ETC MAX4895

19-4569; Rev 1; 6/10
WHB࣡ాۣઐ໭
``````````````````````````````````` ᄂቶ
NBY59:6Fૹ߅࢟ຳᓞધદߡ໭LjᆐWHBቧ੓ᄋ৙SĂHĂ
C࣡ాۣઐă
♦ I2ĂW2ĂTEB2ĂTDM2ĂSĂHĂC࣡௥ᎌFTEۣઐ
±26lW—ཽᄏෝါ
±9lW—JFD! 72111.5.3Lj୻߿ह࢟
NBY59:6F௥ᎌIĂW )ቲĂ‫࢟*ޝ‬ຳᓞધદߡ໭Ljభ୓౶ᔈ
ᅄተၒ߲ࡼࢅ࢟ຳDNPTၒྜྷᓞધ߅൸ᔗ,6/1WĂUUMରྏ
࢟ຳࡼၒ߲ăඛവၒ߲భᄋ৙±21nBདࣅLj൸ᔗWFTB®
ਖपăࠥᅪLj໭ୈથభ୻၊,6/1WĂᒇ୻ၫᔊ఼ᒜ)EED*
ቧ੓Lj݀୓໚ᓞધᆐᅄተ໭ୈჅኊࡼ୷ࢅ࢟ຳă፿ઓభ୓
ᅄተఌၒ߲࢟Ꮞೌ୻ᒗW M ࿸ࢾক࢟ຳăSĂHĂCۣ࣡ઐ
ᅄተၒ߲፛୭Ljဧ໚඾၊ஸ࢟ह࢟)FTE*ߡૣऎႼડLj໕വ
ၒ߲௿௥ᎌ঱ኹFTEۣઐă
♦ ࢅஸზ࢟ഗLjJR ≤ 6μB! )ᔢࡍᒋ*
♦ 4qG! )ᔢࡍᒋ*ࢅ࢟ྏ)SĂHĂC࣡ా*
♦ EED࢟ຳᓞધۣઐᎧ৆ಭ
♦ ቲᄴ‫ݛ‬Ă‫ޝ‬ᄴ‫࢟ݛ‬ຳᓞધ0દߡ
♦ ၒྜྷରྏ᎖WM
♦ ၒ߲ରྏ᎖,6/1W! UUM࢟ຳ)९੝WFTB*
NBY59:6F৔ᔫᏴ.51°Dᒗ,96°D౫ᐱ଀ᆨࣞपᆍLjᄋ৙27
፛୭Ă4nn y 4nn URGOॖᓤă
♦ ඛৈIĂW࣡ాభᄋ৙±21nBདࣅ
``````````````````````````````````` ።፿
``````````````````````````````` ࢾ৪ቧᇦ
♦ ஂဏహମࡼ27፛୭)4nn! y! 4nn*! URGOᇄ໺ॖᓤ
‫܊‬଑‫࢟۾‬ฎ
PART
გါଐႯ૦
MAX4895EETE+
ॲᇗ໭
TEMP RANGE
PIN-PACKAGE
-40°C to +85°C
16 TQFN-EP*
,‫ܭ‬ာᇄ໺)Qc*0९੝SpIT‫ܪ‬ᓰࡼॖᓤă
*FQ! >! ൡ੆๤ă
ᅄተఌ
WFTBဵ၁ຫ࢟ᔇ‫ܪ‬ᓰ቏્ࡼᓖ‫ॲݿ‬ᇗ‫ܪ‬ᒔă
```````````````````````````````````````````````````````````````````````` ࢜ቯ৔ᔫ࢟വ
+3.3V
+5V
1μF
1μF
VL
VCC
EN
VGA OUTPUTS
2
2
H0, V0
MAX4895E
H1, V1
SDA1, SCL1
SDA0, SCL0
2
VGA PORT
2
R
G
B
N.C.
GND
________________________________________________________________ Maxim Integrated Products
1
‫۾‬ᆪဵ፞ᆪၫ௣ᓾ೯ࡼፉᆪLjᆪᒦభถࡀᏴडፉ࿟ࡼ‫ݙ‬ᓰཀྵ૞ࡇᇙăྙኊ஠ጙ‫ݛ‬ཀྵཱྀLj༿Ᏼิࡼ࿸ଐᒦ‫ݬ‬ఠ፞ᆪᓾ೯ă
ᎌਈଥৃĂ৙ૡૺࢿ৪ቧᇦLj༿ೊ൥Nbyjn዇ᒴሾ၉ᒦቦǖ21911!963!235:!)۱ᒦਪཌ*Lj21911!263!235:!)ฉᒦਪཌ*Lj
૞षᆰNbyjnࡼᒦᆪᆀᐶǖdijob/nbyjn.jd/dpnă
NBY59:6F
``````````````````````````````````` গၤ
NBY59:6F
WHB࣡ాۣઐ໭
ABSOLUTE MAXIMUM RATINGS
(All voltages referenced to GND.)
VCC ........................................................................-0.3V to +6.0V
VL .............................................................-0.3V to +(VCC + 0.3V)
R, G, B, H1, V1, SCL1, SDA1...................-0.3V to +(VCC + 0.3V)
EN, H0, V0, SCL0, SDA0 ............................-0.3V to +(VL + 0.3V)
Continuous Current through SDA_, SCL_.........................±30mA
Continuous Short-Circuit Current H1, V1..........................±20mA
Continuous Power Dissipation (TA = +70°C) for multilayer board:
16-Pin TQFN (derate 20.8mW/°C above +70°C) .......1667mW
Junction-to-Case Thermal Resistance (θJC) (Note 1) ......7°C/W
Junction-to-Ambient Thermal Resistance (θJA)
(Note 1) ........................................................................48°C/W
Operating Temperature Range ...........................-40°C to +85°C
Junction Temperature ......................................................+150°C
Storage Temperature Range .............................-65°C to +150°C
Lead Temperature (soldering, 10s) .................................+300°C
Soldering Temperature (reflow) .......................................+260°C
Note 1: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a fourlayer board. For detailed information on package thermal considerations, refer to china.maxim-ic.com/thermal-tutorial.
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to
absolute maximum rating conditions for extended periods may affect device reliability.
ELECTRICAL CHARACTERISTICS
(VCC = +4.5V to +5.5V, VL = +2.0V to VCC, TA = TMIN to TMAX, unless otherwise noted. Typical values are at VCC = +5.0V,
VL = +3.3V, and TA = +25°C.) (Note 2)
PARAMETER
SYMBOL
CONDITIONS
MIN
TYP
MAX
UNITS
5.5
V
3.3
5.5
V
SUPPLY OPERATION
Supply Voltage
VCC
4.5
Logic Supply Voltage
VL
VL VCC
VCC Supply Current
ICC
VH0, VV0 = 0V, VEN = VL
0.5
5.0
μA
IL
VH0, VV0 = 0V, VEN = VL (no load)
0.5
5.0
μA
C OUT
f = 1MHz, VR,G,B = 1V P-P (Note 3)
2.2
VL Supply Current
2
RGB CHANNELS
R, G, B Capacitance
R, G, B Leakage
VCC = +5.5V
-1
pF
+1
μA
0.8
V
H_, V_, EN CHANNELS
Input Threshold Low
VIL
VL = +3.0V
Input Threshold High
VIH
VL = +3.6V
Input Hysteresis
VHYST
Input Leakage Current
ILEAK
V
100
VL = +3.3V, VCC = +5.5V
Output-Voltage Low
VOL
I OUT = 10mA sink, VCC = +4.5V
Output-Voltage High
VOH
I OUT = 10mA source, VCC = +4.5V
Propagation Delay
t PD
RL = 2.2k, CL = 10pF, VOL = +0.8V,
VOH = +2.4V
Enable Time
2.0
-1
mV
+1
μA
0.8
V
2.4
t ON, t OFF
V
15
ns
15
ns
SDA_, SCL_ (DDC) CHANNELS
On-Resistance, SDA, SCL
R ON
VCC = +5.5V, I SDA, SCL = ±10mA,
VSDA, SCL = +0.5V
Leakage Current, SDA, SCL
ILEAK
VL = 0V
2
20
-1
_______________________________________________________________________________________
55
+1
μA
WHB࣡ాۣઐ໭
(VCC = +4.5V to +5.5V, VL = +2.0V to VCC, TA = TMIN to TMAX, unless otherwise noted. Typical values are at VCC = +5.0V,
VL = +3.3V, and TA = +25°C.) (Note 2)
PARAMETER
SYMBOL
CONDITIONS
MIN
TYP
MAX
UNITS
ESD PROTECTION
SDA1, SCL1, H1, V1, R, G, B
Human Body Model (Note 4)
SDA1, SCL1, H1, V1, R, G, B
IEC 61000-4-2 Contact
±15
kV
±8
kV
Note 2: All devices are 100% production tested at TA = +25°C. All temperature limits are guaranteed by design.
Note 3: Guaranteed by design, not production tested.
Note 4: Tested terminals to GND; 1μF bypass capacitors on VCC and VL.
``````````````````````````````````````````````````````````````````````````` ࢜ቯ৔ᔫᄂቶ
(VCC = +5.0V, VL = +3.3V, and TA = +25°C, unless otherwise noted.)
6.0
MAX4895E toc01
60
SDA0, SCL0 ARE
INTERCHANGEABLE
IOUT = 8mA
OUTPUT VOLTAGE (V)
RON (Ω)
45
VL = +3.3V
30
TA = +85°C
15
TA = +25°C
VL = +5V
TA = -40°C
TA = +85°C
MAX4895E toc02
HV BUFFER OUTPUT-VOLTAGE
HIGH vs. TEMPERATURE
RON vs. VSDA0
5.5
5.0
4.5
TA = +25°C
TA = -40°C
0
4.0
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
-40
-15
VSDA0 (V)
10
35
60
85
TEMPERATURE (°C)
1.0
IOUT = 8mA
OUTPUT VOLTAGE (V)
0.8
MAX4895E toc03
HV BUFFER OUTPUT-VOLTAGE
LOW vs. TEMPERATURE
0.6
0.4
0.2
0
-40
-15
10
35
60
85
TEMPERATURE (°C)
_______________________________________________________________________________________
3
NBY59:6F
ELECTRICAL CHARACTERISTICS (continued)
``````````````````````````````````````````````````````````````````````````````` ፛୭๼ᒙ
H1
H0
SCL1
SCL0
TOP VIEW
12
11
10
9
V0 13
V1 14
MAX4895E
VCC 15
EP
2
3
4
GND
1
B
+
G
EN 16
R
NBY59:6F
WHB࣡ాۣઐ໭
8
SDA1
7
SDA0
6
N.C.
5
VL
TQFN
(3mm × 3mm)
``````````````````````````````````````````````````````````````````````````` ፛୭ႁී
4
፛୭
෗߂
1
R
፿᎖ۣઐSHCቧ੓ࡼ঱ኹFTEۣઐऔ૵਌ă
৖ถ
2
G
፿᎖ۣઐSHCቧ੓ࡼ঱ኹFTEۣઐऔ૵਌ă
3
B
፿᎖ۣઐSHCቧ੓ࡼ঱ኹFTEۣઐऔ૵਌ă
4
GND
࢐ă
࢟Ꮞ࢟ኹLj,3/1WᒗWDDăᄰਭጙৈ2μGࡼჿࠣ࢟ྏ୓WM ๬വᒗHOEă
5
VL
6
N.C.
඗ᎌೌ୻Ljॳహă
7
SDA0
TEB! J0PLjTEB1ጲWM ᆐ‫ݬ‬ఠă
8
SDA1
TEB! J0PLjTEB2ጲWDD ᆐ‫ݬ‬ఠă
9
SCL0
TDM! J0PLjTDM1ጲWM ᆐ‫ݬ‬ఠă
10
SCL1
TDM! J0PLjTDM2ጲWDD ᆐ‫ݬ‬ఠă
11
H0
12
H1
ቲᄴ‫ݛ‬ၒ߲ă
13
V0
‫ޝ‬ᄴ‫ݛ‬ၒྜྷă
14
V1
‫ޝ‬ᄴ‫ݛ‬ၒ߲ă
15
VCC
࢟Ꮞ࢟ኹLj,5/6Wᒗ,6/6Wăᄰਭጙৈ2μGࡼჿࠣ࢟ྏ୓WDD ๬വᒗHOEă
16
EN
I2ਜ਼W2ၒ߲ဧถă
—
EP
ൡ੆๤Lj୓FQೌ୻ࡵHOE૞ॳహăᆐখ࿖ྲེLj።ক୓FQೌ୻ࡵ஧భถࡍࡼ঄ᄵཌᎮă‫ݙ‬ገ୓FQᔫᆐ
ᆎጙࡼ࢐ೌ୻࣡ă
ቲᄴ‫ݛ‬ၒྜྷă
_______________________________________________________________________________________
WHB࣡ాۣઐ໭
VL
VCC
SDA1
±15kV
SDA0
CLAMP
SCL0
±15kV
SCL1
H1
±15kV
H0
EN
V1
±15kV
V0
B
±15kV
MAX4895E
G
±15kV
±15kV
R
GND
``````````````````````````````` ።፿ቧᇦ
NBY59:6Fᄋ৙‫ܘ‬ገࡼ࢟ຳᓞધLj፿᎖དࣅೝവ‫ܪ‬ᓰWHB
࣡ాLjၒྜྷቧ੓౶ᔈᅄተ఼ᒜ໭Lj࢟ኹభࢅᒗ,3/3Wăด
‫ݝ‬દߡ໭୓ITZODਜ਼WTZODቧ੓དࣅᒗWHB‫ܪ‬ᓰࡼUUM
࢟ຳăEEDఎਈ୓ቧ੓ὥᆡᏴࢅ᎖WM ጙৈऔ૵਌ኹଢ଼ࡼ
࢟ኹᒋLjᄋ৙࢟ຳᓞધ)‫ݬ‬୅࢜ቯ৔ᔫ࢟വ*ăᑵ‫ޟ‬৔ᔫဟLj
୓WM ೌ୻ᒗ,4/4Wă
࢟ᏎབྷẮ
ಽ፿2μGჿࠣ࢟ྏॊܰ୓WDD ਜ਼WM ๬വᒗ࢐Lj࢟ྏ።஧భ
ถణத໭ୈ‫ڔ‬ᓤă
QDC‫ݚ‬௜
ᆐ૝ࡻᔢଛቶถLjNBY59:6F঱Ⴅఎਈኍ‫ݧ‬፿੝ಯࡼQDC
‫ݚ‬௜ăཀྵۣ঱Ⴅቧ੓‫ݧ‬፿ᔜఝ၊఼ࡼQDC፛ሣLjཀྵۣ፛ሣ
‫ࣞޠ‬ጙᒘ݀஧భถ࣢ă୓ൡ੆๤ೌ୻ࡵ࢐‫ށ‬ă
_______________________________________________________________________________________
5
NBY59:6F
```````````````````````````````````````````````````````````````````````````` ৖ถౖᅄ
NBY59:6F
WHB࣡ాۣઐ໭
``````````````````````````````` ሮᇼႁී
NBY59:6Fૹ߅࢟ຳᓞધદߡ໭LjᆐWHBቧ੓ᄋ৙SĂHĂ
C࣡ాۣઐă
ቲᄴ‫ݛ‬ਜ਼‫ޝ‬ᄴ‫)ݛ‬I10W1*ၒྜྷ௥ᎌ࢟ຳᓞધદߡ໭Ljᑽߒ
ࢅ࢟ኹDNPT૞‫ܪ‬ᓰࡼUUMରྏᅄተ఼ᒜ໭ăক໭ୈ൸ᔗ
±21nB! WFTBདࣅገཇăNBY59:6F‫ݧ‬፿ೝৈoNPT໭ୈ
થభᄋ৙J3D࢟ຳᓞધă໕ৈ࣡ా)TEB2ĂTDM2ĂI2ĂW2Ă
SĂHĂC*ࡼჅᎌၒ߲௿భߌ၊±26lWཽᄏෝါ)ICN*ጲૺ
±9lW! JFD! 72111.5.3୻߿ह࢟ࡼஸ࢟ߡૣăSĂHĂC࣡ా
ᆐၫ0ෝᓞધ໭)EBD*ᄋ৙ۣઐLjᒑኊ଼࡝࢐݀ೊᏴEBDਜ਼
WHB‫ࡼݹރ‬SĂHĂCၒ߲ă
ቲ0‫ޝ‬ᄴ‫࢟ݛ‬ຳᓞધ໭
ITZOD0WTZODቧ੓ளਭદߡᄋ৙࢟ຳᓞધLjདࣅถೆ൸
ᔗWFTBਖपገཇăၒྜྷ൝૷࢟ຳ)WJMĂWJI*ೌ୻ᒗWM )‫ݬ‬
୅ Fmfdusjdbm Dibsbdufsjtujdt ‫*ܭ‬ăࡩFOདࣅᒗࢅ࢟ຳဟLjள
࢟ຳᓞધઁࡼၒ߲)I2ਜ਼W2*‫ۻ‬౯ࢅ)୅‫ܭ‬2*ă൝૷࢟ຳၒ߲
)WPMĂWPI*ରྏ᎖,6/1W UUM࢟ຳă
‫ܭ‬2/! IWᑞᒋ‫ܭ‬
EN
FUNCTION
1
HSYNC/VSYNC level shifting enabled
0
H1, V1 = 0
መာၫ௣ᄰࡸఎਈ
NBY59:6Fಽ፿ೝৈoNPTఎਈဣሚJ3D࢟ຳᓞધăTEBĂ
TDM࣡࢟ኹὥᆡࡵࢅ᎖W M ጙৈऔ૵਌ኹଢ଼ࡼ࢟ኹᒋă࢟
ኹὥᆡᄋ৙ۣઐ݀ରྏ᎖TEBĂTDMਜ਼ࢅኹBTJD൝૷࢟ຳă
WM ‫ݧ‬፿,3/6Wᒗ,4/4W৙࢟࢟ᏎLj୓࢟ኹὥᆡࡵରྏ᎖WFTB
J3Dቧ੓ࡼ࢟ຳăTEBĂTDMఎਈሤᄴLjඛৈఎਈ፿᎖༤ધ
TEB૞TDMቧ੓ă
SHC
໭ୈ௥ᎌSĂHĂCྯৈ࢛࣡ăᑚቋ࢛࣡ࡼᆎጙᔫ፿ဵᏴۣ
ߒSHCቧ੓ሣ࢟ྏᔢቃࡼ༄ᄋሆLjᆐ໚ᄋ৙঱ኹFTEۣઐă
SĂHĂC࣡௥ᎌሤᄴஉ৩Ljྀੜጙৈ࣒భጲ፿᎖ۣઐ੺Ă
ൊĂ౸၁ຫቧ੓ă
FTEۣઐ
ᎧNbyjnࡼ໚჈໭ୈಢ႒Lj໭ୈࡼჅᎌ፛୭࣒ᄋ৙FTEۣ
ઐஉ৩LjᏴ‫ݷ‬ᔫᎧᓤ๼ਭ߈ᒦ߲ሚஸ࢟ह࢟ဟభ࣪໭ୈ
ᄋ৙ۣઐă഍ᅪLjNBY59:6FᏴSHC࣡ਜ਼I2ĂW2ĂTEB2Ă
TDM2ၒ߲࣡ᄋ৙±26lWཽᄏෝါ)ICN*ஸۣ࢟ઐăᆐ૝ࡻ
ᔢଛࡼFTEۣઐቶถLjಽ፿2μGჿࠣ࢟ྏ୓WDD ๬വᒗ࢐ă
FTEۣઐభጲ‫ݧ‬፿‫ݙ‬ᄴࡼऱज‫ހ‬၂ăNBY59:6FࡼSĂHĂ
C࣡ጲૺ I2ĂW2ĂTEB2ĂTDM2ၒ߲࣡ࡼۣઐถೆ၊ሢ᎖ǖ
• ±26lWཽᄏෝါ
• ±9lW! JFD! 72111.5.3୻߿ह࢟
‫ܭ‬3/! EEDᑞᒋ‫ܭ‬
6
FTE‫ހ‬၂ᄟୈ
EN
FUNCTION
1
SDA0 to SDA1
SCL0 to SCL1
0
SDA1, SCL1, high impedance
FTEቶถན௼᎖ࣶᒬᄟୈăྙਫኊገ۞౪‫ހ‬၂࿸ᒙĂऱज
ਜ਼உਫᏴดࡼభణቶۨসLj༿ᎧNbyjnೊᇹă
_______________________________________________________________________________________
WHB࣡ాۣઐ໭
CHARGE-CURRENTLIMIT RESISTOR
DISCHARGE
RESISTANCE
CHARGE-CURRENTLIMIT RESISTOR
HIGHVOLTAGE
DC
SOURCE
RC
50MΩ TO 100MΩ
RD
1500Ω
Cs
100pF
DEVICE
UNDER
TEST
STORAGE
CAPACITOR
HIGHVOLTAGE
DC
SOURCE
Cs
150pF
NBY59:6F
RC
1MΩ
RD
330Ω
DISCHARGE
RESISTANCE
STORAGE
CAPACITOR
DEVICE
UNDER
TEST
ᅄ2d/! JFD! 72111.5.3! FTE‫ހ‬၂ෝቯ
ᅄ2b/! ཽᄏෝါFTE‫ހ‬၂ෝቯ
IP 100%
90%
I
100%
90%
PEAK-TO-PEAK RINGING
(NOT DRAWN TO SCALE)
IPEAK
Ir
AMPS
36.8%
10%
0
10%
0
tRL
TIME
tr = 0.7ns TO 1ns
tDL
CURRENT WAVEFORM
t
30ns
60ns
ᅄ2e/! JFD! 72111.5.3! FTEखည໭࢟ഗ݆ተ
ᅄ2c/! ཽᄏෝါ‫ހ‬၂࢟ഗ݆ተ
ཽᄏෝါ)ICN*
ᅄ2bჅာᆐཽᄏෝါ‫ހ‬၂ෝቯLjᅄ2cჅာᆐ࣪ࢅᔜह࢟
ဟ‫ޘ‬ညࡼ࢟ഗ݆ተăকෝቯ۞౪ጙৈ211qG࢟ྏLj୓໚ߠ
࢟ᒗჅገཇࡼFTE࢟ኹLj཭ઁᄰਭ2/6lΩ࢟ᔜሶ‫ހۻ‬໭ୈ
ह࢟ă
JFD! 72111.5.3
JFD! 72111.5.3‫ܪ‬ᓰ਻ঙ೫߅ອ࿸۸ࡼFTE‫ހ‬၂ᎧቶถLjࡣ
჈݀‫ݙ‬ᑣ࣪ૹ߅࢟വăNBY59:6Fถ৫‫ۑ‬ᓐ፿ઓ࿸ଐ९੝
JFD! 72111.5.3ገཇࡼ࿸۸Ljऎ‫ݙ‬ኊገऄᅪࡼFTEۣઐᏄୈă
ဧ፿ཽᄏෝါᎧJFD! 72111.5.3‫ހ‬၂ࡼᓍገཌܰᏴ᎖JFD
72111.5.3‫ހ‬၂ࡼख़ᒋ࢟ഗৎ঱Ljᑚဵᎅ᎖JFD! 72111.5.3ෝ
ቯ‫ݧ‬፿ৎቃࡼࠈೊ࢟ᔜăፐࠥLjJFD! 72111.5.3‫ހ‬၂ࡼFTE
ง၊࢟ኹᄰ‫ࢅޟ‬᎖ཽᄏෝါ‫ހ‬၂ࡼஉਫăᅄ2dჅာᆐJFD
72111.5.3‫ހ‬၂ෝቯLjᅄ2eჅာᆐJFD 72111.5.3 FTE୻߿ह
࢟‫ހ‬၂ࡼ࢟ഗ݆ተă
``````````````````````````````` በຢቧᇦ
PROCESS: BiCMOS
``````````````````````````````` ॖᓤቧᇦ
ྙኊᔢதࡼॖᓤᅪተቧᇦਜ਼੆๤‫ݚ‬௜Lj༿‫އ‬ኯ china.maxim-ic.
com/packagesă༿ᓖፀLjॖᓤ‫ܠ‬൩ᒦࡼĐ,đĂĐ$đ૞Đ.đஞ‫ܭ‬ာ
SpITᓨზăॖᓤᅄᒦభถ۞਺‫ݙ‬ᄴࡼᆘᓮᔊ९LjࡣॖᓤᅄᒑᎧॖ
ᓤᎌਈLjᎧSpITᓨზᇄਈă
ॖᓤಢቯ
ॖᓤ‫ܠ‬൩
ᅪተ‫ܠ‬੓
੆๤‫ݚ‬௜‫ܠ‬੓
16 TQFN-EP
T1633+4
21-0136
90-0031
_______________________________________________________________________________________
7
NBY59:6F
WHB࣡ాۣઐ໭
```````````````````````````````````````````````````````````````````````````` ኀࢿ಼ဥ
ኀࢿ੓
ኀࢿ྇໐
ႁී
0
4/09
ᔢ߱‫۾ۈ‬ă
—
1
6/10
࠭ࢾ৪ቧᇦᒦ࿎߹೫Đࢻ‫ܪ‬đጙ౺ă
1
ኀখ጑
Nbyjn ۱ய‫ࠀူێ‬
۱ய 9439ቧረ ᎆᑶ‫ܠ‬൩ 211194
඾ॅ࢟જǖ911!921!1421
࢟જǖ121.7322 62::
ࠅᑞǖ121.7322 63::
Nbyjn‫࣪ݙ‬Nbyjn‫ޘ‬ອጲᅪࡼྀੜ࢟വဧ፿ঌᐊLjጐ‫ݙ‬ᄋ৙໚ᓜಽ኏భăNbyjnۣഔᏴྀੜဟମĂ඗ᎌྀੜᄰۨࡼ༄ᄋሆኀখ‫ޘ‬ອᓾ೯ਜ਼ਖৃࡼཚಽă
8 ______________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600
© 2010 Maxim Integrated Products
Nbyjn ဵ Nbyjn!Joufhsbufe!Qspevdut-!Jod/ ࡼᓖ‫ݿ‬࿜‫ܪ‬ă
MAX4895E VGA端口保护 - 概述
ENGLISH • 简体中文 • 日本語 • 한국어 • РУССКИЙ Login | Register
最新内容
产品
方案
设计
应用
技术支持
销售联络
公司简介
Maxim > 产品 > 模拟开关和多路复用器 > MAX4895E
MAX4895E
VGA端口保护
为R、G、B终端提供电平转换缓冲和ESD端口保护
概述 技术文档 定购信息 相关产品 用户说明 (0) 所有内容 状况
状况:生产中。
概述
数据资料
MAX4895E集成电平转换缓冲器,为VGA信号提供R、G、B端口保护。
MAX4895E具有H、V (行、场)电平转换缓冲器,可将来自图形输出的低电平CMOS输入转换成满足
全+5.0V、TTL兼容的输出。每路输出可提供±10mA驱动,满足VESA®规范。此外,器件还可接
受+5.0V、直接数字控制(DDC)信号,并将其转换为图形器件所需的较低电平。用户将图形输出电源连
接至VL 设定该电平。R、G、B端保护图形输出引脚免受静电(ESD)冲击而损坏,七路输出均具有高
压ESD保护。
完整的数据资料
英文
下载 Rev. 1 (PDF, 152kB)
中文
下载 Rev. 1 (PDF, 596kB)
MAX4895E工作在扩展级-40°C至+85°C温度范围,提供16引脚、3mm x 3mm TQFN封装。
关键特性
H1、V1、SDA1、SCL1、R、G、B端带有ESD保护
±15kV—人体模型
±8kV—IEC 61000-4-2、接触放电
低静态电流,IQ ≤ 5µA (最大值)
电容低至3pF (最大值) (R、G、B端口)
DDC电平转换保护和隔离
行同步、场同步电平转换/缓冲
输入与VL 兼容
输出完全兼容于+5.0V TTL (符合VESA标准)
每个H、V端口可提供±10mA驱动
节省空间、无铅、16引脚(3mm x 3mm) TQFN封装
图表
典型工作电路
http://china.maxim-ic.com/datasheet/index.mvp/id/5775[2010-12-15 7:43:18]
应用/使用
台式计算机
图形卡
笔记本电脑
服务器
我的Maxim
MAX4895E VGA端口保护 - 概述
更多信息
顶标
MAX4895E
新品发布
[ 2009-09-21 ]
没有找到你需要的产品吗?
应用工程师帮助选型,下个工作日回复
参数搜索
应用帮助
概述
技术文档
定购信息
相关产品
概述
关键特性
应用/ 使用
关键指标
图表
注释、注解
数据资料
应用笔记
评估板
设计指南
可靠性报告
软件/ 模型
价格与供货
样品
在线订购
封装信息
无铅信息
类似功能器件
类似应用器件
评估板
类似型号器件
配合该器件使用的产品
参考文献: 19- 4569 Rev. 1; 2010- 07- 12
本页最后一次更新: 2010- 07- 12
联络我们:信息反馈、提出问题 • 对该网页的评价 • 发送本网页 • 隐私权政策 • 法律声明
© 2010 Maxim Integrated Products版权所有
http://china.maxim-ic.com/datasheet/index.mvp/id/5775[2010-12-15 7:43:18]
19-4569; Rev 1; 6/10
VGA Port Protector
Features
The MAX4895E integrates level-translating buffers and
features R, G, B port protection for VGA signals.
♦ ESD Protection on H1, V1, SDA1, SCL1, R, G, and B
±15kV—Human Body Model
The MAX4895E has H, V (horizontal, vertical) translating buffers that take low-level CMOS inputs from the
graphics outputs to meet full +5.0V, TTL-compatible
outputs. Each output can drive ±10mA and meet the
VESA® specification. In addition, the device takes the
+5.0V, direct digital control (DDC) signals and translates them to the lower level required by the graphics
device. This level is set by the user by connecting VL to
the graphics output supply. The R, G, B terminals protect the graphics output pins against electrostatic discharge (ESD) events. All seven outputs have high-level
ESD protection.
±8kV—IEC 61000-4-2, Contact Discharge
♦ Low Quiescent Current, IQ ≤ 5µA (max)
♦ Low 3pF (max) Capacitance (R, G, B Ports)
♦ DDC Level-Shifting Protection and Isolation
♦ Horizontal Sync, Vertical Sync Level Shifting/
Buffering
♦ Input Compatible with VL
The MAX4895E is specified over the extended -40°C to
+85°C temperature range, and is available in a 16-pin,
3mm x 3mm TQFN package.
♦ Output Full +5.0V TTL Compatible (per VESA)
♦ ±10mA Drive on Each H, V Terminal
Applications
♦ Space-Saving, Lead-Free, 16-Pin (3mm x 3mm)
TQFN Package
Notebook Computers
Desktops
Ordering Information
Servers
PART
Graphics Cards
MAX4895EETE+
TEMP RANGE
PIN-PACKAGE
-40°C to +85°C
16 TQFN-EP*
+Denotes a lead(Pb)-free/RoHS-compliant package.
*EP = Exposed pad.
VESA is a registered service mark of Video Electronics
Standards Association Corporation.
Typical Operating Circuit
+3.3V
+5V
1μF
1μF
VL
VCC
EN
VGA OUTPUTS
2
2
H0, V0
MAX4895E
SDA0, SCL0
H1, V1
SDA1, SCL1
2
VGA PORT
2
R
G
B
N.C.
GND
________________________________________________________________ Maxim Integrated Products
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642,
or visit Maxim’s website at www.maxim-ic.com.
1
MAX4895E
General Description
MAX4895E
VGA Port Protector
ABSOLUTE MAXIMUM RATINGS
(All voltages referenced to GND.)
VCC ........................................................................-0.3V to +6.0V
VL .............................................................-0.3V to +(VCC + 0.3V)
R, G, B, H1, V1, SCL1, SDA1...................-0.3V to +(VCC + 0.3V)
EN, H0, V0, SCL0, SDA0 ............................-0.3V to +(VL + 0.3V)
Continuous Current through SDA_, SCL_.........................±30mA
Continuous Short-Circuit Current H1, V1..........................±20mA
Continuous Power Dissipation (TA = +70°C) for multilayer board:
16-Pin TQFN (derate 20.8mW/°C above +70°C) .......1667mW
Junction-to-Case Thermal Resistance (θJC) (Note 1) ......7°C/W
Junction-to-Ambient Thermal Resistance (θJA)
(Note 1) ........................................................................48°C/W
Operating Temperature Range ...........................-40°C to +85°C
Junction Temperature ......................................................+150°C
Storage Temperature Range .............................-65°C to +150°C
Lead Temperature (soldering, 10s) .................................+300°C
Soldering Temperature (reflow) .......................................+260°C
Note 1: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a fourlayer board. For detailed information on package thermal considerations, refer to www.maxim-ic.com/thermal-tutorial.
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to
absolute maximum rating conditions for extended periods may affect device reliability.
ELECTRICAL CHARACTERISTICS
(VCC = +4.5V to +5.5V, VL = +2.0V to VCC, TA = TMIN to TMAX, unless otherwise noted. Typical values are at VCC = +5.0V,
VL = +3.3V, and TA = +25°C.) (Note 2)
PARAMETER
SYMBOL
CONDITIONS
MIN
TYP
MAX
UNITS
5.5
V
SUPPLY OPERATION
Supply Voltage
VCC
4.5
Logic Supply Voltage
VL
VL VCC
3.3
5.5
V
VCC Supply Current
ICC
VH0, VV0 = 0V, VEN = VL
0.5
5.0
μA
IL
VH0, VV0 = 0V, VEN = VL (no load)
0.5
5.0
μA
C OUT
f = 1MHz, VR,G,B = 1V P-P (Note 3)
2.2
VL Supply Current
2
RGB CHANNELS
R, G, B Capacitance
R, G, B Leakage
VCC = +5.5V
-1
pF
+1
μA
0.8
V
H_, V_, EN CHANNELS
Input Threshold Low
VIL
VL = +3.0V
Input Threshold High
VIH
VL = +3.6V
Input Hysteresis
VHYST
Input Leakage Current
ILEAK
V
100
VL = +3.3V, VCC = +5.5V
Output-Voltage Low
VOL
I OUT = 10mA sink, VCC = +4.5V
Output-Voltage High
VOH
I OUT = 10mA source, VCC = +4.5V
Propagation Delay
t PD
RL = 2.2k, CL = 10pF, VOL = +0.8V,
VOH = +2.4V
Enable Time
2.0
-1
mV
+1
μA
0.8
V
2.4
t ON, t OFF
V
15
ns
15
ns
SDA_, SCL_ (DDC) CHANNELS
On-Resistance, SDA, SCL
R ON
VCC = +5.5V, I SDA, SCL = ±10mA,
VSDA, SCL = +0.5V
Leakage Current, SDA, SCL
ILEAK
VL = 0V
2
20
-1
_______________________________________________________________________________________
55
+1
μA
VGA Port Protector
(VCC = +4.5V to +5.5V, VL = +2.0V to VCC, TA = TMIN to TMAX, unless otherwise noted. Typical values are at VCC = +5.0V,
VL = +3.3V, and TA = +25°C.) (Note 2)
PARAMETER
SYMBOL
CONDITIONS
MIN
TYP
MAX
UNITS
ESD PROTECTION
SDA1, SCL1, H1, V1, R, G, B
Human Body Model (Note 4)
SDA1, SCL1, H1, V1, R, G, B
IEC 61000-4-2 Contact
±15
kV
±8
kV
Note 2: All devices are 100% production tested at TA = +25°C. All temperature limits are guaranteed by design.
Note 3: Guaranteed by design, not production tested.
Note 4: Tested terminals to GND; 1µF bypass capacitors on VCC and VL.
Typical Operating Characteristics
(VCC = +5.0V, VL = +3.3V, and TA = +25°C, unless otherwise noted.)
6.0
MAX4895E toc01
60
SDA0, SCL0 ARE
INTERCHANGEABLE
IOUT = 8mA
OUTPUT VOLTAGE (V)
RON (Ω)
45
VL = +3.3V
30
TA = +85°C
15
TA = +25°C
VL = +5V
TA = -40°C
TA = +85°C
MAX4895E toc02
HV BUFFER OUTPUT-VOLTAGE
HIGH vs. TEMPERATURE
RON vs. VSDA0
5.5
5.0
4.5
TA = +25°C
TA = -40°C
0
4.0
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
-40
-15
VSDA0 (V)
10
35
60
85
TEMPERATURE (°C)
1.0
IOUT = 8mA
OUTPUT VOLTAGE (V)
0.8
MAX4895E toc03
HV BUFFER OUTPUT-VOLTAGE
LOW vs. TEMPERATURE
0.6
0.4
0.2
0
-40
-15
10
35
60
85
TEMPERATURE (°C)
_______________________________________________________________________________________
3
MAX4895E
ELECTRICAL CHARACTERISTICS (continued)
VGA Port Protector
MAX4895E
Pin Configuration
H1
H0
SCL1
SCL0
TOP VIEW
12
11
10
9
V0 13
8
SDA1
V1 14
7
SDA0
6
N.C.
5
VL
MAX4895E
VCC 15
EP
2
3
4
GND
R
1
B
+
G
EN 16
TQFN
(3mm × 3mm)
Pin Description
PIN
4
NAME
FUNCTION
1
R
High-ESD Protection Diodes for RGB Signals
2
G
High-ESD Protection Diodes for RGB Signals
3
B
High-ESD Protection Diodes for RGB Signals
4
GND
5
VL
6
N.C.
No Connection. Leave unconnected.
7
SDA0
SDA I/O. SDA0 referenced to VL.
8
SDA1
SDA I/O. SDA1 referenced to VCC.
9
SCL0
SCL I/O. SCL0 referenced to VL.
10
SCL1
11
H0
Horizontal Sync Input
12
H1
Horizontal Sync Output
13
V0
Vertical Sync Input
14
V1
Vertical Sync Output
15
VCC
16
EN
—
EP
Ground
Supply Voltage, +2.0V to VCC. Bypass VL to GND with a 1μF ceramic capacitor.
SCL I/O. SCL1 referenced to VCC.
Power-Supply Voltage, +4.5V to +5.5V. Bypass VCC to GND with a 1μF ceramic capacitor.
Enable for H1 and V1 Outputs
Exposed Pad. Connect EP to GND or leave unconnected. For enhanced thermal dissipation,
connect EP to a copper area as large as possible. Do not use EP as a sole ground connection.
_______________________________________________________________________________________
VGA Port Protector
VL
VCC
SDA1
±15kV
SDA0
CLAMP
SCL0
±15kV
SCL1
H1
±15kV
H0
EN
V1
±15kV
V0
B
±15kV
MAX4895E
G
±15kV
±15kV
R
GND
Applications Information
The MAX4895E provides the level shifting necessary to
drive two standard VGA ports from a graphics controller
as low as +2.2V. Internal buffers drive the HSYNC and
VSYNC signals to VGA standard TTL levels. The DDC
switch provides level shifting by clamping signals to a
diode drop less than VL (see the Typical Operating
Circuit). Connect VL to +3.3V for normal operation.
Power-Supply Decoupling
Bypass V CC and V L to ground with a 1µF ceramic
capacitor as close as possible to the device.
PCB Layout
High-speed switches such as the MAX4895E require
proper PCB layout for optimum performance. Ensure
that impedance-controlled PCB traces for high-speed
signals are matched in length and are as short as possible. Connect the exposed pad to a solid ground
plane.
_______________________________________________________________________________________
5
MAX4895E
Functional Diagram
MAX4895E
VGA Port Protector
Detailed Description
The MAX4895E integrates level-translating buffers and
features R, G, B port protection for VGA signals.
Horizontal and vertical synchronization (H0/V0) inputs
feature level-shifting buffers to support low-voltage
CMOS or standard TTL-compatible graphics controllers. The device meets ±10mA VESA drive requirements. The MAX4895E also features I2C level shifting
using two nMOS devices. All outputs maintain ±15kV
Human Body Model (HBM) and ±8kV Contact
Discharge per IEC 61000-4-2 on seven terminals
(SDA1, SCL1, H1, V1, R, G, B). The R, G, B pads protect the digital-to-analog converter (DAC) and are simply placed in parallel with the R, G, B outputs for the
DAC and VGA socket.
Horizontal/Vertical Sync Level Shifter
HSYNC/VSYNC are buffered to provide level shifting
and drive capability to meet the VESA specification.
Input logic levels (VIL, VIH) are connected to VL (see
the Electrical Characteristics table). The level-shifted
outputs (H1 and V1) are pulled low when EN is driven
low (see Table 1). Logic-level output (VOL, VOH) are
+5.0V TTL compatible.
Table 1. HV Truth Table
EN
FUNCTION
1
HSYNC/VSYNC level shifting enabled
0
H1, V1 = 0
Table 2. DDC Truth Table
6
EN
FUNCTION
1
SDA0 to SDA1
SCL0 to SCL1
0
SDA1, SCL1, high impedance
Display Data Channel Switches
The MAX4895E incorporates two nMOS switches for I2C
level shifting. The SDA, SCL terminals are voltage
clamped to a diode drop less than the V L voltage.
Voltage clamping provides protection and compatibility
with SDA, SCL signals and low-voltage ASICs. Supply
+2.5V to +3.3V on VL to provide voltage clamping for
VESA I2C-compatible signals. The SDA, SCL switches
are identical, and each switch can be used to route
SDA or SCL signals.
RGB
There are three terminals for R, G, and B. The only
function of these terminals is to provide high-level ESD
protection to the RGB lines, while at the same time,
keeping the capacitance on the RGB lines to a minimum. The R, G, B terminals are identical, and any of
the three terminals can be used to protect red, green,
or blue video signals.
ESD Protection
As with all Maxim devices, ESD-protection structures
are incorporated on all terminals to protect against
electrostatic discharges encountered during handling
and assembly. Additionally, the MAX4895E is protected
to ±15kV on the RGB terminals and outputs H1, V1,
SDA1, and SCL1 by the Human Body Model (HBM). For
optimum ESD performance, bypass VCC to ground with
a 1µF ceramic capacitor.
ESD protection can be tested in various ways. The R,
G, B terminals and outputs H1, V1, SDA1, and SCL1 of
the MAX4895E are characterized for protection to the
following limits:
• ±15kV using the Human Body Model
• ±8kV IEC 61000-4-2 Contact Discharge
ESD Test Conditions
ESD performance depends on a variety of conditions.
Contact Maxim for a reliability report documenting test
setup, methodology, and results.
_______________________________________________________________________________________
VGA Port Protector
CHARGE-CURRENTLIMIT RESISTOR
HIGHVOLTAGE
DC
SOURCE
Cs
100pF
RD
1500Ω
RC
50MΩ TO 100MΩ
DISCHARGE
RESISTANCE
CHARGE-CURRENTLIMIT RESISTOR
DEVICE
UNDER
TEST
STORAGE
CAPACITOR
DISCHARGE
RESISTANCE
STORAGE
CAPACITOR
DEVICE
UNDER
TEST
I
100%
90%
PEAK-TO-PEAK RINGING
(NOT DRAWN TO SCALE)
IPEAK
Ir
Cs
150pF
RD
330Ω
Figure 1c. IEC 61000-4-2 ESD Test Model
Figure 1a. Human Body ESD Test Model
IP 100%
90%
HIGHVOLTAGE
DC
SOURCE
MAX4895E
RC
1MΩ
AMPS
36.8%
10%
0
10%
0
tRL
TIME
tr = 0.7ns TO 1ns
tDL
CURRENT WAVEFORM
t
30ns
60ns
Figure 1d. IEC 61000-4-2 ESD Generator Current Waveform
Figure 1b. Human Body Current Waveform
Human Body Model (HBM)
Figure 1a shows the Human Body Model, and Figure
1b shows the current waveform it generates when discharged into a low impedance. This model consists of a
100pF capacitor charged to the ESD voltage of interest
that is then discharged into the test device through a
1.5kΩ resistor.
IEC 61000-4-2
The IEC 61000-4-2 standard covers ESD testing and
performance of finished equipment. However, it does
not specifically refer to integrated circuits. The
MAX4895E assists in designing equipment to meet IEC
61000-4-2 without the need for additional ESD-protection components.
The major difference between tests done using the
Human Body Model and IEC 61000-4-2 is higher peak
current in IEC 61000-4-2 because series resistance is
lower in the IEC 61000-4-2 model. Hence, the ESD withstand voltage measured to IEC 61000-4-2 is generally
lower than that measured using the Human Body Model.
Figure 1c shows the IEC 61000-4-2 model, and Figure
1d shows the current waveform for IEC 61000-4-2 ESD
Contact Discharge test.
Chip Information
PROCESS: BiCMOS
Package Information
For the latest package outline information and land patterns,
go to www.maxim-ic.com/packages. Note that a “+”, “#”, or
“-” in the package code indicates RoHS status only. Package
drawings may show a different suffix character, but the drawing
pertains to the package regardless of RoHS status.
PACKAGE
TYPE
PACKAGE
CODE
OUTLINE
NO.
LAND
PATTERN NO.
16 TQFN-EP
T1633+4
21-0136
90-0031
_______________________________________________________________________________________
7
MAX4895E
VGA Port Protector
Revision History
PAGES
CHANGED
REVISION
NUMBER
REVISION
DATE
0
4/09
Initial release
—
1
6/10
Deleted the “Top Mark” column from the Ordering Information
1
DESCRIPTION
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.
8 _____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600
© 2010 Maxim Integrated Products
Maxim is a registered trademark of Maxim Integrated Products, Inc.