MX25L8005 8M-BIT [x 1] CMOS SERIAL FLASH FEATURES GENERAL • Serial Peripheral Interface compatible -- Mode 0 and Mode 3 • 8,388,608 x 1 bit structure • 256 Equal Sectors with 4K byte each - Any Sector can be erased individually • 16 Equal Blocks with 64K byte each - Any Block can be erased individually • Single Power Supply Operation - 2.7 to 3.6 volt for read, erase, and program operations • Latch-up protected to 100mA from -1V to Vcc +1V PERFORMANCE • High Performance - Fast access time: 86MHz serial clock - Fast program time: 1.4ms(typ.) and 5ms(max.)/page (256-byte per page) - Fast erase time: 60ms(typ.) and 120ms(max.)/sector (4K-byte per sector) ; 1s(typ.) and 2s(max.)/block (64K-byte per block) • Low Power Consumption - Low active read current: 12mA(max.) at 86MHz, and 4mA(max.) at 33MHz - Low active programming current: 15mA (max.) - Low active erase current: 15mA (max.) - Low standby current: 10uA (max.) - Deep power-down mode 1uA (typical) • Minimum 100,000 erase/program cycles • 10 years data retention SOFTWARE FEATURES • Input Data Format - 1-byte Command code • Block Lock protection - The BP0~BP2 status bit defines the size of the area to be software protected against Program and Erase instructions. • Auto Erase and Auto Program Algorithm - Automatically erases and verifies data at selected sector - Automatically programs and verifies data at selected page by an internal algorithm that automatically times the program pulse widths (Any page to be programed should have page in the erased state first) • Status Register Feature • Electronic Identification - JEDEC 1-byte manufacturer ID and 2-byte Device ID - RES command, 1-byte Device ID - REMS command for 1-byte manufacturer ID and 1-byte Device ID HARDWARE FEATURES • SCLK Input - Serial clock input • SI Input - Serial Data Input • SO Output - Serial Data Output P/N: PM1237 1 REV. 2.3, JUN. 05, 2009 MX25L8005 • WP# pin - Hardware write protection • HOLD# pin - pause the chip without diselecting the chip • PACKAGE - 8-pin SOP (150mil) - 8-pin SOP (200mil) - 8-pin PDIP (300mil) - 8-land SON/WSON (6x5mm), 8-land SON is not recommended for new design - 8-land USON (4x4mm) - All Pb-free devices are RoHS Compliant GENERAL DESCRIPTION The MX25L8005 is a CMOS 8,388,608 bit serial Flash memory, which is configured as 1,048,576 x 8 internally. The MX25L8005 feature a serial peripheral interface and software protocol allowing operation on a simple 3-wire bus. The three bus signals are a clock input (SCLK), a serial data input (SI), and a serial data output (SO). Serial access to the device is enabled by CS# input. The MX25L8005 provide sequential read operation on whole chip. After program/erase command is issued, auto program/ erase algorithms which program/ erase and verify the specified page or byte /sector/block locations will be executed. Program command is executed on page (256 bytes) basis, and erase command is executes on chip or sector(4K-bytes) or block(64K-bytes). To provide user with ease of interface, a status register is included to indicate the status of the chip. The status read command can be issued to detect completion status of a program or erase operation via WIP bit. When the device is not in operation and CS# is high, it is put in standby mode and draws less than 10uA DC current. The MX25L8005 utilizes Macronix's proprietary memory cell, which reliably stores memory contents even after 100,000 program and erase cycles. PIN DESCRIPTION PIN CONFIGURATIONS 8-PIN SOP (150/200mil) CS# SO WP# GND 1 2 3 4 8 7 6 5 VCC HOLD# SCLK SI 8-PIN PDIP (300mil) CS# 1 8 VCC SO 2 7 HOLD# WP# 3 6 SCLK GND 4 5 SI SYMBOL CS# SI SO SCLK HOLD# WP# VCC GND * 8-LAND SON/WSON (6x5mm), USON (4x4mm) CS# SO WP# GND 1 2 3 4 8 7 6 5 DESCRIPTION Chip Select Serial Data Input Serial Data Output Clock Input Hold, to pause the device without deselecting the device Write Protection + 3.3V Power Supply Ground VCC HOLD# SCLK SI Note: 8-land SON is not recommended for new design P/N: PM1237 2 REV. 2.3, JUN. 05, 2009 MX25L8005 BLOCK DIAGRAM X-Decoder Address Generator Memory Array Page Buffer SI Data Register Y-Decoder SRAM Buffer CS# Mode Logic State Machine Sense Amplifier Output Buffer HV Generator SO SCLK P/N: PM1237 Clock Generator 3 REV. 2.3, JUN. 05, 2009 MX25L8005 DATA PROTECTION MX25L8005 is designed to offer protection against accidental erasure or programming caused by spurious system level signals that may exist during power transition. During power up the device automatically resets the state machine in the standby mode. In addition, with its control register architecture, alteration of the memory contents only occurs after successful completion of specific command sequences. The device also incorporates several features to prevent inadvertent write cycles resulting from VCC power-up and power-down transition or system noise. • Valid command length checking: The command length will be checked whether it is at byte base and completed on byte boundary. • Write Enable (WREN) command: WREN command is required to set the Write Enable Latch bit (WEL) before other command to change data. The WEL bit will return to reset stage under following situation: - Power-up - Write Disable (WRDI) command completion - Write Status Register (WRSR) command completion - Page Program (PP) command completion - Sector Erase (SE) command completion - Block Erase (BE) command completion - Chip Erase (CE) command completion • Software Protection Mode (SPM): by using BP0-BP2 bits to set the part of Flash protected from data change. • Hardware Protection Mode (HPM): by using WP# going low to protect the BP0-BP2 bits and SRWD bit from data change. • Deep Power Down Mode: By entering deep power down mode, the flash device also is under protected from writing all commands except Release from deep power down mode command (RDP) and Read Electronic Signature command (RES). P/N: PM1237 4 REV. 2.3, JUN. 05, 2009 MX25L8005 Table 1. Protected Area Sizes BP2 0 0 0 0 1 1 1 1 P/N: PM1237 Status bit BP1 0 0 1 1 0 0 1 1 BP0 0 1 0 1 0 1 0 1 5 Protect level 8Mb 0 (none) 1 (1 block) 2 (2 blocks) 3 (4 blocks) 4 (8 blocks) 5 (All) 6 (All) 7 (All) None Block 15 Block 14-15 Block 12-15 Block 8-15 All All All REV. 2.3, JUN. 05, 2009 MX25L8005 HOLD FEATURE HOLD# pin signal goes low to hold any serial communications with the device. The HOLD feature will not stop the operation of write status register, programming, or erasing in progress. The operation of HOLD requires Chip Select(CS#) keeping low and starts on falling edge of HOLD# pin signal while Serial Clock (SCLK) signal is being low (if Serial Clock signal is not being low, HOLD operation will not start until Serial Clock signal being low). The HOLD condition ends on the rising edge of HOLD# pin signal while Serial Clock(SCLK) signal is being low( if Serial Clock signal is not being low, HOLD operation will not end until Serial Clock being low), see Figure 1. Figure 1. Hold Condition Operation CS# SCLK HOLD# Hold Condition (standard) Hold Condition (non-standard) The Serial Data Output (SO) is high impedance, both Serial Data Input (SI) and Serial Clock (SCLK) are don't care during the HOLD operation. If Chip Select (CS#) drives high during HOLD operation, it will reset the internal logic of the device. To re-start communication with chip, the HOLD# must be at high and CS# must be at low. P/N: PM1237 6 REV. 2.3, JUN. 05, 2009 MX25L8005 Table 2. COMMAND DEFINITION COMMAND (byte) WREN (write Enable) WRDI (write disable) 1st 2nd 3rd 4th 5th Action 06 Hex 04 Hex RDID RDSR (read identification) (read status register) 9F Hex 05 Hex WRSR (write status register) 01 Hex READ (read Fast Read data) (fast read data) 03 Hex AD1 AD2 AD3 sets the reset the output the to read out to write new n bytes read (WEL) write (WEL) write manufacturer ID and the status values to out until CS# enable enable 2-byte device ID register the status goes high latch bit latch bit register COMMAND (byte) SE (Sector Erase) BE (Block Erase) CE (Chip Erase) 1st 20 Hex 2nd 3rd 4th 5th Action AD1 AD2 AD3 52 or D8 Hex AD1 AD2 AD3 60 or C7 Hex 0B Hex AD1 AD2 AD3 x PP DP (Deep RDP RES (Read REMS (Read (Page Power (Release Electronic Electronic Program) Down) from Deep ID) Manufacturer Power& Device ID) down) 02 Hex B9 Hex AB Hex AB Hex 90 Hex AD1 AD2 AD3 x x x x x ADD(1) Output the manufacturer ID and device ID (1) ADD=00H will output the manufacturer's ID first and ADD=01H will output device ID first. (2) It is not recommended to adopt any other code which is not in the above command definition table. P/N: PM1237 7 REV. 2.3, JUN. 05, 2009 MX25L8005 Table 3. Memory Organization ….. 176 175 10 ….. ….. ….. ….. ….. ….. ….. ….. ….. ….. 96 95 060000h 05F000h 060FFFh 05FFFFh 4 3 2 1 0 ….. ….. ….. ….. ….. 030000h 02F000h 030FFFh 02FFFFh ….. ….. 040FFFh 03FFFFh ….. 040000h 03F000h 020000h 01F000h 020FFFh 01FFFFh 010000h 00F000h 010FFFh 00FFFFh 004000h 003000h 002000h 001000h 000000h 004FFFh 003FFFh 002FFFh 001FFFh 000FFFh ….. ….. 16 15 ….. 1 ….. 32 31 050FFFh 04FFFFh ….. 48 47 2 ….. ….. 64 63 ….. ….. 050000h 04F000h ….. 070FFFh 06FFFFh ….. 070000h 06F000h 4 P/N: PM1237 090FFFh 08FFFFh 112 111 80 79 0 0A0FFFh 09FFFFh 080FFFh 07FFFFh 5 3 0B0FFFh 0AFFFFh 080000h 07F000h ….. 6 090000h 08F000h ….. 7 0A0000h 09F000h 0C0FFFh 0BFFFFh 128 127 ….. 8 144 143 ….. 9 160 159 0B0000h 0AF000h 0D0FFFh 0CFFFFh ….. 11 0C0000h 0BF000h 0E0FFFh 0DFFFFh ….. ….. 192 191 0F0FFFh 0EFFFFh ….. ….. 12 0D0000h 0CF000h ….. 208 207 ….. ….. 13 0E0000h 0DF000h ….. 224 223 0F0000h 0EF000h ….. 240 239 ….. 14 ….. 15 Address Range 0FF000h 0FFFFFh ….. Sector 255 ….. Block 8 REV. 2.3, JUN. 05, 2009 MX25L8005 DEVICE OPERATION 1. Before a command is issued, status register should be checked to ensure device is ready for the intended operation. 2. When incorrect command is inputted to this LSI, this LSI becomes standby mode and keeps the standby mode until next CS# falling edge. In standby mode, SO pin of this LSI should be High-Z. 3. When correct command is inputted to this LSI, this LSI becomes active mode and keeps the active mode until next CS# rising edge. 4. Input data is latched on the rising edge of Serial Clock(SCLK) and data shifts out on the falling edge of SCLK. The difference of SPI mode 0 and mode 3 is shown as Figure 2. 5. For the following instructions: RDID, RDSR, READ, FAST_READ, RES and REMS the shifted-in instruction sequence is followed by a data-out sequence. After any bit of data being shifted out, the CS# can be high. For the following instructions: WREN, WRDI, WRSR, SE, BE, CE, PP, RDP and DP the CS# must go high exactly at the byte boundary; otherwise, the instruction will be rejected and not executed. 6. During the progress of Write Status Register, Program, Erase operation, to access the memory array is neglected and not affect the current operation of Write Status Register, Program, Erase. Figure 2. SPI Modes Supported CPOL CPHA shift in (SPI mode 0) 0 0 SCLK (SPI mode 3) 1 1 SCLK SI shift out MSB SO MSB Note: CPOL indicates clock polarity of SPI master, CPOL=1 for SCLK high while idle, CPOL=0 for SCLK low while not transmitting. CPHA indicates clock phase. The combination of CPOL bit and CPHA bit decides which SPI mode is supported. P/N: PM1237 9 REV. 2.3, JUN. 05, 2009 MX25L8005 COMMAND DESCRIPTION (1) Write Enable (WREN) The Write Enable (WREN) instruction is for setting Write Enable Latch (WEL) bit. For those instructions like PP, SE, BE, CE, and WRSR, which are intended to change the device content, should be set every time after the WREN instruction setting the WEL bit. The sequence of issuing WREN instruction is: CS# goes low→ sending WREN instruction code→ CS# goes high. (see Figure 11) (2) Write Disable (WRDI) The Write Disable (WRDI) instruction is for resetting Write Enable Latch (WEL) bit. The sequence of issuing WRDI instruction is: CS# goes low→ sending WRDI instruction code→ CS# goes high. (see Figure 12) The WEL bit is reset by following situations: - Power-up - Write Disable (WRDI) instruction completion - Write Status Register (WRSR) instruction completion - Page Program (PP) instruction completion - Sector Erase (SE) instruction completion - Block Erase (BE) instruction completion - Chip Erase (CE) instruction completion (3) Read Identification (RDID) The RDID instruction is for reading the manufacturer ID of 1-byte and followed by Device ID of 2-byte. The MXIC Manufacturer ID is C2(hex), the memory type ID is 20(hex) as the first-byte device ID, and the individual device ID of second-byte ID is as followings: 14(hex) for MX25L8005. The sequence of issuing RDID instruction is: CS# goes low-> sending RDID instruction code → 24-bits ID data out on SO→ to end RDID operation can use CS# to high at any time during data out. (see Figure. 13) While Program/Erase operation is in progress, it will not decode the RDID instruction, so there's no effect on the cycle of program/erase operation which is currently in progress. When CS# goes high, the device is at standby stage. P/N: PM1237 10 REV. 2.3, JUN. 05, 2009 MX25L8005 (4) Read Status Register (RDSR) The RDSR instruction is for reading Status Register Bits. The Read Status Register can be read at any time (even in program/erase/write status register condition) and continuously. It is recommended to check the Write in Progress (WIP) bit before sending a new instruction when a program, erase, or write status register operation is in progress. The sequence of issuing RDSR instruction is: CS# goes low-> sending RDSR instruction code-> Status Register data out on SO (see Figure. 14) The definition of the status register bits is as below: WIP bit. The Write in Progress (WIP) bit, a volatile bit, indicates whether the device is busy in program/erase/write status register progress. When WIP bit sets to 1, which means the device is busy in program/erase/write status register progress. When WIP bit sets to 0, which means the device is not in progress of program/erase/write status register cycle. WEL bit. The Write Enable Latch (WEL) bit, a volatile bit, indicates whether the device is set to internal write enable latch. When WEL bit sets to 1, which means the internal write enable latch is set, the device can accept program/ erase/write status register instruction. When WEL bit sets to 0, which means no internal write enable latch; the device will not accept program/erase/write status register instruction. BP2, BP1, BP0 bits. The Block Protect (BP2, BP1, BP0) bits, non-volatile bits, indicate the protected area(as defined in table 1) of the device to against the program/erase instruction without hardware protection mode being set. To write the Block Protect (BP2, BP1, BP0) bits requires the Write Status Register (WRSR) instruction to be executed. Those bits define the protected area of the memory to against Page Program (PP), Sector Erase (SE), Block Erase (BE) and Chip Erase(CE) instructions (only if all Block Protect bits set to 0, the CE instruction can be executed) SRWD bit. The Status Register Write Disable (SRWD) bit, non-volatile bit, is operated together with Write Protection (WP#) pin for providing hardware protection mode. The hardware protection mode requires SRWD sets to 1 and WP# pin signal is low stage. In the hardware protection mode, the Write Status Register (WRSR) instruction is no longer accepted for execution and the SRWD bit and Block Protect bits (BP2, BP1, BP0) are read only. bit 7 bit 6 bit 5 SRWD Status Register Write Protect 0 0 1= status register write disable bit 4 BP2 the level of protected block bit 3 BP1 the level of protected block bit 2 BP0 the level of protected block (note 1) (note 1) (note 1) bit 1 bit 0 WEL WIP (write enable (write in latch) progress bit) 1=write 1=write enable operation 0=not write 0=not in write enable operation Note: 1. See the table "Protected Area Sizes". 2. The endurance cycles of protect bits are 100,000 cycles; however, the tW time out spec of protect bits is relaxed as tW = N x 15ms (N is a multiple of 10,000 cycles, ex. N = 2 for 20,000 cycles) after 10,000 cycles on those bits. P/N: PM1237 11 REV. 2.3, JUN. 05, 2009 MX25L8005 (5) Write Status Register (WRSR) The WRSR instruction is for changing the values of Status Register Bits. Before sending WRSR instruction, the Write Enable (WREN) instruction must be decoded and executed to set the Write Enable Latch (WEL) bit in advance. The WRSR instruction can change the value of Block Protect (BP2, BP1, BP0) bits to define the protected area of memory (as shown in table 1). The WRSR also can set or reset the Status Register Write Disable (SRWD) bit in accordance with Write Protection (WP#) pin signal. The WRSR instruction cannot be executed once the Hardware Protected Mode (HPM) is entered. The sequence of issuing WRSR instruction is: CS# goes low→ sending WRSR instruction code→ Status Register data on SI→ CS# goes high. (see Figure 15) The WRSR instruction has no effect on b6, b5, b1, b0 of the status register. The CS# must go high exactly at the byte boundary; otherwise, the instruction will be rejected and not executed. The self-timed Write Status Register cycle time (tW) is initiated as soon as Chip Select (CS#) goes high. The Write in Progress (WIP) bit still can be check out during the Write Status Register cycle is in progress. The WIP sets 1 during the tW timing, and sets 0 when Write Status Register Cycle is completed, and the Write Enable Latch (WEL) bit is reset. Table 4. Protection Modes Mode Software protection mode(SPM) Hardware protection mode (HPM) Status register condition WP# and SRWD bit status Status register can be written in (WEL bit is set to "1") and the SRWD, BP0-BP2 bits can be changed WP#=1 and SRWD bit=0, or WP#=0 and SRWD bit=0, or WP#=1 and SRWD=1 The SRWD, BP0-BP2 of status register bits cannot be changed WP#=0, SRWD bit=1 Memory The protected area cannot be programmed or erased. The protected area cannot be programmed or erased. Note: 1. As defined by the values in the Block Protect (BP2, BP1, BP0) bits of the Status Register, as shown in Table 1. As the above table showing, the summary of the Software Protected Mode (SPM) and Hardware Protected Mode (HPM). Software Protected Mode (SPM): - When SRWD bit=0, no matter WP# is low or high, the WREN instruction may set the WEL bit and can change the values of SRWD, BP2, BP1, BP0. The protected area, which is defined by BP2, BP1, BP0, is at software protected mode (SPM). - When SRWD bit=1 and WP# is high, the WREN instruction may set the WEL bit can change the values of SRWD, BP2, BP1, BP0. The protected area, which is defined by BP2, BP1, BP0, is at software protected mode (SPM) Note: If SRWD bit=1 but WP# is low, it is impossible to write the Status Register even if the WEL bit has previously been set. It is rejected to write the Status Register and not be executed. P/N: PM1237 12 REV. 2.3, JUN. 05, 2009 MX25L8005 Hardware Protected Mode (HPM): - When SRWD bit=1, and then WP# is low (or WP# is low before SRWD bit=1), it enters the hardware protected mode (HPM). The data of the protected area is protected by software protected mode by BP2, BP1, BP0 and hardware protected mode by the WP# to against data modification. Note: to exit the hardware protected mode requires WP# driving high once the hardware protected mode is entered. If the WP# pin is permanently connected to high, the hardware protected mode can never be entered; only can use software protected mode via BP2, BP1, BP0. (6) Read Data Bytes (READ) The read instruction is for reading data out. The address is latched on rising edge of SCLK, and data shifts out on the falling edge of SCLK at a maximum frequency fR. The first address byte can be at any location. The address is automatically increased to the next higher address after each byte data is shifted out, so the whole memory can be read out at a single READ instruction. The address counter rolls over to 0 when the highest address has been reached. The sequence of issuing READ instruction is: CS# goes low→ sending READ instruction code→ 3-byte address on SI→ data out on SO→ to end READ operation can use CS# to high at any time during data out. (see Figure. 16) (7) Read Data Bytes at Higher Speed (FAST_READ) The FAST_READ instruction is for quickly reading data out. The address is latched on rising edge of SCLK, and data of each bit shifts out on the falling edge of SCLK at a maximum frequency fC. The first address byte can be at any location. The address is automatically increased to the next higher address after each byte data is shifted out, so the whole memory can be read out at a single FAST_READ instruction. The address counter rolls over to 0 when the highest address has been reached. The sequence of issuing FAST_READ instruction is: CS# goes low→ sending FAST_READ instruction code→ 3-byte address on SI→ 1-dummy byte address on SI→data out on SO→ to end FAST_READ operation can use CS# to high at any time during data out. (see Figure. 17) While Program/Erase/Write Status Register cycle is in progress, FAST_READ instruction is rejected without any impact on the Program/Erase/Write Status Register current cycle. (8) Sector Erase (SE) The Sector Erase (SE) instruction is for erasing the data of the chosen sector to be "1". A Write Enable (WREN) instruction must execute to set the Write Enable Latch (WEL) bit before sending the Sector Erase (SE). Any address of the sector (see table 3) is a valid address for Sector Erase (SE) instruction. The CS# must go high exactly at the byte boundary (the latest eighth of address byte been latched-in); otherwise, the instruction will be rejected and not executed. Address bits [Am-A12] (Am is the most significant address) select the sector address. The sequence of issuing SE instruction is: CS# goes low → sending SE instruction code→ 3-byte address on SI → CS# goes high. (see Figure 19) P/N: PM1237 13 REV. 2.3, JUN. 05, 2009 MX25L8005 The self-timed Sector Erase Cycle time (tSE) is initiated as soon as Chip Select (CS#) goes high. The Write in Progress (WIP) bit still can be check out during the Sector Erase cycle is in progress. The WIP sets 1 during the tSE timing, and sets 0 when Sector Erase Cycle is completed, and the Write Enable Latch (WEL) bit is reset. If the page is protected by BP2, BP1, BP0 bits, the Sector Erase (SE) instruction will not be executed on the page. (9) Block Erase (BE) The Block Erase (BE) instruction is for erasing the data of the chosen block to be "1". A Write Enable (WREN) instruction must execute to set the Write Enable Latch (WEL) bit before sending the Block Erase (BE). Any address of the block (see table 3) is a valid address for Block Erase (BE) instruction. The CS# must go high exactly at the byte boundary (the latest eighth of address byte been latched-in); otherwise, the instruction will be rejected and not executed. The sequence of issuing BE instruction is: CS# goes low → sending BE instruction code→ 3-byte address on SI → CS# goes high. (see Figure 20) The self-timed Block Erase Cycle time (tBE) is initiated as soon as Chip Select (CS#) goes high. The Write in Progress (WIP) bit still can be check out during the Sector Erase cycle is in progress. The WIP sets 1 during the tBE timing, and sets 0 when Sector Erase Cycle is completed, and the Write Enable Latch (WEL) bit is reset. If the page is protected by BP2, BP1, BP0 bits, the Block Erase (BE) instruction will not be executed on the page. (10) Chip Erase (CE) The Chip Erase (CE) instruction is for erasing the data of the whole chip to be "1". A Write Enable (WREN) instruction must execute to set the Write Enable Latch (WEL) bit before sending the Chip Erase (CE). Any address of the sector (see table 3) is a valid address for Chip Erase (CE) instruction. The CS# must go high exactly at the byte boundary( the latest eighth of address byte been latched-in); otherwise, the instruction will be rejected and not executed. The sequence of issuing CE instruction is: CS# goes low→ sending CE instruction code→ CS# goes high. (see Figure 20) The self-timed Chip Erase Cycle time (tCE) is initiated as soon as Chip Select (CS#) goes high. The Write in Progress (WIP) bit still can be check out during the Chip Erase cycle is in progress. The WIP sets 1 during the tCE timing, and sets 0 when Chip Erase Cycle is completed, and the Write Enable Latch (WEL) bit is reset. If the chip is protected by BP2, BP1, BP0 bits, the Chip Erase (CE) instruction will not be executed. It will be only executed when BP2, BP1, BP0 all set to "0". (11) Page Program (PP) The Page Program (PP) instruction is for programming the memory to be "0". A Write Enable (WREN) instruction must execute to set the Write Enable Latch (WEL) bit before sending the Page Program (PP). If the eight least significant address bits (A7-A0) are not all 0, all transmitted data which goes beyond the end of the current page are programmed from the start address if the same page (from the address whose 8 least significant address bits (A7A0) are all 0). The CS# must keep during the whole Page Program cycle. The CS# must go high exactly at the byte boundary( the latest eighth of address byte been latched-in); otherwise, the instruction will be rejected and not executed. If more than 256 bytes are sent to the device, the data of the last 256-byte is programmed at the request page and previous data will be disregarded. If less than 256 bytes are sent to the device, the data is programmed at the request address of the page without effect on other address of the same page. P/N: PM1237 14 REV. 2.3, JUN. 05, 2009 MX25L8005 The sequence of issuing PP instruction is: CS# goes low→ sending PP instruction code→ 3-byte address on SI→ at least 1-byte on data on SI→ CS# goes high. (see Figure 18) The self-timed Page Program Cycle time (tPP) is initiated as soon as Chip Select (CS#) goes high. The Write in Progress (WIP) bit still can be check out during the Page Program cycle is in progress. The WIP sets 1 during the tPP timing, and sets 0 when Page Program Cycle is completed, and the Write Enable Latch (WEL) bit is reset. If the page is protected by BP2, BP1, BP0 bits, the Page Program (PP) instruction will not be executed. (12) Deep Power-down (DP) The Deep Power-down (DP) instruction is for setting the device on the minimizing the power consumption (to entering the Deep Power-down mode), the standby current is reduced from ISB1 to ISB2). The Deep Power-down mode requires the Deep Power-down (DP) instruction to enter, during the Deep Power-down mode, the device is not active and all Write/Program/Erase instruction are ignored. When CS# goes high, it's only in standby mode not deep power-down mode. It's different from Standby mode. The sequence of issuing DP instruction is: CS# goes low→ sending DP instruction code→ CS# goes high. (see Figure 22) Once the DP instruction is set, all instruction will be ignored except the Release from Deep Power-down mode (RDP) and Read Electronic Signature (RES) instruction. (RES instruction to allow the ID been read out). When Powerdown, the deep power-down mode automatically stops, and when power-up, the device automatically is in standby mode. For RDP instruction the CS# must go high exactly at the byte boundary (the latest eighth bit of instruction code been latched-in); otherwise, the instruction will not executed. As soon as Chip Select (CS#) goes high, a delay of tDP is required before entering the Deep Power-down mode and reducing the current to ISB2. (13) Release from Deep Power-down (RDP), Read Electronic Signature (RES) The Release from Deep Power-down (RDP) instruction is terminated by driving Chip Select (CS#) High. When Chip Select (CS#) is driven High, the device is put in the Stand-by Power mode. If the device was not previously in the Deep Power-down mode, the transition to the Stand-by Power mode is immediate. If the device was previously in the Deep Power-down mode, though, the transition to the Stand-by Power mode is delayed by tRES2, and Chip Select (CS#) must remain High for at least tRES2(max), as specified in Table 6. Once in the Stand-by Power mode, the device waits to be selected, so that it can receive, decode and execute instructions. RES instruction is for reading out the old style of 8-bit Electronic Signature, whose values are shown as table of ID Definitions. This is not the same as RDID instruction. It is not recommended to use for new design. For new deisng, please use RDID instruction. Even in Deep power-down mode, the RDP and RES are also allowed to be executed, only except the device is in progress of program/erase/write cycle; there's no effect on the current program/erase/ write cycle in progress. The sequence is shown as Figure 23,24. The RES instruction is ended by CS# goes high after the ID been read out at least once. The ID outputs repeatedly if continuously send the additional clock cycles on SCLK while CS# is at low. If the device was not previously in Deep Power-down mode, the device transition to standby mode is immediate. If the device was previously in Deep Power-down mode, there's a delay of tRES2 to transit to standby mode, and CS# must remain to high at least tRES2(max). Once in the standby mode, the device waits to be selected, so it can be receive, decode, and execute instruction. The RDP instruction is for releasing from Deep Power Down Mode. P/N: PM1237 15 REV. 2.3, JUN. 05, 2009 MX25L8005 (14) Read Electronic Manufacturer ID & Device ID (REMS) The REMS instruction is an alternative to the Release from Power-down/Device ID instruction that provides both the JEDEC assigned manufacturer ID and the specific device ID. The REMS instruction is very similar to the Release from Power-down/Device ID instruction. The instruction is initiated by driving the CS# pin low and shift the instruction code "90h" followed by two dummy bytes and one bytes address (A7~A0). After which, the Manufacturer ID for MXIC (C2h) and the Device ID are shifted out on the falling edge of SCLK with most significant bit (MSB) first as shown in figure 25. The Device ID values are listed in Table of ID Definitions on page 16. If the one-byte address is initially set to 01h, then the device ID will be read first and then followed by the Manufacturer ID. The Manufacturer and Device IDs can be read continuously, alternating from one to the other. The instruction is completed by driving CS# high. Table of ID Definitions: RDID Command RES Command REMS Command P/N: PM1237 manufacturer ID C2 memory type 20 electronic ID 13 manufacturer ID C2 16 memory density 14 device ID 13 REV. 2.3, JUN. 05, 2009 MX25L8005 POWER-ON STATE The device is at below states when power-up: - Standby mode ( please note it is not deep power-down mode) - Write Enable Latch (WEL) bit is reset The device must not be selected during power-up and power-down stage unless the VCC achieves below correct level: - VCC minimum at power-up stage and then after a delay of tVSL - GND at power-down Please note that a pull-up resistor on CS# may ensure a safe and proper power-up/down level. An internal power-on reset (POR) circuit may protect the device from data corruption and inadvertent data change during power up state. For further protection on the device, if the VCC does not reach the VCC minimum level, the correct operation is not guaranteed. The read, erase, and program command should be sent after the time delay: - tVSL after VCC reached VCC minimum level The device can accept read command after VCC reached VCC minimum and a time delay of tVSL, even time of tPUW has not passed. Please refer to the figure of "power-up timing". Note: - To stabilize the VCC level, the VCC rail decoupled by a suitable capacitor close to package pins is recommended.(generally around 0.1uF) P/N: PM1237 17 REV. 2.3, JUN. 05, 2009 MX25L8005 ELECTRICAL SPECIFICATIONS ABSOLUTE MAXIMUM RATINGS NOTICE: 1.Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is stress rating only and functional operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended period may affect reliability. 2.Specifications contained within the following tables are subject to change. 3.During voltage transitions, all pins may overshoot Vss to -2.0V and Vcc to +2.0V for periods up to 20ns, see Figure 3,4. RATING VALUE Ambient Operating Temperature -40°C to 85°C for Industrial grade 0°C to 70°C for Commercial grade Storage Temperature -55°C to 125°C Applied Input Voltage -0.5V to 4.6V Applied Output Voltage -0.5V to 4.6V VCC to Ground Potential -0.5V to 4.6V Figure 3.Maximum Negative Overshoot Waveform 20ns Figure 4. Maximum Positive Overshoot Waveform 20ns 20ns Vss Vcc + 2.0V Vss - 2.0V Vcc 20ns 20ns 20ns CAPACITANCE TA = 25°C, f = 1.0 MHz SYMBOL CIN COUT P/N: PM1237 PARAMETER Input Capacitance Output Capacitance MIN. TYP 18 MAX. 6 8 UNIT pF pF CONDITIONS VIN = 0V VOUT = 0V REV. 2.3, JUN. 05, 2009 MX25L8005 Figure 5. INPUT TEST WAVEFORMS AND MEASUREMENT LEVEL Input timing referance level 0.8VCC 0.7VCC 0.3VCC 0.2VCC Output timing referance level AC Measurement Level 0.5VCC Note: Input pulse rise and fall time are <5ns Figure 6. OUTPUT LOADING DEVICE UNDER TEST 2.7K ohm CL 6.2K ohm +3.3V DIODES=IN3064 OREQUIVALENT CL=30pF Including jig capacitance P/N: PM1237 19 REV. 2.3, JUN. 05, 2009 MX25L8005 Table 5. DC CHARACTERISTICS (Temperature = -40°C to 85°C for Industrial grade, Temperature = 0°C to 70°C for Commercial grade, VCC = 2.7V ~ 3.6V) SYMBOL PARAMETER ILI Input Load Current NOTES 1 ILO Output Leakage Current 1 ISB1 VCC Standby Current 1 ISB2 Deep Power-down Current VCC Read 1 ICC1 ICC2 ICC3 ICC4 ICC5 VIL VIH VOL VOH VCC Program Current (PP) 1 VCC Sector Erase Current (SE) VCC Chip Erase Current (CE) Input Low Voltage Input High Voltage Output Low Voltage Output High Voltage 1 MIN. TYP VCC Write Status Register (WRSR) Current 1 -0.5 0.7VCC VCC-0.2 MAX. ±2 UNITS TEST CONDITIONS uA VCC = VCC Max VIN = VCC or GND ±2 uA VCC = VCC Max VIN = VCC or GND 10 uA VIN = VCC or GND CS# = VCC 10 uA VIN = VCC or GND CS# = VCC 12 mA f=86MHz and 70MHz SCLK=0.1VCC/0.9VCC, SO=Open 4 mA f=33MHz SCLK=0.1VCC/0.9VCC, SO=Open 15 mA Program in Progress CS# = VCC 15 mA Program status register in progress CS#=VCC 15 mA Erase in Progress CS#=VCC 15 mA Erase in Progress CS#=VCC 0.3VCC V VCC+0.4 V 0.4 V IOL = 1.6mA V IOH = -100uA Notes : 1. Typical values at VCC = 3.3V, T = 25°C. These currents are valid for all product versions (package and speeds). 2. Typical value is calculated by simulation. P/N: PM1237 20 REV. 2.3, JUN. 05, 2009 MX25L8005 Table 6. AC CHARACTERISTICS (Temperature = -40°C to 85°C for Industrial grade, Temperature = 0°C to 70°C for Commercial grade, VCC = 2.7V ~ 3.6V) Symbol Alt. fSCLK fC fRSCLK fR tCH(1) tCLH tCL(1) tCLL tCLCH(2) tCHCL(2) tSLCH tCHSL tDVCH tCHDX tCHSH tSHCH tSHSL tSHQZ(2) tCLQV tCSS tDSU tDH tCSH tDIS tV Parameter Clock Frequency for the following instructions: FAST_READ, PP, SE, BE, CE, DP, RES,RDP WREN, WRDI, RDID, RDSR, WRSR Clock Frequency for READ instructions fC=86MHz Clock High Time fC=70MHz fR=33MHz fC=86MHz Clock Low Time fC=70MHz fR=33MHz Clock Rise Time (3) (peak to peak) Clock Fall Time (3) (peak to peak) CS# Active Setup Time (relative to SCLK) CS# Not Active Hold Time (relative to SCLK) Data In Setup Time Data In Hold Time CS# Active Hold Time (relative to SCLK) CS# Not Active Setup Time (relative to SCLK) CS# Deselect Time Output Disable Time Clock Low to Output Valid Min. Typ. Max. Unit 1KHz 70 & 86 MHz 1KHz 5.5 7 15 5.5 7 15 0.1 0.1 5 5 2 5 5 5 100 33 6 MHz ns ns ns ns ns ns V/ns V/ns ns ns ns ns ns ns ns ns 30pF 8 ns 15pF 6 ns 6 6 3 ns ns ns ns ns ns ns us 3 us 1.8 15 5 120 2 15 us ms ms ms s s tCLQX tHO Output Hold Time 0 tHLCH HOLD# Setup Time (relative to SCLK) 5 tCHHH HOLD# Hold Time (relative to SCLK) 5 tHHCH HOLD Setup Time (relative to SCLK) 5 tCHHL HOLD Hold Time (relative to SCLK) 5 tHHQX(2) tLZ HOLD to Output Low-Z tHLQZ(2) tHZ HOLD# to Output High-Z tWHSL(4) Write Protect Setup Time 20 tSHWL(4) Write Protect Hold Time 100 tDP(2) CS# High to Deep Power-down Mode CS# High to Standby Mode without Electronic Signature tRES1(2) Read tRES2(2) CS# High to Standby Mode with Electronic Signature Read tW Write Status Register Cycle Time tPP Page Program Cycle Time tSE Sector Erase Cycle Time tBE Block Erase Cycle Time tCE Chip Erase Cycle Time 5 1.4 60 1 7 Note: 1. tCH + tCL must be greater than or equal to 1/ fC 2. Value guaranteed by characterization, not 100% tested in production. 3. Expressed as a slew-rate. 4. Only applicable as a constraint for a WRSR instruction when SRWD is set at 1. 5. Test condition is shown as Figure 3. P/N: PM1237 21 REV. 2.3, JUN. 05, 2009 MX25L8005 INITIAL DELIVERY STATE The device is delivered with the memory array erased: all bits are set to 1 (each byte contains FFh). The Status Register contains 00h (all Status Register bits are 0). P/N: PM1237 22 REV. 2.3, JUN. 05, 2009 MX25L8005 Figure 7. Serial Input Timing tSHSL CS# tCHSL tSLCH tCHSH tSHCH SCLK tDVCH tCHCL tCHDX tCLCH LSB MSB SI High-Z SO Figure 8. Output Timing CS# tCH SCLK tCLQV tCL tCLQV tSHQZ tCLQX LSB SO tQLQH tQHQL SI P/N: PM1237 ADDR.LSB IN 23 REV. 2.3, JUN. 05, 2009 MX25L8005 Figure 9. Hold Timing CS# tHLCH tCHHL tHHCH SCLK tCHHH tHLQZ tHHQX SO HOLD# * SI is "don't care" during HOLD operation. Figure 10. WP# Disable Setup and Hold Timing during WRSR when SRWD=1 WP# tSHWL tWHSL CS# 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 SCLK 01 SI SO P/N: PM1237 High-Z 24 REV. 2.3, JUN. 05, 2009 MX25L8005 Figure 11. Write Enable (WREN) Sequence (Command 06) CS# 1 0 2 3 4 5 6 7 SCLK Command SI 06 High-Z SO Figure 12. Write Disable (WRDI) Sequence (Command 04) CS# 1 0 2 3 4 5 6 7 SCLK Command SI 04 High-Z SO Figure 13. Read Identification (RDID) Sequence (Command 9F) CS# 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 28 29 30 31 SCLK Command SI 9F Manufacturer Identification SO High-Z 7 6 5 MSB P/N: PM1237 3 2 1 Device Identification 0 15 14 13 3 2 1 0 MSB 25 REV. 2.3, JUN. 05, 2009 MX25L8005 Figure 14. Read Status Register (RDSR) Sequence (Command 05) CS# 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 SCLK command 05 SI Status Register Out High-Z SO 7 6 5 4 3 2 Status Register Out 1 0 7 6 5 4 3 2 1 0 7 MSB MSB Figure 15. Write Status Register (WRSR) Sequence (Command 01) CS# 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 SCLK command SI Status Register In 01 7 5 4 3 2 1 0 MSB High-Z SO 6 Figure 16. Read Data Bytes (READ) Sequence (Command 03) CS# 0 1 2 3 4 5 6 7 8 9 10 28 29 30 31 32 33 34 35 36 37 38 39 SCLK command SI 03 24-Bit Address 23 22 21 3 2 1 0 MSB Data Out 1 High-Z 7 SO 6 5 4 3 Data Out 2 2 1 0 7 MSB P/N: PM1237 26 REV. 2.3, JUN. 05, 2009 MX25L8005 Figure 17. Read at Higher Speed (FAST_READ) Sequence (Command 0B) CS# 0 1 2 3 4 5 6 7 8 9 10 28 29 30 31 SCLK Command SI SO 24 BIT ADDRESS 23 22 21 0B 3 2 1 0 High-Z CS# 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 SCLK Dummy Byte SI 7 6 5 4 3 2 1 0 DATA OUT 2 DATA OUT 1 SO 7 6 4 3 2 1 0 7 MSB MSB P/N: PM1237 5 27 6 5 4 3 2 1 0 7 MSB REV. 2.3, JUN. 05, 2009 MX25L8005 Figure 18. Page Program (PP) Sequence (Command 02) CS# 0 1 2 3 4 5 6 7 8 9 10 28 29 30 31 32 33 34 35 36 37 38 39 SCLK Command 3 2 1 0 6 5 2073 23 22 21 02 SI Data Byte 1 2072 24-Bit Address 7 4 3 2 1 0 MSB MSB 2079 2078 2077 2076 5152 53 54 55 2075 40 41 42 43 44 45 46 47 48 49 50 2074 CS# SCLK Data Byte 2 SI 7 MSB P/N: PM1237 6 5 4 3 2 Data Byte 3 1 0 7 6 5 4 MSB 3 2 Data Byte 256 1 0 7 6 5 4 3 2 1 0 MSB 28 REV. 2.3, JUN. 05, 2009 MX25L8005 Figure 19. Sector Erase (SE) Sequence (Command 20) CS# 0 1 2 3 4 5 6 7 8 9 29 30 31 SCLK 24 Bit Address Command SI 7 20 6 2 1 0 MSB Note: SE command is 20(hex). Figure 20. Block Erase (BE) Sequence (Command 52 or D8) CS# 0 1 2 3 4 5 6 7 8 9 29 30 31 SCLK Command SI 24 Bit Address 23 22 52 or D8 2 1 0 MSB Note: BE command is 52 or D8(hex). P/N: PM1237 29 REV. 2.3, JUN. 05, 2009 MX25L8005 Figure 21. Chip Erase (CE) Sequence (Command 60 or C7) CS# 0 1 2 3 4 5 6 7 SCLK Command SI 60 or C7 Note: CE command is 60(hex) or C7(hex). Figure 22. Deep Power-down (DP) Sequence (Command B9) CS# 0 1 2 3 4 5 6 tDP 7 SCLK Command B9 SI Stand-by Mode Deep Power-down Mode Figure 23. Release from Deep Power-down and Read Electronic Signature (RES) Sequence (Command AB) CS# 0 1 2 3 4 5 6 7 8 9 10 28 29 30 31 32 33 34 35 36 37 38 SCLK Command SI AB tRES2 3 Dummy Bytes 23 22 21 3 2 1 0 MSB Electronic Signature Out High-Z 7 SO 6 5 4 3 2 1 0 MSB Deep Power-down Mode P/N: PM1237 30 Stand-by Mode REV. 2.3, JUN. 05, 2009 MX25L8005 Figure 24. Release from Deep Power-down (RDP) Sequence (Command AB) CS# 0 1 2 3 4 5 6 tRES1 7 SCLK Command SI AB High-Z SO Stand-by Mode Deep Power-down Mode Figure 25. Read Electronic Manufacturer & Device ID (REMS) Sequence (Command 90) CS# 0 1 2 3 4 5 6 7 8 9 10 SCLK Command SI 2 Dummy Bytes 15 14 13 90 3 2 1 0 High-Z SO CS# 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 SCLK ADD (1) SI 7 6 5 4 3 2 1 0 Manufacturer ID SO X 7 6 5 4 3 2 Device ID 1 0 7 6 5 4 3 2 MSB MSB 1 0 7 MSB Notes: (1) ADD=00H will output the manufacturer's ID first and ADD=01H will output device ID first P/N: PM1237 31 REV. 2.3, JUN. 05, 2009 MX25L8005 Figure 26. Power-up Timing VCC VCC(max) Chip Selection is Not Allowed VCC(min) tVSL Device is fully accessible time P/N: PM1237 32 REV. 2.3, JUN. 05, 2009 MX25L8005 RECOMMENDED OPERATING CONDITIONS At Device Power-Up AC timing illustrated in Figure A is recommended for the supply voltages and the control signals at device power-up. If the timing in the figure is ignored, the device may not operate correctly. VCC(min) VCC GND tSHSL tVR CS# tCHSL tSLCH tCHSH tSHCH SCLK tDVCH tCHCL tCHDX tCLCH LSB IN MSB IN SI High Impedance SO Figure A. AC Timing at Device Power-Up Symbol tVR Parameter VCC Rise Time Notes 1 Min. 0.5 Max. 500000 Unit us/V Notes : 1.Sampled, not 100% tested. 2.For AC spec tCHSL, tSLCH, tDVCH, tCHDX, tSHSL, tCHSH, tSHCH, tCHCL, tCLCH in the figure, please refer to "AC CHARACTERISTICS" table. P/N: PM1237 33 REV. 2.3, JUN. 05, 2009 MX25L8005 ERASE AND PROGRAMMING PERFORMANCE PARAMETER Min. TYP. (1) Max. (2) UNIT Write Status Register Cycle Time 5 15 ms Sector erase Time 60 120 ms Block erase Time 1 2 s Chip Erase Time 7 15 s 1.4 5 ms Page Program Time Erase/Program Cycle 100,000 cycles Note: 1. Typical program and erase time assumes the following conditions: 25°C, 3.3V, and checker board pattern. 2. Under worst conditions of 70°C and 3.0V. 3. System-level overhead is the time required to execute the first-bus-cycle sequence for the programming command. 4. The maximum chip programming time is evaluated under the worst conditions of 0C, VCC=3.0V, and 100K cycle with 90% confidence level. LATCH-UP CHARACTERISTICS MIN. MAX. Input Voltage with respect to GND on ACC -1.0V 12.5V Input Voltage with respect to GND on all power pins, SI, CS# -1.0V 2 VCCmax Input Voltage with respect to GND on SO -1.0V VCC + 1.0V -100mA +100mA Current Includes all pins except VCC. Test conditions: VCC = 3.0V, one pin at a time. P/N: PM1237 34 REV. 2.3, JUN. 05, 2009 MX25L8005 ORDERING INFORMATION PART NO. CLOCK OPERATING STANDBY Temperature (MHz) CURRENT(mA) CURRENT(uA) PACKAGE Remark MX25L8005MC-15G 70 12 10 0~70°C 8-SOP (150mil) Pb-free MX25L8005M2C-15G 70 12 10 0~70°C 8-SOP (200mil) Pb-free MX25L8005PC-15G 70 12 10 0~70°C 8-PDIP (300mil) Pb-free MX25L8005ZMC-15G 70 12 10 0~70°C 8-land SON (6x5mm) Pb-free MX25L8005MI-15G 70 12 10 -40~85°C 8-SOP (150mil) Pb-free MX25L8005M2I-15G 70 12 10 -40~85°C 8-SOP (200mil) Pb-free MX25L8005ZMI-15G 70 12 10 -40~85°C 8-land SON (6x5mm) Pb-free MX25L8005MI-12G 86 12 10 -40~85°C 8-SOP (150mil) Pb-free MX25L8005M2I-12G 86 12 10 -40~85°C 8-SOP (200mil) Pb-free MX25L8005ZNI-12G 86 12 10 -40~85°C 8-land WSON (6x5mm) Pb-free MX25L8005ZUI-12G 86 12 10 -40~85°C 8-land USON (4x4mm) Pb-free Note: 1. 8-land SON is not recommended for new design. P/N: PM1237 35 REV. 2.3, JUN. 05, 2009 MX25L8005 PART NAME DESCRIPTION MX 25 L 8005 ZM C 15 G OPTION: G: Pb-free SPEED: 15: 70MHz 12: 86MHz TEMPERATURE RANGE: C: Commercial (0°C to 70°C) I: Industrial (-40°C to 85°C) PACKAGE: ZM: SON (1.0mm package height) ZN: WSON (0.8mm package height) ZU: USON (0.6mm package height) M: 150mil 8-SOP M2: 200mil 8-SOP P: 300mil 8-PDIP DENSITY & MODE: 8005: 8Mb TYPE: L: 3V DEVICE: 25: Serial Flash Note: ZM: SON(1.0mm package height) is not recommended for new design. P/N: PM1237 36 REV. 2.3, JUN. 05, 2009 MX25L8005 PACKAGE INFORMATION P/N: PM1237 37 REV. 2.3, JUN. 05, 2009 MX25L8005 P/N: PM1237 38 REV. 2.3, JUN. 05, 2009 MX25L8005 P/N: PM1237 39 REV. 2.3, JUN. 05, 2009 MX25L8005 P/N: PM1237 40 REV. 2.3, JUN. 05, 2009 MX25L8005 P/N: PM1237 41 REV. 2.3, JUN. 05, 2009 MX25L8005 P/N: PM1237 42 REV. 2.3, JUN. 05, 2009 MX25L8005 REVISION HISTORY Revision No. Description Page Date 1.0 1. Removed "Preliminary" P1 JUL/14/2005 2. Improved tVSL spec from 30us to 10us P22 3. To be separated from MX25L4005, MX25L8005 to MX25L8005 All 1.1 1. Standby current is reduced from 50uA(max.) to 10uA(max.) P1,2,20,35 SEP/30/2005 2. Added description about Pb-free device is RoHS compliant P1 3. Improved erase speed: P1,21,34 4KB sector: 90ms(typ.)/270ms(max.)→60ms(typ.)/120ms(max.) 64KB sector:1s(typ.)/3s(max.)→1s(typ.)/2s(max.) chip sector:10s(typ.)/20s(max.)→7s(typ.)/15s(max.) 1.2 1. Format change All JUN/08/2006 2. Supplemented the footnote for tW of protect/unprotect bits P11 1.3 1. Added 8-pin PDIP package option P1,2,35,36,39SEP/06/2006 1.4 1. Added statement P42 NOV/06/2006 1.5 1. Defined min. clock frequency of fSCLK & fRSCLK as 1KHz P21 NOV/30/2006 1.6 1. Removed non Pb-free part number P35,36 OCT/31/2007 1.7 1. Added 8-land USON package P2,35,36,42 DEC/12/2007 2. Added 8-land WSON package P2,35,36,41 3. Added 86MHz clock rate option P1,19~21,35,36 1.8 1. Removed some un-avaiable part no. P35 DEC/26/2007 1.9 1. Added 10 years data retention P1 FEB/21/2008 2.0 1. Added wording "SON package is not recommended for new design"P2,35,36 APR/18/2008 2.1 1. Modified Figure 8. Output Timing P23 OCT/20/2008 2. Modified Figure 13, 14, 16,17, 23 (SO waveform) P25,26,27,30 2.2 1. 8-land USON is released P2,35,2008 OCT/23/2008 2.3 1. Added tCH/tCL spec for 86MHz P21 JUN/05/2009 2. Removed "Low Vcc write inhibit" function P1,4,17,22,32 3. Revised overshoot and undershoot waveform P18 4. Changed 200mil 8-SOP package outline P38 5. Added tCH, tCL spec for normal read P21 6. Revised fSCLK condition P1,19,20,21 7. Revised tCLQV condition P21 P/N: PM1237 43 REV. 2.3, JUN. 05, 2009 MX25L8005 Macronix's products are not designed, manufactured, or intended for use for any high risk applications in which the failure of a single component could cause death, personal injury, severe physical damage, or other substantial harm to persons or property, such as life-support systems, high temperature automotive, medical, aircraft and military application. Macronix and its suppliers will not be liable to you and/or any third party for any claims, injuries or damages that may be incurred due to use of Macronix's products in the prohibited applications. Copyright© Macronix International Co., Ltd. 2005~2009. All Rights Reserved. Macronix, MXIC, MXIC Logo, MX Logo, are trademarks or registered trademarks of Macronix International Co., Ltd.. The names and brands of other companies are for identification purposes only and may be claimed as the property of the respective companies. MACRONIX INTERNATIONAL CO., LTD. Macronix Offices : Japan Macronix Asia Limited. Macronix Offices : Taiwan Headquarters, FAB2 Macronix, International Co., Ltd. 16, Li-Hsin Road, Science Park, Hsinchu, Taiwan, R.O.C. Tel: +886-3-5786688 Fax: +886-3-5632888 Macronix Offices : Korea Taipei Office Macronix, International Co., Ltd. 19F, 4, Min-Chuan E. Road, Sec. 3, Taipei, Taiwan, R.O.C. Tel: +886-2-2509-3300 Fax: +886-2-2509-2200 Macronix Offices : China 702-703, 7/F, Building 9, Hong Kong Science Park, 5 Science Park West Avenue, Sha Tin, N.T. Tel: +86-852-2607-4289 Fax: +86-852-2607-4229 #906, 9F, Kangnam Bldg., 1321-4, Seocho-Dong, Seocho-Ku, 135-070, Seoul, Korea Tel: +82-02-588-6887 Fax: +82-02-588-6828 Singapore 449408 Tel: +65-6346-5505 Fax: +65-6348-8096 Macronix Offices : Europe Macronix (Hong Kong) Co., Limited, SuZhou Office Macronix Europe N.V. Koningin Astridlaan 59, Bus 1 1780 No.5, XingHai Rd, SuZhou Industrial Park, SuZhou China 215021 Tel: +86-512-62580888 Ext: 3300 Fax: +86-512-62586799 Wemmel Belgium Tel: +32-2-456-8020 Fax: +32-2-456-8021 Macronix Offices : USA Macronix (Hong Kong) Co., Limited, Shenzhen Office Macronix Asia Limited. Macronix Offices : Singapore Macronix Pte. Ltd. 1 Marine Parade Central, #11-03 Parkway Centre, Macronix (Hong Kong) Co., Limited. NKF Bldg. 5F, 1-2 Higashida-cho, Kawasaki-ku Kawasaki-shi, Kanagawa Pref. 210-0005, Japan Tel: +81-44-246-9100 Fax: +81-44-246-9105 Room 1401 & 1404, Blcok A, TianAN Hi-Tech PLAZA Tower, Che Gong Miao, FutianDistrict, Shenzhen PRC 518040 Tel: +86-755-83433579 Fax: +86-755-83438078 Macronix America, Inc. 680 North McCarthy Blvd. Milpitas, CA 95035, U.S.A. Tel: +1-408-262-8887 Fax: +1-408-262-8810 http : //www.macronix.com MACRONIX INTERNATIONAL CO., LTD. reserves the right to change product and specifications without notice. 44