MCWI03 SERIES - MINMAX Technology

®
MCWI03 SERIES
DC/DC CONVERTER 3W, SIP-Package
FEATURES
►Compact SIP-8 Package
►Ultra-wide 4 : 1 Input Voltage Range
►Fully Regulated Output Voltage
►I/O Isolation 1600 VDC
►Operating Ambient Temp. Range -40℃ to +85℃
►Overload and Short Circuit Protection
►Remote On/Off Control
►UL/cUL/IEC/EN 60950-1 Safety Approval
PRODUCT OVERVIEW
The MINMAX MCWI03 series is a range of isolated 3W DC/DC converter modules featuring fully regulated output and ultra-wide 4:1 input voltage ranges.
The product comes in a SIP-8 package with a very small footprint occupying only 2.0 cm2 (0.3 square in.) on the PCB.
An excellent efficiency allows an operating temperature range of -40°C to +85°C. Further features include remote On/Off control and over load protection.
The very compact dimensions of these DC/DC converters make them an ideal solution for many space critical applications in battery-powered equipment
and instrumentation.
Model Selection Guide
Model
Number
MCWI03-12S033
MCWI03-12S05
MCWI03-12S12
MCWI03-12S15
MCWI03-12D05
MCWI03-12D12
MCWI03-12D15
MCWI03-24S033
MCWI03-24S05
MCWI03-24S12
MCWI03-24S15
MCWI03-24D05
MCWI03-24D12
MCWI03-24D15
MCWI03-48S033
MCWI03-48S05
MCWI03-48S12
MCWI03-48S15
MCWI03-48D05
MCWI03-48D12
MCWI03-48D15
Input
Voltage
(Range)
Output
Voltage
VDC
VDC
3.3
5
12
15
±5
±12
±15
3.3
5
12
15
±5
±12
±15
3.3
5
12
15
±5
±12
±15
12
(4.5 ~ 18)
24
(9 ~ 36)
48
(18 ~ 75)
Output Current
Input Current
Max. capacitive
Load
Max.
Min.
@Max. Load
@No Load
mA
700
600
250
200
±300
±125
±100
700
600
250
200
±300
±125
±100
700
600
250
200
±300
±125
±100
mA
175
150
63
50
±75
±31
±25
175
150
63
50
±75
±31
±25
175
150
63
50
±75
±31
±25
mA(typ.)
260
320
313
313
313
313
313
128
156
154
154
158
156
154
65
79
79
79
79
79
78
mA(typ.)
60
25
15
@Max. Load
μF
1760
1000
170
110
470 #
100 #
47 #
1760
1000
170
110
470 #
100 #
47 #
1760
1000
170
110
470 #
100 #
47 #
# For each output
E-mail:[email protected]
2015/07/31 REV:7
Tel:886-6-2923150
Page 1 of 4
Efficiency
(typ.)
%
74
78
80
80
80
80
80
75
80
81
81
79
80
81
74
79
79
79
79
79
80
®
MCWI03 SERIES
DC/DC CONVERTER 3W, SIP-Package
Input Specifications
Parameter
Model
12V Input Models
24V Input Models
48V Input Models
12V Input Models
24V Input Models
48V Input Models
12V Input Models
24V Input Models
48V Input Models
Input Surge Voltage (1 sec. max.)
Start-Up Threshold Voltage
Under Voltage Shutdown
Short Circuit Input Power
Input Filter
Min.
-0.7
-0.7
-0.7
3
4.5
8.5
---------
All Models
Typ.
Max.
--25
--50
--100
4
4.5
6
9
12
18
3.5
4
--8
--16
--2500
Internal Capacitor
Unit
VDC
mW
Remote On/Off Control
Parameter
Converter On
Converter Off
Device Standby Input Current
Control Input Current ( on )
Control Input Current ( off )
Control Common
Conditions
Min.
Typ.
Max.
Under 0.6 VDC or Open Circuit, drops down to 0VDC by 2mV/℃
2.7
--15
--1
2.5
Vin = 0V
----1
Vin = 5.0V
----1
Referenced to Negative Input
Unit
VDC
mA
mA
mA
Output Specifications
Parameter
Conditions
Output Voltage Setting Accuracy
Min.
Typ.
Max.
Unit
---
---
±1.0
%Vnom.
Output Voltage Balance
Dual Output, Balanced Loads
---
±0.5
±2.0
%
Line Regulation
Vin=Min. to Max. @Full Load
---
±0.3
±0.5
%
Load Regulation
Io=25% to 100%
---
±0.5
±1.0
%
Ripple & Noise
0-20 MHz Bandwidth
---
---
75
mV P-P
---
300
500
μsec
---
±3
±5
%
---
---
±0.02
%/℃
110
140
---
%
Transient Recovery Time
25% Load Step Change
Transient Response Deviation
Temperature Coefficient
Over Load Protection
Foldback
Short Circuit Protection
Continuous, Automatic Recovery
General Specifications
Parameter
I/O Isolation Voltage
Conditions
Min.
Typ.
Max.
Unit
60 Seconds
1600
---
---
VDC
1 Second
1920
---
---
VDC
I/O Isolation Resistance
500 VDC
1000
---
---
MΩ
I/O Isolation Capacitance
100KHz, 1V
---
200
---
pF
---
350
---
KHz
Switching Frequency
MTBF (calculated)
MIL-HDBK-217F@25℃, Ground Benign
Safety Approvals
800,000
Hours
UL/cUL 60950-1 recognition (CSA certificate), IEC/EN 60950-1(CB-report)
Environmental Specifications
Parameter
Operating Ambient Temperature Range
(See Power Derating Curve)
Conditions
Min.
Max.
Unit
Natural Convection
-40
+85
℃
℃
Case Temperature
---
105
Storage Temperature Range
-55
+125
℃
Humidity (non condensing)
---
95
% rel. H
260
℃
Cooling
Natural Convection
Lead Temperature (1.5mm from case for 10Sec.)
E-mail:[email protected]
2015/07/31 REV:7
Tel:886-6-2923150
Page 2 of 4
---
®
MCWI03 SERIES
DC/DC CONVERTER 3W, SIP-Package
Power Derating Curve
100
Natural
Convection
20LFM
Output Power (%)
80
400LFM
60
40
20
0
~
-40
0
20
40
60
80
100 110
Ambient Temperature C
Notes
1
2
3
4
5
6
7
8
Specifications typical at Ta=+25℃, resistive load, nominal input voltage and rated output current unless otherwise noted.
Transient recovery time is measured to within 1% error band for a step change in output load of 75% to 100%.
Ripple & Noise measured with a 1μF M/C.
These power converters require a minimum output loading to maintain specified regulation, operation under no-load conditions will not damage these
modules; however, they may not meet all specifications listed.
We recommend to protect the converter by a slow blow fuse in the input supply line.
Other input and output voltage may be available, please contact factory.
That “natural convection” is about 20LFM but is not equal to still air (0 LFM).
Specifications are subject to change without notice.
Package Specifications
Mechanical Dimensions
0.5 [0.02]
3.2
[0.13]
11.2 [0.44]
21.8 [0.86]
0.5
[0.02]
2X2.54 5.08
[2X0.10] [0.20]
2.0
[0.08]
Pin Connections
Pin
Single Output
1
-Vin
2
+Vin
3
Remote On/Off
5
NC
6
+Vout
7
-Vout
8
NC
Dual Output
-Vin
+Vin
Remote On/Off
NC
+Vout
Common
-Vout
NC: No Connection
3X2.54
[3X0.10]
3
5
6
7
8
9.3 [0.37]
2
0.25 [0.01]
Bottom View
1
2.7 [0.11]
20.8 [0.82]
0.50
[0.02]
Physical Characteristics
Case Size
Case Material
Pin Material
Weight
:
:
:
:
21.8x9.3x11.2 mm (0.86x0.37x0.44 inches)
Non-Conductive Black Plastic (flammability to UL 94V-0 rated)
Alloy 42
4.8g
E-mail:[email protected]
2015/07/31 REV:7
Tel:886-6-2923150
Page 3 of 4
►All dimensions in mm
(inches)
(X.XX±0.02)
X.XX±0.25 ( X.XXX±0.01)
►Pins ±0.1(±0.004)
►Tolerance: X.X±0.5
®
MCWI03 SERIES
DC/DC CONVERTER 3W, SIP-Package
Test Setup
Peak-to-Peak Output Noise Measurement Test
Use a Cout 0.47μF ceramic capacitor. Scope measurement should be made by using a BNC socket, measurement bandwidth is 0-20 MHz. Position the load between
50 mm and 75 mm from the DC/DC Converter.
+Vin
+Out
Copper Strip
Single Output
DC / DC
Converter
-Vin
Cout
-Out
+Vin
Dual Output
DC / DC
Converter
Resistive
Load
Scope
-Vin
Copper Strip
+Out
Copper Strip
Cout
Com.
Cout
-Out
Scope
Resistive
Load
Copper Strip
Scope
Copper Strip
330pF
330pF
Technical Notes
Remote On/Off
Negative logic remote on/off turns the module off during a logic high voltage on the remote on/off pin, and on during a logic low. To turn the power module on and off,
the user must supply a switch to control the voltage between the on/off terminal and the -Vin terminal. The switch can be an open collector or equivalent.
A logic high is 2.7V to 15V. A logic low is under 0.6 VDC or open circuit, drops down to 0VDC by 2mV/℃. The maximum sink current at on/off terminal during a logic
low is 1 mA. The maximum allowable leakage current of the switch at on/off terminal= (under 0.6VDC or open circuit) is 1mA.
Maximum Capacitive Load
The MCWI03 series has limitation of maximum connected capacitance at the output. The power module may be operated in current limiting mode during start-up,
affecting the ramp-up and the startup time. The maximum capacitance can be found in the data sheet.
Overcurrent Protection
To provide protection in a fault (output overload) condition, the unit is equipped with internal current limiting circuitry and can endure current limiting for an unlimited
duration. At the point of current-limit inception, the unit shifts from voltage control to current control. The unit operates normally once the output current is brought back
into its specified range.
Input Source Impedance
The power module should be connected to a low ac-impedance input source. Highly inductive source impedances can affect the stability of the power module. In
applications where power is supplied over long lines and output loading is high, it may be necessary to use a capacitor at the input to ensure startup.
Capacitor mounted close to the power module helps ensure stability of the unit, it is commended to use a good quality low Equivalent Series Resistance (ESR < 1.0Ω
at 100 KHz) capacitor of a 3.3μF for the 12V input devices and a 1.5μF for the 24V and 48V devices.
+
DC Power
Source
+Vin
+
+Out
DC / DC
Converter
Load
Cin
-
-Vin
-Out
Output Ripple Reduction
A good quality low ESR capacitor placed as close as practicable across the load will give the best ripple and noise performance. To reduce output ripple, it is
recommended to use 3.3μF capacitors at the output.
+
+Vin
DC Power
Source
-
+Out
Single Output
DC / DC
Converter
-Vin
+
Cout
Load
-Out
+Vin
DC Power
Source
-
+Out
Dual Output
DC / DC Com.
Converter
-Vin
-Out
Cout
Load
Load
Cout
Thermal Considerations
Many conditions affect the thermal performance of the power module, such as orientation, airflow over the module and board spacing. To avoid exceeding the
maximum temperature rating of the components inside the power module, the case temperature must be kept below 105℃. The derating curves are determined from
measurements obtained in a test setup.
Position of air velocity
probe and thermocouple
15mm / 0.6in
50mm / 2in
Air Flow
DUT
18, Sin Sin Road, An-Ping Industrial District, Tainan 702, Taiwan
Tel: 886-6-2923150 Fax: 886-6-2923149 E-mail: [email protected]
Minmax Technology Co., Ltd.
2015/07/31 REV:7
Page 4 of 4