LTC1067/LTC1067-50

LTC1067/LTC1067-50
®
■
■
■
■
■
■
■
µ
■
≤
■
■
■
■
■
8
0
2
3
3.3V
4
IN
NC
V+
CLK
AGND
fCLK = 500kHz
15
14
V—
–10
1µF
13
SB
LTC1067-50
5
12
LPA
LPB
0.1µF
R11
200k
V+
16
R31, 200k
6
R21, 10k
7
8
SA
BPA
HPA/NA
INV A
BPB
HPB/NB
INV B
OUT
11
R32, 200k
10
R22, 10k
GAIN (dB)
1
–20
–30
9
–40
TOTAL OUTPUT NOISE: 90 VRMS
S/N RATIO: 80dB
RB1, 200k
1067 TA01
8
9
10
11
12
FREQUENCY (kHz)
1067 • TA02
8-5
LTC1067/LTC1067-50
ORDER PART
NUMBER
TOP VIEW
V
+
16 CLK
1
NC 2
15 AGND
V+ 3
14 V –
SA 4
13 SB
LPA 5
12 LPB
BPA 6
11 BPB
10 HPB/NB
HPA/NA 7
9
INV A 8
INV B
GN PACKAGE
S PACKAGE
16-LEAD PLASTIC SSOP 16-LEAD PLASTIC SO
LTC1067CGN
LTC1067-50CGN
LTC1067IGN
LTC1067-50IGN
LTC1067CS
LTC1067-50CS
LTC1067IS
LTC1067-50IS
TJMAX = 110°C, θJA = 135°C/ W (GN)
TJMAX = 110°C, θJA = 115°C/ W (S)
PARAMETER
Operating Supply Range
Positive Output Voltage Swing
Negative Output Voltage Swing
Output Short-Circuit Current
(Source/Sink)
DC Open-Loop Gain
GBW Product
Slew Rate
PARAMETER
Center Frequency Range, fO (Note 1)
Input Frequency Range
Clock-to-Center Frequency, fCLK/fO
Clock-to-Center Frequency Ratio,
Side-to-Side Matching
8-6
CONDITIONS
VS = 3V, RL = 10k
VS = 4.75V, RL = 10k
VS = ±5V, RL = 10k
VS = 3V, RL = 10k
VS = 4.75V, RL = 10k
VS = ±5V, RL = 10k
VS = 3V
VS = 4.75V
VS = ±5V
RL = 10k
RL = 10k
RL = 10k
●
●
●
●
●
●
CONDITIONS
VS = 3V, fCLK = 250kHz, Mode 1, fO = 2.5kHz, Q = 5
R1 = R3 = 49.9k, R2 = 10k
VS = 4.75V, fCLK = 250kHz, Mode 1, fO = 2.5kHz, Q = 5
R1 = R3 = 49.9k, R2 = 10k
VS = ±5V, fCLK = 500kHz, Mode 1, fO = 5kHz, Q = 5
R1 = R3 = 49.9k, R2 = 10k
VS = 3V, fCLK = 250kHz, Q = 5
VS = 4.75V, fCLK = 250kHz, Q = 5
VS = ±5V, fCLK = 500kHz, Q = 5
MIN
3
2.65
4.25
4.15
MIN
TYP
2.80
4.50
4.50
0.020
0.025
– 4.96
16/1.0
33/2.2
70/7.2
90
2.8
2.25
TYP
0.001 to 20
0 to 1
100:1 ±0.2
●
100:1 ±0.2
●
100:1 ±0.2
●
●
●
●
±0.1
±0.1
±0.1
MAX
11
0.200
0.225
– 4.80
MAX
±0.70
±0.70
±0.70
±0.35
±0.35
±0.35
UNITS
V
V
V
V
V
V
V
mA
mA
mA
dB
MHz
V/µs
UNITS
kHz
MHz
%
%
%
%
%
%
%
%
%
LTC1067/LTC1067-50
PARAMETER
Q Accuracy
fO Temperature Coefficient
Q Temperature Coefficient
DC Offset Voltage (See Table 2)
Clock Feedthrough
Maximum Clock Frequency
Power Supply Current
PARAMETER
Operating Supply Range
Positive Output Voltage Swing
Negative Output Voltage Swing
Output Short-Circuit Current
(Source/Sink)
DC Open-Loop Gain
GBW Product
Slew Rate
PARAMETER
Center Frequency Range, fO (Note 1)
Input Frequency Range
Clock-to-Center Frequency, fCLK/fO
Clock-to-Center Frequency Ratio,
Side-to-Side Matching
Q Accuracy
CONDITIONS
VS = 3V, fCLK = 250kHz, Q = 5
VS = 4.75V, fCLK = 250kHz, Q = 5
VS = ±5V, fCLK = 500kHz, Q = 5
MIN
●
●
●
VOS1 (DC Offset of Input Inverter)
VOS2 (DC Offset of First Integrator)
VOS3 (DC Offset of Second Integrator)
●
●
●
Q < 2.5, VS = ±5V
VS = 3V, fCLK = 250kHz
VS = 4.75V, fCLK = 250kHz
VS = ±5V, fCLK = 500kHz
●
●
●
CONDITIONS
VS = 3V, RL = 10k
VS = 4.75V, RL = 10k
VS = ±5V, RL = 10k
VS = 3V, RL = 10k
VS = 4.75V, RL = 10k
VS = ±5V, RL = 10k
VS = 3V
VS = 4.75V
VS = ±5V
RL = 10k
RL = 10k
RL = 10k
●
●
●
●
●
●
CONDITIONS
VS = 3V, fCLK = 125kHz, Mode 1, fO = 2.5kHz, Q = 5
R1 = R3 = 49.9k, R2 = 10k
VS = 4.75V, fCLK = 125kHz, Mode 1, fO = 2.5kHz, Q = 5
R1 = R3 = 49.9k, R2 = 10k
VS = ±5V, fCLK = 250kHz, Mode 1, fO = 5kHz, Q = 5
R1 = R3 = 49.9k, R2 = 10k
VS = 3V, fCLK = 125kHz, Q = 5
VS = 4.75V, fCLK = 125kHz, Q = 5
VS = ±5V, fCLK = 250kHz, Q = 5
VS = 3V, fCLK = 125kHz, Q = 5
VS = 4.75V, fCLK = 125kHz, Q = 5
VS = ±5V, fCLK = 250kHz, Q = 5
MIN
2.7
2.65
4.25
4.15
MIN
TYP
±0.5
±0.5
±0.5
±1
±5
±3
±4
±4
150
2.0
2.50
3.00
4.35
TYP
2.80
4.50
4.50
0.020
0.025
– 4.96
16/0.6
33/1.2
70/5.7
90
1.9
0.8
TYP
0.001 to 40
0 to 1
50:1 ±0.2
●
50:1 ±0.2
●
50:1 ±0.3
●
●
●
●
●
●
●
±0.2
±0.2
±0.2
±0.5
±0.5
±0.5
MAX
±2
±2
±2
±12.5
±15.0
±15.0
4.5
5.5
7.5
MAX
11
0.200
0.225
– 4.80
MAX
±0.75
±0.75
±0.75
±0.55
±0.55
±0.55
±2
±2
±2
UNITS
%
%
%
ppm/°C
ppm/°C
mV
mV
mV
µVRMS
MHz
mA
mA
mA
UNITS
V
V
V
V
V
V
V
mA
mA
mA
dB
MHz
V/µs
UNITS
kHz
MHz
%
%
%
%
%
%
%
%
%
%
%
%
8-7
8
LTC1067/LTC1067-50
PARAMETER
fO Temperature Coefficient
Q Temperature Coefficient
DC Offset Voltage (See Table 2)
CONDITIONS
Clock Feedthrough
Maximum Clock Frequency
Power Supply Current
MIN
VOS1 (DC Offset of Input Inverter)
VOS2 (DC Offset of First Integrator)
VOS3 (DC Offset of Second Integrator)
●
●
●
Q < 2.5, VS = ±5V
VS = 3V, fCLK = 125kHz
VS = 4.75V, fCLK = 125kHz
VS = ±5V, fCLK = 250kHz
●
●
●
TYP
±1
±5
±3
±4
±4
150
2.0
1.00
1.45
2.35
MAX
±12.5
±15.0
±15.0
2.5
3.0
4.0
UNITS
ppm/°C
ppm/°C
mV
mV
mV
µVRMS
MHz
mA
mA
mA
●
≥
50
VS = ±5V
fCLK(MAX) = 2MHz
30
VS = 3.3V
fCLK(MAX) = 1MHz
20
30
VS = 5V
fCLK(MAX) = 1.5MHz
20
VS = 3.3V
fCLK(MAX) = 1MHz
10
10
4TH ORDER BUTTERWORTH LPF
VS = SINGLE 3.3V, fIN = 1kHz
fCLK = 400kHz, f–3dB = 4kHz
RL = 20k
–30
VS = ±5V
fCLK(MAX) = 2MHz
40
VS = 5V
fCLK(MAX) = 1.5MHz
MAXIMUM Q
MAXIMUM Q
40
–20
(NOISE + THD)/SIGNAL (dB)
50
–40
–50
–60
–70
MODE 1
–80
MODE 3
–90
0
0
10
5
15
CENTER FREQUENCY, fO (kHz)
20
0
10
5
15
CENTER FREQUENCY, fO (kHz)
–30
(NOISE + THD)/SIGNAL (dB)
(NOISE + THD)/SIGNAL (dB)
4TH ORDER BUTTERWORTH LPF
VS = SINGLE 5V, fIN = 1kHz
fCLK = 500kHz, f–3dB = 5kHz
RL = 20k
–50
–60
–70
–80
MODE 1
MODE 3
–100
0.1
1
INPUT VOLTAGE (VRMS)
2
1067 G04
8-8
–40
–65
–60
–70
–80
–100
0.1
2
–60
4TH ORDER BUTTERWORTH LPF
VS = ±5V, fIN = 1kHz
fCLK = 500kHz, f–3dB = 5kHz
RL = 20k
–50
–90
–90
1
INPUT VOLTAGE (VRMS)
1067 G03
–20
–20
–40
–100
0.1
1067 G02
1067 G01
–30
20
(NOISE + THD)/SIGNAL (dB)
0
MODE 2
MODE 1
–70
–75
–80
MODE 3
–85
MODE 3
–90
1
INPUT VOLTAGE (VRMS)
MODE 1
5
1067 G05
1
4TH ORDER BUTTERWORTH LPF
VS = SINGLE 3.3V
fCLK = 400kHz, VIN = 0.36VRMS
f–3dB = 4kHz, RL = 20k
3
2
INPUT FREQUENCY (kHz)
4
5
1067 G06
LTC1067/LTC1067-50
–75
MODE 1
–80
MODE 3
–85
4TH ORDER BUTTERWORTH LPF
VS = SINGLE 5V, fCLK = 500kHz
VIN = 0.5VRMS, f–3dB = 5kHz, RL = 20k
–90
220
4TH ORDER LOWPASS
BUTTERWORTH
VS = ±5V, VIN = 1VRMS
fCLK = 1MHz, f–3dB = 10kHz
RL = 20k
–80
200
160
MODE 1
–85
2
3
INPUT FREQUENCY (kHz)
4
5
3
2
4 5 6 7 8 9 10
INPUT FREQUENCY (MHz)
9.2
9.0
8.8
8.6
8.4
40
50
1067 G09
4.5
4.5
VS = 5V
POWER SUPPLY CURRENT (mA)
9.4
30
20
Q
5.0
9.6
10
0
1067 G08
OUTPUT VOLTAGE SWING (VP-P)
OUTPUT VOLTAGE SWING (VP-P)
3V
80
0
1
VS = ±5V
4.0
3.5
VS = 3.3V
3.0
2.5
2.0
1.5
8.2
8.0
0
4 6 8 10 12 14 16 18 20
LOAD RESISTANCE (kΩ TO GND)
4.0
70°C
3.5
3.0
–20°C
2.5
25°C
2.0
1.5
8
0
1.0
2
100
20
10.0
0
5V
120
40
1067 G07
9.8
140
60
MODE 3
–90
1
±5V
180
NOISE (µVRMS)
(NOISE + THD)/SIGNAL (dB)
(NOISE + THD)/SIGNAL (dB)
–75
2
4
6
8
10 12 14 16 18 20
3
LOAD RESISTANCE (kΩ TO V –)
1067 G10
4
7
9
6
8
5
TOTAL POWER SUPPLY (V)
1067 G11
10
1067 G12
≥
VS = ±5V
fCLK(MAX) = 2MHz
40
30
VS = 3.3V
fCLK(MAX) = 800kHz
20
VS = ±5V
fCLK(MAX) = 2MHz
40
VS = 5V
fCLK(MAX) = 1.5MHz
MAXIMUM Q
MAXIMUM Q
–20
50
VS = 3V
fCLK(MAX) = 600kHz
10
–30
VS = 5V
fCLK(MAX) = 1.5MHz
30
VS = 3.3V
fCLK(MAX) = 800kHz
20
VS = 3V
fCLK(MAX) = 600kHz
10
(NOISE + THD)/SIGNAL (dB)
50
4TH ORDER BUTTERWORTH LPF
VS = SINGLE 3V, fIN = 1kHz
fCLK = 200kHz, f–3dB = 4kHz
–40
–50
–60
–70
–80
MODE 1
MODE 3
–90
0
0
20
10
30
CENTER FREQUENCY, fO (kHz)
0
40
1067 G13
0
20
10
30
CENTER FREQUENCY, fO (kHz)
40
1067 G14
–100
0.1
1
INPUT VOLTAGE (VRMS)
2
1067 G15
8-9
LTC1067/LTC1067-50
–20
4TH ORDER BUTTERWORTH LPF
VS = SINGLE 5V, fIN = 1kHz
fCLK = 250kHz, f–3dB = 5kHz
RL = 20k
–40
–30
(NOISE + THD)/SIGNAL (dB)
–50
–60
–70
MODE 1
–80
–90
–40
–50
–60
1
INPUT VOLTAGE (VRMS)
MODE 3
MODE 2
–70
–80
MODE 1
–100
0.1
2
1
INPUT VOLTAGE (VRMS)
MODE 3
–80
–85
–90
3
2
INPUT FREQUENCY (kHz)
4
5
–70
MODE 1
–75
MODE 3
–80
–90
OUTPUT VOLTAGE SWING (VP-P)
OUTPUT VOLTAGE SWING (VP-P)
9.0
8.8
8.6
8.4
8.0
3
2
INPUT FREQUENCY (kHz)
4
5
0
2
4 6 8 10 12 14 16 18 20
LOAD RESISTANCE (kΩ TO GND)
1067 G22
8-10
5
10 15 20 25 30 35 40 45 50
Q
1067 G21
2.2
VS = 5V
4.5
4.0
3.5
3.0
VS = 3V
2.5
2.0
2.0
1.8
70°C
1.6
1.4
20°C
1.2
25°C
1.0
0.8
1.0
0
3V
150
0
1
1.5
8.2
5V
200
50
5.0
9.2
250
1067 G20
VS = ±5V
9.4
5
100
10.0
9.6
4
±5V
1067 G19
9.8
3
2
INPUT FREQUENCY (kHz)
300
–85
1
1
350
NOISE (µVRMS)
(NOISE + THD)/SIGNAL (dB)
(NOISE + THD)/SIGNAL (dB)
MODE 1
–75
4TH ORDER BUTTERWORTH LPF
VS = SINGLE 3V, fCLK = 200kHz
VIN = 0.34VRMS, f–3dB = 4kHz, RL = 20k
400
4TH ORDER BUTTERWORTH LPF
VS = ±5V, fCLK = 250kHz
VIN = 1VRMS, f–3dB = 5kHz
RL = 20k
–65
–70
–80
1067 G18
–60
–65
MODE 3
1067 G17
–60
4TH ORDER BUTTERWORTH LPF
VS = SINGLE 5V, fCLK = 250kHz
VIN = 0.5VRMS, f–3dB = 5kHz, RL = 20k
–75
–90
5
1067 G16
–70
–85
–90
MODE 3
–100
0.1
MODE 1
–65
POWER SUPPLY CURRENT (mA)
(NOISE + THD)/SIGNAL (dB)
–30
–60
4TH ORDER BUTTERWORTH LPF
VS = ±5V, fIN = 1kHz
fCLK = 250kHz (225kHz FOR MODE 2)
f–3dB = 10kHz, RL = 20k
(NOISE + THD)/SIGNAL (dB)
–20
0
2
4
6
8
10 12 14 16 18 20
LOAD RESISTANCE (kΩ TO V –)
1067 G23
3
4
7
9
6
8
5
TOTAL POWER SUPPLY (V)
10
1067 G24
2.0
2.0
1.9
1.9
RELATIVE NOISE INCREASE
(REFERENCE NOISE WHEN R2/R4 = 1)
RELATIVE NOISE INCREASE
(REFERENCE NOISE WHEN R5/R6 = 0.02)
LTC1067/LTC1067-50
1.8
1.7
1.6
1.5
1.4
1.3
1.2
1.1
0.5
1.5 2.0
2.5
R5/R6 RATIO
1.0
3.0
1.7
1.6
1.5
1.4
1.3
1.2
1.1
1.0
0.2
1.0
0
1.8
3.5
0.3
0.4
0.5 0.6 0.7
R2/R4 RATIO
0.8
1
2
3
V+
4
0.1µF
5
6
7
8
STAR
SYSTEM
GROUND
µ
V+
CLK
NC
AGND
LTC1067
LTC1067-50
SB
LPA
LPB
BPA
BPB
HPA/NA
INV A
16
1
15
2
14
V—
V+
SA
1.0
1067 G26
1067 G25
µ
0.9
HPB/NB
INV B
DIGITAL
GROUND
PLANE
13
3
V—
V+
0.1µF
0.1µF
4
12
5
11
6
10
7
9
8
STAR
SYSTEM
GROUND
200Ω
CLOCK
SOURCE
1067 F01
V+
CLK
NC
AGND
LPA
LTC1067
LTC1067-50
BPA
HPA/NA
INV A
15
1µF
14
V—
V+
SA
8
16
SB
LPB
BPB
HPB/NB
INV B
13
12
11
10
9
DIGITAL
GROUND
PLANE
200Ω
CLOCK
SOURCE
FOR MODE 3, THE SA AND SB SUMMING NODE PINS
ARE TIED TO THE AGND PIN
106 7 F02
8-11
LTC1067/LTC1067-50
POWER SUPPLY
HIGH LEVEL
LOW LEVEL
±5V
≥ 2.2V
≤ 0.50V
Single 5V
≥ 2.2V
≤ 0.50V
Single 3V, 3.3V
≥ 2V
≤ 0.40V
µ
V+ 1
INV A
8
–
HPA/NA
BPA
LPA
7
6
5
HPB/NB
BPB
LPB
10
11
12
+
V+ 3
15k
SA
+
INV B
V – 14
4
AGND
15
15k
9
∑
–
+
–
+
∑
–
13
CLK
8-12
16
SB
1067 BD
LTC1067/LTC1067-50
CC
R3
R2
S
N
VIN
R1
–
+
AGND
+
Σ
–
LP
BP
∫
f
fO = CLK ; fn = fO
RATIO
R2
R3
Q = R3 ; HON = –
;H
=–
R1 OBP
R1
R2
HOLP = HON
∫
1067 F03
NOTE: RATIO = 100 FOR LTC1067
= 50 FOR LTC1067-50
8
®
8-13
LTC1067/LTC1067-50
CC
R6
R5
CC
R3
R4
R2
S
N
VIN
R1
–
+
Σ
+
AGND
NOTE: RATIO = 100 FOR LTC1067
= 50 FOR LTC1067-50
LP
BP
R2
–
∫
HP
∫
1067 F04
√
f
R6
fO = CLK
;f =f
RATIO (R6 + R5) n O
R3
R6 ; H = – R2 ; H
Q = R3
=–
R1
R1 OBP
R2 (R6 + R5) ON
R2 R6 + R5
HOLP = –
R6
R1
√
R3
(
VIN
R1
–
S
+
Σ
–
∫
+
)
∫
1067 F05
fO =
AGND
LP
BP
fCLK
RATIO
1
R3 R2
R2
R3
√ R4 ; Q = 1.005 (R2) √ R4 (1 – (RATIO)(0.32)(R4)
)
R3
HOHP = – R2 ; HOBP = –
R1
R1
1
R3
(1 – (RATIO)(0.32)(R4)
)
; HOLP = –
R4
R1
NOTE: RATIO = 100 FOR LTC1067
= 50 FOR LTC1067-50
CC
R4
R3
R2
HPN
VIN
R1
–
+
S
Σ
+
–
LP
BP
∫
∫
1067 F06
AGND
√ 1 + R4 ; f = RATIO
R2
1
R3
Q = 1.005 ( ) 1 +
R2 √
R4
R3
(1 – (RATIO)(0.32)(R4)
)
fO =
fCLK
RATIO
HOHPN = –
HOBP = –
R2
n
fCLK
R2
R2
(AC GAIN, f >> fO); HOHPN = –
R1
R1
R3
R1
(
1
R3
1–
(RATIO)(0.32)(R4)
NOTE: RATIO = 100 FOR LTC1067
= 50 FOR LTC1067-50
8-14
)
1
1 + R2
R4
(
; HOLP = – R2
R1
)
(DC GAIN)
1
1 + R2
R4
(
)
LTC1067/LTC1067-50
CC
R4
R3
R2
HP
VIN
R1
–
+
√ R4 f = RATIO √ R
1
R2
Q = 1.005 (R3)
R2 √ R4
R3
(1 – (RATIO)(0.32)(R4)
)
R
R
(f = ∞) = ( ) ( R2 ) ; H
(f = 0) = ( ) ( R4 )
H
R R1
R R1
f
fO = CLK
RATIO
S
Σ
–
+
LP
BP
R2
; n
fCLK
G
OHPn
H
RH
L
G
L
OLPn
NOTE: RATIO = 100 FOR LTC1067
= 50 FOR LTC1067-50
∫
∫
RL
RG
–
HIGHPASS
OR LOWPASS
NOTCH OUTPUT
RH
AGND
+
EXTERNAL OP AMP OR INPUT OP
AMP OF THE LTC1067, SIDES A OR B
√
√
f
fO = CLK 1 + R2
RATIO
R4
f
R
fn = CLK
1+ H
RATIO
RL
RG RG
HOLPn (f = 0)=
+
RH RL
CC
R4
R3
Q = 1.005
R2
HP
VIN
R1
–
+
AGND
+
S
Σ
–
LP
BP
(
(R3R2) √ 1 + R2R4
)( ) (
R2
R1
1
1 + R2
R4
8
1067 F07
)
1
R3
(1 – (RATIO)(0.32)(R4)
)
NOTE: RATIO = 100 FOR LTC1067
= 50 FOR LTC1067-50
∫
∫
RL
RG
–
RH
+
LOWPASS
NOTCH
OUTPUT
EXTERNAL OP AMP OR INPUT OP AMP
OF THE LTC1067, SIDES A OR B
1067 F08
8-15
LTC1067/LTC1067-50
HP/N
INV
VOS1
–
BP
+ ∑
–
+
VOS2
LP
VOS3
1067 F09
S
µ
MODE
1
VOSHP/N
VOSBP
VOSLP
VOS1 [1 + (R2/R3) + (R2/R1)] – (VOS3)(R2/R3)
VOS3
VOSHP/N – VOS2
1b
VOS1 [1 + (R2/R3) + (R2/R1)] – (VOS3)(R2/R3)
VOS3
(VOSHP/N – VOS2)[1 + (R5/R6)]
2
VOS1 [1 + (R2/R3) + (R2/R1) + (R2/R4) – (VOS3)
(R2/R3)](R4/R2 + R4) + (VOS2)(R2/R2 + R4)
VOS3
VOSHP/N – VOS2
3
VOS2
VOS3
VOS1 [1 + (R4/R1) + (R4/R2) + (R4/R3)] – (VOS2)
(R4/R2) – (VOS3)(R4/R3)
8-16
LTC1067/LTC1067-50
V+
INV
–
∑
+
HP
BP
LP
1067 F10
8
8-17
LTC1067/LTC1067-50
POSITIVE OUTPUT VOLTAGE SWING (V)
5.0
4.5
LTC1067
4.0
LTC1067-50
3.5
3.0
2.5
0
2
4
6
8
10 12 14 16 18 20
LOAD RESISTANCE (kΩ TO V –)
1067 F11
POSITIVE OUTPUT VOLTAGE SWING (V)
3.3
LTC1067
VS = 3.3V
3.0
2.7
LTC1067-50
VS = 3V
2.4
2.1
1.8
1.5
0
2
4
6
8
10 12 14 16 18 20
LOAD RESISTANCE (kΩ TO V –)
1067 F12
1
2
5V
(4.75VMIN)
0.1µF
3
4
5
6
7
8
V+
CLK
NC
AGND
V+
SA
V—
LTC1067
LTC1067-50
SB
LPA
LPB
BPA
BPB
HPA/NA
INV A
HPB/NB
INV B
16
14
13
12
11
10
9
1067 F13
8-18
64.9k
1%
15
1µF
LTC1067/LTC1067-50
1
2
3V TO 3.6V
(LTC1067)
2.7V TO 3.6V
(LTC1067-50)
0.1µF
3
4
5
6
7
8
V+
CLK
AGND
NC
V+
SA
V—
LTC1067
LTC1067-50
SB
LPA
LPB
BPA
BPB
HPA/NA
INV A
HPB/NB
INV B
16
15
14
33.2k
1%
1µF
13
12
11
10
9
1067 F14
8
8-19
LTC1067/LTC1067-50
CONNECT THIS JUMPER
FOR DUAL SUPPLIES
JPAGND
C1
10 F, 6.3V
CONNECT THIS JUMPER
FOR SINGLE SUPPLIES.
THE LTC1067 HAS ON-CHIP
RESISTORS TO GENERATE
1/2 SUPPLY FOR AGND
+
C2, 0.1 F
J1
CLOCK
IN
TP1
V+
C3
10 F
16V
JP61
+
C6, 0.1 F
1
D1
MBR0630T1
R61
2
JP51
3
TP9
R51
TP4
VIN
TP10
1
3
JP1
4
R41
5
R31
6
R21
7
2 R11
4
8
RH1
RB1
RL1
V+
CLK
NC
AGND
R1
200‰
1%
16
15
D2
MBR0630T1
JP62
JPVNEG
+
R62
C7
0.1 F
C4
10 F
16V
JP52
14
V+
V—
LTC1067
13
OR
SA
SB
LTC1067-50
12
LPA
LPB
11
BPA
BPB
10
HPA/NA
HPB/NB
9
INV A
INV B
JP3
TP2
V—
C5
R3
R2
TP8
JP8
R52
RL2
RB2
RH2
+
C8
0.1 F
JP4
JP2
1 2 3
3 + 8
C9
10 F
36V
TP5
VOUT
1
2 —
1/2
4 LT1498
C13
R42
R32
R22
TP3
VOA+
TP6
TP7
VOA—
C10
0.1 F
+
C11
10 F
36V
TP11
JP9
JP6
JP5
R4
5 +
6 —
7
1/2
LT1498
JP7
C12
1067 F15
8-20
LTC1067/LTC1067-50
1
5V
0.1µF
2
3
4
R41, 20k
R31, 47.5k
VIN
RIN1
16.9k
5
RIN2
22.6k
6
R21, 22.6k
7
8
CIN1
1500pF
5%
V+
CLK
AGND
NC
16
14
V–
V+
SA
SB
LTC1067
LPA
LPB
BPA
BPB
HPA/NA HPB/NB
INV A
INV B
fCLK
15
–5V
0.1µF
13
12
R42, 47.5k
11
R32, 29.4k
10
R22, 45.3k
VS
fCUTOFF
CIN1
fCLK
9
5V
10k
1500pF
1MHz
3V
5k
3000pF
500kHz
8
1067 TA05a
RH1, 118k
VOUT
RL1, 24.3k
10
1.00
0
0.75
–10
0.50
–20
0.25
–30
0
GAIN (dB)
GAIN (dB)
±5V
20k
15k
750pF 1000pF
2MHz 1.5MHz
–40
–50
–0.25
CIN1 = 1500pF + 5%
–0.50
–60
–0.75
–70
–1.00
–80
–1.25
–90
CIN1 = 1500pF – 5%
CIN1 = 1500pF
–1.50
1
10
FREQUENCY (kHz)
100
1067 TA05b
1
2
4
6 8 10
FREQUENCY (kHz)
20
1067 TA05c
8-21
LTC1067/LTC1067-50
1
5V
0.1µF
R61
40.2k
2
3
4
R51
4.99k
5
R31, 56.2k
6
R21, 10k
7
R11
60.4k
8
VIN
V+
CLK
AGND
NC
16
100kHz
15
—5V
0.1µF
14
V—
V+
SA
SB
LTC1067
LPA
LPB
BPA
BPB
HPA/NA HPB/NB
INV A
INV B
13
12
R42, 80.6k
11
R32, 53.6k
10
R22, 10k
VS
MAXIMUM
FREQUENCY
CENTER
9
RB1, 36.5k
–5V
5kHz
5V (OR –2.5V) 3V (OR –1.5V)
2.5kHz
2.2kHz
1067 TA06a
VOUT
10
5
GAIN
0
INPUT
(500mV/DIV)
–10
3.0
DELAY
–15
2.5
–20
2.0
–25
1.5
–30
1.0
–35
0.5
–40
600
760
920
1080
FREQUENCY (Hz)
1240
DELAY (ms)
GAIN (dB)
–5
OUTPUT
(50mV/DIV)
0
1400
5ms/DIV
1067 TA06c
1067 TA06b
1
5V
0.1µF
R61
7.32k
1µF
3
R51
4.99k
R31, 255k
R21, 4.99k
R11
267k
VIN
2
V+
NC
CLK
AGND
V+
V—
16
14
13
SB
LTC1067-50
12
5
LPA
LPB
11
6
BPA
BPB
10
7
HPA/NA
HPB/NB
9
8
INV A
INV B
4
SA
64kHz
15
R62
R52
4.99k 8.66k
R32, 255k
MAXIMUM fCENTER
12kHz
7.5kHz
5.5kHz
VS
SINGLE 5V
SINGLE 3.3V
SINGLE 3V
NOISE
(FILTER INPUT AT V +/2)
426 VRMS
333 VRMS
290 VRMS
R22, 4.99k
RB1, 115k
VOUT
8-22
VS
SINGLE 5V
SINGLE 3.3V
SINGLE 3V
1067 TA07a
LTC1067/LTC1067-50
1
0
0
5
–1
10
–2
15
–3
GAIN (dB)
20
25
–4
VOUT
(50mV/DIV)
–5
30
–6
35
–7
40
–8
45
500
VIN
(500mV/DIV)
–9
700
900
1100
1300
FREQUENCY (kHz)
1500
960
980
1000
1020
FREQUENCY (kHz)
1067 TA07b
1
5V
0.1µF
2
R61
15k
3
4
R51
4.99k
5
R31, 232k
R21, 4.99k
R11
232k
6
7
8
VIN1
CLK
AGND
16
15
14
V—
V+
SA
SB
LTC1067
LPA
LPB
BPA
BPB
HPA/NA HPB/NB
INV A
VIN2
1067 TA07d
INV B
5
150kHz
0
—5V
0.1µF
VOUT1 VOUT2
–5
–10
13
12
R42, 5.23k
11
R32, 75k
10
R22, 4.99k
–15
–20
–25
–30
–35
9
8
–40
–45
R12,140k
VOUT1
5ms/DIV
1067 TA07b
V+
NC
1040
GAIN (dB)
GAIN (dB)
–5
VOUT2
1067 TA08a
1
2
3
4
FREQUENCY (kHz)
5
1067 TA08b
8-23
LTC1067/LTC1067-50
0
5V
0.1µF 2
3
R61, 9.88k*
4
R51, 4.99k* 5
R31, 61.9k
6
R21, 10k
7
C21, 300pF**
8
V+
CLK
AGND
NC
V+
V—
SA
SB
LTC1067
LPB
LPA
BPB
BPA
HPA/NA
INV A
HPB/NB
INV B
16
200‰
14
–20
1µF
–30
R62, 10k*
13
12 R52, 4.99k*
11
R32, 464k
10
R22, 75k
9
C22, 30pF**
R11, 18.7k
* R51, R61, R52, R62 ARE 0.1% TOLERANCE RESISTORS
** C21 AND C22 IMPROVE THE NOTCH DEPTH WHERE
1
(30)(f NOTCH) <
< (75)(f NOTCH)
2π(R2x)(C2X)
WITHOUT C21 AND C22 THE NOTCH DEPTH IS LIMITED TO —35dB
1067 TA03
*** VIN † 1.25VP-P
8-24
–40
–50
–60
–70
VOUT
RH1, 40.2k
VIN***
–10
fCLK = 125kHz
15
GAIN (dB)
1
–80
–90
–100
800
900
1000
1100
FREQUENCY (kHz)
1200
1067 TA04