19-6844; Rev 1; 2/14 备有评估板 MAX17504 4.5V–60V、3.5A、高效率、 同步降压DC-DC转换器,带内部补偿 概述 优势和特性 MAX17504是一款高效率、高电压、同步整流降压型转换 器;内置双MOSFET,可工作在4.5V至60V的输入电压范 围。它可提供高达3.5A的电流以及0.9V至90% VIN输出电 压。全输出电压范围的内置补偿,无需外部元件。反馈(FB) 调节精度在-40°C至+125°C温度范围内为±1.1%。器件采 用紧凑的(5mm x 5mm) TQFN无铅(Pb)封装,带裸焊盘。 提供仿真模型。 ● 减少外围器件,降低总体成本 • 无需肖特基同步电路,提高效率、降低成本 • 内部补偿,在任意输出电压下均可稳定工作 • 全陶瓷电容设计:超小尺寸布局,外部元件只有8个 ● 减少DC-DC稳压器物料清单 • 4.5V至60V宽输入电压范围 • 0.9V至90% VIN输出电压 • 整个温度范围内提供高达3.5A电流 • 200kHz至2.2MHz可调节频率,附带外部同步 • 采用20引脚、5mm x 5mm、TQFN封装 ● 降低功耗 • 峰值效率高于90% • PFM和DCM模式,轻载时保持高效率 • 关断电流仅为2.8μA (典型值)。 ● 工作可靠 • 打嗝模式限流和自动重启 • 内置输出电压监测(开漏RESET引脚) • 电阻可编程EN/UVLO门限 • 可调软启动和预偏置上电电压 • -40°C至+125°C工作温度范围 器件采用峰值电流模式架构,带有MODE功能,可采用脉 宽调制(PWM)、脉冲频率调制(PFM)或非连续模式(DCM) 等 控 制 模 式。PWM工 作 模 式 在 任 何 负 载 条 件 下 都 保 持 固定频率工作,这在对开关频率敏感的应用中非常有用。 PFM工作模式没有负向电感电流以及轻载条件下额外的 跳脉冲,以提高效率。DCM工作模式不采用跳脉冲,而 是在轻载条件下仅禁止负向电感电流,采用固定工作频率 能工作比PFM模式的轻载更低负载条件下。DCM工作模 式的效率介于PWM和PFM模式之间。内置低导通电阻的 MOSFET确保满载时的高效率,同时也简化了PCB的布线。 可编程软启动功能可使用户降低输入浪涌电流。器件有一 个输出使能/欠压锁定引脚(EN/UVLO),允许用户在输入电 压达到相应要求时开启。输出电压成功达到稳压范围时, 经过一定延时,开漏的RESET引脚给系统输出一个电源就 绪指示信号。 应用 ● ● ● ● ● ● 工业电源 分布式电源调节 基站电源 壁挂式变压稳压器 高压单板系统 通用负载板上电源 定购信息在数据资料的最后给出。 相关型号以及配合该器件使用的推荐产品,请参见:china.maximintegrated. com/MAX17504.related。 本文是英文数据资料的译文,文中可能存在翻译上的不准确或错误。如需进一步确认,请在您的设计中参考英文资料。 有关价格、供货及订购信息,请联络Maxim亚洲销售中心:10800 852 1249 (北中国区),10800 152 1249 (南中国区), 或访问Maxim的中文网站:china.maximintegrated.com。 MAX17504 4.5V–60V、3.5A、高效率、 同步降压DC-DC转换器,带内部补偿 Absolute Maximum Ratings VIN to PGND..........................................................-0.3V to +65V EN/UVLO to SGND................................................-0.3V to +65V LX to PGND................................................-0.3V to (VIN + 0.3V) BST to PGND.........................................................-0.3V to +70V BST to LX..............................................................-0.3V to +6.5V BST to VCC............................................................-0.3V to +65V FB, CF, RESET, SS, MODE, SYNC, RT to SGND......................................................-0.3V to +6.5V VCC to SGND........................................................-0.3V to +6.5V SGND to PGND.....................................................-0.3V to +0.3V LX Total RMS Current.........................................................±5.6A Output Short-Circuit Duration.....................................Continuous Continuous Power Dissipation (TA = +70°C) (multilayer board) TQFN (derate 33.3mW/°C above TA = +70°C).......2666.7mW Operating Temperature Range.......................... -40NC to +125°C Junction Temperature.......................................................+150°C Storage Temperature Range............................. -65NC to +160°C Lead Temperature (soldering, 10s).................................. +300°C Soldering Temperature (reflow)........................................+260°C Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Package Thermal Characteristics (Note 1) TQFN Junction-to-Ambient Thermal Resistance (θJA)...........30°C/W Junction-to-Case Thermal Resistance (θJC)..................2°C/W Note 1: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board. For detailed information on package thermal considerations, refer to china.maximintegrated.com/thermal-tutorial. Electrical Characteristics (VIN = VEN/UVLO = 24V, RRT = 40.2kI (500kHz), CVCC = 2.2µF, VPGND = VSGND = VMODE = VSYNC = 0V, LX = SS = RESET = open, VBST to VLX = 5V, VFB = 1V, TA = TJ = -40°C to +125°C, unless otherwise noted. Typical values are at TA = +25°C. All voltages are referenced to SGND, unless otherwise noted.) (Note 2) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS 60 V INPUT SUPPLY (VIN) Input Voltage Range Input Shutdown Current VIN IIN-SH VEN/UVLO = 0V (shutdown mode) 2.8 VFB = 1V, MODE = RT= open 118 VFB = 1V, MODE = open 162 IQ_DCM DCM mode, VLX = 0.1V 1.16 IQ_PWM Normal switching mode, fSW = 500kHz, VFB = 0.8V 9.5 IQ_PFM Input Quiescent Current 4.5 4.5 µA 1.8 mA ENABLE/UVLO (EN/UVLO) EN/UVLO Threshold EN/UVLO Input Leakage Current VENR VEN/UVLO rising 1.19 1.215 1.24 VENF VEN/UVLO falling 1.068 1.09 1.111 -50 0 +50 nA 4.75 5 5.25 V VCC = 4.3V, VIN = 6V 26.5 54 100 mA VIN = 4.5V, IVCC = 20mA 4.2 IEN VEN/UVLO = 0V, TA = +25ºC V LDO VCC Output Voltage Range VCC Current Limit VCC Dropout china.maximintegrated.com VCC IVCC-MAX VCC-DO 6V < VIN < 60V, IVCC = 1mA 1mA ≤ IVCC ≤ 25mA V 2 MAX17504 4.5V–60V、3.5A、高效率、 同步降压DC-DC转换器,带内部补偿 Electrical Characteristics (continued) (VIN = VEN/UVLO = 24V, RRT = 40.2kI (500kHz), CVCC = 2.2µF, VPGND = VSGND = VMODE = VSYNC = 0V, LX = SS = RESET = open, VBST to VLX = 5V, VFB = 1V, TA = TJ = -40°C to +125°C, unless otherwise noted. Typical values are at TA = +25°C. All voltages are referenced to SGND, unless otherwise noted.) (Note 2) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS VCC_UVR VCC rising 4.05 4.2 4.3 VCC_UVF VCC falling 3.65 3.8 3.9 High-Side nMOS On-Resistance RDS-ONH ILX = 0.3A 165 325 mΩ Low-Side nMOS On-Resistance RDS-ONL ILX = 0.3A 80 150 mΩ LX Leakage Current ILX_LKG VLX = VIN - 1V, VLX = VPGND + 1V, TA = +25ºC -2 +2 µA VSS = 0.5V 4.7 5 5.3 µA MODE = SGND or MODE = VCC 0.89 0.9 0.91 MODE = open 0.89 0.915 0.936 0 < VFB < 1V, TA = +25ºC -50 VCC UVLO V POWER MOSFET AND BST DRIVER SOFT-START (SS) Charging Current ISS FEEDBACK (FB) FB Regulation Voltage VFB_REG FB Input Bias Current IFB +50 V nA MODE MODE Threshold VM-DCM MODE = VCC (DCM mode) VM-PFM MODE = open (PFM mode) VM-PWM MODE = GND (PWM mode) VCC 1.6 V VCC/2 1.4 CURRENT LIMIT Peak Current-Limit Threshold Runaway Current-Limit Threshold IPEAK-LIMIT IRUNAWAY-LIMIT Valley Current-Limit Threshold ISINK-LIMIT PFM Current-Limit Threshold IPFM MODE = open or MODE = VCC 4.4 5.1 4.9 -0.16 MODE = GND 5.85 A 5.7 6.7 A 0 +0.16 -1.8 MODE = open 0.6 0.75 0.9 RRT = 102kΩ 180 200 220 A A RT AND SYNC Switching Frequency fSW SYNC Frequency Capture Range SYNC Pulse Width SYNC Threshold china.maximintegrated.com RRT = 40.2kΩ 475 500 525 RRT = 8.06kΩ 1950 2200 2450 RRT = OPEN 460 500 540 fSW set bt RRT 1.1 x fSW 1.4 x fSW 50 VIH VIL kHz kHz ns 2.1 0.8 V 3 MAX17504 4.5V–60V、3.5A、高效率、 同步降压DC-DC转换器,带内部补偿 Electrical Characteristics (continued) (VIN = VEN/UVLO = 24V, RRT = 40.2kI (500kHz), CVCC = 2.2µF, VPGND = VSGND = VMODE = VSYNC = 0V, LX = SS = RESET = open, VBST to VLX = 5V, VFB = 1V, TA = TJ = -40°C to +125°C, unless otherwise noted. Typical values are at TA = +25°C. All voltages are referenced to SGND, unless otherwise noted.) (Note 2) PARAMETER VFB Undervoltage Trip Level to Cause Hiccup SYMBOL CONDITIONS VFB-HICF HICCUP Timeout MIN TYP MAX UNITS 0.56 0.58 0.6 V (Note 3) Minimum On-Time tON-MIN Minimum Off-Time tOFF-MIN 32768 140 LX Dead Time Cycles 135 ns 160 ns 5 ns RESET RESET Output Level Low IRESET = 1mA RESET Output Leakage Current TA = TJ = +25ºC, VRESET = 5.5V -0.1 0.4 V +0.1 µA VOUT Threshold for RESET Assertion VFB-OKF VFB falling 90.5 92 94 % VOUT Threshold for RESET Deassertion VFB-OKR VFB rising 93.8 95 97.2 % RESET Deassertion Delay After FB Reaches 95% Regulation 1024 Cycles 165 ºC 10 ºC THERMAL SHUTDOWN Thermal Shutdown Threshold Temperature rising Thermal Shutdown Hysteresis Note 2: All limits are 100% tested at +25°C. Limits over temperature are guaranteed by design. Note 3: See the Overcurrent Protection/HICCUP Mode section for more details. china.maximintegrated.com 4 MAX17504 4.5V–60V、3.5A、高效率、 同步降压DC-DC转换器,带内部补偿 典型工作特性 (VIN = VEN/UVLO = 24V, VPGND = VSGND = 0V, CVIN = 2 x 2.2µF, CVCC = 2.2µF, CBST = 0.1µF, CSS = 12,000pF, RT = MODE = open, TA = TJ = -40°C to +125°C, unless otherwise noted. Typical values are at TA = +25°C. All voltages are referenced to SGND, unless otherwise noted.) 5V OUTPUT, PWM MODE, FIGURE 3 CIRCUIT, EFFICIENCY vs. LOAD CURRENT toc01 100 100 90 VIN = 24V 70 VIN = 36V VIN = 48V VIN = 12V 60 50 80 VIN = 24V VIN = 36V 70 VIN = 12V 60 EFFICIENCY (%) 80 VIN = 48V 0 40 500 1000 1500 2000 2500 3000 3500 LOAD CURRENT (mA) 70 VIN = 48V VIN = 24V VIN = 36V 100 1000 3500 VIN = 48V VIN = 36V VIN = 24V 70 60 VIN = 12V 50 VIN = 12V 40 40 MODE = OPEN 1 10 100 1000 30 3500 MODE = VCC 1 3.3V OUTPUT, DCM MODE, FIGURE 4 CIRCUIT, EFFICIENCY vs. LOAD CURRENT 100 OUTPUT VOLTAGE (V) VIN = 12V 60 50 40 10 100 LOAD CURRENT (mA) china.maximintegrated.com 1000 5.05 toc07 VIN = 36V 5.04 5.03 5.02 5.01 VIN = 12V VIN = 48V 5.00 4.99 MODE = VCC 1 3500 5.06 VIN = 24V 70 1000 5.07 VIN = 36V 80 100 5V OUTPUT, PWM MODE, FIGURE 3 CIRCUIT, LOAD AND LINE REGULATION 5.08 VIN = 48V 90 10 LOAD CURRENT (mA) LOAD CURRENT (mA) EFFICIENCY (%) 10 5V OUTPUT, DCM MODE, FIGURE 3 CIRCUIT, EFFICIENCY vs. LOAD CURRENT 100 80 30 MODE = OPEN 1 LOAD CURRENT (mA) 80 30 VIN = 12V LOAD CURRENT (mA) 90 50 VIN = 48V VIN = 24V VIN = 36V 60 30 500 1000 1500 2000 2500 3000 3500 EFFICIENCY (%) EFFICIENCY (%) 0 90 60 70 40 MODE = SGND 3.3V OUTPUT, PFM MODE, FIGURE 4 CIRCUIT, EFFICIENCY vs. LOAD CURRENT toc04 100 80 50 50 MODE = SGND 5V OUTPUT, PFM MODE, FIGURE 3 CIRCUIT, EFFICIENCY vs. LOAD CURRENTtoc03 100 90 EFFICIENCY (%) EFFICIENCY (%) 90 40 3.3V OUTPUT, PWM MODE, FIGURE 4 CIRCUIT, EFFICIENCY vs. LOAD CURRENT toc02 3500 4.98 VIN = 24V MODE = SGND 0 500 1000 1500 2000 2500 3000 3500 LOAD CURRENT (mA) 5 MAX17504 4.5V–60V、3.5A、高效率、 同步降压DC-DC转换器,带内部补偿 典型工作特性(续) (VIN = VEN/UVLO = 24V, VPGND = VSGND = 0V, CVIN = 2 x 2.2µF, CVCC = 2.2µF, CBST = 0.1µF, CSS = 12,000pF, RT = MODE = open, TA = TJ = -40°C to +125°C, unless otherwise noted. Typical values are at TA = +25°C. All voltages are referenced to SGND, unless otherwise noted.) 5V OUTPUT, PFM MODE, FIGURE 3 CIRCUIT, LOAD AND LINE REGULATION toc09 3.3V OUTPUT, PWM MODE, FIGURE 4 CIRCUIT, LOAD AND LINE REGULATION 3.36 toc08 5.5 3.35 3.31 3.30 VIN = 36V VIN = 12V 3.28 VIN = 24V 3.27 5.1 5.0 4.9 4.8 4.5 LOAD CURRENT (mA) SWITCHING FREQUENCY (kHz) VIN = 36V 4.6 500 1000 1500 2000 2500 3000 3500 VIN = 48V MODE = OPEN 0 3.4 3.3 3.2 VIN = 24V 3.1 3.0 500 1000 1500 2000 2500 3000 3500 toc10 VIN = 12V VIN = 36V VIN = 48V MODE = OPEN 0 500 1000 1500 2000 2500 3000 3500 LOAD CURRENT (mA) SWITCHING FREQUENCY vs. RT RESISTANCE 2400 VIN = 12V 4.7 MODE = SGND 0 OUTPUT VOLTAGE (V) 3.32 3.29 5.2 OUTPUT VOLTAGE (V) OUTPUT VOLTAGE (V) VIN = 48V 3.5 VIN = 24V 5.3 3.33 3.26 3.6 5.4 3.34 3.3V OUTPUT, PFM MODE, FIGURE 4 CIRCUIT, LOAD AND LINE REGULATION LOAD CURRENT (mA) SOFT-START/SHUTDOWN FROM EN/UVLO, 5V OUTPUT, 3.5A LOAD CURRENT, FIGURE 3 CIRCUIT toc12 toc11 2200 2000 VEN/UVLO 1800 2V/div 1600 1400 1200 1000 800 600 400 200 0 0 20 40 60 80 VOUT 2V/div IOUT 2A/div VRESET 5V/div 100 1ms/div RRT (kΩ) SOFT-START/SHUTDOWN FROM EN/UVLO, 3.3V OUTPUT, 3.5A LOAD CURRENT, FIGURE 4 CIRCUIT toc13 SOFT-START/SHUTDOWN FROM EN/UVLO, 5V OUTPUT, PFM MODE, 5mA LOAD CURRENT, FIGURE 3 CIRCUIT toc14 MODE = OPEN VEN/UVLO 2V/div VOUT 2V/div IOUT 2A/div VRESET 5V/div VEN/UVLO 2V/div VOUT 1V/div VRESET 1ms/div china.maximintegrated.com 2ms/div 5V/div 6 MAX17504 4.5V–60V、3.5A、高效率、 同步降压DC-DC转换器,带内部补偿 典型工作特性(续) (VIN = VEN/UVLO = 24V, VPGND = VSGND = 0V, CVIN = 2 x 2.2µF, CVCC = 2.2µF, CBST = 0.1µF, CSS = 12,000pF, RT = MODE = open, TA = TJ = -40°C to +125°C, unless otherwise noted. Typical values are at TA = +25°C. All voltages are referenced to SGND, unless otherwise noted.) SOFT-START WITH 2.5V PREBIAS, 5V OUTPUT, PWM MODE, FIGURE 3 CIRCUIT SOFT-START/SHUTDOWN FROM EN/UVLO, 3.3V OUTPUT, PFM MODE, 5mA LOAD CURRENT, FIGURE 4 CIRCUIT toc15 VEN/UVLO 2V/div SOFT-START WITH 2.5V PREBIAS, 3.3V OUTPUT, PFM MODE, FIGURE 4 CIRCUIT toc17 toc16 VEN/UVLO VEN/UVLO 2V/div 2V/div 1V/div 2V/div VOUT VRESET 1V/div VOUT 5V/div VRESET VOUT VRESET 5V/div 5V/div MODE = SGND MODE = OPEN 2ms/div MODE = OPEN 1ms/div STEADY-STATE SWITCHING WAVEFORMS, 5V OUTPUT, 3.5A LOAD CURRENT, FIGURE 3 CIRCUIT toc18 1ms/div STEADY-STATE SWITCHING WAVEFORMS, 5V OUTPUT, PWM MODE, NO LOAD, FIGURE 3 CIRCUIT toc19 MODE = SGND VOUT (AC) 20mV/div VOUT (AC) VLX 10V/div VLX 10V/div ILX 500mA/div ILX 2A/div 1μs/div STEADY-STATE SWITCHING WAVEFORMS, 5V OUTPUT, PFM MODE, 25mA LOAD, FIGURE 3 CIRCUIT toc20 20mV/div 1μs/div STEADY-STATE SWITCHING WAVEFORMS, 5V OUTPUT, DCM MODE, 25mA LOAD, FIGURE 3 CIRCUIT toc21 MODE = VCC VOUT (AC) 100mV/ div VOUT (AC) VLX 10V/div VLX 10V/div 500mA/div ILX 200mA/div ILX 20mV/div MODE = OPEN 10μs/div china.maximintegrated.com 1μs/div 7 MAX17504 4.5V–60V、3.5A、高效率、 同步降压DC-DC转换器,带内部补偿 典型工作特性(续) (VIN = VEN/UVLO = 24V, VPGND = VSGND = 0V, CVIN = 2 x 2.2µF, CVCC = 2.2µF, CBST = 0.1µF, CSS = 12,000pF, RT = MODE = open, TA = TJ = -40°C to +125°C, unless otherwise noted. Typical values are at TA = +25°C. All voltages are referenced to SGND, unless otherwise noted.) 5V OUTPUT, PWM MODE, FIGURE 3 CIRCUIT (LOAD CURRENT STEPPED FROM 1.75A TO 3.5A) toc22 VOUT (AC) 100mV/div IOUT 2A/div 3.3V OUTPUT, PWM MODE, FIGURE 4 CIRCUIT (LOAD CURRENT STEPPED FROM 1.75A TO 3.5A) toc23 VOUT (AC) 100mV/div IOUT 2A/div 40μs/div 100μs/div 5V OUTPUT, PWM MODE, FIGURE 3 CIRCUIT (LOAD CURRENT STEPPED FROM NO LOAD TO 1.75A) toc24 VOUT (AC) 100mV/div IOUT MODE = SGND 1A/div 3.3V OUTPUT, PWM MODE, FIGURE 4 CIRCUIT (LOAD CURRENT STEPPED FROM NO LOAD TO 1.75A) toc25 VOUT (AC) IOUT 100mV/div 1A/div MODE = SGND 40μs/div 100μs/div 5V OUTPUT, PFM MODE, FIGURE 3 CIRCUIT (LOAD CURRENT STEPPED FROM 5mA TO 1.75A) toc26 3.3V OUTPUT, PFM MODE, FIGURE 4 CIRCUIT (LOAD CURRENT STEPPED FROM 5mA TO 1.75A) toc27 VOUT (AC) IOUT 100mV/div 1A/div MODE = OPEN 2ms/div china.maximintegrated.com VOUT (AC) IOUT 100mV/div 1A/div MODE = OPEN 2ms/div 8 MAX17504 4.5V–60V、3.5A、高效率、 同步降压DC-DC转换器,带内部补偿 典型工作特性(续) (VIN = VEN/UVLO = 24V, VPGND = VSGND = 0V, CVIN = 2 x 2.2µF, CVCC = 2.2µF, CBST = 0.1µF, CSS = 12,000pF, RT = MODE = open, TA = TJ = -40°C to +125°C, unless otherwise noted. Typical values are at TA = +25°C. All voltages are referenced to SGND, unless otherwise noted.) 5V OUTPUT, DCM MODE, FIGURE 3 CIRCUIT (LOAD CURRENT STEPPED FROM 50mA TO 1.75A) toc28 VOUT (AC) 3.3V OUTPUT, DCM MODE, FIGURE 4 CIRCUIT (LOAD CURRENT STEPPED FROM 50mA TO 1.75A) toc29 100mV/div VOUT (AC) 1A/div IOUT 100mV/div 1A/div IOUT MODE = VCC MODE = VCC 200μs/div 200μs/div OVERLOAD PROTECTION 5V OUTPUT, FIGURE 3 CIRCUIT APPLICATION OF EXTERNAL CLOCK AT 700kHz 5V OUTPUT, FIGURE 3 CIRCUIT toc31 toc30 VOUT 2V/div VLX 1A/div IOUT 10V/div VSYNC 2V/div MODE = SGND 20ms/div 2μs/div 5V OUTPUT, 3.5A LOAD CURRENT BODE PLOT, FIGURE 3 CIRCUIT toc32 toc33 140 60 140 50 120 50 120 40 100 40 80 30 PHASE 40 GAIN 0 -10 -20 -30 -40 1K 20 CROSSOVER FREQUENCY = 48.4KHz, PHASE MARGIN = 62.3° 10K FREQUENCY (Hz) china.maximintegrated.com 100K PHASE 20 100 80 60 GAIN 10 40 0 20 0 -10 -20 -20 -40 -30 -60 -40 1K PHASE (°) 10 60 PHASE (°) 20 GAIN (dB) 60 30 GAIN (dB) 3.3V OUTPUT, 3.5A LOAD CURRENT, BODE PLOT, FIGURE 4 CIRCUIT 0 CROSSOVER FREQUENCY = 52.7KHz, PHASE MARGIN = 62.4° -20 -40 -60 10K 100K FREQUENCY (Hz) 9 MAX17504 4.5V–60V、3.5A、高效率、 同步降压DC-DC转换器,带内部补偿 PGND SGND VCC MODE TOP VIEW PGND 引脚配置 15 14 13 12 11 PGND 16 10 RT LX 17 9 FB 8 CF 7 SS 6 SYNC MAX17504 LX 18 LX 19 3 4 5 RESET 2 EN/UVLO VIN 1 VIN + VIN BST 20 TQFN 5mm × 5mm * EXPOSED PAD (CONNECT TO SIGNAL GROUND). 引脚说明 引脚 名称 功能 1, 2, 3 VIN 电源输入,4.5V至60V输入电压范围。将V IN 引脚连接在一起。利用两个2.2μF陶瓷电容将该引脚连接至 PGND,进行去耦;电容尽量靠近VIN和PGND引脚放置。布局示例请参考MAX17504评估板数据资料。 4 EN/UVLO 使能/欠压锁定。EN/UVLO为电平驱动,高电平时,电压输出使能;连接至VIN和SGND之间的电阻分压器 中心,用于设置输入电压达到多少时MAX17504开启。上拉至VIN时,器件始终开启。 5 RESET 开漏/复位输出。如果FB电压下降到设定值的92%以下,则将RESET输出拉至低电平;FB电压上升到设定 值的95%并保持1024个时钟周期后,RESET跳变为高电平。 6 SYNC 通过该引脚可与外部时钟同步。更详细信息请参见外部频率同步章节。 7 SS 软启动输入。在SS和SGND之间连接电容,设置软启动时间。 8 CF 开关频率低于500kHz时,在CF和FB之间连接电容。如果开关频率等于或高于500kHz,使CF保持开路。详 情请参见环路补偿章节。 9 FB 反馈输入。将FB连接至输出与SGND之间外部电阻分压器的中心抽头,用于设置输出电压。更多详细信息 请参见调节输出电压部分。 10 RT 在RT和SGND之间连接电阻,设置稳压器的开关频率。使RT保持开路时,开关频率为默认500kHz。更多 详细信息请参见设置开关频率(RT)部分。 11 MODE MODE引脚用于将MAX17504配置为PWM、PFM或DCM工作模式。MODE浮空时,为PFM工作模式(轻 载时跳脉冲);将MODE连接至SGND时,全部负载条件下均为固定频率PWM工作模式;将MODE连接至 VCC时,为DCM工作模式。更多详细信息请参见MODE设置部分。 china.maximintegrated.com 10 MAX17504 4.5V–60V、3.5A、高效率、 同步降压DC-DC转换器,带内部补偿 引脚说明(续) 引脚 名称 功能 12 VCC 13 SGND 模拟地。 14, 15, 16 PGND 电源地。在外部将PGND引脚连接至电源地区域。在VCC旁路电容地回路中将SGND和PGND引脚连接在一 起。请参考MAX17504评估板的布局布线。 17, 18, 19 LX 20 BST — 5V LDO输出。利用2.2μF陶瓷电容将VCC旁路至SGND。 开关节点。将LX引脚连接至电感的开关侧。 升压飞电容。在BST和LX之间连接0.1μF陶瓷电容。 裸焊盘,连接至SGND引脚。连接至IC下方较大的覆铜区域,以改善散热性能。在裸焊盘下方增加散热过 孔。布局示例请参考MAX17504评估板数据资料。 EP 方框图 VCC 5V BST MAX17504 LDO VIN SGND CURRENT-SENSE LOGIC EN/UVLO LX PWM/ PFM/ HICCUP LOGIC HICCUP 1.215V RT PGND OSCILLATOR SYNC CF FB VCC SS SWITCHOVER LOGIC VBG = 0.9V SLOPE COMPENSATION 5µA FB HICCUP china.maximintegrated.com MODE SELECTION LOGIC ERROR AMPLIFIER/ LOOP COMPENSATION EN/UVLO MODE RESET RESET LOGIC 11 MAX17504 4.5V–60V、3.5A、高效率、 同步降压DC-DC转换器,带内部补偿 详细说明 PFM工作模式 MAX17504是一款高效率、高电压、同步整流降压型转换 器;内置双MOSFET,可工作在4.5V至60V的输入电压范 围。它可提供高达3.5A的电流以及0.9V至90% VIN输出电 压。全输出电压范围的内置补偿,无需外部元件。反馈(FB) 调节精度在-40°C至+125°C温度范围内为±1.1%。 PFM工作模式可消除负向电感电流以及轻载下额外的跳脉 冲,以获得高效率。PFM模式,每个时钟周期的电感电流 峰值强制为固定的750mA,直到输出上升到标称电压的 102.3%。一旦输出达到标称电压的102.3%后,上边和下 边的FET都关断,器件进入深度休眠状态,直到负载将输 出放电至标称电压的101.1%。在深度休眠状态下,大部 分内部模块被关断,以节约静态电流。当输出下降至标称 电压的101.1%以下时,器件退出深度休眠模式,开起全 部内部所有的电路,再次开始向输出提供能量脉冲的过程, 直到输出达到标称输出电压的102.3%。 器件采用峰值电流模式控制架构。内部的一个传导误差放 大器在内部节点产生积分误差电压,误差电压通过PWM 比较器、高边检流放大器和斜率补偿发生器设置占空比。 在每个时钟的上升沿,上端的MOSFET开启并保持导通, 直到达到适当的或者最大的占空比,或者是到峰值限流 被检测到。在上端的MOSFET导通期间,电感电流上升。 在开关周期的后半周期,上边的MOSFET断开,下边的 MOSFET导通。电感电流下降的同时释放储能,为输出提 供电流。 器 件 有 个MODE引 脚, 用 于 将 器 件 置 于PWM、PFM或 DCM工作模式。器件集成了可调的输入欠压锁定、可调的 软启动、开路复位,以及外部频率同步功能。 模式选择(MODE) PFM模式的优点是轻载时效率较高,因为它消耗的静态电 流较低;缺点是相对于PWM或DCM工作模式,输出电压 纹波较高,并且轻载时开关频率不固定。 DCM工作模式 DCM工作模式不采用跳脉冲,而是在轻载条件下仅禁止负 向电感电流,所以采用固定频率可工作在比PFM模式的更 轻的负载条件下。DCM工作模式的效率介于PWM和PFM 模式之间。 当VCC和EN/UVLO电压超过相应UVLO上升门限,同时内 部电压都准备就绪、允许LX进行开关工作时,MODE引脚 的逻辑状态就被锁定。如果MODE引脚在上电时开路,器 件在轻载时工作在PFM模式;如果MODE引脚在上电时接 地,器件在所有负载条件下工作在固定频率的PWM模式; 如果MODE引脚在上电时连接至VCC,器件在轻载时工作 在固定频率的DCM模式。常规工作期间,MODE引脚的状 态变化将不予理睬。 线性调节器(VCC) PWM工作模式 MAX17504的 开 关 频 率 可 利 用RT和SGND之 间 的 电 阻 设 置,范围为200kHz至2.2MHz。开关频率(fSW)与RT引脚电 阻(RRT)的关系如下式: PWM模式下,允许电感电流出现负值。PWM工作模式在 任何负载条件下都固定频率工作,这对开关频率敏感的应 用是有好处。然而,相对于PFM和DCM工作模式,PWM 模式在轻载条件下效率较低。 内部线性调节器(VCC)提供一个5V标称电源,它为内部电路 及下边MOSFET驱动器供电。线性稳压器的输出(VCC)必须 用2.2μF陶瓷电容旁路至SGND。MAX17504采用欠压锁定 电路,当VCC下降至3.8V (典型值)以下时,就禁止内部线 性稳压器。 设置开关频率(RT) R RT ≅ 21× 10 3 f SW − 1.7 式中,RRT的单位为kΩ,fSW的单位为kHz 。RT引脚开路 时,器件工作在500kHz默认开关频率。关于几个常见开关 频率对应的RT电阻值,请参见表1。 china.maximintegrated.com 12 MAX17504 4.5V–60V、3.5A、高效率、 同步降压DC-DC转换器,带内部补偿 表1. 开关频率及对应RT电阻 过流保护/打嗝模式 SWITCHING FREQUENCY (kHz) RT RESISTOR (kΩ) 500 OPEN 200 102 400 49.9 1000 19.1 2200 8.06 输入电压工作范围 给定输出电压的最小和最大输入电压计算如下: VIN(MIN) = VOUT + (I OUT(MAX) × (R DCR + 0.15)) 1- (f SW(MAX) × t OFF(MAX) ) + (I OUT(MAX) × 0.175) VIN(MAX) = VOUT f SW(MAX) × t ON(MIN) 式中,VOUT为稳态输出电压,IOUT(MAX)为最大负载电流, RDCR为 电 感 的 直 流 电 阻,fSW(MAX)为 最 大 开 关 频 率, tOFF(MAX)为 最 差 工 作 条 件 下 的 最 小 关 断 时 间(160ns), tON(MIN)为最差工作条件下的导通时间(135ns)。 外部频率同步(SYNC) MAX17504的内部振荡器可同步至SYNC引脚上的外部时 钟信号。外部同步时钟频率必须介于1.1 x fSW至1.4 x fSW 之间,其中fSW为RT电阻设定的频率。外部时钟脉宽为高 电平的最小时间应大于50ns。详细信息请参见Electrical Characteristics 表中的RT和SYNC部分。 china.maximintegrated.com MAX17504具有可靠的过流保护机制,在过载和输出短路 的条件下有效保护器件。当上边的开关电流超过5.1A (典 型值)的内部限定值时,逐周期间的峰值限流电路将断开上 边的MOSFET。高输入电压、短路条件(输出电压不足以 恢复降压转换器导通期间建立的电感电流)下,上边开关 5.7A (典型值)失控电流检测门限将为器件提供有效保护。 一旦达到失控电流门限,则触发打嗝模式。此外,完成软 启动后,如果反馈电压在任何时间因为故障条件而下降到 0.58V (典型值),同样触发打嗝模式。打嗝模式下,在打 嗝超时周期(32,768个时钟周期)内暂停开关工作,保护转 换器;达到打嗝超时周期后,再次尝试软启动。注意,当 在过载条件下尝试软启动时,如果反馈电压未超过0.58V, 器件以设定开关频率的一半进行开关操作。打嗝工作模式 确保输出短路条件下保持低功耗。 RESET输出 MAX17504包括一个RESET比较器,以监测输出电压。开 漏RESET输出需要外部上拉电阻,稳压器输出升高至标称 稳压值的95%以上,并保持1024个开关周期后,RESET跳 变为高电平(高阻)。稳压器输出电压下降到标称稳压值的 92%以下时,RESET跳变到低电平。热关断期间,RESET 为低电平。 预偏置输出 当MAX17504开始进入预偏置输出时,上边和下边开关均 关断,使转换器不从输出吸入电流,直至PWM比较器触 发第一个PWM脉冲时,上边和下边开关才开始工作;然 后输出电压平稳上升,接近内部基准设置的目标电压。 热关断保护 热关断保护限制MAX17504内部的总功耗,当器件结温超 过+165°C时,芯片上内置的温度传感器关断器件,允许器 件冷却。结温下降10°C后,温度传感器将器件再次打开。 热关断期间会进行软启动复位。严格评估总体功耗(参见 功率耗散 部分),以免在正常工作时意外触发热关断保护。 13 MAX17504 4.5V–60V、3.5A、高效率、 同步降压DC-DC转换器,带内部补偿 应用信息 输出电容选择 输入电容选择 工业应用中,考虑到温度稳定性的要求,X7R陶瓷输出电 容为首选。输出电容的大小需要支持具体应用输出最大电 流时50%的负载跃变,因此输出电压偏差能维持在输出电 压变化的3%。最小输出电容可计算如下: 输入滤波电容用于抑制输入端电源带来的尖峰电流,减小 电路开关工作引起的输入噪声和电压纹波。输入电容的 RMS电流(IRMS)由下式确定: = IRMS I OUT(MAX) × VOUT × (VIN - VOUT ) VIN 式中,IOUT(MAX)为最大负载电流。输入电容等于输出电压 的2倍时(VIN = 2 x VOUT),IRMS的值最大,所以IRMS(MAX) = IOUT(MAX)/2。 所选电容在RMS输入电流下的温升应低于+10°C,以确保 最佳长期稳定性。在输入端使用低ESR、可承受高纹波电 流的陶瓷电容。工业应用中,为了保证温度稳定性,建议 使用X7R电容。采用下式计算输入电容: C IN = I OUT(MAX) × D × (1- D) η × f SW × ∆VIN 式中,D = VOUT/VIN为控制器的占空比,fSW为开关频率, ΔVIN为允许的输入电压纹波,E为效率。 在电源距离MAX17504输入较远的应用中,应该给陶瓷电 容并联一个电解电容,在输入电源通路较长的情况下,能 够抑制电源线电感和输入陶瓷电容引起的潜在自激。 电感选择 为配合MAX17504工作,必须规定三个关键的电感参数: 电感值(L)、电感饱和电流(ISAT)以及直流电阻(RDCR)。开关 频率和输出电压决定电感值,关系如下: V L = OUT f SW 式中,VOUT和fSW为标称值。 选择最接近计算值的低损耗电感,并且电感尺寸在可接受 范围,直流电阻最低。电感饱和电流额定值(ISAT)必须足够 高,以确保电流在峰值电流门限5.1A以上时才会发生饱和。 1 I STEP × t RESPONSE × 2 ∆VOUT C OUT= t RESPONSE ≅ ( 0.33 1 + ) fC f sw 式中,ISTEP为负载电流步长,tRESPONSE为控制器的响应 时间,ΔVOUT为允许的输出电压偏差,fC为目标闭环交越 频率,fSW为开关频率。如果开关频率小于或等于500kHz, 选择fC为fSW的1/9;如果开关频率高于500kHz,选择fC为 55kHz。 软启动电容选择 MAX17504采用可调软启动的方法以降低浪涌电流。在SS 引脚和SGND之间连接外部电容,设置软启动时间。所选 的输出电容(CSEL)和输出电压(VOUT)决定软启动所要求的 最小电容,关系如下: CSS ≥ 28 x 10-6 x CSEL x VOUT 软启动时间(tSS)与SS上所连接电容(CSS)的关系如下式: tSS = CSS/(5.55 x 10-6) 例如,为了实现2ms软启动时间,需在SS引脚和SGND之 间连接一个12nF电容。 VIN R1 EN/UVLO R2 SGND 图1. 设置输入欠压锁定 china.maximintegrated.com 14 MAX17504 4.5V–60V、3.5A、高效率、 同步降压DC-DC转换器,带内部补偿 设置输入欠压锁定电平 MAX17504的输入欠压锁定电平是可调节的。利用VIN和 SGND之间连接的电阻分压器设置MAX17504的开启电压。 将分压器的中间节点连接至EN/UVLO。 选择R1为3.3MΩ,按下式计算R2: 表2. 不同开关频率对应的C6电容值 SWITCHING FREQUENCY RANGE (kHz) C6 (pF) 200 to 300 2.2 300 to 400 1.2 400 to 500 0.75 R1× 1.215 R2 = (VINU - 1.215) VOUT 式中,VINU为MAX17504开启电压。应确保VINU高于0.8 x VOUT。 R3 FB 环路补偿 R4 MAX17504具有内部环路补偿。然而,如果开关频率低于 500kHz,在CF引脚和FB引脚之间连接0402电容C6。利用 表2选择C6的值。 SGND 图2. 设置输出电压 调节输出电压 利用输出电容(VOUT)正端与SGND之间连接的电阻分压器 设置输出电压(见图2)。将电阻分压器的中间节点连接至FB 引脚。采用以下步骤选择电阻分压器的值: 利用下式计算输出与FB之间的电阻R3: R3 = 216 × 10 3 f C × C OUT 式中,R3的单位为kΩ,交越频率fC的单位为kHz,输出电 容COUT的单位为μF。如果开关频率小于或等于500kHz, 选择fC为开关频率fSW的1/9;如果开关频率高于500kHz, 选择fC为55kHz。 利用下式计算FB与SGND之间的电阻R4: R3 × 0.9 R4 = (VOUT - 0.9) 功率耗散 应确保MAX17504结温在规定的电源工作条件下不超过 +125°C。 特定工作条件下,按下式估算功率损耗导致器件温度升高 值: ( 1 PLOSS = (POUT × ( - 1)) - I OUT 2 × R DCR η ) P= OUT VOUT × I OUT 式中,POUT为输出功率,η为电源转换效率,RDCR为输出 电感的直流电阻(关于典型工作条件下效率的更多信息,请 参见典型工作特性 部分)。 对于多层电路板,封装的热性能参数由下式给出: θ JA = 30°C W θ JC =2°C W 可 利 用 下 式 估 算MAX17504在 任 意 给 定 最 大 环 境 温 度 (TA_MAX)下的结温: TJ_MAX = T A _MAX + (θ JA × PLOSS ) 如果热管理系统提供适当散热,则可确保MAX17504的裸 焊盘维持在给定温度(TEP_MAX),可利用下式估算最大环境 温度下的结温: T= J_MAX TEP_MAX + (θ JC × PLOSS ) china.maximintegrated.com 15 MAX17504 4.5V–60V、3.5A、高效率、 同步降压DC-DC转换器,带内部补偿 PCB布局指南 通常是VCC旁路电容的返回点。以保证模拟地不受大功率 开关信号的影响。应尽量保证接地区域连续/不中断。不要 在任何非连续接地区域的正上方布设承载大开关电流的引 线。 所有承载脉冲电流的连线必须非常短,并尽可能宽。这些 引线的电感必须保持在最小值,否则电流的di/dt大。由于 电流承载环路的电感与环路的闭合面积成比例,缩小环路 面积有助于减小寄生电感。此外,小电流环路面积也可降 低EMI辐射。 PCB布局也影响设计的热性能。应在器件的裸焊盘下方提 供大面积覆铜,通过多个过孔接至较大的接地区域,以有 效散热。 输入滤波陶瓷电容应尽量靠近IC的VIN引脚,尽可能消除布 线电感的影响,为IC提供干净的电源。VCC引脚的旁路电 容也要靠近引脚放置,以减小引线阻抗的影响。 为确保设计的一次通过率,请参考MAX17504评估板布局, 可从以下网站下载:china.maximintegrated.com。 在IC周围布线时,模拟小信号地和开关电流的功率地应隔 离开;应该在开关信号最低的位置将其单点连接在一起, VIN (7.5V TO 60V) EN/UVLO VIN VIN BST RT LX SYNC MAX17504 MODE C2 2.2µF LX LX VCC C8 2.2µF C5 0.1µF L1 10µH VOUT 5V, 3.5A C4 22µF C9 22µF R3 100kΩ FB SGND CF C1 2.2µF VIN R4 22.1kΩ RESET SS PGND PGND PGND C3 12000pF fSW = 500kHz L1 = SLF12575T-100M5R4-H 图3. 5V输出典型应用电路 china.maximintegrated.com 16 MAX17504 4.5V–60V、3.5A、高效率、 同步降压DC-DC转换器,带内部补偿 VIN (5.5V TO 60V) EN/UVLO VIN VIN BST RT LX SYNC MAX17504 MODE C2 2.2µF LX C8 2.2µF C5 0.1µF L1 6.8µH LX VCC VOUT 3.3V, 3.5A C4 22µF C9 22µF R3 82.5kΩ FB SGND CF C1 2.2µF VIN R4 30.9kΩ RESET SS PGND PGND PGND C3 12000pF fSW = 500kHz L1 = MSS1048-682NL 图4. 3.3V输出典型应用电路 定购信息 封装信息 器件 MAX17504ATP+ 引脚-封装 20 TQFN 5mm x 5mm 注:除非另外说明,所有器件均可工作在-40ºC至+125ºC温度范 围。 +表示无铅(Pb)/符合RoHS标准的封装。 芯片信息 如需最近的封装外形信息和焊盘布局(占位面积),请查询china. maximintegrated.com/packages。请注意,封装编码中的 “+” 、 “#”或 “-”仅表示RoHS状态。封装图中可能包含不同的尾缀字符, 但封装图只与封装有关,与RoHS状态无关。 封装类型 封装编码 外形编号 焊盘布局编号 20 TQFN-EP* T2055+4 21-0140 90-0009 *EP = 裸焊盘。 PROCESS: BiCMOS china.maximintegrated.com 17 MAX17504 4.5V–60V、3.5A、高效率、 同步降压DC-DC转换器,带内部补偿 修订历史 修订号 修订日期 说明 0 11/13 最初版本。 1 2/14 更新了TOC 32和33,以及典型应用电路特性。 修改页 — 9, 16, 17 Maxim北京办事处 免费电话:800 810 0310 电话:010-6211 5199 传真:010-6211 5299 Maxim不对Maxim产品以外的任何电路使用负责,也不提供其专利许可。Maxim保留在任何时间、没有任何通报的前提下修改产品资料和规格的权利。电气 特性表中列出的参数值(最小值和最大值)均经过设计验证,数据资料其它章节引用的参数值供设计人员参考。 Maxim Integrated 160 Rio Robles, San Jose, CA 95134 USA 1-408-601-10 00 18 © 2014 Maxim Integrated Maxim标志和Maxim Integrated是Maxim Integrated Products, Inc.的商标。 MAX17504 4.5V–60V、3.5A、高效率、同步降压DC-DC转换器,带内部补偿 - ... Page 1 of 2 Login 产品 方案 设计 销售联络 支持中心 公司简介 Register 简体中文 (cn) 我的Maxim MAX17504 4.5V–60V、3.5A、高效率、同步降压DC-DC转换器,带内部补偿 业内仅有的60V、3.5A同步降压转换器,带内部FET 概述 设计资源 定购信息 相关产品 所有内容 状况 数据资料 状况:生产中。 英文 下载 Rev. 1 (PDF, 1.8MB) Email 概述 中文 下载 Rev. 1 (PDF, 1.6MB) Email MAX17504是一款高效率、高电压、同步整流降压型转换器;内置双MOSFET,可工作在4.5V至60V的输入电压范 围。它可提供高达3.5A的电流以及0.9V至90% VIN输出电压。全输出电压范围的内置补偿,无需外部元件。反馈 (FB)调节精度在-40°C至+125°C温度范围内为±1.1%。器件采用紧凑的(5mm x 5mm) TQFN无铅(Pb)封装,带裸焊 盘。提供仿真模型。 器件采用峰值电流模式架构,带有MODE功能,可采用脉宽调制(PWM)、脉冲频率调制(PFM)或非连续模式(DCM) 等控制模式。PWM工作模式在任何负载条件下都保持固定频率工作,这在对开关频率敏感的应用中非常有用。 PFM工作模式没有负向电感电流以及轻载条件下额外的跳脉冲,以提高效率。DCM工作模式不采用跳脉冲,而是 在轻载条件下仅禁止负向电感电流,采用固定工作频率能工作比PFM模式的轻载更低负载条件下。DCM工作模式 的效率介于PWM和PFM模式之间。内置低导通电阻的MOSFET确保满载时的高效率,同时也简化了PCB的布线。 可编程软启动功能可使用户降低输入浪涌电流。器件有一个输出使能/欠压锁定引脚(EN/UVLO),允许用户在输入 电压达到相应要求时开启。输出电压成功达到稳压范围时,经过一定延时,开漏的RESET引脚给系统输出一个电 源就绪指示信号。 现备有评估板:MAX17504EVKITA MAX17504EVKITB 关键特性 应用/使用 减少外围器件,降低总体成本 无需肖特基同步电路,提高效率、降低成本 内部补偿,在任意输出电压下均可稳定工作 全陶瓷电容设计:超小尺寸布局,外部元件只有8个 减少DC-DC稳压器物料清单 4.5V至60V宽输入电压范围 0.9V至90% VIN输出电压 整个温度范围内提供高达3.5A电流 200kHz至2.2MHz可调节频率,附带外部同步 采用20引脚、5mm x 5mm、TQFN封装 降低功耗 峰值效率高于90%; PFM和DCM模式,轻载时保持高效率 关断电流仅为2.8µA (典型值) 工作可靠 打嗝模式限流和自动重启 内置输出电压监测(开漏/RESET引脚) 电阻可编程EN/UVLO门限 可调软启动和预偏置上电电压 -40°C至+125°C工作温度范围 基站电源 配电稳压 通用负载点电源 高压单板系统 工业电源 壁式变压器稳压 关键特性: Step-Down Switching Regulators Part Number MAX17504 NEW! VIN (V) VIN (V) VOUT1 (V) VOUT1 (V) min max min 4.5 60 0.9 IOUT1 (max) (A) Switch Type Synchronous Switching Power Good Signal DC-DC Outputs Oper. Freq. (kHz) Budgetary Price max Output Adjust. Method 54 Resistor 3.5 Internal Yes Yes 1 2200 $1.81 @1k See Notes 查看所有Step-Down Switching Regulators (310) Pricing Notes: 价格仅供参考,用于同类产品的比较。所提供报价为美元,需要依汇率折合成人民币。该价格将因当地关税、税率和汇 率而异。有关特定订购量和指定版本的报价和供货问题,请参考:价格与供货网站或与指定代理商联系。 图表 http://china.maximintegrated.com/datasheet/index.mvp/id/8270 2014-3-24 MAX17504 4.5V–60V、3.5A、高效率、同步降压DC-DC转换器,带内部补偿 - ... Page 2 of 2 Typical Application Circuit 更多信息 新品发布 [ 2014-02-04 ] 没有找到你需要的产品吗? 应用工程师帮助选型,下个工作日回复 参数搜索 应用帮助 信息索引 概述 设计资源 定购信息 相关产品 概述 关键特性 应用/使用 关键指标 图表 注释、注解 数据资料 技术文档 评估板 可靠性报告 软件/模型 价格与供货 样品 在线订购 封装信息 无铅信息 类似功能器件 类似应用器件 评估板 类似型号器件 配合该器件使用的产品 参考文献: 19-6844 Rev. 1; 2014-02-20 本页最后一次更新: 2014-02-20 © 2014 Maxim Integrated版权所有 联络我们' | 工作机会 | 隐私权政策 | 法律声明 http://china.maximintegrated.com/datasheet/index.mvp/id/8270 | 代理商网站入口 | 关注我们 2014-3-24 EVALUATION KIT AVAILABLE MAX17504 4.5V–60V, 3.5A, High-Efficiency, Synchronous Step-Down DC-DC Converter with Internal Compensation General Description The MAX17504 high-efficiency, high-voltage, synchronously rectified step-down converter with dual integrated MOSFETs operates over a 4.5V to 60V input. It delivers up to 3.5A and 0.9V to 90% VIN output voltage. Built-in compensation across the output voltage range eliminates the need for external components. The feedback (FB) regulation accuracy over -40°C to +125°C is ±1.1%. The device is available in a compact (5mm x 5mm) TQFN lead (Pb)-free package with an exposed pad. Simulation models are available. The device features a peak-current-mode control architecture with a MODE feature that can be used to operate the device in pulse-width modulation (PWM), pulse-frequency modulation (PFM), or discontinuous mode (DCM) control schemes. PWM operation provides constant frequency operation at all loads, and is useful in applications sensitive to switching frequency. PFM operation disables negative inductor current and additionally skips pulses at light loads for high efficiency. DCM features constant frequency operation down to lighter loads than PFM mode, by not skipping pulses, but only disabling negative inductor current at light loads. DCM operation offers efficiency performance that lies between PWM and PFM modes. The low-resistance, on-chip MOSFETs ensure high efficiency at full load and simplify the layout. Benefits and Features ● Eliminates External Components and Reduces Total Cost • No Schottky-Synchronous Operation for High Efficiency and Reduced Cost • Internal compensation for Stable Operation at Any Output Voltage • All Ceramic Capacitor Solution: Ultra-Compact Layout with as Few as Eight External Components ● Reduce Number of DC-DC Regulators to Stock • Wide 4.5V to 60V Input Voltage Range • 0.9V to 90% VIN Output Voltage • Delivers Up to 3.5A Over Temperature • 200kHz to 2.2MHz Adjustable Frequency with External Synchronization • Available in a 20-Pin, 5mm x 5mm TQFN Package ● Reduce Power Dissipation • Peak Efficiency > 90% • PFM and DCM Modes for High Light-Load Efficiency • Shutdown Current = 2.8FA (typ) ● Operate Reliably • Hiccup-Mode Current Limit and Autoretry Startup • Built-In Output Voltage Monitoring—(Open-Drain RESET Pin) • Resistor Programmable EN/UVLO Threshold • Adjustable Soft-Start and Pre-Biased Power-Up • -40NC to +125NC Operation A programmable soft-start feature allows users to reduce input inrush current. The device also incorporates an output enable/undervoltage lockout pin (EN/UVLO) that allows the user to turn on the part at the desired inputvoltage level. An open-drain RESET pin provides a delayed power-good signal to the system upon achieving successful regulation of the output voltage. Applications ● ● ● ● ● ● Industrial Power Supplies Distributed Supply Regulation Base Station Power Supplies Wall Transformer Regulation High-Voltage Single-Board Systems General-Purpose Point-of-Load 19-6844; Rev 1; 2/14 Ordering Information appears at end of data sheet. For related parts and recommended products to use with this part, refer to www.maximintegrated.com/MAX17504.related. MAX17504 4.5V–60V, 3.5A, High-Efficiency, Synchronous Step-Down DC-DC Converter with Internal Compensation Absolute Maximum Ratings VIN to PGND..........................................................-0.3V to +65V EN/UVLO to SGND................................................-0.3V to +65V LX to PGND................................................-0.3V to (VIN + 0.3V) BST to PGND.........................................................-0.3V to +70V BST to LX..............................................................-0.3V to +6.5V BST to VCC............................................................-0.3V to +65V FB, CF, RESET, SS, MODE, SYNC, RT to SGND......................................................-0.3V to +6.5V VCC to SGND........................................................-0.3V to +6.5V SGND to PGND.....................................................-0.3V to +0.3V LX Total RMS Current.........................................................±5.6A Output Short-Circuit Duration.....................................Continuous Continuous Power Dissipation (TA = +70°C) (multilayer board) TQFN (derate 33.3mW/°C above TA = +70°C).......2666.7mW Operating Temperature Range.......................... -40NC to +125°C Junction Temperature.......................................................+150°C Storage Temperature Range............................. -65NC to +160°C Lead Temperature (soldering, 10s).................................. +300°C Soldering Temperature (reflow)........................................+260°C Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Package Thermal Characteristics (Note 1) TQFN Junction-to-Ambient Thermal Resistance (θJA)...........30°C/W Junction-to-Case Thermal Resistance (θJC)..................2°C/W Note 1: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board. For detailed information on package thermal considerations, refer to www.maximintegrated.com/thermal-tutorial. Electrical Characteristics (VIN = VEN/UVLO = 24V, RRT = 40.2kI (500kHz), CVCC = 2.2µF, VPGND = VSGND = VMODE = VSYNC = 0V, LX = SS = RESET = open, VBST to VLX = 5V, VFB = 1V, TA = TJ = -40°C to +125°C, unless otherwise noted. Typical values are at TA = +25°C. All voltages are referenced to SGND, unless otherwise noted.) (Note 2) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS 60 V INPUT SUPPLY (VIN) Input Voltage Range Input Shutdown Current VIN IIN-SH VEN/UVLO = 0V (shutdown mode) 2.8 VFB = 1V, MODE = RT= open 118 VFB = 1V, MODE = open 162 IQ_DCM DCM mode, VLX = 0.1V 1.16 IQ_PWM Normal switching mode, fSW = 500kHz, VFB = 0.8V 9.5 IQ_PFM Input Quiescent Current 4.5 4.5 µA 1.8 mA ENABLE/UVLO (EN/UVLO) EN/UVLO Threshold EN/UVLO Input Leakage Current VENR VEN/UVLO rising 1.19 1.215 1.24 VENF VEN/UVLO falling 1.068 1.09 1.111 -50 0 +50 nA 4.75 5 5.25 V VCC = 4.3V, VIN = 6V 26.5 54 100 mA VIN = 4.5V, IVCC = 20mA 4.2 IEN VEN/UVLO = 0V, TA = +25ºC V LDO VCC Output Voltage Range VCC Current Limit VCC Dropout www.maximintegrated.com VCC IVCC-MAX VCC-DO 6V < VIN < 60V, IVCC = 1mA 1mA ≤ IVCC ≤ 25mA V Maxim Integrated │ 2 MAX17504 4.5V–60V, 3.5A, High-Efficiency, Synchronous Step-Down DC-DC Converter with Internal Compensation Electrical Characteristics (continued) (VIN = VEN/UVLO = 24V, RRT = 40.2kI (500kHz), CVCC = 2.2µF, VPGND = VSGND = VMODE = VSYNC = 0V, LX = SS = RESET = open, VBST to VLX = 5V, VFB = 1V, TA = TJ = -40°C to +125°C, unless otherwise noted. Typical values are at TA = +25°C. All voltages are referenced to SGND, unless otherwise noted.) (Note 2) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS VCC_UVR VCC rising 4.05 4.2 4.3 VCC_UVF VCC falling 3.65 3.8 3.9 High-Side nMOS On-Resistance RDS-ONH ILX = 0.3A 165 325 mΩ Low-Side nMOS On-Resistance RDS-ONL ILX = 0.3A 80 150 mΩ LX Leakage Current ILX_LKG VLX = VIN - 1V, VLX = VPGND + 1V, TA = +25ºC -2 +2 µA VSS = 0.5V 4.7 5 5.3 µA MODE = SGND or MODE = VCC 0.89 0.9 0.91 MODE = open 0.89 0.915 0.936 0 < VFB < 1V, TA = +25ºC -50 VCC UVLO V POWER MOSFET AND BST DRIVER SOFT-START (SS) Charging Current ISS FEEDBACK (FB) FB Regulation Voltage VFB_REG FB Input Bias Current IFB +50 V nA MODE MODE Threshold VM-DCM MODE = VCC (DCM mode) VM-PFM MODE = open (PFM mode) VM-PWM MODE = GND (PWM mode) VCC 1.6 V VCC/2 1.4 CURRENT LIMIT Peak Current-Limit Threshold Runaway Current-Limit Threshold IPEAK-LIMIT IRUNAWAY-LIMIT Valley Current-Limit Threshold ISINK-LIMIT PFM Current-Limit Threshold IPFM MODE = open or MODE = VCC 4.4 5.1 4.9 -0.16 MODE = GND 5.85 A 5.7 6.7 A 0 +0.16 -1.8 MODE = open 0.6 0.75 0.9 RRT = 102kΩ 180 200 220 A A RT AND SYNC Switching Frequency fSW SYNC Frequency Capture Range SYNC Pulse Width SYNC Threshold www.maximintegrated.com RRT = 40.2kΩ 475 500 525 RRT = 8.06kΩ 1950 2200 2450 RRT = OPEN 460 500 540 fSW set bt RRT 1.1 x fSW 1.4 x fSW 50 VIH VIL kHz kHz ns 2.1 0.8 V Maxim Integrated │ 3 MAX17504 4.5V–60V, 3.5A, High-Efficiency, Synchronous Step-Down DC-DC Converter with Internal Compensation Electrical Characteristics (continued) (VIN = VEN/UVLO = 24V, RRT = 40.2kI (500kHz), CVCC = 2.2µF, VPGND = VSGND = VMODE = VSYNC = 0V, LX = SS = RESET = open, VBST to VLX = 5V, VFB = 1V, TA = TJ = -40°C to +125°C, unless otherwise noted. Typical values are at TA = +25°C. All voltages are referenced to SGND, unless otherwise noted.) (Note 2) PARAMETER VFB Undervoltage Trip Level to Cause Hiccup SYMBOL CONDITIONS VFB-HICF HICCUP Timeout MIN TYP MAX UNITS 0.56 0.58 0.6 V (Note 3) Minimum On-Time tON-MIN Minimum Off-Time tOFF-MIN 32768 140 LX Dead Time Cycles 135 ns 160 ns 5 RESET RESET Output Level Low IRESET = 1mA RESET Output Leakage Current TA = TJ = +25ºC, VRESET = 5.5V -0.1 ns 0.4 V +0.1 µA VOUT Threshold for RESET Assertion VFB-OKF VFB falling 90.5 92 94 % VOUT Threshold for RESET Deassertion VFB-OKR VFB rising 93.8 95 97.2 % RESET Deassertion Delay After FB Reaches 95% Regulation 1024 Cycles 165 ºC 10 ºC THERMAL SHUTDOWN Thermal Shutdown Threshold Temperature rising Thermal Shutdown Hysteresis Note 2: All limits are 100% tested at +25°C. Limits over temperature are guaranteed by design. Note 3: See the Overcurrent Protection/HICCUP Mode section for more details. www.maximintegrated.com Maxim Integrated │ 4 MAX17504 4.5V–60V, 3.5A, High-Efficiency, Synchronous Step-Down DC-DC Converter with Internal Compensation Typical Operating Characteristics (VIN = VEN/UVLO = 24V, VPGND = VSGND = 0V, CVIN = 2 x 2.2µF, CVCC = 2.2µF, CBST = 0.1µF, CSS = 12,000pF, RT = MODE = open, TA = TJ = -40°C to +125°C, unless otherwise noted. Typical values are at TA = +25°C. All voltages are referenced to SGND, unless otherwise noted.) 5V OUTPUT, PWM MODE, FIGURE 3 CIRCUIT, EFFICIENCY vs. LOAD CURRENT toc01 100 100 90 VIN = 24V 70 VIN = 36V VIN = 48V VIN = 12V 60 50 80 VIN = 24V VIN = 36V 70 VIN = 12V 60 EFFICIENCY (%) 80 VIN = 48V 0 40 500 1000 1500 2000 2500 3000 3500 LOAD CURRENT (mA) 70 VIN = 48V VIN = 24V VIN = 36V 100 1000 3500 VIN = 48V VIN = 36V VIN = 24V 70 60 VIN = 12V 50 VIN = 12V 40 40 MODE = OPEN 1 10 100 1000 30 3500 MODE = VCC 1 3.3V OUTPUT, DCM MODE, FIGURE 4 CIRCUIT, EFFICIENCY vs. LOAD CURRENT 100 OUTPUT VOLTAGE (V) VIN = 12V 60 50 40 10 100 LOAD CURRENT (mA) www.maximintegrated.com 1000 5.05 toc07 VIN = 36V 5.04 5.03 5.02 5.01 VIN = 12V VIN = 48V 5.00 4.99 MODE = VCC 1 3500 5.06 VIN = 24V 70 1000 5.07 VIN = 36V 80 100 5V OUTPUT, PWM MODE, FIGURE 3 CIRCUIT, LOAD AND LINE REGULATION 5.08 VIN = 48V 90 10 LOAD CURRENT (mA) LOAD CURRENT (mA) EFFICIENCY (%) 10 5V OUTPUT, DCM MODE, FIGURE 3 CIRCUIT, EFFICIENCY vs. LOAD CURRENT 100 80 30 MODE = OPEN 1 LOAD CURRENT (mA) 80 30 VIN = 12V LOAD CURRENT (mA) 90 50 VIN = 48V VIN = 24V VIN = 36V 60 30 500 1000 1500 2000 2500 3000 3500 EFFICIENCY (%) EFFICIENCY (%) 0 90 60 70 40 MODE = SGND 3.3V OUTPUT, PFM MODE, FIGURE 4 CIRCUIT, EFFICIENCY vs. LOAD CURRENT toc04 100 80 50 50 MODE = SGND 5V OUTPUT, PFM MODE, FIGURE 3 CIRCUIT, EFFICIENCY vs. LOAD CURRENTtoc03 100 90 EFFICIENCY (%) EFFICIENCY (%) 90 40 3.3V OUTPUT, PWM MODE, FIGURE 4 CIRCUIT, EFFICIENCY vs. LOAD CURRENT toc02 3500 4.98 VIN = 24V MODE = SGND 0 500 1000 1500 2000 2500 3000 3500 LOAD CURRENT (mA) Maxim Integrated │ 5 MAX17504 4.5V–60V, 3.5A, High-Efficiency, Synchronous Step-Down DC-DC Converter with Internal Compensation Typical Operating Characteristics (continued) (VIN = VEN/UVLO = 24V, VPGND = VSGND = 0V, CVIN = 2 x 2.2µF, CVCC = 2.2µF, CBST = 0.1µF, CSS = 12,000pF, RT = MODE = open, TA = TJ = -40°C to +125°C, unless otherwise noted. Typical values are at TA = +25°C. All voltages are referenced to SGND, unless otherwise noted.) 5V OUTPUT, PFM MODE, FIGURE 3 CIRCUIT, LOAD AND LINE REGULATION toc09 3.3V OUTPUT, PWM MODE, FIGURE 4 CIRCUIT, LOAD AND LINE REGULATION 3.36 toc08 5.5 3.35 3.31 3.30 VIN = 36V VIN = 12V 3.28 VIN = 24V 3.27 5.1 5.0 4.9 4.8 4.5 LOAD CURRENT (mA) SWITCHING FREQUENCY (kHz) VIN = 36V 4.6 500 1000 1500 2000 2500 3000 3500 VIN = 48V MODE = OPEN 0 3.4 3.3 3.2 VIN = 24V 3.1 3.0 500 1000 1500 2000 2500 3000 3500 toc10 VIN = 12V VIN = 48V VIN = 36V MODE = OPEN 0 500 1000 1500 2000 2500 3000 3500 LOAD CURRENT (mA) SWITCHING FREQUENCY vs. RT RESISTANCE 2400 VIN = 12V 4.7 MODE = SGND 0 OUTPUT VOLTAGE (V) 3.32 3.29 5.2 OUTPUT VOLTAGE (V) OUTPUT VOLTAGE (V) VIN = 48V 3.5 VIN = 24V 5.3 3.33 3.26 3.6 5.4 3.34 3.3V OUTPUT, PFM MODE, FIGURE 4 CIRCUIT, LOAD AND LINE REGULATION LOAD CURRENT (mA) SOFT-START/SHUTDOWN FROM EN/UVLO, 5V OUTPUT, 3.5A LOAD CURRENT, FIGURE 3 CIRCUIT toc12 toc11 2200 2000 VEN/UVLO 1800 2V/div 1600 1400 1200 1000 800 600 400 200 0 0 20 40 60 80 VOUT 2V/div IOUT 2A/div VRESET 5V/div 100 1ms/div RRT (kΩ) SOFT-START/SHUTDOWN FROM EN/UVLO, 3.3V OUTPUT, 3.5A LOAD CURRENT, FIGURE 4 CIRCUIT toc13 SOFT-START/SHUTDOWN FROM EN/UVLO, 5V OUTPUT, PFM MODE, 5mA LOAD CURRENT, FIGURE 3 CIRCUIT toc14 MODE = OPEN VEN/UVLO 2V/div VOUT 2V/div IOUT 2A/div VRESET 5V/div VEN/UVLO 2V/div VOUT 1V/div VRESET 1ms/div www.maximintegrated.com 2ms/div 5V/div Maxim Integrated │ 6 MAX17504 4.5V–60V, 3.5A, High-Efficiency, Synchronous Step-Down DC-DC Converter with Internal Compensation Typical Operating Characteristics (continued) (VIN = VEN/UVLO = 24V, VPGND = VSGND = 0V, CVIN = 2 x 2.2µF, CVCC = 2.2µF, CBST = 0.1µF, CSS = 12,000pF, RT = MODE = open, TA = TJ = -40°C to +125°C, unless otherwise noted. Typical values are at TA = +25°C. All voltages are referenced to SGND, unless otherwise noted.) SOFT-START WITH 2.5V PREBIAS, 5V OUTPUT, PWM MODE, FIGURE 3 CIRCUIT SOFT-START/SHUTDOWN FROM EN/UVLO, 3.3V OUTPUT, PFM MODE, 5mA LOAD CURRENT, FIGURE 4 CIRCUIT toc15 VEN/UVLO 2V/div SOFT-START WITH 2.5V PREBIAS, 3.3V OUTPUT, PFM MODE, FIGURE 4 CIRCUIT toc17 toc16 VEN/UVLO VEN/UVLO 2V/div 2V/div 1V/div 2V/div VOUT VRESET 1V/div VOUT 5V/div VRESET VOUT VRESET 5V/div 5V/div MODE = SGND MODE = OPEN 2ms/div MODE = OPEN 1ms/div STEADY-STATE SWITCHING WAVEFORMS, 5V OUTPUT, 3.5A LOAD CURRENT, FIGURE 3 CIRCUIT toc18 1ms/div STEADY-STATE SWITCHING WAVEFORMS, 5V OUTPUT, PWM MODE, NO LOAD, FIGURE 3 CIRCUIT toc19 MODE = SGND VOUT (AC) 20mV/div VOUT (AC) VLX 10V/div VLX 10V/div ILX 500mA/div ILX 2A/div 1μs/div STEADY-STATE SWITCHING WAVEFORMS, 5V OUTPUT, PFM MODE, 25mA LOAD, FIGURE 3 CIRCUIT toc20 20mV/div 1μs/div STEADY-STATE SWITCHING WAVEFORMS, 5V OUTPUT, DCM MODE, 25mA LOAD, FIGURE 3 CIRCUIT toc21 MODE = VCC VOUT (AC) 100mV/ div VOUT (AC) VLX 10V/div VLX 10V/div 500mA/div ILX 200mA/div ILX 20mV/div MODE = OPEN 10μs/div www.maximintegrated.com 1μs/div Maxim Integrated │ 7 MAX17504 4.5V–60V, 3.5A, High-Efficiency, Synchronous Step-Down DC-DC Converter with Internal Compensation Typical Operating Characteristics (continued) (VIN = VEN/UVLO = 24V, VPGND = VSGND = 0V, CVIN = 2 x 2.2µF, CVCC = 2.2µF, CBST = 0.1µF, CSS = 12,000pF, RT = MODE = open, TA = TJ = -40°C to +125°C, unless otherwise noted. Typical values are at TA = +25°C. All voltages are referenced to SGND, unless otherwise noted.) 5V OUTPUT, PWM MODE, FIGURE 3 CIRCUIT (LOAD CURRENT STEPPED FROM 1.75A TO 3.5A) toc22 VOUT (AC) 100mV/div IOUT 2A/div 3.3V OUTPUT, PWM MODE, FIGURE 4 CIRCUIT (LOAD CURRENT STEPPED FROM 1.75A TO 3.5A) toc23 VOUT (AC) 100mV/div IOUT 2A/div 40μs/div 100μs/div 5V OUTPUT, PWM MODE, FIGURE 3 CIRCUIT (LOAD CURRENT STEPPED FROM NO LOAD TO 1.75A) toc24 VOUT (AC) IOUT 100mV/div MODE = SGND 1A/div 3.3V OUTPUT, PWM MODE, FIGURE 4 CIRCUIT (LOAD CURRENT STEPPED FROM NO LOAD TO 1.75A) toc25 VOUT (AC) IOUT 100mV/div 1A/div MODE = SGND 40μs/div 100μs/div 5V OUTPUT, PFM MODE, FIGURE 3 CIRCUIT (LOAD CURRENT STEPPED FROM 5mA TO 1.75A) toc26 3.3V OUTPUT, PFM MODE, FIGURE 4 CIRCUIT (LOAD CURRENT STEPPED FROM 5mA TO 1.75A) toc27 VOUT (AC) IOUT 100mV/div 1A/div MODE = OPEN 2ms/div www.maximintegrated.com VOUT (AC) IOUT 100mV/div 1A/div MODE = OPEN 2ms/div Maxim Integrated │ 8 MAX17504 4.5V–60V, 3.5A, High-Efficiency, Synchronous Step-Down DC-DC Converter with Internal Compensation Typical Operating Characteristics (continued) (VIN = VEN/UVLO = 24V, VPGND = VSGND = 0V, CVIN = 2 x 2.2µF, CVCC = 2.2µF, CBST = 0.1µF, CSS = 12,000pF, RT = MODE = open, TA = TJ = -40°C to +125°C, unless otherwise noted. Typical values are at TA = +25°C. All voltages are referenced to SGND, unless otherwise noted.) 5V OUTPUT, DCM MODE, FIGURE 3 CIRCUIT (LOAD CURRENT STEPPED FROM 50mA TO 1.75A) toc28 VOUT (AC) 3.3V OUTPUT, DCM MODE, FIGURE 4 CIRCUIT (LOAD CURRENT STEPPED FROM 50mA TO 1.75A) toc29 100mV/div VOUT (AC) 1A/div IOUT 100mV/div 1A/div IOUT MODE = VCC MODE = VCC 200μs/div 200μs/div OVERLOAD PROTECTION 5V OUTPUT, FIGURE 3 CIRCUIT APPLICATION OF EXTERNAL CLOCK AT 700kHz 5V OUTPUT, FIGURE 3 CIRCUIT toc31 toc30 VOUT 2V/div VLX 1A/div IOUT 10V/div VSYNC 2V/div MODE = SGND 20ms/div 2μs/div 5V OUTPUT, 3.5A LOAD CURRENT BODE PLOT, FIGURE 3 CIRCUIT toc32 toc33 140 60 140 50 120 50 120 40 100 40 80 30 PHASE 40 GAIN 0 -10 -20 -30 20 CROSSOVER FREQUENCY = 48.4KHz, PHASE MARGIN = 62.3° -40 1K 10K FREQUENCY (Hz) www.maximintegrated.com 100K PHASE 20 100 80 60 GAIN 10 40 0 20 0 -10 -20 -20 -40 -30 -60 -40 1K PHASE (°) 10 60 PHASE (°) 20 GAIN (dB) 60 30 GAIN (dB) 3.3V OUTPUT, 3.5A LOAD CURRENT, BODE PLOT, FIGURE 4 CIRCUIT 0 CROSSOVER FREQUENCY = 52.7KHz, PHASE MARGIN = 62.4° -20 -40 -60 10K 100K FREQUENCY (Hz) Maxim Integrated │ 9 MAX17504 4.5V–60V, 3.5A, High-Efficiency, Synchronous Step-Down DC-DC Converter with Internal Compensation PGND SGND VCC MODE TOP VIEW PGND Pin Configuration 15 14 13 12 11 PGND 16 10 RT LX 17 9 FB 8 CF 7 SS 6 SYNC MAX17504 LX 18 LX 19 3 4 5 RESET 2 EN/UVLO VIN 1 VIN + VIN BST 20 TQFN 5mm × 5mm * EXPOSED PAD (CONNECT TO SIGNAL GROUND). Pin Description PIN NAME FUNCTION 1, 2, 3 VIN Power-Supply Input. 4.5V to 60V input supply range. Connect the VIN pins together. Decouple to PGND with two 2.2µF capacitors; place the capacitors close to the VIN and PGND pins. Refer to the MAX17504 Evaluation Kit datasheet for a layout example. 4 EN/UVLO Enable/Undervoltage Lockout. Drive EN/UVLO high to enable the output voltage. Connect to the center of the resistor-divider between VIN and SGND to set the input voltage at which the MAX17504 turns on. Pull up to VIN for always on operation. 5 RESET 6 SYNC 7 SS Soft-Start Input. Connect a capacitor from SS to SGND to set the soft-start time. 8 CF At switching frequencies lower than 500kHz, connect a capacitor from CF to FB. Leave CF open if the switching frequency is equal to or more than 500kHz. See the Loop Compensation section for more details. 9 FB Feedback Input. Connect FB to the center tap of an external resistor-divider from the output to SGND to set the output voltage. See the Adjusting Output Voltage section for more details. 10 RT Connect a resistor from RT to SGND to set the regulator’s switching frequency. Leave RT open for the default 500kHz frequency. See the Setting the Switching Frequency (RT) section for more details. MODE MODE configures the MAX17504 to operate in PWM, PFM or DCM modes of operation. Leave MODE unconnected for PFM operation (pulse skipping at light loads). Connect MODE to SGND for constantfrequency PWM operation at all loads. Connect MODE to VCC for DCM operation. See the Mode Selection (MODE) section for more details. 11 www.maximintegrated.com Open-Drain RESET Output. The RESET output is driven low if FB drops below 92% of its set value. RESET goes high 1024 clock cycles after FB rises above 95% of its set value. The device can be synchronized to an external clock using this pin. See the External Frequency Synchronization section for more details. Maxim Integrated │ 10 MAX17504 4.5V–60V, 3.5A, High-Efficiency, Synchronous Step-Down DC-DC Converter with Internal Compensation Pin Description (continued) PIN NAME FUNCTION 12 VCC 13 SGND Analog Ground 14, 15, 16 PGND Power Ground. Connect the PGND pins externally to the power ground plane. Connect the SGND and PGND pins together at the ground return path of the VCC bypass capacitor. Refer to the MAX17504 Evaluation Kit datasheet for a layout example. 17, 18, 19 LX 20 BST — EP 5V LDO Output. Bypass VCC with a 2.2µF ceramic capacitance to SGND. Switching Node. Connect LX pins to the switching side of the inductor. Boost Flying Capacitor. Connect a 0.1µF ceramic capacitor between BST and LX. Exposed pad. Connect to the SGND pin. Connect to a large copper plane below the IC to improve heat dissipation capability. Add thermal vias below the exposed pad. Refer to the MAX17504 Evaluation Kit datasheet for a layout example. Block Diagram VCC 5V BST MAX17504 LDO VIN SGND CURRENT-SENSE LOGIC EN/UVLO LX PWM/ PFM/ HICCUP LOGIC HICCUP 1.215V RT PGND OSCILLATOR SYNC CF FB VCC SS SWITCHOVER LOGIC VBG = 0.9V SLOPE COMPENSATION 5µA FB HICCUP www.maximintegrated.com MODE SELECTION LOGIC ERROR AMPLIFIER/ LOOP COMPENSATION EN/UVLO MODE RESET RESET LOGIC Maxim Integrated │ 11 MAX17504 4.5V–60V, 3.5A, High-Efficiency, Synchronous Step-Down DC-DC Converter with Internal Compensation Detailed Description The MAX17504 high-efficiency, high-voltage, synchronously rectified step-down converter with dual integrated MOSFETs operates over a 4.5V to 60V input. It delivers up to 3.5A and 0.9V to 90% VIN output voltage. Built-in compensation across the output voltage range eliminates the need for external components. The feedback (FB) regulation accuracy over -40°C to +125°C is ±1.1%. The device features a peak-current-mode control architecture. An internal transconductance error amplifier produces an integrated error voltage at an internal node that sets the duty cycle using a PWM comparator, a high-side current-sense amplifier, and a slope-compensation generator. At each rising edge of the clock, the high-side MOSFET turns on and remains on until either the appropriate or maximum duty cycle is reached, or the peak current limit is detected. During the high-side MOSFET’s on-time, the inductor current ramps up. During the second half of the switching cycle, the high-side MOSFET turns off and the low-side MOSFET turns on. The inductor releases the stored energy as its current ramps down and provides current to the output. PFM Mode Operation PFM mode of operation disables negative inductor current and additionally skips pulses at light loads for high efficiency. In PFM mode, the inductor current is forced to a fixed peak of 750mA every clock cycle until the output rises to 102.3% of the nominal voltage. Once the output reaches 102.3% of the nominal voltage, both the high-side and low-side FETs are turned off and the device enters hibernate operation until the load discharges the output to 101.1% of the nominal voltage. Most of the internal blocks are turned off in hibernate operation to save quiescent current. After the output falls below 101.1% of the nominal voltage, the device comes out of hibernate operation, turns on all internal blocks, and again commences the process of delivering pulses of energy to the output until it reaches 102.3% of the nominal output voltage. The advantage of the PFM mode is higher efficiency at light loads because of lower quiescent current drawn from supply. The disadvantage is that the output-voltage ripple is higher compared to PWM or DCM modes of operation and switching frequency is not constant at light loads. DCM Mode Operation The device features a MODE pin that can be used to operate the device in PWM, PFM, or DCM control schemes. The device integrates adjustable-input undervoltage lockout, adjustable soft-start, open RESET, and external frequency synchronization features. DCM mode of operation features constant frequency operation down to lighter loads than PFM mode, by not skipping pulses but only disabling negative inductor current at light loads. DCM operation offers efficiency performance that lies between PWM and PFM modes. Mode Selection (MODE) Linear Regulator (VCC) The logic state of the MODE pin is latched when VCC and EN/UVLO voltages exceed the respective UVLO rising thresholds and all internal voltages are ready to allow LX switching. If the MODE pin is open at power-up, the device operates in PFM mode at light loads. If the MODE pin is grounded at power-up, the device operates in constant-frequency PWM mode at all loads. Finally, if the MODE pin is connected to VCC at power-up, the device operates in constant-frequency DCM mode at light loads. State changes on the MODE pin are ignored during normal operation. PWM Mode Operation In PWM mode, the inductor current is allowed to go negative. PWM operation provides constant frequency operation at all loads, and is useful in applications sensitive to switching frequency. However, the PWM mode of operation gives lower efficiency at light loads compared to PFM and DCM modes of operation. www.maximintegrated.com An internal linear regulator (VCC) provides a 5V nominal supply to power the internal blocks and the low-side MOSFET driver. The output of the linear regulator (VCC) should be bypassed with a 2.2µF ceramic capacitor to SGND. The MAX17504 employs an undervoltage lockout circuit that disables the internal linear regulator when VCC falls below 3.8V (typ). Setting the Switching Frequency (RT) The switching frequency of the MAX17504 can be programmed from 200kHz to 2.2MHz by using a resistor connected from RT to SGND. The switching frequency (fSW) is related to the resistor connected at the RT pin (RRT) by the following equation: R RT ≅ 21× 10 3 f SW − 1.7 where RRT is in kΩ and fSW is in kHz. Leaving the RT pin open causes the device to operate at the default switching frequency of 500kHz. See Table 1 for RT resistor values for a few common switching frequencies. Maxim Integrated │ 12 MAX17504 4.5V–60V, 3.5A, High-Efficiency, Synchronous Step-Down DC-DC Converter with Internal Compensation Table 1. Switching Frequency vs. RT Resistor SWITCHING FREQUENCY (kHz) RT RESISTOR (kΩ) 500 OPEN 200 102 400 49.9 1000 19.1 2200 8.06 Operating Input Voltage Range The minimum and maximum operating input voltages for a given output voltage should be calculated as follows: VIN(MIN) = VOUT + (I OUT(MAX) × (R DCR + 0.15)) 1- (f SW(MAX) × t OFF(MAX) ) + (I OUT(MAX) × 0.175) VIN(MAX) = VOUT f SW(MAX) × t ON(MIN) where VOUT is the steady-state output voltage, IOUT(MAX) is the maximum load current, RDCR is the DC resistance of the inductor, fSW(MAX) is the maximum switching frequency, tOFF(MAX) is the worst-case minimum switch off-time (160ns), and tON(MIN) is the worst-case minimum switch on-time (135ns). External Frequency Synchronization (SYNC) The internal oscillator of the MAX17504 can be synchronized to an external clock signal on the SYNC pin. The external synchronization clock frequency must be between 1.1 x fSW and 1.4 x fSW, where fSW is the frequency programmed by the RT resistor. The minimum external clock pulse-width high should be greater than 50ns. See the RT and SYNC section in the Electrical Characteristics table for details. Overcurrent Protection/HICCUP Mode The MAX17504 is provided with a robust overcurrent protection scheme that protects the device under overload and output short-circuit conditions. A cycle-by-cycle peak current limit turns off the high-side MOSFET whenever the high-side switch current exceeds an internal limit of 5.1A (typ). A runaway current limit on the high-side www.maximintegrated.com switch current at 5.7A (typ) protects the device under high input voltage, short-circuit conditions when there is insufficient output voltage available to restore the inductor current that was built up during the ON period of the step-down converter. One occurrence of the runaway current limit triggers a hiccup mode. In addition, if due to a fault condition, feedback voltage drops to 0.58V (typ) anytime after soft-start is complete, hiccup mode is triggered. In hiccup mode, the converter is protected by suspending switching for a hiccup timeout period of 32,768 clock cycles. Once the hiccup timeout period expires, soft-start is attempted again. Note that when softstart is attempted under an overload condition, if feedback voltage does not exceed 0.58V, the device switches at half the programmed switching frequency. Hiccup mode of operation ensures low power dissipation under output short-circuit conditions. RESET Output The MAX17504 includes a RESET comparator to monitor the output voltage. The open-drain RESET output requires an external pullup resistor. RESET goes high (highimpedance) 1024 switching cycles after the regulator output increases above 95% of the designed nominal regulated voltage. RESET goes low when the regulator output voltage drops to below 92% of the nominal regulated voltage. RESET also goes low during thermal shutdown. Prebiased Output When the MAX17504 starts into a prebiased output, both the high-side and the low-side switches are turned off so that the converter does not sink current from the output. High-side and low-side switches do not start switching until the PWM comparator commands the first PWM pulse, at which point switching commences. The output voltage is then smoothly ramped up to the target value in alignment with the internal reference. Thermal-Shutdown Protection Thermal-shutdown protection limits total power dissipation in the MAX17504. When the junction temperature of the device exceeds +165°C, an on-chip thermal sensor shuts down the device, allowing the device to cool. The thermal sensor turns the device on again after the junction temperature cools by 10°C. Soft-start resets during thermal shutdown. Carefully evaluate the total power dissipation (see the Power Dissipation section) to avoid unwanted triggering of the thermal shutdown in normal operation. Maxim Integrated │ 13 MAX17504 4.5V–60V, 3.5A, High-Efficiency, Synchronous Step-Down DC-DC Converter with Internal Compensation Applications Information saturation can occur only above the peak current-limit value of 5.1A. Input Capacitor Selection The input filter capacitor reduces peak currents drawn from the power source and reduces noise and voltage ripple on the input caused by the circuit’s switching. The input capacitor RMS current requirement (IRMS) is defined by the following equation: = IRMS I OUT(MAX) × VOUT × (VIN - VOUT ) VIN where, IOUT(MAX) is the maximum load current. IRMS has a maximum value when the input voltage equals twice the output voltage (VIN = 2 x VOUT), so IRMS(MAX) = IOUT(MAX)/2. Choose an input capacitor that exhibits less than +10°C temperature rise at the RMS input current for optimal long-term reliability. Use low-ESR ceramic capacitors with high ripple current capability at the input. X7R capacitors are recommended in industrial applications for their temperature stability. Calculate the input capacitance using the following equation: I OUT(MAX) × D × (1- D) C IN = η × f SW × ∆VIN where D = VOUT/VIN is the duty ratio of the controller, fSW is the switching frequency, ΔVIN is the allowable input voltage ripple, and E is the efficiency. In applications where the source is located distant from the MAX17504 input, an electrolytic capacitor should be added in parallel to the ceramic capacitor to provide necessary damping for potential oscillations caused by the inductance of the longer input power path and input ceramic capacitor. Inductor Selection Three key inductor parameters must be specified for operation with the MAX17504: inductance value (L), inductor saturation current (ISAT), and DC resistance (RDCR). The switching frequency and output voltage determine the inductor value as follows: L= VOUT f SW where VOUT and fSW are nominal values. Select a low-loss inductor closest to the calculated value with acceptable dimensions and having the lowest possible DC resistance. The saturation current rating (ISAT) of the inductor must be high enough to ensure that www.maximintegrated.com Output Capacitor Selection X7R ceramic output capacitors are preferred due to their stability over temperature in industrial applications. The output capacitors are usually sized to support a step load of 50% of the maximum output current in the application, so the output voltage deviation is contained to 3% of the output voltage change. The minimum required output capacitance can be calculated as follows: C OUT= 1 I STEP × t RESPONSE × 2 ∆VOUT t RESPONSE ≅ ( 0.33 1 ) + fC f sw where ISTEP is the load current step, tRESPONSE is the response time of the controller, DVOUT is the allowable output voltage deviation, fC is the target closed-loop crossover frequency, and fSW is the switching frequency. Select fC to be 1/9th of fSW if the switching frequency is less than or equal to 500kHz. If the switching frequency is more than 500kHz, select fC to be 55kHz. Soft-Start Capacitor Selection The MAX17504 implements adjustable soft-start operation to reduce inrush current. A capacitor connected from the SS pin to SGND programs the soft-start time. The selected output capacitance (CSEL) and the output voltage (VOUT) determine the minimum required soft-start capacitor as follows: CSS ≥ 28 x 10-6 x CSEL x VOUT The soft-start time (tSS) is related to the capacitor connected at SS (CSS) by the following equation: tSS = CSS/(5.55 x 10-6) For example, to program a 2ms soft-start time, a 12nF capacitor should be connected from the SS pin to SGND. VIN R1 EN/UVLO R2 SGND Figure 1. Setting the Input Undervoltage Lockout Maxim Integrated │ 14 MAX17504 4.5V–60V, 3.5A, High-Efficiency, Synchronous Step-Down DC-DC Converter with Internal Compensation Setting the Input Undervoltage Lockout Level The MAX17504 offers an adjustable input undervoltage lockout level. Set the voltage at which MAX17504 turns ON, with a resistive voltage-divider connected from VIN to SGND. Connect the center node of the divider to EN/UVLO. Choose R1 to be 3.3MI and then calculate R2 as follows: R2 = R1× 1.215 (VINU - 1.215) where VINU is the voltage at which the MAX17504 is required to turn ON. Ensure that VINU is higher than 0.8 x VOUT. Loop Compensation The MAX17504 is internally loop compensated. However, if the switching frequency is less than 500kHz, connect a 0402 capacitor, C6, between the CF pin and the FB pin. Use Table 2 to select the value of C6. Adjusting Output Voltage Set the output voltage with a resistive voltage-divider connected from the positive terminal of the output capacitor (VOUT) to SGND (see Figure 2). Connect the center node of the divider to the FB pin. Use the following procedure to choose the resistive voltage-divider values: Calculate resistor R3 from the output to FB as follows: R3 = 216 × 10 3 f C × C OUT where R3 is in kI, crossover frequency fC is in kHz, and output capacitor COUT is in µF. Choose fC to be 1/9th of the switching frequency, fSW, if the switching frequency is less than or equal to 500kHz. If the switching frequency is more than 500kHz, select fC to be 55kHz. Calculate resistor R4 from FB to SGND as follows: R3 × 0.9 R4 = (VOUT - 0.9) Power Dissipation Ensure that the junction temperature of the MAX17504 does not exceed +125°C under the operating conditions specified for the power supply. At a particular operating condition, the power losses that lead to temperature rise of the part are estimated as follows: www.maximintegrated.com Table 2. C6 Capacitor Value at Various Switching Frequencies SWITCHING FREQUENCY RANGE (kHz) C6 (pF) 200 to 300 2.2 300 to 400 1.2 400 to 500 0.75 VOUT R3 FB R4 SGND Figure 2. Setting the Output Voltage ( 1 PLOSS = (POUT × ( - 1)) - I OUT 2 × R DCR η ) P= OUT VOUT × I OUT where POUT is the total output power, η is the efficiency of the converter, and RDCR is the DC resistance of the inductor. (See the Typical Operating Characteristics for more information on efficiency at typical operating conditions). For a multilayer board, the thermal performance metrics for the package are given below: θ JA = 30°C W θ JC =2°C W The junction temperature of the MAX17504 can be estimated at any given maximum ambient temperature (TA_MAX) from the equation below: TJ_MAX = T A _MAX + (θ JA × PLOSS ) If the application has a thermal management system that ensures that the exposed pad of the MAX17504 is maintained at a given temperature (TEP_MAX) by using proper heat sinks, then the junction temperature of the MAX17504 can be estimated at any given maximum ambient temperature from the equation below: T= J_MAX TEP_MAX + (θ JC × PLOSS ) Maxim Integrated │ 15 MAX17504 4.5V–60V, 3.5A, High-Efficiency, Synchronous Step-Down DC-DC Converter with Internal Compensation PCB Layout Guidelines currents must be kept separate. They should be connected together at a point where switching activity is at a minimum, typically the return terminal of the VCC bypass capacitor. This helps keep the analog ground quiet. The ground plane should be kept continuous/unbroken as far as possible. No trace carrying high switching current should be placed directly over any ground plane discontinuity. All connections carrying pulsed currents must be very short and as wide as possible. The inductance of these connections must be kept to an absolute minimum due to the high di/dt of the currents. Since inductance of a current carrying loop is proportional to the area enclosed by the loop, if the loop area is made very small, inductance is reduced. Additionally, small current loop areas reduce radiated EMI. PCB layout also affects the thermal performance of the design. A number of thermal vias that connect to a large ground plane should be provided under the exposed pad of the part, for efficient heat dissipation. A ceramic input filter capacitor should be placed close to the VIN pins of the IC. This eliminates as much trace inductance effects as possible and give the IC a cleaner voltage supply. A bypass capacitor for the VCC pin also should be placed close to the pin to reduce effects of trace impedance. For a sample layout that ensures first pass success, refer to the MAX17504 evaluation kit layout available at www.maximintegrated.com. When routing the circuitry around the IC, the analog small-signal ground and the power ground for switching VIN (7.5V TO 60V) EN/UVLO VIN VIN BST RT LX SYNC MAX17504 MODE C2 2.2µF LX LX VCC C8 2.2µF C5 0.1µF L1 10µH VOUT 5V, 3.5A C4 22µF C9 22µF R3 100kΩ FB SGND CF C1 2.2µF VIN R4 22.1kΩ RESET PGND SS PGND PGND C3 12000pF fSW = 500kHz L1 = SLF12575T-100M5R4-H Figure 3. Typical Application Circuit for 5V Output www.maximintegrated.com Maxim Integrated │ 16 MAX17504 4.5V–60V, 3.5A, High-Efficiency, Synchronous Step-Down DC-DC Converter with Internal Compensation VIN (5.5V TO 60V) EN/UVLO VIN VIN BST RT LX SYNC MAX17504 MODE C2 2.2µF LX C8 2.2µF C5 0.1µF VOUT 3.3V, 3.5A L1 6.8µH C4 22µF LX VCC C9 22µF R3 82.5kΩ FB SGND CF C1 2.2µF VIN R4 30.9kΩ RESET SS PGND PGND PGND C3 12000pF fSW = 500kHz L1 = MSS1048-682NL Figure 4. Typical Application Circuit for 3.3V Output Ordering Information PART MAX17504ATP+ Package Information PIN-PACKAGE 20 TQFN 5mm x 5mm Note: All devices operate over the temperature range of -40ºC to +125ºC, unless otherwise noted. +Denotes a lead(Pb)-free/RoHS-compliant package. Chip Information PROCESS: BiCMOS www.maximintegrated.com For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a “+”, “#”, or “-” in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status. PACKAGE TYPE PACKAGE CODE OUTLINE NO. LAND PATTERN NO. 20 TQFN-EP* T2055+4 21-0140 90-0009 *EP = Exposed pad. Maxim Integrated │ 17 MAX17504 4.5V–60V, 3.5A, High-Efficiency, Synchronous Step-Down DC-DC Converter with Internal Compensation Revision History REVISION NUMBER REVISION DATE PAGES CHANGED 0 11/13 Initial release 1 2/14 Updated TOCs 32 and 33 and Typical Application Circuit Figures DESCRIPTION — 9, 16, 17 For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim’s website at www.maximintegrated.com. Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance. Maxim Integrated and the Maxim Integrated logo are trademarks of Maxim Integrated Products, Inc. © 2014 Maxim Integrated Products, Inc. │ 18