IRF IRFR3504

PD - 94499A
IRFR3504
IRFU3504
AUTOMOTIVE MOSFET
HEXFET® Power MOSFET
Features
●
●
●
●
●
Advanced Process Technology
Ultra Low On-Resistance
175°C Operating Temperature
Fast Switching
Repetitive Avalanche Allowed up to Tjmax
D
VDSS = 40V
RDS(on) = 9.2mΩ
G
Description
Specifically designed for Automotive applications, this HEXFET®
Power MOSFET utilizes the latest processing techniques to
achieve extremely low on-resistance per silicon area. Additional features of this product are a 175°C junction operating
temperature, fast switching speed and improved repetitive
avalanche rating. These features combine to make this design
an extremely efficient and reliable device for use in Automotive
applications and a wide variety of other applications.
ID = 30A
S
The D-Pak is designed for surface mounting using vapor
phase, infrared, or wave soldering techniques. The straight
lead version (IRFU series) is for through-hole mounting
applications. Power dissipation levels up to 1.5 watts are
possible in typical surface mount applications.
D-Pak
IRFR3504
I-Pak
IRFU3504
Absolute Maximum Ratings
Parameter
ID @ TC
ID @ TC
ID @ TC
IDM
PD @TC
= 25°C
= 100°C
= 25°C
= 25°C
VGS
EAS
EAS (tested)
IAR
EAR
TJ
TSTG
Max.
Continuous Drain Current, VGS @ 10V (Silicon limited)
Continuous Drain Current, VGS @ 10V (See Fig.9)
Continuous Drain Current, VGS @ 10V (Package limited)
Pulsed Drain Current 
Power Dissipation
Linear Derating Factor
Gate-to-Source Voltage
Single Pulse Avalanche Energy‚
Single Pulse Avalanche Energy Tested Value‡
Avalanche Current
Repetitive Avalanche Energy†
Operating Junction and
Storage Temperature Range
Soldering Temperature, for 10 seconds
Units
87
61
30
350
140
0.92
± 20
240
480
See Fig.12a, 12b, 15, 16
A
W
W/°C
V
mJ
A
mJ
-55 to + 175
°C
300 (1.6mm from case )
Thermal Resistance
Parameter
RθJC
RθJA
RθJA
Junction-to-Case
Junction-to-Ambient (PCB mount)ˆ
Junction-to-Ambient
Typ.
Max.
Units
–––
–––
–––
1.09
50
110
°C/W
HEXFET(R) is a registered trademark of International Rectifier.
www.irf.com
1
12/11/02
IRFR/U3504
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
Drain-to-Source Breakdown Voltage
∆V(BR)DSS/∆TJ Breakdown Voltage Temp. Coefficient
RDS(on)
Static Drain-to-Source On-Resistance
VGS(th)
Gate Threshold Voltage
gfs
Forward Transconductance
Qg
Qgs
Qgd
td(on)
tr
td(off)
tf
LD
Gate-to-Source Forward Leakage
Gate-to-Source Reverse Leakage
Total Gate Charge
Gate-to-Source Charge
Gate-to-Drain ("Miller") Charge
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Internal Drain Inductance
Min.
40
–––
–––
2.0
40
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
Typ.
–––
0.041
7.8
–––
–––
–––
–––
–––
–––
48
12
13
11
53
36
22
4.5
LS
Internal Source Inductance
–––
7.5
Ciss
Coss
Crss
Coss
Coss
Coss eff.
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Output Capacitance
Output Capacitance
Effective Output Capacitance …
–––
–––
–––
–––
–––
–––
2150
580
46
2830
510
870
V(BR)DSS
IDSS
IGSS
Drain-to-Source Leakage Current
Max. Units
Conditions
–––
V
VGS = 0V, ID = 250µA
––– V/°C Reference to 25°C, ID = 1mA
9.2
mΩ VGS = 10V, ID = 30A „
4.0
V
VDS = 10V, ID = 250µA
–––
S
VDS = 10V, ID = 30A
20
VDS = 40V, VGS = 0V
µA
250
VDS = 40V, VGS = 0V, TJ = 125°C
200
VGS = 20V
nA
-200
VGS = -20V
71
ID = 30A
18
nC VDS = 32V
20
VGS = 10V„
–––
VDD = 20V
–––
ID = 30A
ns
–––
RG = 6.8Ω
–––
VGS = 10V „
D
–––
Between lead,
nH 6mm (0.25in.)
G
–––
from package
S
and center of die contact
–––
VGS = 0V
–––
VDS = 25V
–––
pF
ƒ = 1.0MHz, See Fig. 5
–––
VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz
–––
VGS = 0V, VDS = 32V, ƒ = 1.0MHz
–––
VGS = 0V, VDS = 0V to 32V
Source-Drain Ratings and Characteristics
IS
I SM
VSD
trr
Q rr
ton
2
Parameter
Continuous Source Current
(Body Diode)
Pulsed Source Current
(Body Diode) 
Diode Forward Voltage
Reverse Recovery Time
Reverse Recovery Charge
Forward Turn-On Time
Min. Typ. Max. Units
Conditions
D
MOSFET symbol
87
––– –––
showing the
A
G
integral reverse
––– ––– 350
S
p-n junction diode.
––– ––– 1.3
V
TJ = 25°C, IS = 30A, VGS = 0V „
––– 53
80
ns
TJ = 25°C, IF = 30A, VDD = 20V
––– 86 130
nC di/dt = 100A/µs „
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
www.irf.com
IRFR/U3504
1000
1000
100
10
BOTTOM
1
4.0V
0.1
0.01
TOP
ID, Drain-to-Source Current (A)
ID, Drain-to-Source Current (A)
TOP
VGS
15V
10V
7.0V
6.0V
5.5V
5.0V
4.5V
4.0V
100
BOTTOM
10
4.0V
1
20µs PULSE WIDTH
Tj = 175°C
20µs PULSE WIDTH
Tj = 25°C
0.001
0.1
0.1
1
10
100
1000
0.1
1
VDS, Drain-to-Source Voltage (V)
10
100
1000
VDS, Drain-to-Source Voltage (V)
Fig 1. Typical Output Characteristics
Fig 2. Typical Output Characteristics
1000.00
80
G fs , Forward Transconductance (S)
ID, Drain-to-Source Current (Α)
VGS
15V
10V
7.0V
6.0V
5.5V
5.0V
4.5V
4.0V
T J = 175°C
100.00
10.00
TJ = 25°C
1.00
VDS = 25V
20µs PULSE WIDTH
70
T J = 25°C
60
50
TJ = 175°C
40
30
20
VDS = 25V
10
0.10
20µs PULSE WIDTH
0
2.0
4.0
6.0
8.0
10.0
12.0
14.0
VGS, Gate-to-Source Voltage (V)
Fig 3. Typical Transfer Characteristics
www.irf.com
16.0
0
20
40
60
80
100
120
ID,Drain-to-Source Current (A)
Fig 4. Typical Forward Transconductance
Vs. Drain Current
3
IRFR/U3504
100000
I D = 30A
10
VGS , Gate-to-Source Voltage (V)
Ciss
1000
Coss
100
Crss
8
6
4
2
10
0
1
10
0
100
1000
ID, Drain-to-Source Current (A)
1000
I SD , Reverse Drain Current (A)
100
°C
TJ = 25
°C
1
V GS = 0 V
40
50
OPERATION IN THIS AREA
LIMITED BY R DS (on)
1.0
1.5
2.0
2.5
V SD,Source-to-Drain Voltage (V)
Fig 7. Typical Source-Drain Diode
Forward Voltage
100µsec
10
1msec
Tc = 25°C
Tj = 175°C
Single Pulse
10msec
1
0.1
0.5
30
100
10
0.0
20
Fig 6. Typical Gate Charge Vs.
Gate-to-Source Voltage
Fig 5. Typical Capacitance Vs.
Drain-to-Source Voltage
TJ = 175
10
QG, Total Gate Charge (nC)
VDS, Drain-to-Source Voltage (V)
4
VDS = 32V
VDS = 20V
VDS = 8V
Coss = Cds + Cgd
10000
C, Capacitance(pF)
12
VGS = 0V,
f = 1 MHZ
Ciss = Cgs + Cgd, C ds SHORTED
Crss = Cgd
3.0
1
10
100
1000
VDS, Drain-to-Source Voltage (V)
Fig 8. Maximum Safe Operating Area
www.irf.com
IRFR/U3504
2.5
100
I D = 87A
LIMITED BY PACKAGE
2.0
60
40
20
0
25
50
75
100
125
150
175
(Normalized)
RDS(on) , Drain-to-Source On Resistance
ID , Drain Current (A)
80
1.5
1.0
0.5
V GS = 10V
0.0
-60
-40
-20
0
20
40
60
80
100 120 140 160 180
( ° C)
TJ , Junction Temperature
TC , Case Temperature ( °C)
Fig 10. Normalized On-Resistance
Vs. Temperature
Fig 9. Maximum Drain Current Vs.
Case Temperature
(Z thJC )
10
1
Thermal Response
D = 0.50
0.20
P DM
0.10
0.1
0.05
0.02
0.01
t1
SINGLE PULSE
(THERMAL RESPONSE)
t2
Notes:
1. Duty factor D =
2. Peak T
0.01
0.00001
0.0001
0.001
0.01
t1 / t 2
J = P DM x Z thJC
+TC
0.1
1
t1, Rectangular Pulse Duration (sec)
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
www.irf.com
5
IRFR/U3504
500
15V
+
V
- DD
IAS
20V
VGS
E AS , Single Pulse Avalanche Energy (mJ)
D.U.T
RG
400
DRIVER
L
VDS
A
0.01Ω
tp
Fig 12a. Unclamped Inductive Test Circuit
V(BR)DSS
tp
TOP
ID
12A
21A
BOTTOM
30A
300
200
100
0
25
50
75
100
Starting Tj, Junction Temperature
125
150
175
( ° C)
I AS
Fig 12c. Maximum Avalanche Energy
Vs. Drain Current
Fig 12b. Unclamped Inductive Waveforms
QG
10 V
QGD
4.0
VG
Charge
Fig 13a. Basic Gate Charge Waveform
Current Regulator
Same Type as D.U.T.
50KΩ
12V
.2µF
.3µF
D.U.T.
+
V
- DS
VGS(th) Gate threshold Voltage (V)
QGS
3.5
3.0
ID = 250µA
2.5
2.0
1.5
VGS
-75 -50 -25
3mA
0
25
50
75 100 125 150 175 200
T J , Temperature ( °C )
IG
ID
Current Sampling Resistors
Fig 13b. Gate Charge Test Circuit
6
Fig 14. Threshold Voltage Vs. Temperature
www.irf.com
IRFR/U3504
10000
Duty Cycle = Single Pulse
Avalanche Current (A)
1000
100
Allowed avalanche Current vs
avalanche pulsewidth, tav
assuming ∆ Tj = 25°C due to
avalanche losses
0.01
0.05
10
0.10
1
0.1
1.0E-08
1.0E-07
1.0E-06
1.0E-05
1.0E-04
1.0E-03
1.0E-02
1.0E-01
tav (sec)
Fig 15. Typical Avalanche Current Vs.Pulsewidth
EAR , Avalanche Energy (mJ)
250
TOP
Single Pulse
BOTTOM 10% Duty Cycle
ID = 30A
200
150
100
50
0
25
50
75
100
125
150
Starting T J , Junction Temperature (°C)
Fig 16. Maximum Avalanche Energy
Vs. Temperature
www.irf.com
Notes on Repetitive Avalanche Curves , Figures 15, 16:
(For further info, see AN-1005 at www.irf.com)
1. Avalanche failures assumption:
Purely a thermal phenomenon and failure occurs at a
temperature far in excess of T jmax. This is validated for
every part type.
2. Safe operation in Avalanche is allowed as long asTjmax is
not exceeded.
3. Equation below based on circuit and waveforms shown in
Figures 12a, 12b.
4. PD (ave) = Average power dissipation per single
avalanche pulse.
5. BV = Rated breakdown voltage (1.3 factor accounts for
voltage increase during avalanche).
6. Iav = Allowable avalanche current.
7. ∆T = Allowable rise in junction temperature, not to exceed
T jmax (assumed as 25°C in Figure 15, 16).
tav = Average time in avalanche.
175
D = Duty cycle in avalanche = tav ·f
ZthJC(D, tav ) = Transient thermal resistance, see figure 11)
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC
Iav = 2DT/ [1.3·BV·Zth]
EAS (AR) = PD (ave)·t av
7
IRFR/U3504
D.U.T
Driver Gate Drive
ƒ
+
-
-
„
*
D.U.T. ISD Waveform
Reverse
Recovery
Current
+

RG
•
•
•
•
V DD
dv/dt controlled by RG
Driver same type as D.U.T.
I SD controlled by Duty Factor "D"
D.U.T. - Device Under Test
P.W.
Period
VGS=10V
Circuit Layout Considerations
• Low Stray Inductance
• Ground Plane
• Low Leakage Inductance
Current Transformer
‚
D=
Period
P.W.
+
+
Body Diode Forward
Current
di/dt
D.U.T. VDS Waveform
Diode Recovery
dv/dt
Re-Applied
Voltage
-
Body Diode
VDD
Forward Drop
Inductor Curent
ISD
Ripple ≤ 5%
* VGS = 5V for Logic Level Devices
Fig 17. Peak Diode Recovery dv/dt Test Circuit for N-Channel
HEXFET® Power MOSFETs
V DS
V GS
RG
RD
D.U.T.
+
-V DD
10V
Pulse Width ≤ 1 µs
Duty Factor ≤ 0.1 %
Fig 18a. Switching Time Test Circuit
VDS
90%
10%
VGS
td(on)
tr
t d(off)
tf
Fig 18b. Switching Time Waveforms
8
www.irf.com
IRFR/U3504
D-Pak (TO-252AA) Package Outline
Dimensions are shown in millimeters (inches)
2.38 (.094)
2.19 (.086)
6.73 (.265)
6.35 (.250)
-A1.27 (.050)
0.88 (.035)
5.46 (.215)
5.21 (.205)
1.14 (.045)
0.89 (.035)
0.58 (.023)
0.46 (.018)
4
6.45 (.245)
5.68 (.224)
6.22 (.245)
5.97 (.235)
1.02 (.040)
1.64 (.025)
1
2
10.42 (.410)
9.40 (.370)
1.52 (.060)
1.15 (.045)
2 - DRAIN
3 - SOURCE
0.51 (.020)
MIN.
-B-
2X
LEAD ASSIGNMENTS
1 - GATE
3
4 - DRAIN
0.89 (.035)
3X
0.64 (.025)
1.14 (.045)
0.76 (.030)
0.25 (.010)
0.58 (.023)
0.46 (.018)
M A M B
NOTES:
2.28 (.090)
1 DIMENSIONING & TOLERANCING PER ANSI Y14.5M, 1982.
2 CONTROLLING DIMENSION : INCH.
3 CONFORMS TO JEDEC OUTLINE TO-252AA.
4.57 (.180)
4 DIMENSIONS SHOWN ARE BEFORE SOLDER DIP,
SOLDER DIP MAX. +0.16 (.006).
D-Pak (TO-252AA) Part Marking Information
5
)
5
,
1
$
6
,
,6
+
7
(
/
3
5
(
%
0
8
/
$
1
2
,
7
$
1
5
(
7
1
,
(
'
5
$
(
<
2
*
2
/
:
:
1
2
'
(
/
%
0
(
6
6
$
.
(
(
:
$
(
1
,
/
<
/
%
0
(
6
6
$
(
+
7
1
,
$
8
)
,5
5
(
,
)
,
7
&
(
5
2
&
(
7
$
'
<
/
% 0 ( (
6
'
6
$ 2
&
+ 7
7
,
2
: /
1
7
5
$
3
0
$
;
(
$
(
,1
/
<
/
%
0
(
6
6
$
(
'
2
&
7
2
/
www.irf.com
9
IRFR/U3504
I-Pak (TO-251AA) Package Outline
Dimensions are shown in millimeters (inches)
6.73 (.265)
6.35 (.250)
2.38 (.094)
2.19 (.086)
-A1.27 (.050)
0.88 (.035)
5.46 (.215)
5.21 (.205)
0.58 (.023)
0.46 (.018)
LEAD ASSIGNMENTS
4
6.45 (.245)
5.68 (.224)
6.22 (.245)
5.97 (.235)
1.52 (.060)
1.15 (.045)
1
2
2.28 (.090)
1.91 (.075)
1.14 (.045)
0.76 (.030)
2.28 (.090)
2X
3 - SOURCE
4 - DRAIN
3
-B-
3X
1 - GATE
2 - DRAIN
3X
9.65 (.380)
8.89 (.350)
NOTES:
1 DIMENSIONING & TOLERANCING PER ANSI Y14.5M, 1982.
2 CONTROLLING DIMENSION : INCH.
3 CONFORMS TO JEDEC OUTLINE TO-252AA.
4 DIMENSIONS SHOWN ARE BEFORE SOLDER DIP,
SOLDER DIP MAX. +0.16 (.006).
0.89 (.035)
0.64 (.025)
1.14 (.045)
0.89 (.035)
0.25 (.010)
M A M B
0.58 (.023)
0.46 (.018)
I-Pak (TO-251AA) Part Marking Information
10
www.irf.com
IRFR/U3504
D-Pak (TO-252AA) Tape & Reel Information
Dimensions are shown in millimeters (inches)
TR
TRR
TRL
16.3 ( .641 )
15.7 ( .619 )
12.1 ( .476 )
11.9 ( .469 )
FEED DIRECTION
16.3 ( .641 )
15.7 ( .619 )
8.1 ( .318 )
7.9 ( .312 )
FEED DIRECTION
NOTES :
1. CONTROLLING DIMENSION : MILLIMETER.
2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS ( INCHES ).
3. OUTLINE CONFORMS TO EIA-481 & EIA-541.
13 INCH
16 mm
NOTES :
1. OUTLINE CONFORMS TO EIA-481.
Notes:
 Repetitive rating; pulse width limited by
max. junction temperature. (See fig. 11).
‚ Limited by TJmax, starting TJ = 25°C,
L = 0.52mH, RG = 25Ω, IAS = 30A, VGS =10V.
Part not recommended for use above this
value.
ƒ ISD ≤ 30A, di/dt ≤ 170A/µs, VDD ≤ V(BR)DSS,
TJ ≤ 175°C.
„ Pulse width ≤ 1.0ms; duty cycle ≤ 2%.
… Coss eff. is a fixed capacitance that gives the same charging time
as Coss while VDS is rising from 0 to 80% VDSS .
† Limited by TJmax , see Fig.12a, 12b, 15, 16 for typical repetitive
avalanche performance.
‡ This value determined from sample failure population. 100%
tested to this value in production.
ˆ When mounted on 1" square PCB ( FR-4 or G-10 Material ).
For recommended footprint and soldering techniques refer to
application note #AN-994.
Data and specifications subject to change without notice.
This product has been designed and qualified for the Automotive [Q101] market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information. 12/02
www.irf.com
11