LTC1067/LTC1067-50 ® ■ ■ ■ ■ ■ ■ ■ µ ■ ≤ ■ ■ ■ ■ ■ 8 0 2 3 3.3V 4 IN NC V+ CLK AGND fCLK = 500kHz 15 14 V— –10 1µF 13 SB LTC1067-50 5 12 LPA LPB 0.1µF R11 200k V+ 16 R31, 200k 6 R21, 10k 7 8 SA BPA HPA/NA INV A BPB HPB/NB INV B OUT 11 R32, 200k 10 R22, 10k GAIN (dB) 1 –20 –30 9 –40 TOTAL OUTPUT NOISE: 90 VRMS S/N RATIO: 80dB RB1, 200k 1067 TA01 8 9 10 11 12 FREQUENCY (kHz) 1067 • TA02 8-5 LTC1067/LTC1067-50 ORDER PART NUMBER TOP VIEW V + 16 CLK 1 NC 2 15 AGND V+ 3 14 V – SA 4 13 SB LPA 5 12 LPB BPA 6 11 BPB 10 HPB/NB HPA/NA 7 9 INV A 8 INV B GN PACKAGE S PACKAGE 16-LEAD PLASTIC SSOP 16-LEAD PLASTIC SO LTC1067CGN LTC1067-50CGN LTC1067IGN LTC1067-50IGN LTC1067CS LTC1067-50CS LTC1067IS LTC1067-50IS TJMAX = 110°C, θJA = 135°C/ W (GN) TJMAX = 110°C, θJA = 115°C/ W (S) PARAMETER Operating Supply Range Positive Output Voltage Swing Negative Output Voltage Swing Output Short-Circuit Current (Source/Sink) DC Open-Loop Gain GBW Product Slew Rate PARAMETER Center Frequency Range, fO (Note 1) Input Frequency Range Clock-to-Center Frequency, fCLK/fO Clock-to-Center Frequency Ratio, Side-to-Side Matching 8-6 CONDITIONS VS = 3V, RL = 10k VS = 4.75V, RL = 10k VS = ±5V, RL = 10k VS = 3V, RL = 10k VS = 4.75V, RL = 10k VS = ±5V, RL = 10k VS = 3V VS = 4.75V VS = ±5V RL = 10k RL = 10k RL = 10k ● ● ● ● ● ● CONDITIONS VS = 3V, fCLK = 250kHz, Mode 1, fO = 2.5kHz, Q = 5 R1 = R3 = 49.9k, R2 = 10k VS = 4.75V, fCLK = 250kHz, Mode 1, fO = 2.5kHz, Q = 5 R1 = R3 = 49.9k, R2 = 10k VS = ±5V, fCLK = 500kHz, Mode 1, fO = 5kHz, Q = 5 R1 = R3 = 49.9k, R2 = 10k VS = 3V, fCLK = 250kHz, Q = 5 VS = 4.75V, fCLK = 250kHz, Q = 5 VS = ±5V, fCLK = 500kHz, Q = 5 MIN 3 2.65 4.25 4.15 MIN TYP 2.80 4.50 4.50 0.020 0.025 – 4.96 16/1.0 33/2.2 70/7.2 90 2.8 2.25 TYP 0.001 to 20 0 to 1 100:1 ±0.2 ● 100:1 ±0.2 ● 100:1 ±0.2 ● ● ● ● ±0.1 ±0.1 ±0.1 MAX 11 0.200 0.225 – 4.80 MAX ±0.70 ±0.70 ±0.70 ±0.35 ±0.35 ±0.35 UNITS V V V V V V V mA mA mA dB MHz V/µs UNITS kHz MHz % % % % % % % % % LTC1067/LTC1067-50 PARAMETER Q Accuracy fO Temperature Coefficient Q Temperature Coefficient DC Offset Voltage (See Table 2) Clock Feedthrough Maximum Clock Frequency Power Supply Current PARAMETER Operating Supply Range Positive Output Voltage Swing Negative Output Voltage Swing Output Short-Circuit Current (Source/Sink) DC Open-Loop Gain GBW Product Slew Rate PARAMETER Center Frequency Range, fO (Note 1) Input Frequency Range Clock-to-Center Frequency, fCLK/fO Clock-to-Center Frequency Ratio, Side-to-Side Matching Q Accuracy CONDITIONS VS = 3V, fCLK = 250kHz, Q = 5 VS = 4.75V, fCLK = 250kHz, Q = 5 VS = ±5V, fCLK = 500kHz, Q = 5 MIN ● ● ● VOS1 (DC Offset of Input Inverter) VOS2 (DC Offset of First Integrator) VOS3 (DC Offset of Second Integrator) ● ● ● Q < 2.5, VS = ±5V VS = 3V, fCLK = 250kHz VS = 4.75V, fCLK = 250kHz VS = ±5V, fCLK = 500kHz ● ● ● CONDITIONS VS = 3V, RL = 10k VS = 4.75V, RL = 10k VS = ±5V, RL = 10k VS = 3V, RL = 10k VS = 4.75V, RL = 10k VS = ±5V, RL = 10k VS = 3V VS = 4.75V VS = ±5V RL = 10k RL = 10k RL = 10k ● ● ● ● ● ● CONDITIONS VS = 3V, fCLK = 125kHz, Mode 1, fO = 2.5kHz, Q = 5 R1 = R3 = 49.9k, R2 = 10k VS = 4.75V, fCLK = 125kHz, Mode 1, fO = 2.5kHz, Q = 5 R1 = R3 = 49.9k, R2 = 10k VS = ±5V, fCLK = 250kHz, Mode 1, fO = 5kHz, Q = 5 R1 = R3 = 49.9k, R2 = 10k VS = 3V, fCLK = 125kHz, Q = 5 VS = 4.75V, fCLK = 125kHz, Q = 5 VS = ±5V, fCLK = 250kHz, Q = 5 VS = 3V, fCLK = 125kHz, Q = 5 VS = 4.75V, fCLK = 125kHz, Q = 5 VS = ±5V, fCLK = 250kHz, Q = 5 MIN 2.7 2.65 4.25 4.15 MIN TYP ±0.5 ±0.5 ±0.5 ±1 ±5 ±3 ±4 ±4 150 2.0 2.50 3.00 4.35 TYP 2.80 4.50 4.50 0.020 0.025 – 4.96 16/0.6 33/1.2 70/5.7 90 1.9 0.8 TYP 0.001 to 40 0 to 1 50:1 ±0.2 ● 50:1 ±0.2 ● 50:1 ±0.3 ● ● ● ● ● ● ● ±0.2 ±0.2 ±0.2 ±0.5 ±0.5 ±0.5 MAX ±2 ±2 ±2 ±12.5 ±15.0 ±15.0 4.5 5.5 7.5 MAX 11 0.200 0.225 – 4.80 MAX ±0.75 ±0.75 ±0.75 ±0.55 ±0.55 ±0.55 ±2 ±2 ±2 UNITS % % % ppm/°C ppm/°C mV mV mV µVRMS MHz mA mA mA UNITS V V V V V V V mA mA mA dB MHz V/µs UNITS kHz MHz % % % % % % % % % % % % 8-7 8 LTC1067/LTC1067-50 PARAMETER fO Temperature Coefficient Q Temperature Coefficient DC Offset Voltage (See Table 2) CONDITIONS Clock Feedthrough Maximum Clock Frequency Power Supply Current MIN VOS1 (DC Offset of Input Inverter) VOS2 (DC Offset of First Integrator) VOS3 (DC Offset of Second Integrator) ● ● ● Q < 2.5, VS = ±5V VS = 3V, fCLK = 125kHz VS = 4.75V, fCLK = 125kHz VS = ±5V, fCLK = 250kHz ● ● ● TYP ±1 ±5 ±3 ±4 ±4 150 2.0 1.00 1.45 2.35 MAX ±12.5 ±15.0 ±15.0 2.5 3.0 4.0 UNITS ppm/°C ppm/°C mV mV mV µVRMS MHz mA mA mA ● ≥ 50 VS = ±5V fCLK(MAX) = 2MHz 30 VS = 3.3V fCLK(MAX) = 1MHz 20 30 VS = 5V fCLK(MAX) = 1.5MHz 20 VS = 3.3V fCLK(MAX) = 1MHz 10 10 4TH ORDER BUTTERWORTH LPF VS = SINGLE 3.3V, fIN = 1kHz fCLK = 400kHz, f–3dB = 4kHz RL = 20k –30 VS = ±5V fCLK(MAX) = 2MHz 40 VS = 5V fCLK(MAX) = 1.5MHz MAXIMUM Q MAXIMUM Q 40 –20 (NOISE + THD)/SIGNAL (dB) 50 –40 –50 –60 –70 MODE 1 –80 MODE 3 –90 0 0 10 5 15 CENTER FREQUENCY, fO (kHz) 20 0 10 5 15 CENTER FREQUENCY, fO (kHz) –30 (NOISE + THD)/SIGNAL (dB) (NOISE + THD)/SIGNAL (dB) 4TH ORDER BUTTERWORTH LPF VS = SINGLE 5V, fIN = 1kHz fCLK = 500kHz, f–3dB = 5kHz RL = 20k –50 –60 –70 –80 MODE 1 MODE 3 –100 0.1 1 INPUT VOLTAGE (VRMS) 2 1067 G04 8-8 –40 –65 –60 –70 –80 –100 0.1 2 –60 4TH ORDER BUTTERWORTH LPF VS = ±5V, fIN = 1kHz fCLK = 500kHz, f–3dB = 5kHz RL = 20k –50 –90 –90 1 INPUT VOLTAGE (VRMS) 1067 G03 –20 –20 –40 –100 0.1 1067 G02 1067 G01 –30 20 (NOISE + THD)/SIGNAL (dB) 0 MODE 2 MODE 1 –70 –75 –80 MODE 3 –85 MODE 3 –90 1 INPUT VOLTAGE (VRMS) MODE 1 5 1067 G05 1 4TH ORDER BUTTERWORTH LPF VS = SINGLE 3.3V fCLK = 400kHz, VIN = 0.36VRMS f–3dB = 4kHz, RL = 20k 3 2 INPUT FREQUENCY (kHz) 4 5 1067 G06 LTC1067/LTC1067-50 –75 MODE 1 –80 MODE 3 –85 4TH ORDER BUTTERWORTH LPF VS = SINGLE 5V, fCLK = 500kHz VIN = 0.5VRMS, f–3dB = 5kHz, RL = 20k –90 220 4TH ORDER LOWPASS BUTTERWORTH VS = ±5V, VIN = 1VRMS fCLK = 1MHz, f–3dB = 10kHz RL = 20k –80 200 160 MODE 1 –85 2 3 INPUT FREQUENCY (kHz) 4 5 3 2 4 5 6 7 8 9 10 INPUT FREQUENCY (MHz) 9.2 9.0 8.8 8.6 8.4 40 50 1067 G09 4.5 4.5 VS = 5V POWER SUPPLY CURRENT (mA) 9.4 30 20 Q 5.0 9.6 10 0 1067 G08 OUTPUT VOLTAGE SWING (VP-P) OUTPUT VOLTAGE SWING (VP-P) 3V 80 0 1 VS = ±5V 4.0 3.5 VS = 3.3V 3.0 2.5 2.0 1.5 8.2 8.0 0 4 6 8 10 12 14 16 18 20 LOAD RESISTANCE (kΩ TO GND) 4.0 70°C 3.5 3.0 –20°C 2.5 25°C 2.0 1.5 8 0 1.0 2 100 20 10.0 0 5V 120 40 1067 G07 9.8 140 60 MODE 3 –90 1 ±5V 180 NOISE (µVRMS) (NOISE + THD)/SIGNAL (dB) (NOISE + THD)/SIGNAL (dB) –75 2 4 6 8 10 12 14 16 18 20 3 LOAD RESISTANCE (kΩ TO V –) 1067 G10 4 7 9 6 8 5 TOTAL POWER SUPPLY (V) 1067 G11 10 1067 G12 ≥ VS = ±5V fCLK(MAX) = 2MHz 40 30 VS = 3.3V fCLK(MAX) = 800kHz 20 VS = ±5V fCLK(MAX) = 2MHz 40 VS = 5V fCLK(MAX) = 1.5MHz MAXIMUM Q MAXIMUM Q –20 50 VS = 3V fCLK(MAX) = 600kHz 10 –30 VS = 5V fCLK(MAX) = 1.5MHz 30 VS = 3.3V fCLK(MAX) = 800kHz 20 VS = 3V fCLK(MAX) = 600kHz 10 (NOISE + THD)/SIGNAL (dB) 50 4TH ORDER BUTTERWORTH LPF VS = SINGLE 3V, fIN = 1kHz fCLK = 200kHz, f–3dB = 4kHz –40 –50 –60 –70 –80 MODE 1 MODE 3 –90 0 0 20 10 30 CENTER FREQUENCY, fO (kHz) 0 40 1067 G13 0 20 10 30 CENTER FREQUENCY, fO (kHz) 40 1067 G14 –100 0.1 1 INPUT VOLTAGE (VRMS) 2 1067 G15 8-9 LTC1067/LTC1067-50 –20 4TH ORDER BUTTERWORTH LPF VS = SINGLE 5V, fIN = 1kHz fCLK = 250kHz, f–3dB = 5kHz RL = 20k –40 –30 (NOISE + THD)/SIGNAL (dB) –50 –60 –70 MODE 1 –80 –90 –40 –50 –60 1 INPUT VOLTAGE (VRMS) MODE 3 MODE 2 –70 –80 MODE 1 –100 0.1 2 1 INPUT VOLTAGE (VRMS) MODE 3 –80 –85 –90 3 2 INPUT FREQUENCY (kHz) 4 5 –70 MODE 1 –75 MODE 3 –80 –90 OUTPUT VOLTAGE SWING (VP-P) OUTPUT VOLTAGE SWING (VP-P) 9.0 8.8 8.6 8.4 8.0 3 2 INPUT FREQUENCY (kHz) 4 5 0 2 4 6 8 10 12 14 16 18 20 LOAD RESISTANCE (kΩ TO GND) 1067 G22 8-10 5 10 15 20 25 30 35 40 45 50 Q 1067 G21 2.2 VS = 5V 4.5 4.0 3.5 3.0 VS = 3V 2.5 2.0 2.0 1.8 70°C 1.6 1.4 20°C 1.2 25°C 1.0 0.8 1.0 0 3V 150 0 1 1.5 8.2 5V 200 50 5.0 9.2 250 1067 G20 VS = ±5V 9.4 5 100 10.0 9.6 4 ±5V 1067 G19 9.8 3 2 INPUT FREQUENCY (kHz) 300 –85 1 1 350 NOISE (µVRMS) (NOISE + THD)/SIGNAL (dB) (NOISE + THD)/SIGNAL (dB) MODE 1 –75 4TH ORDER BUTTERWORTH LPF VS = SINGLE 3V, fCLK = 200kHz VIN = 0.34VRMS, f–3dB = 4kHz, RL = 20k 400 4TH ORDER BUTTERWORTH LPF VS = ±5V, fCLK = 250kHz VIN = 1VRMS, f–3dB = 5kHz RL = 20k –65 –70 –80 1067 G18 –60 –65 MODE 3 1067 G17 –60 4TH ORDER BUTTERWORTH LPF VS = SINGLE 5V, fCLK = 250kHz VIN = 0.5VRMS, f–3dB = 5kHz, RL = 20k –75 –90 5 1067 G16 –70 –85 –90 MODE 3 –100 0.1 MODE 1 –65 POWER SUPPLY CURRENT (mA) (NOISE + THD)/SIGNAL (dB) –30 –60 4TH ORDER BUTTERWORTH LPF VS = ±5V, fIN = 1kHz fCLK = 250kHz (225kHz FOR MODE 2) f–3dB = 10kHz, RL = 20k (NOISE + THD)/SIGNAL (dB) –20 0 2 4 6 8 10 12 14 16 18 20 LOAD RESISTANCE (kΩ TO V –) 1067 G23 3 4 7 9 6 8 5 TOTAL POWER SUPPLY (V) 10 1067 G24 2.0 2.0 1.9 1.9 RELATIVE NOISE INCREASE (REFERENCE NOISE WHEN R2/R4 = 1) RELATIVE NOISE INCREASE (REFERENCE NOISE WHEN R5/R6 = 0.02) LTC1067/LTC1067-50 1.8 1.7 1.6 1.5 1.4 1.3 1.2 1.1 0.5 1.5 2.0 2.5 R5/R6 RATIO 1.0 3.0 1.7 1.6 1.5 1.4 1.3 1.2 1.1 1.0 0.2 1.0 0 1.8 3.5 0.3 0.4 0.5 0.6 0.7 R2/R4 RATIO 0.8 1 2 3 V+ 4 0.1µF 5 6 7 8 STAR SYSTEM GROUND µ V+ CLK NC AGND LTC1067 LTC1067-50 SB LPA LPB BPA BPB HPA/NA INV A 16 1 15 2 14 V— V+ SA 1.0 1067 G26 1067 G25 µ 0.9 HPB/NB INV B DIGITAL GROUND PLANE 13 3 V— V+ 0.1µF 0.1µF 4 12 5 11 6 10 7 9 8 STAR SYSTEM GROUND 200Ω CLOCK SOURCE 1067 F01 V+ CLK NC AGND LPA LTC1067 LTC1067-50 BPA HPA/NA INV A 15 1µF 14 V— V+ SA 8 16 SB LPB BPB HPB/NB INV B 13 12 11 10 9 DIGITAL GROUND PLANE 200Ω CLOCK SOURCE FOR MODE 3, THE SA AND SB SUMMING NODE PINS ARE TIED TO THE AGND PIN 106 7 F02 8-11 LTC1067/LTC1067-50 POWER SUPPLY HIGH LEVEL LOW LEVEL ±5V ≥ 2.2V ≤ 0.50V Single 5V ≥ 2.2V ≤ 0.50V Single 3V, 3.3V ≥ 2V ≤ 0.40V µ V+ 1 INV A 8 – HPA/NA BPA LPA 7 6 5 HPB/NB BPB LPB 10 11 12 + V+ 3 15k SA + INV B V – 14 4 AGND 15 15k 9 ∑ – + – + ∑ – 13 CLK 8-12 16 SB 1067 BD LTC1067/LTC1067-50 CC R3 R2 S N VIN R1 – + AGND + Σ – LP BP ∫ f fO = CLK ; fn = fO RATIO R2 R3 Q = R3 ; HON = – ;H =– R1 OBP R1 R2 HOLP = HON ∫ 1067 F03 NOTE: RATIO = 100 FOR LTC1067 = 50 FOR LTC1067-50 8 ® 8-13 LTC1067/LTC1067-50 CC R6 R5 CC R3 R4 R2 S N VIN R1 – + Σ + AGND NOTE: RATIO = 100 FOR LTC1067 = 50 FOR LTC1067-50 LP BP R2 – ∫ HP ∫ 1067 F04 √ f R6 fO = CLK ;f =f RATIO (R6 + R5) n O R3 R6 ; H = – R2 ; H Q = R3 =– R1 R1 OBP R2 (R6 + R5) ON R2 R6 + R5 HOLP = – R6 R1 √ R3 ( VIN R1 – S + Σ – ∫ + ) ∫ 1067 F05 fO = AGND LP BP fCLK RATIO 1 R3 R2 R2 R3 √ R4 ; Q = 1.005 (R2) √ R4 (1 – (RATIO)(0.32)(R4) ) R3 HOHP = – R2 ; HOBP = – R1 R1 1 R3 (1 – (RATIO)(0.32)(R4) ) ; HOLP = – R4 R1 NOTE: RATIO = 100 FOR LTC1067 = 50 FOR LTC1067-50 CC R4 R3 R2 HPN VIN R1 – + S Σ + – LP BP ∫ ∫ 1067 F06 AGND √ 1 + R4 ; f = RATIO R2 1 R3 Q = 1.005 ( ) 1 + R2 √ R4 R3 (1 – (RATIO)(0.32)(R4) ) fO = fCLK RATIO HOHPN = – HOBP = – R2 n fCLK R2 R2 (AC GAIN, f >> fO); HOHPN = – R1 R1 R3 R1 ( 1 R3 1– (RATIO)(0.32)(R4) NOTE: RATIO = 100 FOR LTC1067 = 50 FOR LTC1067-50 8-14 ) 1 1 + R2 R4 ( ; HOLP = – R2 R1 ) (DC GAIN) 1 1 + R2 R4 ( ) LTC1067/LTC1067-50 CC R4 R3 R2 HP VIN R1 – + √ R4 f = RATIO √ R 1 R2 Q = 1.005 (R3) R2 √ R4 R3 (1 – (RATIO)(0.32)(R4) ) R R (f = ∞) = ( ) ( R2 ) ; H (f = 0) = ( ) ( R4 ) H R R1 R R1 f fO = CLK RATIO S Σ – + LP BP R2 ; n fCLK G OHPn H RH L G L OLPn NOTE: RATIO = 100 FOR LTC1067 = 50 FOR LTC1067-50 ∫ ∫ RL RG – HIGHPASS OR LOWPASS NOTCH OUTPUT RH AGND + EXTERNAL OP AMP OR INPUT OP AMP OF THE LTC1067, SIDES A OR B √ √ f fO = CLK 1 + R2 RATIO R4 f R fn = CLK 1+ H RATIO RL RG RG HOLPn (f = 0)= + RH RL CC R4 R3 Q = 1.005 R2 HP VIN R1 – + AGND + S Σ – LP BP ( (R3R2) √ 1 + R2R4 )( ) ( R2 R1 1 1 + R2 R4 8 1067 F07 ) 1 R3 (1 – (RATIO)(0.32)(R4) ) NOTE: RATIO = 100 FOR LTC1067 = 50 FOR LTC1067-50 ∫ ∫ RL RG – RH + LOWPASS NOTCH OUTPUT EXTERNAL OP AMP OR INPUT OP AMP OF THE LTC1067, SIDES A OR B 1067 F08 8-15 LTC1067/LTC1067-50 HP/N INV VOS1 – BP + ∑ – + VOS2 LP VOS3 1067 F09 S µ MODE 1 VOSHP/N VOSBP VOSLP VOS1 [1 + (R2/R3) + (R2/R1)] – (VOS3)(R2/R3) VOS3 VOSHP/N – VOS2 1b VOS1 [1 + (R2/R3) + (R2/R1)] – (VOS3)(R2/R3) VOS3 (VOSHP/N – VOS2)[1 + (R5/R6)] 2 VOS1 [1 + (R2/R3) + (R2/R1) + (R2/R4) – (VOS3) (R2/R3)](R4/R2 + R4) + (VOS2)(R2/R2 + R4) VOS3 VOSHP/N – VOS2 3 VOS2 VOS3 VOS1 [1 + (R4/R1) + (R4/R2) + (R4/R3)] – (VOS2) (R4/R2) – (VOS3)(R4/R3) 8-16 LTC1067/LTC1067-50 V+ INV – ∑ + HP BP LP 1067 F10 8 8-17 LTC1067/LTC1067-50 POSITIVE OUTPUT VOLTAGE SWING (V) 5.0 4.5 LTC1067 4.0 LTC1067-50 3.5 3.0 2.5 0 2 4 6 8 10 12 14 16 18 20 LOAD RESISTANCE (kΩ TO V –) 1067 F11 POSITIVE OUTPUT VOLTAGE SWING (V) 3.3 LTC1067 VS = 3.3V 3.0 2.7 LTC1067-50 VS = 3V 2.4 2.1 1.8 1.5 0 2 4 6 8 10 12 14 16 18 20 LOAD RESISTANCE (kΩ TO V –) 1067 F12 1 2 5V (4.75VMIN) 0.1µF 3 4 5 6 7 8 V+ CLK NC AGND V+ SA V— LTC1067 LTC1067-50 SB LPA LPB BPA BPB HPA/NA INV A HPB/NB INV B 16 14 13 12 11 10 9 1067 F13 8-18 64.9k 1% 15 1µF LTC1067/LTC1067-50 1 2 3V TO 3.6V (LTC1067) 2.7V TO 3.6V (LTC1067-50) 0.1µF 3 4 5 6 7 8 V+ CLK AGND NC V+ SA V— LTC1067 LTC1067-50 SB LPA LPB BPA BPB HPA/NA INV A HPB/NB INV B 16 15 14 33.2k 1% 1µF 13 12 11 10 9 1067 F14 8 8-19 LTC1067/LTC1067-50 CONNECT THIS JUMPER FOR DUAL SUPPLIES JPAGND C1 10 F, 6.3V CONNECT THIS JUMPER FOR SINGLE SUPPLIES. THE LTC1067 HAS ON-CHIP RESISTORS TO GENERATE 1/2 SUPPLY FOR AGND + C2, 0.1 F J1 CLOCK IN TP1 V+ C3 10 F 16V JP61 + C6, 0.1 F 1 D1 MBR0630T1 R61 2 JP51 3 TP9 R51 TP4 VIN TP10 1 3 JP1 4 R41 5 R31 6 R21 7 2 R11 4 8 RH1 RB1 RL1 V+ CLK NC AGND R1 200‰ 1% 16 15 D2 MBR0630T1 JP62 JPVNEG + R62 C7 0.1 F C4 10 F 16V JP52 14 V+ V— LTC1067 13 OR SA SB LTC1067-50 12 LPA LPB 11 BPA BPB 10 HPA/NA HPB/NB 9 INV A INV B JP3 TP2 V— C5 R3 R2 TP8 JP8 R52 RL2 RB2 RH2 + C8 0.1 F JP4 JP2 1 2 3 3 + 8 C9 10 F 36V TP5 VOUT 1 2 — 1/2 4 LT1498 C13 R42 R32 R22 TP3 VOA+ TP6 TP7 VOA— C10 0.1 F + C11 10 F 36V TP11 JP9 JP6 JP5 R4 5 + 6 — 7 1/2 LT1498 JP7 C12 1067 F15 8-20 LTC1067/LTC1067-50 1 5V 0.1µF 2 3 4 R41, 20k R31, 47.5k VIN RIN1 16.9k 5 RIN2 22.6k 6 R21, 22.6k 7 8 CIN1 1500pF 5% V+ CLK AGND NC 16 14 V– V+ SA SB LTC1067 LPA LPB BPA BPB HPA/NA HPB/NB INV A INV B fCLK 15 –5V 0.1µF 13 12 R42, 47.5k 11 R32, 29.4k 10 R22, 45.3k VS fCUTOFF CIN1 fCLK 9 5V 10k 1500pF 1MHz 3V 5k 3000pF 500kHz 8 1067 TA05a RH1, 118k VOUT RL1, 24.3k 10 1.00 0 0.75 –10 0.50 –20 0.25 –30 0 GAIN (dB) GAIN (dB) ±5V 20k 15k 750pF 1000pF 2MHz 1.5MHz –40 –50 –0.25 CIN1 = 1500pF + 5% –0.50 –60 –0.75 –70 –1.00 –80 –1.25 –90 CIN1 = 1500pF – 5% CIN1 = 1500pF –1.50 1 10 FREQUENCY (kHz) 100 1067 TA05b 1 2 4 6 8 10 FREQUENCY (kHz) 20 1067 TA05c 8-21 LTC1067/LTC1067-50 1 5V 0.1µF R61 40.2k 2 3 4 R51 4.99k 5 R31, 56.2k 6 R21, 10k 7 R11 60.4k 8 VIN V+ CLK AGND NC 16 100kHz 15 —5V 0.1µF 14 V— V+ SA SB LTC1067 LPA LPB BPA BPB HPA/NA HPB/NB INV A INV B 13 12 R42, 80.6k 11 R32, 53.6k 10 R22, 10k VS MAXIMUM FREQUENCY CENTER 9 RB1, 36.5k –5V 5kHz 5V (OR –2.5V) 3V (OR –1.5V) 2.5kHz 2.2kHz 1067 TA06a VOUT 10 5 GAIN 0 INPUT (500mV/DIV) –10 3.0 DELAY –15 2.5 –20 2.0 –25 1.5 –30 1.0 –35 0.5 –40 600 760 920 1080 FREQUENCY (Hz) 1240 DELAY (ms) GAIN (dB) –5 OUTPUT (50mV/DIV) 0 1400 5ms/DIV 1067 TA06c 1067 TA06b 1 5V 0.1µF R61 7.32k 1µF 3 R51 4.99k R31, 255k R21, 4.99k R11 267k VIN 2 V+ NC CLK AGND V+ V— 16 14 13 SB LTC1067-50 12 5 LPA LPB 11 6 BPA BPB 10 7 HPA/NA HPB/NB 9 8 INV A INV B 4 SA 64kHz 15 R62 R52 4.99k 8.66k R32, 255k MAXIMUM fCENTER 12kHz 7.5kHz 5.5kHz VS SINGLE 5V SINGLE 3.3V SINGLE 3V NOISE (FILTER INPUT AT V +/2) 426 VRMS 333 VRMS 290 VRMS R22, 4.99k RB1, 115k VOUT 8-22 VS SINGLE 5V SINGLE 3.3V SINGLE 3V 1067 TA07a LTC1067/LTC1067-50 1 0 0 5 –1 10 –2 15 –3 GAIN (dB) 20 25 –4 VOUT (50mV/DIV) –5 30 –6 35 –7 40 –8 45 500 VIN (500mV/DIV) –9 700 900 1100 1300 FREQUENCY (kHz) 1500 960 980 1000 1020 FREQUENCY (kHz) 1067 TA07b 1 5V 0.1µF 2 R61 15k 3 4 R51 4.99k 5 R31, 232k R21, 4.99k R11 232k 6 7 8 VIN1 CLK AGND 16 15 14 V— V+ SA SB LTC1067 LPA LPB BPA BPB HPA/NA HPB/NB INV A VIN2 1067 TA07d INV B 5 150kHz 0 —5V 0.1µF VOUT1 VOUT2 –5 –10 13 12 R42, 5.23k 11 R32, 75k 10 R22, 4.99k –15 –20 –25 –30 –35 9 8 –40 –45 R12,140k VOUT1 5ms/DIV 1067 TA07b V+ NC 1040 GAIN (dB) GAIN (dB) –5 VOUT2 1067 TA08a 1 2 3 4 FREQUENCY (kHz) 5 1067 TA08b 8-23 LTC1067/LTC1067-50 0 5V 0.1µF 2 3 R61, 9.88k* 4 R51, 4.99k* 5 R31, 61.9k 6 R21, 10k 7 C21, 300pF** 8 V+ CLK AGND NC V+ V— SA SB LTC1067 LPB LPA BPB BPA HPA/NA INV A HPB/NB INV B 16 200‰ 14 –20 1µF –30 R62, 10k* 13 12 R52, 4.99k* 11 R32, 464k 10 R22, 75k 9 C22, 30pF** R11, 18.7k * R51, R61, R52, R62 ARE 0.1% TOLERANCE RESISTORS ** C21 AND C22 IMPROVE THE NOTCH DEPTH WHERE 1 (30)(f NOTCH) < < (75)(f NOTCH) 2π(R2x)(C2X) WITHOUT C21 AND C22 THE NOTCH DEPTH IS LIMITED TO —35dB 1067 TA03 *** VIN † 1.25VP-P 8-24 –40 –50 –60 –70 VOUT RH1, 40.2k VIN*** –10 fCLK = 125kHz 15 GAIN (dB) 1 –80 –90 –100 800 900 1000 1100 FREQUENCY (kHz) 1200 1067 TA04