
CS#
0
1
2
3
4
5
6
7
8
9 10
28 29 30 31 32 33 34 35 36 37 38
SCLK
Command
SI
AB
tRES2
3 Dummy Bytes
23 22 21
3
2
1
0
MSB
Electronic Signature Out
High-Z
7
SO
6
5
4
3
2
1
0
MSB
Deep Power-down Mode
P/N: PM1211
32
Stand-by Mode
REV. 1.6, APR. 18, 2008
MX25L1605A
Figure 24. Release from Deep Power-down (RDP) Sequence (Command AB)
CS#
0
1
2
3
4
5
6
tRES1
7
SCLK
Command
SI
AB
High-Z
SO
Stand-by Mode
Deep Power-down Mode
Figure 25. Read Electronic Manufacturer & Device ID (REMS) Sequence (Command 90)
CS#
0
1
2
3
4
5
6
7
8
9 10
SCLK
Command
SI
2 Dummy Bytes
15 14 13
90
3
2
1
0
High-Z
SO
CS#
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
SCLK
ADD (1)
SI
7
6
5
4
3
2
1
0
Manufacturer ID
SO
X
7
6
5
4
3
2
1
Device ID
0
7
6
5
4
3
2
MSB
MSB
1
0
7
MSB
Notes:
(1) ADD=00H will output the manufacturer's ID first and ADD=01H will output device ID first
P/N: PM1211
33
REV. 1.6, APR. 18, 2008
MX25L1605A
Figure 26. Power-up Timing
VCC
VCC(max)
Program, Erase and Write Commands are Ignored
Chip Selection is Not Allowed
VCC(min)
Reset State
of the
Flash
tVSL
Read Command is
allowed
Device is fully
accessible
VWI
tPUW
time
P/N: PM1211
34
REV. 1.6, APR. 18, 2008
MX25L1605A
RECOMMENDED OPERATING CONDITIONS
At Device Power-Up
AC timing illustrated in Figure A is recommended for the supply voltages and the control signals at device power-up. If
the timing in the figure is ignored, the device may not operate correctly.
VCC(min)
VCC
GND
tSHSL
tVR
CS#
tCHSL
tSLCH
tCHSH
tSHCH
SCLK
tDVCH
tCHCL
tCHDX
tCLCH
LSB IN
MSB IN
SI
High Impedance
SO
Figure A. AC Timing at Device Power-Up
Symbol
Parameter
tVR
VCC Rise Time
Notes
Min.
Max.
Unit
1
0.5
500000
us/V
Notes :
1. Sampled, not 100% tested.
2. For AC spec tCHSL, tSLCH, tDVCH, tCHDX, tSHSL, tCHSH, tSHCH, tCHCL, tCLCH in the figure, please refer to "AC
CHARACTERISTICS" table.
P/N: PM1211
35
REV. 1.6, APR. 18, 2008
MX25L1605A
ERASE AND PROGRAMMING PERFORMANCE
PARAMETER
Min.
TYP. (1)
Max. (2)
UNIT
Write Status Register Cycle Time
5
15
ms
Sector erase Time
60
120
ms
Block erase Time
1
2
s
Chip Erase Time
14
30
s
Page Program Time
1.4
5
ms
Erase/Program Cycle
100,000
cycles
Note:
1. Typical program and erase time assumes the following conditions: 25°C, 3.3V, and checker board pattern.
2. Under worst conditions of 70°C and 3.0V.
3. System-level overhead is the time required to execute the first-bus-cycle sequence for the programming command.
4. The maximum chip programming time is evaluated under the worst conditions of 0C, VCC=3.0V, and 100K cycle with
90% confidence level.
LATCH-UP CHARACTERISTICS
MIN.
MAX.
Input Voltage with respect to GND on ACC
-1.0V
12.5V
Input Voltage with respect to GND on all power pins, SI, CS#
-1.0V
2 VCCmax
Input Voltage with respect to GND on SO
-1.0V
VCC + 1.0V
-100mA
+100mA
Current
Includes all pins except VCC. Test conditions: VCC = 3.0V, one pin at a time.
P/N: PM1211
36
REV. 1.6, APR. 18, 2008
MX25L1605A
ORDERING INFORMATION
PART NO.
CLOCK
(MHz)
OPERATING
STANDBY
Temperature PACKAGE
Remark
CURRENT MAX. CURRENT MAX.
(mA)
(uA)
MX25L1605AMC-12
85
12
20
0~70°C
16-SOP
MX25L1605AMC-12G
85
12
20
0~70°C
16-SOP
MX25L1605AMI-12
85
12
20
-40~85°C
16-SOP
MX25L1605AMI-12G
85
12
20
-40~85°C
16-SOP
Pb-free
MX25L1605AZMC-12G
85
12
20
0~70°C
8-land SON
Pb-free
Pb-free
(8x6 mm)
MX25L1605AZMI-12G
85
12
20
-40~85°C
8-land SON
Pb-free
(8x6 mm)
MX25L1605AM2C-12
85
12
20
0~70°C
8-SOP
(200mil)
MX25L1605AM2C-12G
85
12
20
0~70°C
8-SOP
Pb-free
(200mil)
MX25L1605AM2I-12
85
12
20
-40~85°C
8-SOP
(200mil)
MX25L1605AM2I-12G
85
12
20
-40~85°C
8-SOP
Pb-free
(200mil)
MX25L1605AMC-15
70
12
20
0~70°C
16-SOP
MX25L1605AMC-15G
70
12
20
0~70°C
16-SOP
MX25L1605AMI-15
70
12
20
-40~85°C
16-SOP
MX25L1605AMI-15G
70
12
20
-40~85°C
16-SOP
Pb-free
MX25L1605AZMC-15G
70
12
20
0~70°C
8-land SON
Pb-free
Pb-free
(8x6 mm)
MX25L1605AZMI-15G
70
12
20
-40~85°C
8-land SON
Pb-free
(8x6 mm)
MX25L1605AM2C-15
70
12
20
0~70°C
8-SOP
(200mil)
MX25L1605AM2C-15G
70
12
20
0~70°C
8-SOP
Pb-free
(200mil)
MX25L1605AM2I-15
70
12
20
-40~85°C
8-SOP
(200mil)
MX25L1605AM2I-15G
70
12
20
-40~85°C
8-SOP
Pb-free
(200mil)
P/N: PM1211
37
REV. 1.6, APR. 18, 2008
MX25L1605A
PART NAME DESCRIPTION
MX 25
L 1605A
ZM
C
12 G
OPTION:
G: Pb-free
blank: normal
SPEED:
12: 85MHz
15: 70MHz
TEMPERATURE RANGE:
C: Commercial (0˚C to 70˚C)
I: Industrial (-40˚C to 85˚C)
PACKAGE:
ZM: SON
M: 300mil 16-SOP
M2: 200mil 8-SOP
DENSITY & MODE:
1605A: 16Mb
TYPE:
L: 3V
DEVICE:
25: Serial Flash
P/N: PM1211
38
REV. 1.6, APR. 18, 2008
MX25L1605A
PACKAGE INFORMATION
P/N: PM1211
39
REV. 1.6, APR. 18, 2008
MX25L1605A
P/N: PM1211
40
REV. 1.6, APR. 18, 2008
MX25L1605A
P/N: PM1211
41
REV. 1.6, APR. 18, 2008
MX25L1605A
REVISION HISTORY
Revision No. Description
1.0
1. Removed "Advanced Information" title
2. Added description about Pb-free device is RoHS compliant
1.1
1. Added 85MHz spec
1.2
1.3
1.4
1.5
1.6
Page
Date
P1
SEP/09/2005
P1
P1,19-21,35 SEP/29/2005
P36
P1,2,20,35
P1,21,34
2. Standby current is reduced from 50uA(max) to 20uA(max)
3. Modified tSE:90ms(typ)/270ms(max)-->60ms(typ)/120ms(max) ;
tBE:3s(max)-->2s(max); tCE:32s(typ)/64s(max)-->14s(typ)/30s(max)
4. Supplemented 52(hex) code for 64KB erase
P7,29
1. Format change
All
2. Supplemented the footnote for tW of protect/unprotect bits
P11
1. Added statement
P41
1. Defined min. clock frequency of fSCLK & fRSCLK as 1KHz
P22
1. Modified figure 3 & figure 4 waveforms
P19
1. Announced "phase-out" wording
P1,2
P/N: PM1211
42
JUN/08/2006
NOV/06/2006
NOV/29/2006
MAR/09/2007
APR/18/2008
REV. 1.6, APR. 18, 2008
MX25L1605A
Macronix's products are not designed, manufactured, or intended for use for any high risk applications in which the failure
of a single component could cause death, personal injury, severe physical damage, or other substantial harm to persons
or property, such as life-support systems, high temperature automotive, medical, aircraft and military application. Macronix
and its suppliers will not be liable to you and/or any third party for any claims, injuries or damages that may be incurred due
to use of Macronix's products in the prohibited applications.
MACRONIX INTERNATIONAL CO., LTD.
Headquarters
Macronix, Int'l Co., Ltd.
Taipei Office
Macronix, Int'l Co., Ltd.
16, Li-Hsin Road, Science Park,
Hsinchu, Taiwan, R.O.C.
Tel: +886-3-5786688
Fax: +886-3-5632888
19F, 4, Min-Chuan E. Road, Sec. 3,
Taipei, Taiwan, R.O.C.
Tel: +886-2-2509-3300
Fax: +886-2-2509-2200
Macronix America, Inc.
Macronix Europe N.V.
680 North McCarthy Blvd.
Milpitas, CA 95035, U.S.A.
Tel: +1-408-262-8887
Fax: +1-408-262-8810
Email: [email protected]
Koningin Astridlaan 59, Bus 1
1780 Wemmel Belgium
Tel: +32-2-456-8020
Fax: +32-2-456-8021
Macronix Japan Cayman Islands Ltd.
Singapore Office
Macronix Pte. Ltd.
NKF Bldg. 5F, 1-2 Higashida-cho,
Kawasaki-ku Kawasaki-shi,
Kanagawa Pref. 210-0005, Japan
Tel: +81-44-246-9100
Fax: +81-44-246-9105
1 Marine Parade Central
#11-03 Parkway Centre
Singapore 449408
Tel: +65-6346-5505
Fax: +65-6348-8096
Macronix (Hong Kong) Co., Limited.
702-703, 7/F, Building 9,
Hong Kong Science Park,
5 Science Park West Avenue, Sha Tin, N.T.
Tel: +86-852-2607-4289
Fax: +86-852-2607-4229
http : //www.macronix.com
MACRONIX INTERNATIONAL CO., LTD. reserves the right to change product and specifications without notice.
43