PD - 94804B IRL1404Z IRL1404ZS IRL1404ZL AUTOMOTIVE MOSFET Features l l l l l l Logic Level Advanced Process Technology Ultra Low On-Resistance 175°C Operating Temperature Fast Switching Repetitive Avalanche Allowed up to Tjmax HEXFET® Power MOSFET D VDSS = 40V RDS(on) = 3.1mΩ G ID = 75A Description Specifically designed for Automotive applications, this HEXFET® Power MOSFET utilizes the latest processing techniques to achieve extremely low on-resistance per silicon area. Additional features of this design are a 175°C junction operating temperature, fast switching speed and improved repetitive avalanche rating . These features combine to make this design an extremely efficient and reliable device for use in Automotive applications and a wide variety of other applications. S D2Pak IRL1404ZS TO-220AB IRL1404Z TO-262 IRL1404ZL Absolute Maximum Ratings Parameter Max. Units ID @ TC = 25°C Continuous Drain Current, VGS @ 10V (Silicon Limited) ID @ TC = 100°C Continuous Drain Current, VGS @ 10V 200 ID @ TC = 25°C Continuous Drain Current, VGS @ 10V (Package Limited) IDM Pulsed Drain Current 75 790 PD @TC = 25°C Power Dissipation 230 W 1.5 ± 16 W/°C V 220 mJ c Linear Derating Factor VGS Gate-to-Source Voltage EAS (Thermally limited) Single Pulse Avalanche Energy EAS (Tested ) IAR Avalanche Current EAR Repetitive Avalanche Energy TJ Operating Junction and TSTG Storage Temperature Range d Single Pulse Avalanche Energy Tested Value c g h 490 See Fig.12a, 12b, 15, 16 -55 to + 175 °C Mounting Torque, 6-32 or M3 screw 300 (1.6mm from case ) y y 10 lbf in (1.1N m) Thermal Resistance Parameter Typ. Max. Units i ––– 0.65 °C/W 0.50 ––– j ––– 62 ––– 40 RθJC Junction-to-Case RθCS Case-to-Sink, Flat, Greased Surface RθJA Junction-to-Ambient RθJA Junction-to-Ambient (PCB Mount) www.irf.com A mJ Soldering Temperature, for 10 seconds i A 140 1 6/1/04 IRL1404Z/S/L Electrical Characteristics @ TJ = 25°C (unless otherwise specified) Parameter V(BR)DSS ∆V(BR)DSS/∆TJ Drain-to-Source Breakdown Voltage Breakdown Voltage Temp. Coefficient RDS(on) Static Drain-to-Source On-Resistance VGS(th) Gate Threshold Voltage Forward Transconductance Drain-to-Source Leakage Current Min. Typ. Max. Units Conditions Qg Qgs Qgd td(on) tr td(off) tf LD Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Total Gate Charge Gate-to-Source Charge Gate-to-Drain ("Miller") Charge Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Internal Drain Inductance 40 ––– ––– ––– ––– 1.4 120 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– 0.034 2.5 ––– ––– ––– ––– ––– ––– ––– ––– 75 28 40 19 180 30 49 4.5 ––– ––– 3.1 4.7 5.9 2.7 ––– 20 250 200 -200 110 ––– ––– ––– ––– ––– ––– ––– LS Internal Source Inductance ––– 7.5 ––– 6mm (0.25in.) from package Ciss Coss Crss Coss Coss Coss eff. Input Capacitance Output Capacitance Reverse Transfer Capacitance Output Capacitance Output Capacitance Effective Output Capacitance ––– ––– ––– ––– ––– ––– 5080 970 570 3310 870 1280 ––– ––– ––– ––– ––– ––– S and center of die contact VGS = 0V VDS = 25V ƒ = 1.0MHz VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz VGS = 0V, VDS = 32V, ƒ = 1.0MHz VGS = 0V, VDS = 0V to 32V gfs IDSS IGSS V VGS = 0V, ID = 250µA V/°C Reference to 25°C, ID = 1mA VGS = 10V, ID = 75A mΩ VGS = 5.0V, ID = 40A VGS = 4.5V, ID = 40A V VDS = VGS, ID = 250µA S VDS = 10V, ID = 75A µA VDS = 40V, VGS = 0V VDS = 40V, VGS = 0V, TJ = 125°C nA VGS = 16V VGS = -16V ID = 75A nC VDS = 32V VGS = 5.0V VDD = 20V ID = 75A ns RG = 4.0Ω VGS = 5.0V D Between lead, e e e e e nH pF G f Source-Drain Ratings and Characteristics Parameter IS Continuous Source Current ISM (Body Diode) Pulsed Source Current VSD trr Qrr ton (Body Diode) Diode Forward Voltage Reverse Recovery Time Reverse Recovery Charge Forward Turn-On Time c Notes: Repetitive rating; pulse width limited by max. junction temperature. (See fig. 11). Limited by TJmax, starting TJ = 25°C, L = 0.079mH, RG = 25Ω, IAS = 75A, VGS =10V. Part not recommended for use above this value. Pulse width ≤ 1.0ms; duty cycle ≤ 2%. Coss eff. is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% VDSS . 2 Min. Typ. Max. Units ––– ––– A ––– ––– 720 ––– ––– ––– ––– 26 18 1.3 39 27 Conditions MOSFET symbol 180 V ns nC D showing the integral reverse G S p-n junction diode. TJ = 25°C, IS = 75A, VGS = 0V TJ = 25°C, IF = 75A, VDD = 20V di/dt = 100A/µs e e Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD) Limited by TJmax , see Fig.12a, 12b, 15, 16 for typical repetitive avalanche performance. This value determined from sample failure population. 100% tested to this value in production. This is only applied to TO-220AB package. When mounted on 1" square PCB (FR-4 or G-10 Material). For recommended footprint and soldering techniques refer to application note #AN-994. www.irf.com IRL1404Z/S/L 1000 1000 VGS 10V 7.0V 5.0V 4.5V 4.0V 3.5V 3.3V 3.0V BOTTOM 100 TOP ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) TOP 10 3.0V 60µs PULSE WIDTH Tj = 25°C 1 0.1 1 10 BOTTOM 100 3.0V 10 60µs PULSE WIDTH Tj = 175°C 1 100 0.1 V DS, Drain-to-Source Voltage (V) 1 10 100 V DS, Drain-to-Source Voltage (V) Fig 1. Typical Output Characteristics Fig 2. Typical Output Characteristics 1000 200 Gfs, Forward Transconductance (S) ID, Drain-to-Source Current (Α) VGS 10V 7.0V 5.0V 4.5V 4.0V 3.5V 3.3V 3.0V T J = 175°C 100 10 T J = 25°C VDS = 10V 60µs PULSE WIDTH 1.0 2 3 4 5 6 7 8 9 VGS, Gate-to-Source Voltage (V) Fig 3. Typical Transfer Characteristics www.irf.com TJ = 25°C 150 100 T J = 175°C 50 V DS = 10V 0 10 0 50 100 150 200 ID,Drain-to-Source Current (A) Fig 4. Typical Forward Transconductance vs. Drain Current 3 IRL1404Z/S/L 100000 6.0 VGS = 0V, f = 1 MHZ C iss = C gs + C gd, C ds SHORTED C rss = C gd ID= 75A VGS, Gate-to-Source Voltage (V) C, Capacitance(pF) C oss = C ds + C gd 10000 Ciss Coss 1000 Crss 4.0 3.0 2.0 1.0 0.0 100 1 10 100 0 VDS, Drain-to-Source Voltage (V) 20 40 60 80 QG Total Gate Charge (nC) Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage Fig 5. Typical Capacitance vs. Drain-to-Source Voltage 1000.00 10000 ID, Drain-to-Source Current (A) ISD, Reverse Drain Current (A) VDS= 32V VDS= 20V 5.0 T J = 175°C OPERATION IN THIS AREA LIMITED BY R DS(on) 1000 100.00 100 10.00 T J = 25°C VGS = 0V 1.00 0.0 0.5 1.0 1.5 2.0 VSD, Source-to-Drain Voltage (V) Fig 7. Typical Source-Drain Diode Forward Voltage 4 2.5 100µsec 10 1msec Tc = 25°C Tj = 175°C Single Pulse 10msec 1 1 10 100 1000 VDS, Drain-to-Source Voltage (V) Fig 8. Maximum Safe Operating Area www.irf.com IRL1404Z/S/L 200 RDS(on) , Drain-to-Source On Resistance (Normalized) 2.0 ID, Drain Current (A) Limited By Package 150 100 50 0 ID = 75A VGS = 10V 1.5 1.0 0.5 25 50 75 100 125 150 -60 -40 -20 0 175 20 40 60 80 100 120 140 160 180 T J , Junction Temperature (°C) T C , Case Temperature (°C) Fig 10. Normalized On-Resistance vs. Temperature Fig 9. Maximum Drain Current vs. Case Temperature 1 Thermal Response ( Z thJC ) D = 0.50 0.20 0.1 0.10 0.05 0.02 0.01 0.01 τJ SINGLE PULSE ( THERMAL RESPONSE ) 0.001 R1 R1 τJ τ1 τ1 R2 R2 τ2 R3 R3 τ3 τ2 Ci= τi/Ri Ci i/Ri τC τ τ3 Ri (°C/W) τi (sec) 0.000213 0.185 0.241 0.001234 0.227 0.021750 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.0001 1E-006 1E-005 0.0001 0.001 0.01 0.1 1 t1 , Rectangular Pulse Duration (sec) Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case www.irf.com 5 IRL1404Z/S/L 900 DRIVER L VDS D.U.T RG VGS 20V + V - DD IAS A 0.01Ω tp Fig 12a. Unclamped Inductive Test Circuit V(BR)DSS tp EAS , Single Pulse Avalanche Energy (mJ) 15V ID 16A 26A BOTTOM 75A 800 TOP 700 600 500 400 300 200 100 0 25 50 75 100 125 150 175 Starting T J , Junction Temperature (°C) I AS Fig 12c. Maximum Avalanche Energy vs. Drain Current Fig 12b. Unclamped Inductive Waveforms QG 10 V QGS QGD VG Charge Fig 13a. Basic Gate Charge Waveform Current Regulator Same Type as D.U.T. 50KΩ 12V .2µF .3µF D.U.T. + V - DS VGS(th) Gate threshold Voltage (V) 3.0 2.5 2.0 ID = 250µA 1.5 1.0 0.5 -75 -50 -25 VGS 0 25 50 75 100 125 150 175 200 T J , Temperature ( °C ) 3mA IG ID Current Sampling Resistors Fig 13b. Gate Charge Test Circuit 6 Fig 14. Threshold Voltage vs. Temperature www.irf.com IRL1404Z/S/L Avalanche Current (A) 1000 Allowed avalanche Current vs avalanche pulsewidth, tav assuming ∆ Tj = 25°C due to avalanche losses Duty Cycle = Single Pulse 100 0.01 0.05 0.10 10 1 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01 tav (sec) Fig 15. Typical Avalanche Current vs.Pulsewidth EAR , Avalanche Energy (mJ) 250 TOP Single Pulse BOTTOM 1% Duty Cycle ID = 75A 200 150 100 50 0 25 50 75 100 125 150 Starting T J , Junction Temperature (°C) Fig 16. Maximum Avalanche Energy vs. Temperature www.irf.com 175 Notes on Repetitive Avalanche Curves , Figures 15, 16: (For further info, see AN-1005 at www.irf.com) 1. Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of T jmax. This is validated for every part type. 2. Safe operation in Avalanche is allowed as long asT jmax is not exceeded. 3. Equation below based on circuit and waveforms shown in Figures 12a, 12b. 4. PD (ave) = Average power dissipation per single avalanche pulse. 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. Iav = Allowable avalanche current. 7. ∆T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as 25°C in Figure 15, 16). tav = Average time in avalanche. D = Duty cycle in avalanche = tav ·f ZthJC(D, tav ) = Transient thermal resistance, see figure 11) PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC Iav = 2DT/ [1.3·BV·Zth] EAS (AR) = PD (ave)·tav 7 IRL1404Z/S/L D.U.T Driver Gate Drive + - * D.U.T. ISD Waveform Reverse Recovery Current + RG V DD • dv/dt controlled by RG • Driver same type as D.U.T. • I SD controlled by Duty Factor "D" • D.U.T. - Device Under Test P.W. Period VGS=10V Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer - D= Period P.W. + + Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt Re-Applied Voltage - Body Diode VDD Forward Drop Inductor Curent ISD Ripple ≤ 5% * VGS = 5V for Logic Level Devices Fig 17. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs V DS V GS RG RD D.U.T. + -V DD 10V Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 % Fig 18a. Switching Time Test Circuit VDS 90% 10% VGS td(on) tr t d(off) tf Fig 18b. Switching Time Waveforms 8 www.irf.com IRL1404Z/S/L TO-220AB Package Outline Dimensions are shown in millimeters (inches) 2.87 (.113) 2.62 (.103) 10.54 (.415) 10.29 (.405) -B- 3.78 (.149) 3.54 (.139) 4.69 (.185) 4.20 (.165) -A- 1.32 (.052) 1.22 (.048) 6.47 (.255) 6.10 (.240) 4 15.24 (.600) 14.84 (.584) 1.15 (.045) MIN 1 2 LEAD ASSIGNMENTS 1 - GATE 2 - DRAIN 3 - SOURCE 4 - DRAIN 3 14.09 (.555) 13.47 (.530) 4.06 (.160) 3.55 (.140) 3X 1.40 (.055) 3X 1.15 (.045) 0.93 (.037) 0.69 (.027) 0.36 (.014) 3X M B A M 0.55 (.022) 0.46 (.018) 2.92 (.115) 2.64 (.104) 2.54 (.100) 2X NOTES: 1 DIMENSIONING & TOLERANCING PER ANSI Y14.5M, 1982. 3 OUTLINE CONFORMS TO JEDEC OUTLINE TO-220AB. 2 CONTROLLING DIMENSION : INCH 4 HEATSINK & LEAD MEASUREMENTS DO NOT INCLUDE BURRS. TO-220AB Part Marking Information (;$03/( 7+,6,6$1,5) /27& 2' ( $66(0%/(' 21:: ,17+($66(0%/</,1(& Note: "P" in assembly line position indicates "Lead-Free" ,17(51$7,21$/ 5(&7,),(5 /2*2 $66(0%/< /27&2'( www.irf.com 3$57180%(5 ' $7(&2'( <($5 :((. /,1(& 9 IRL1404Z/S/L D2Pak Package Outline Dimensions are shown in millimeters (inches) D2Pak Part Marking Information 7+,6,6$1,5)6:,7+ /27&2'( $66(0%/('21:: ,17+($66(0%/</,1(/ 1RWH3LQDVVHPEO\OLQH SRVLWLRQLQGLFDWHV/HDG)UHH OR ,17(51$7,21$/ 5(&7,),(5 /2*2 )6 '$7(&2'( <($5 :((. /,1(/ $66(0%/< /27&2'( ,17(51$7,21$/ 5(&7,),(5 /2*2 $66(0%/< /27&2'( 10 3$57180%(5 3$57180%(5 )6 '$7(&2'( 3 '(6,*1$7(6/($')5(( 352'8&7237,21$/ <($5 :((. $ $66(0%/<6,7(&2'( www.irf.com IRL1404Z/S/L TO-262 Package Outline Dimensions are shown in millimeters (inches) IGBT 1- GATE 2- COLLECTOR 3- EMITTER TO-262 Part Marking Information (;$03/( 7+,6,6$1,5// /27&2'( $66(0%/('21:: ,17+($66(0%/</,1(& 1RWH3LQDVVHPEO\OLQH SRVLWLRQLQGLFDWHV/HDG)UHH ,17(51$7,21$/ 5(&7,),(5 /2*2 $66(0%/< /27&2'( 3$57180%(5 '$7(&2'( <($5 :((. /,1(& OR ,17(51$7,21$/ 5(&7,),(5 /2*2 $66(0%/< /27&2'( www.irf.com 3$57180%(5 '$7(&2'( 3 '(6,*1$7(6/($')5(( 352'8&7237,21$/ <($5 :((. $ $66(0%/<6,7(&2'( 11 IRL1404Z/S/L D2Pak Tape & Reel Information Dimensions are shown in millimeters (inches) TRR 1.60 (.063) 1.50 (.059) 4.10 (.161) 3.90 (.153) FEED DIRECTION 1.85 (.073) 1.65 (.065) 1.60 (.063) 1.50 (.059) 11.60 (.457) 11.40 (.449) 0.368 (.0145) 0.342 (.0135) 15.42 (.609) 15.22 (.601) 24.30 (.957) 23.90 (.941) TRL 10.90 (.429) 10.70 (.421) 1.75 (.069) 1.25 (.049) 4.72 (.136) 4.52 (.178) 16.10 (.634) 15.90 (.626) FEED DIRECTION 13.50 (.532) 12.80 (.504) 27.40 (1.079) 23.90 (.941) 4 330.00 (14.173) MAX. NOTES : 1. COMFORMS TO EIA-418. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION MEASURED @ HUB. 4. INCLUDES FLANGE DISTORTION @ OUTER EDGE. 60.00 (2.362) MIN. 26.40 (1.039) 24.40 (.961) 3 30.40 (1.197) MAX. 4 TO-220AB packages are not recommended for Surface Mount Application. Data and specifications subject to change without notice. This product has been designed and qualified for the Automotive [Q101] market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 6/04 12 www.irf.com Note: For the most current drawings please refer to the IR website at: http://www.irf.com/package/