19-6685; Rev 1; 10/13 备有评估板 MAX15062 60V、300mA、超小尺寸、高效、 同步降压型DC-DC转换器 概述 优势和特性 MAX15062高 效、 高 压、 同 步 降 压 型DC-DC转 换 器 内 置 MOSFET,工作在4.5V至60V输入电压范围。转换器提供 高达300mA的输出电流,输出电压为3.3V (MAX15062A)、 5V (MAX15062B)和可调输出电压(MAX15062C)。器件工 作 在-40°C至+125°C温 度 范 围, 采 用 紧 凑 的8引 脚(2mm x 2mm) TDFN封装。提供仿真模式。 ● 器件采用峰值电流模式架构,带有MODE引脚,可用于在 脉宽调制(PWM)或脉冲频率调制(PFM)模式下控制器件工 作。PWM工作模式在任何负载条件下都保持固定频率工 作,在对开关频率变化敏感的应用中非常有用。PFM工作 模式消除了负向电感电流以及轻载条件下额外的跳脉冲, 以提高效率。低导通电阻片上MOSFET确保满载时保持高 效,同时也简化了PCB布局。 ● 缩减DC-DC稳压器库存清单 • 4.5V至60V宽输入电压范围 • 3.3V和5V固定输出电压 • 可调0.9V至0.89 × VIN输出电压选项 • 提供高达300mA电流 • 可配置PFM和强制PWM工作模式 为降低输入浪涌电流,器件提供内部固定软启动。器件也 具有EN/UVLO引脚,允许用户在输入电压达到相应要求时 开启器件。RESET开漏引脚可以用作输出电压监测。 应用 ● ● ● ● ● ● 过程控制 工业传感器 4–20mA电流环 HVAC与楼宇控制 替代高压LDO 通用负载点电源 无需外部元件,降低总体成本 • 无需肖特基同步整流即可保持高效、低成本工作 • 内置补偿 • 3.3V和5V固定输出电压,内置反馈分压器 • 内部软启动 • 全陶瓷电容设计,提供紧凑布局 ● 降低功耗 • 效率高达92% • PFM功能,轻载时保持高效 • 关断电流仅为2.2μA (典型值) ● 在恶劣工业环境下工作可靠 • 打嗝式限流和自动重试启动 • 内置输出电压监测,带有RESET开漏引脚 • 可编程EN/UVLO门限 • 启动时单调进入预偏置输出 • 过热保护 • -40°C至+125°C汽车级/工业级温度范围 典型工作电路 定购信息和在数据资料的最后给出。 相关型号以及配合该器件使用的推荐产品,请参见:china.maximintegrated. com/MAX15062.related。 VIN 4.5V TO 60V CIN 1µF VIN EN/UVLO LX GND L1 33µH COUT 10µF VOUT 3.3V, 300mA MAX15062A CVCC 1µF VCC MODE RESET VOUT 本文是英文数据资料的译文,文中可能存在翻译上的不准确或错误。如需进一步确认,请在您的设计中参考英文资料。 有关价格、供货及订购信息,请联络Maxim亚洲销售中心:10800 852 1249 (北中国区),10800 152 1249 (南中国区), 或访问Maxim的中文网站:china.maximintegrated.com。 MAX15062 60V、300mA、超小尺寸、高效、 同步降压型DC-DC转换器 Absolute Maximum Ratings VIN to GND...............................................................-0.3V to 70V EN/UVLO to GND....................................................-0.3V to 70V LX to GND..................................................... -0.3V to VIN + 0.3V VCC, FB/VOUT, RESET to GND................................-0.3V to 6V MODE to GND..............................................-0.3V to VCC + 0.3V LX total RMS Current......................................................±800mA Output Short-Circuit Duration.....................................Continuous Continuous Power Dissipation (TA = +70°C) 8-Pin TDFN (derate 6.2mW/NC above +70°C)............496mW Operating Temperature Range.......................... -40°C to +125°C Junction Temperature.......................................................+150°C Storage Temperature Range............................. -65°C to +150°C Soldering Temperature (reflow)........................................+260°C Lead Temperature (soldering, 10s).................................. +300°C Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Package Thermal Characteristics (Note 1) TDFN Junction-to-Ambient Thermal Resistance (θJA).......+162°C/W Junction-to-Case Thermal Resistance (θJC)..............+20°C/W Note 1: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board. For detailed information on package thermal considerations, refer to www.maximintegrated.com/thermal-tutorial. Electrical Characteristics (VIN = 24V, VGND = 0V, CIN = CVCC = 1µF, VEN/UVLO = 1.5V, LX = MODE = RESET = unconnected; TA = TJ = -40°C to +125°C, unless otherwise noted. Typical values are at TA = +25°C. All voltages are referenced to GND, unless otherwise noted.) (Note 2) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS INPUT SUPPLY (VIN) Input Voltage Range Input Shutdown Current Input Supply Current VIN 4.5 60 V IIN-SH VEN/UVLO = 0V, shutdown mode 2.2 4 µA IQ-PFM MODE = unconnected, FB/VOUT = 1.03 x FB/VOUT-REG 95 160 µA IQ-PWM Normal switching mode, VIN = 24V 2.5 4 mA ENABLE/UVLO (EN/UVLO) EN/UVLO Threshold VENR VEN/UVLO rising 1.19 1.215 1.24 VENF VEN/UVLO falling 1.06 1.09 1.15 V +100 nA VEN-TRUESD VEN/UVLO falling, true shutdown EN/UVLO Input Leakage Current IEN/UVLO 0.75 VEN/UVLO = 60V, TA = +25°C -100 6V < VIN < 60V, 0mA < IVCC < 10mA 4.75 5 5.25 V 13 30 50 mA 0.15 0.3 V LDO (VCC) VCC Output Voltage Range VCC Current Limit VCC Dropout VCC UVLO Maxim Integrated VCC IVCC-MAX VCC = 4.3V, VIN = 12V VCC-DO VIN = 4.5V, IVCC = 5mA VCC-UVR VCC rising 4.05 4.18 4.3 VCC-UVF VCC falling 3.7 3.8 3.95 V 2 MAX15062 60V、300mA、超小尺寸、高效、 同步降压型DC-DC转换器 Electrical Characteristics (continued) (VIN = 24V, VGND = 0V, CIN = CVCC = 1µF, VEN/UVLO = 1.5V, LX = MODE = RESET = unconnected; TA = TJ = -40°C to +125°C, unless otherwise noted. Typical values are at TA = +25°C. All voltages are referenced to GND, unless otherwise noted.) (Note 2) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS POWER MOSFETs High-Side pMOS On-Resistance RDS-ONH ILX = 0.3A (sourcing) TA = +25°C Low-Side nMOS On-Resistance RDS-ONL ILX = 0.3A (sinking) TA = +25°C LX Leakage Current ILX-LKG 1.35 TA = TJ = +125°C 2.7 0.45 TA = TJ = +125°C VEN/UVLO = 0V, VIN = 60V, TA = +25°C, VLX = (VGND + 1V) to (VIN - 1V) 1.75 0.55 0.9 -1 +1 Ω Ω µA SOFT-START (SS) Soft-Start Time tSS 4.1 ms FEEDBACK (FB) FB Regulation Voltage FB Leakage Current VFB-REG IFB MODE = GND, MAX15062C 0.887 0.9 0.913 MODE = unconnected, MAX15062C 0.887 0.915 0.936 MAX15062C -100 -25 MODE = GND, MAX15062A 3.25 3.3 3.35 MODE = unconnected, MAX15062A 3.25 3.35 3.42 MODE = GND, MAX15062B 4.93 5 5.07 MODE = unconnected, MAX15062B 4.93 5.08 5.18 V nA OUTPUT VOLTAGE (VOUT) VOUT Regulation Voltage VOUT-REG V CURRENT LIMIT Peak Current-Limit Threshold IPEAK-LIMIT 0.49 0.56 0.62 A Runaway Current-Limit Threshold IRUNAWAY- 0.58 0.66 0.73 A Negative Current-Limit Threshold ISINK-LIMIT 0.25 0.3 0.35 A PFM Current Level LIMIT MODE = GND IPFM 0.01 mA 0.13 A TIMING Switching Frequency fSW 465 Events to Hiccup After Crossing Runaway Current Limit 62.5 Hiccup Timeout Maximum Duty Cycle Maxim Integrated 535 1 FB/VOUT Undervoltage Trip Level to Cause Hiccup Minimum On-Time 500 64.5 Cycles 66.5 131 tON-MIN DMAX FB/VOUT = 0.98 x FB/VOUT-REG 89 kHz % ms 90 130 ns 91.5 94 % 3 MAX15062 60V、300mA、超小尺寸、高效、 同步降压型DC-DC转换器 Electrical Characteristics (continued) (VIN = 24V, VGND = 0V, CIN = CVCC = 1µF, VEN/UVLO = 1.5V, LX = MODE = RESET = unconnected; TA = TJ = -40°C to +125°C, unless otherwise noted. Typical values are at TA = +25°C. All voltages are referenced to GND, unless otherwise noted.) (Note 2) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS RESET VOUT Threshold for RESET Rising VOUT-OKR VOUT rising VOUT Threshold for RESET Falling VOUT-OKF VOUT falling 94 95.5 97 % 90.5 92 93.5 % RESET Delay After VOUT Reaches 95% Regulation 2 ms RESET Output Level Low IRESET = 5mA 0.2 V RESET Output Leakage Current VOUT = 1.01 x VOUT-REG,TA = +25°C 0.1 µA MODE MODE Internal Pullup Resistor 500 kΩ 166 °C 10 °C THERMAL SHUTDOWN Thermal-Shutdown Threshold Temperature rising Thermal-Shutdown Hysteresis Note 2: All the limits are 100% tested at TA = +25°C. Limits over temperature are guaranteed by design. Maxim Integrated 4 MAX15062 60V、300mA、超小尺寸、高效、 同步降压型DC-DC转换器 典型工作特性 (VIN = 24V, VGND = 0V, CIN = CVCC = 1µF, VEN/UVLO = 1.5V, TA = +25°C, unless otherwise noted.) 70 VIN = 36V 50 50 FIGURE 5 APPLICATION CIRCUIT, PFM MODE VOUT = 3.3V VIN = 48V 10 1 40 30 100 10 1 LOAD CURRENT (mA) toc02b VIN = 24V 40 EFFICIENCY (%) EFFICIENCY (%) 80 VIN = 36V VIN = 48V VIN = 60V 50 1 FIGURE 8 APPLICATION CIRCUIT, PFM MODE VOUT = 12V 10 70 VIN = 24V 60 VIN = 36V 50 VIN = 48V 40 30 20 10 0 100 0 EFFICIENCY vs. LOAD CURRENT toc04a 50 EFFICIENCY (%) EFFICIENCY (%) VIN = 12V 60 VIN = 24V 50 VIN = 36V 40 VIN = 48V 20 10 0 50 100 FIGURE 7 APPLICATION CIRCUIT, PWM MODE VOUT = 2.5V 150 200 LOAD CURRENT (mA) Maxim Integrated 10 200 250 300 250 EFFICIENCY vs. LOAD CURRENT 80 70 60 VIN = 36V 50 VIN = 48V 40 30 20 FIGURE 6 APPLICATION CIRCUIT, PWM MODE VOUT = 5V 10 0 300 0 50 100 150 200 EFFICIENCY VS. LOAD CURRENT OUTPUT VOLTAGE vs. LOAD CURRENT 3.37 toc04b VIN = 18V VIN = 24V 60 VIN = 36V 50 40 VIN = 48V 30 VIN = 60V 20 10 50 100 FIGURE 8 APPLICATION CIRCUIT, PWM MODE VOUT = 12V 150 200 LOAD CURRENT (mA) 250 300 250 300 FIGURE 5 APPLICATION CIRCUIT, PFM MODE 3.36 0 VIN = 12V VIN = 24V LOAD CURRENT (mA) 70 0 100 LOAD CURRENT (mA) 80 70 30 150 FIGURE 7 APPLICATION CIRCUIT, PFM MODE VOUT = 2.5V 90 90 80 0 100 100 VIN = 6V 90 1 100 FIGURE 5 APPLICATION CIRCUIT, PWM MODE VOUT = 3.3V LOAD CURRENT (mA) 100 VIN = 48V LOAD CURRENT (mA) 80 60 50 20 100 VIN = 12V 90 70 VIN = 24V VIN = 36V 30 EFFICIENCY vs. LOAD CURRENT 100 VIN = 18V 90 60 LOAD CURRENT (mA) EFFICIENCY vs. LOAD CURRENT 100 70 40 FIGURE 6 APPLICATION CIRCUIT, PFM MODE VOUT = 5V VIN = 48V EFFICIENCY (%) 30 VIN = 36V 60 80 OUTPUT VOLTAGE (V) 40 70 VIN = 12V 90 MAX15062 toc04 60 80 VIN = 6V 3.35 MAX15062 toc05 EFFICIENCY (%) 80 VIN = 24V 90 EFFICIENCY (%) VIN = 24V VIN = 12V toc02a 100 MAX15062 toc03 90 EFFICIENCY (%) MAX15062 toc01 VIN = 12V EFFICIENCY vs. LOAD CURRENT EFFICIENCY vs. LOAD CURRENT 100 MAX15062 toc02 EFFICIENCY vs. LOAD CURRENT 100 VIN = 12V, 24V 3.34 3.33 VIN = 36V 3.32 VIN = 48V 3.31 3.30 3.29 0 50 100 150 200 250 300 LOAD CURRENT (mA) 5 MAX15062 60V、300mA、超小尺寸、高效、 同步降压型DC-DC转换器 典型工作特性(续) (VIN = 24V, VGND = 0V, CIN = CVCC = 1µF, VEN/UVLO = 1.5V, TA = +25°C, unless otherwise noted.) OUTPUT VOLTAGE vs. LOAD CURRENT 5.04 VIN = 12V, 36V, 48V 5.02 5.00 VIN = 12V 2.51 VIN = 6V,24V 2.50 VIN = 36V VIN = 48V 2.49 2.48 50 100 150 200 0 LOAD CURRENT (mA) 0.920 toc06c OUTPUT VOLTAGE (V) OUTPUT VOLTAGE (V) 100 VIN = 12V VIN = 6V, 24V VIN = 36V VIN = 48V 0.900 50 100 150 200 VIN = 36V 3.299 250 300 3.297 VIN = 24V 0 50 100 VIN = 12V 150 200 250 20 VIN = 48V,60V 0 50 40 60 TEMPERATURE (°C) 80 100 120 100 150 200 250 300 OUTPUT VOLTAGE vs. LOAD CURRENT 5.003 FIGURE 6 APPLICATION CIRCUIT, PWM MODE 5.002 5.001 VIN = 48V 5.000 4.999 4.997 300 VIN = 36V VIN = 12V 0 50 100 VIN = 24V 150 200 250 300 LOAD CURRENT (mA) 5.04 MAX15062 toc09 FIGURE 5 APPLICATION CIRCUIT, LOAD = 300mA 0 12.10 4.998 OUTPUT VOLTAGE (V) OUTPUT VOLTAGE (V) 3.29 -20 VIN = 36V LOAD CURRENT (mA) 3.30 -40 12.15 12.00 300 3.300 3.31 3.28 VIN = 24V LOAD CURRENT (mA) OUTPUT VOLTAGE vs. TEMPERATURE 3.32 Maxim Integrated 250 VIN = 48V 3.301 LOAD CURRENT (mA) 3.27 200 FIGURE 5 APPLICATION CIRCUIT, PWM MODE 3.298 0 150 OUTPUT VOLTAGE vs. LOAD CURRENT 3.302 0.915 0.895 50 3.303 PFM MODE 0.905 12.20 LOAD CURRENT (mA) FEEDBACK VOLTAGE vs. LOAD CURRENT 0.910 VIN = 18V 12.05 2.47 300 250 12.25 OUTPUT VOLTAGE vs. TEMPERATURE MAX15062 toc10 0 FIGURE 8 APPLICATION CIRCUIT, PFM MODE 12.30 OUTPUT VOLTAGE (V) 4.98 2.52 toc06b MAX15062 toc08 VIN = 24V FIGURE 7 APPLICATION CIRCUIT, PFM MODE 2.53 OUTPUT VOLTAGE vs. LOAD CURRENT 12.35 OUTPUT VOLTAGE (V) 5.06 toc06a MAX15062 toc07 OUTPUT VOLTAGE (V) 5.08 2.54 OUTPUT VOLTAGE (V) FIGURE 6 APPLICATION CIRCUIT, PFM MODE MAX15062 toc06 5.10 OUTPUT VOLTAGE vs. LOAD CURRENT 5.02 5.00 4.98 4.96 4.94 FIGURE 6 APPLICATION CIRCUIT, LOAD = 300mA -40 -20 0 20 40 60 80 100 120 TEMPERATURE (°C) 6 MAX15062 60V、300mA、超小尺寸、高效、 同步降压型DC-DC转换器 典型工作特性(续) (VIN = 24V, VGND = 0V, CIN = CVCC = 1µF, VEN/UVLO = 1.5V, TA = +25°C, unless otherwise noted.) NO-LOAD SUPPLY CURRENT vs. INPUT VOLTAGE FEEDBACK VOLTAGE VS. TEMPERATURE toc10a NO-LOAD SUPPLY CURRENT (µA) 0.900 0.896 0.892 0.888 0.884 0 20 40 60 80 92 120 PFM MODE 5 15 25 35 45 NO-LOAD SUPPLY CURRENT vs. TEMPERATURE SHUTDOWN CURRENT vs. INPUT VOLTAGE MAX15062 toc12 INPUT VOLTAGE (V) 110 100 90 80 6 55 5 4 3 2 1 PFM MODE -40 -20 0 20 40 60 80 0 100 120 5 35 45 SHUTDOWN CURRENT vs. TEMPERATURE SWITCH CURRENT LIMIT vs. INPUT VOLTAGE 2.10 1.95 1.80 1.65 600 550 0 20 40 60 80 TEMPERATURE (°C) 100 120 55 SWITCH PEAK CURRENT LIMIT 500 450 400 350 300 SWITCH NEGATIVE CURRENT LIMIT 250 -20 25 INPUT VOLTAGE (V) 2.25 -40 15 TEMPERATURE (°C) MAX15062 toc15 70 2.40 SHUTDOWN CURRENT (µA) 100 120 Maxim Integrated 94 TEMPERATURE (°C) MAX15062 toc14 NO-LOAD SUPPLY CURRENT (µA) -20 130 1.50 96 MAX15062 toc13 -40 140 60 98 90 SHUTDOWN CURRENT (µA) 0.880 SWITCH CURRENT LIMIT (mA) FEEDBACK VOLTAGE (V) 0.904 MAX15062 toc11 100 0.908 200 5 15 25 35 45 55 INPUT VOLTAGE (V) 7 MAX15062 60V、300mA、超小尺寸、高效、 同步降压型DC-DC转换器 典型工作特性(续) (VIN = 24V, VGND = 0V, CIN = CVCC = 1µF, VEN/UVLO = 1.5V, TA = +25°C, unless otherwise noted.) 450 400 350 SWITCH NEGATIVE CURRENT LIMIT 250 200 -40 -20 20 40 60 80 1.18 1.16 1.14 1.12 -40 -20 0 20 40 60 80 TEMPERATURE (°C) SWITCHING FREQUENCY vs. TEMPERATURE RESET THRESHOLD vs. TEMPERATURE 520 500 480 460 98 100 120 97 96 RISING 95 94 93 FALLING 92 91 -40 -20 0 20 40 60 80 100 120 90 0 10 20 30 40 50 60 TEMPERATURE (°C) TEMPERATURE (°C) LOAD TRANSIENT RESPONSE, PFM MODE (LOAD CURRENT STEPPED FROM 5mA TO 150mA) LOAD TRANSIENT RESPONSE, PFM MODE (LOAD CURRENT STEPPED FROM 5mA TO 150mA) MAX15062 toc21 MAX15062 toc20 VOUT (AC) 100mV/div VOUT (AC) 100mV/div FIGURE 5 APPLICATION CIRCUIT VOUT = 3.3V FIGURE 6 APPLICATION CIRCUIT VOUT = 5V IOUT 100mA/div IOUT 100mA/div 100µs /div Maxim Integrated FALLING 1.10 TEMPERATURE (°C) 540 440 1.20 1.08 100 120 MAX15062 toc18 SWITCHING FREQUENCY (kHz) 560 0 RISING 1.22 MAX15062 toc19 300 MAX15062 toc17 SWITCH PEAK CURRENT LIMIT 500 EN/UVLO THRESHOLD VOLTAGE (V) 550 EN/UVLO THRESHOLD vs. TEMPERATURE 1.24 RESET THRESHOLD (%) SWITCH CURRENT LIMIT (mA) 600 MAX15062 toc16 SWITCH CURRENT LIMIT vs. TEMPERATURE 100µs /div 8 MAX15062 60V、300mA、超小尺寸、高效、 同步降压型DC-DC转换器 典型工作特性(续) (VIN = 24V, VGND = 0V, CIN = CVCC = 1µF, VEN/UVLO = 1.5V, TA = +25°C, unless otherwise noted.) LOAD TRANSIENT RESPONSE PFM MODE (LOAD CURRENT STEPPED FROM 5mA TO 150mA) LOAD TRANSIENT RESPONSE, PFM MODE (LOAD CURRENT STEPPED FROM 5mA TO 150mA) toc21b toc21a VOUT (AC) 200mV/div VOUT (AC) 100mV/div FIGURE 8 APPLICATION CIRCUIT VOUT = 12V FIGURE 7 APPLICATION CIRCUIT VOUT = 2.5V IOUT 100mA/div IOUT 100mA/div 100µs/div 100µs/div LOAD TRANSIENT RESPONSE, PFM OR PWM MODE (LOAD CURRENT STEPPED FROM 150mA TO 300mA) LOAD TRANSIENT RESPONSE, PFM OR PWM MODE (LOAD CURRENT STEPPED FROM 150mA TO 300mA) MAX15062 toc22 MAX15062 toc23 VOUT (AC) 100mV/div VOUT (AC) 100mV/div IOUT 100mA/div IOUT 100mA/div FIGURE 5 APPLICATION CIRCUIT VOUT = 3.3V 40µs/div 40µs/div LOAD TRANSIENT RESPONSE PFM OR PWM MODE (LOAD CURRENT STEPPED FROM 150mA TO 300mA) LOAD TRANSIENT RESPONSE PFM OR PWM MODE (LOAD CURRENT STEPPED FROM 150mA TO 300mA) toc23a VOUT (AC) 50mV/div toc23b VOUT (AC) 200mV/div IOUT 100mA/div FIGURE 7 APPLICATION CIRCUIT VOUT = 2.5V 40µs/div Maxim Integrated FIGURE 6 APPLICATION CIRCUIT VOUT = 5V IOUT 100mA/div FIGURE 8 APPLICATION CIRCUIT VOUT = 12V 40µs/div 9 MAX15062 60V、300mA、超小尺寸、高效、 同步降压型DC-DC转换器 典型工作特性(续) (VIN = 24V, VGND = 0V, CIN = CVCC = 1µF, VEN/UVLO = 1.5V, TA = +25°C, unless otherwise noted.) LOAD TRANSIENT RESPONSE, PWM MODE (LOAD CURRENT STEPPED FROM NO LOAD TO 150mA) LOAD TRANSIENT RESPONSE, PWM MODE PWM mode (LOAD CURRENT STEPPED FROM NO LOAD TO 150mA) MAX15062 toc24 VOUT (AC) 100mV/div MAX15062 toc25 VOUT (AC) 100mV/div FIGURE 5 APPLICATION CIRCUIT VOUT = 3.3V FIGURE 6 APPLICATION CIRCUIT VOUT = 5V IOUT 100mA/div IOUT 100mA/div 40µs/div 40µs/div LOAD TRANSIENT RESPONSE PWM MODE (LOAD CURRENT STEPPED FROM NO LOAD TO 150mA) LOAD TRANSIENT RESPONSE PWM MODE (LOAD CURRENT STEPPED FROM NO LOAD TO 150mA) toc25b toc25a VOUT (AC) VOUT (AC) 200mV/div 50mV/div FIGURE 8 APPLICATION CIRCUIT VOUT = 12V FIGURE 7 APPLICATION CIRCUIT VOUT = 2.5V IOUT 100mA/div IOUT 100mA/div 40µs/div 40µs/div FULL-LOAD SWITCHING WAVEFORMS (PWM OR PFM MODE) SWITCHING WAVEFORMS (PFM MODE) MAX15062 toc27 MAX15062 toc26 VOUT (AC) 100mV/div FIGURE 6 APPLICATION CIRCUIT VOUT = 5V, LOAD = 20mA VOUT (AC) 20mV/div VLX 10V/div VLX 10V/div IOUT 200mA/div IOUT 100mA/div 10µs/div Maxim Integrated VOUT = 5V, LOAD = 300mA 2µs/div 10 MAX15062 60V、300mA、超小尺寸、高效、 同步降压型DC-DC转换器 典型工作特性(续) (VIN = 24V, VGND = 0V, CIN = CVCC = 1µF, VEN/UVLO = 1.5V, TA = +25°C, unless otherwise noted.) NO-LOAD SWITCHING WAVEFORMS (PWM MODE) SOFT-START MAX15062 toc28 VOUT = 5V MAX15062 toc29 VEN/UVLO 5V/div VOUT (AC) 20mV/div VLX 10V/div VOUT 1V/div IOUT 100mA/div IOUT 100mA/div VRESET 5V/div 2µs/div SOFT-START FIGURE 5 APPLICATION CIRCUIT VOUT = 3.3V 1ms/div SOFT-START toc30a MAX15062 toc30 VEN/UVLO 5V/div VEN/ UVLO 5V/div VOUT 1V/div VOUT 1V/div IOUT 100mA/div VRESET 5V/div IOUT 100mA/div FIGURE 6 APPLICATION CIRCUIT VOUT = 5V VRESET 5V/div 1ms/div 1ms/div SOFT-START SHUTDOWN WITH ENABLE MAX15062 toc31 toc30b VEN/UVLO VEN/UVLO 5V/div 5V/div VOUT 1V/div VOUT 5V/div IOUT 100mA/div IOUT 100mA/div FIGURE 8 APPLICATION CIRCUIT VOUT = 12V VRESET 5V/div 1ms/div Maxim Integrated FIGURE 7 APPLICATION CIRCUIT VOUT = 2.5V VRESET 5V/div 400µs /div 11 MAX15062 60V、300mA、超小尺寸、高效、 同步降压型DC-DC转换器 典型工作特性(续) (VIN = 24V, VGND = 0V, CIN = CVCC = 1µF, VEN/UVLO = 1.5V, TA = +25°C, unless otherwise noted.) SOFT-START WITH 3V PREBIAS OVERLOAD PROTECTION MAX15062 toc32 MAX15062 toc33 VEN/ UVLO 5V/div VIN 20V/div VOUT 1V/div VOUT 2V/div FIGURE 6 APPLICATION CIRCUIT NO LOAD PWM MODE IOUT 200mA/div VRESET 5V/div 1ms/div 144 40 108 30 72 20 10 36 10 0 0 40 GAIN 30 PHASE 20 fCR = 47kHz, PHASE MARGIN = 59° -10 -20 FIGURE 5 APPLICATION CIRCUIT VOUT = 3.3V -30 -40 -50 -36 2 4 6 81 1k 2 4 6 81 10k 2 100k GAIN (dB) 50 PHASE (°) 180 BODE PLOT -108 -30 -144 -40 -180 -50 30 GAIN (dB) 20 PHASE 10 0 FIGURE 7 APPLICATION CIRCUIT VOUT = 2.5V -40 -50 1k 10k FREQUENCY (Hz) Maxim Integrated 144 40 108 30 72 20 36 10 -36 -20 -30 50 0 fCR = 43kHz, PHASE MARGIN = 60° -10 180 100k GAIN (dB) MAX15062 toc35a GAIN 40 0 fCR = 47kHz, PHASE MARGIN = 60° -36 -72 FIGURE 6 APPLICATION CIRCUIT VOUT = 5V 2 1k 4 6 81 2 4 6 81 10k 2 100k -108 -144 -180 FREQUENCY (Hz) PHASE (°) BODE PLOT 72 36 FREQUENCY (Hz) 50 108 PHASE -10 -20 180 144 GAIN 0 -72 MAX15062 toc35 PHASE (°) MAX15062 toc34 BODE PLOT -108 -30 -144 -40 -180 -50 108 PHASE 72 36 0 fCR = 36kHz, PHASE MARGIN = 66° -10 -20 180 144 GAIN 0 -72 MAX15062 toc35b -36 PHASE (°) BODE PLOT 50 GAIN (dB) 20ms/div -72 FIGURE 8 APPLICATION CIRCUIT VOUT = 12V 1k 10k 100k -108 -144 -180 FREQUENCY (Hz) 12 MAX15062 60V、300mA、超小尺寸、高效、 同步降压型DC-DC转换器 引脚配置 TOP VIEW LX GND RESET MODE 8 7 6 5 MAX15062 + 1 2 3 4 VIN EN/UVLO VCC FB/VOUT TDFN (2mm x 2mm) 引脚说明 引脚 名称 1 VIN 2 EN/UVLO 3 VCC 4 FB/VOUT 5 MODE PFM/PWM模式选择输入。MODE连接至GND时,使能固定频率PWM工作;浮空时,工作在轻载PFM模 式。 6 RESET 开漏复位输出,利用外部电阻将RESET拉高至外部电源。 当输出电压下降至设定标称稳压值的92%以下时,RESET为低电平;输出电压上升2ms电阻至稳压值的 95%以上时,RESET返回高电平。门限值请参见Electrical Characteristics表。 7 GND 8 LX Maxim Integrated 说明 开关稳压器电源输入。在VIN和GND之间连接旁路陶瓷电容X7R 1μF。 高电平有效使能/欠压检测输入。将EN/UVLO拉低至GND时,禁止稳压器输出;将EN/UVLO连接至V IN 时,始终保持有效工作。在VIN及EN/UVLO与GND之间连接电阻分压器,设置器件使能/开启时的输入电 压。 内部LDO电源输出,利用最小1μF电容将VCC旁路至GND。 反馈电源输入,将FB/VOUT直接连接至输出。对于固定输出电压版本, 在VOUT和GND之间,连接FB/ VOUT到一个电阻分压器,用来调节0.9V至0.89 x VIN的输出电压。 地。将GND连接至电源接地区域。通过单点将所有电路地连接在一起,参见PCB布局指南部分。 电感连接。将LX连接至电感的开关侧。器件处于关断模式时,LX为高阻。 13 MAX15062 60V、300mA、超小尺寸、高效、 同步降压型DC-DC转换器 方框图 VIN LDO REGULATOR PEAK-LIMIT RUNAWAYCURRENTLIMIT SENSE LOGIC PFM VCC MAX15062 CS CURRENTSENSE AMPLIFIER POK EN/UVLO DH CHIPEN HIGH-SIDE DRIVER 1.215V THERMAL SHUTDOWN VCC CLK LX OSCILLATOR SLOPE 500kΩ MODE MODE SELECT 0.55VCC PFM/PWM CONTROL LOGIC DL LOW-SIDE DRIVER SLOPE CS FB/VOUT R1 * PWM ERROR AMPLIFIER R2 REFERENCE SOFT-START CLK *RESISTOR-DIVIDER ONLY FOR MAX15062A, MAX15062B Maxim Integrated SINK-LIMIT LOW-SIDE CURRENT SENSE NEGATIVE CURRENT REF 3.135V FOR MAX15062A 4.75V FOR MAX15062B 0.859V FOR MAX15062C FB/VOUT GND RESET 2ms DELAY 14 MAX15062 60V、300mA、超小尺寸、高效、 同步降压型DC-DC转换器 详细说明 MAX15062高 效、 高 压、 同 步 降 压 型DC-DC转 换 器 内 部集成了M O S F E T,工作在4.5V至60V宽输入电压范 围。 转 换 器 提 供 高 达300mA的 输 出 电 流, 输 出 电 压 为 3.3V (MAX15062A)、5V (MAX15062B)和 可 调 输 出 电 压 (MAX15062C)。满足EN/UVLO和VCC UVLO时,内部软启 动电路控制误差放大器基准开启,提供确定的单调输出电 压软启动,与负载电流无关。FB/VOUT引脚通过内部电阻 分压器监测输出电压。输出电压达到稳压值的95% 2ms后, RESET置于高阻态。根据上电时MODE引脚的状态,器件 选择PFM或强制PWM工作模式。通过拉低EN/UVLO引脚, 器件进入关断模式,待机电流仅为2.2μA (典型值)。 DC-DC开关稳压器 器件采用内部补偿、固定频率、电流模式控制架构(方框图 部 分)。 在 内 部 时 钟 的 上 升 沿, 高 边pMOSFET导 通。 内 部误差放大器将反馈电压与内部基准固定电压进行比 较, 产 生 误 差 电 压; 由PWM比 较 器 将 误 差 电 压 与 电 流 检测电压和斜率补偿电压之和进行比较,设置导通时间。 pMOSFET导通期间,电感电流线性爬升。在开关周期的其 余时间(关闭时间),pMOSFET保持关断,低边nMOSFET 导通。关断期间,随着电感电流下降,电感释放储能,为 输出提供电流。过载条件下,逐周期限流电路通过关闭高 边pMOSFET、导通低边nMOSFET限制电感的峰值电流。 模式选择(MODE) 在VCC和EN/UVLO电压超过相应UVLO上升门限,同时内 部电压就绪、允许LX进行开关工作后,锁存MODE引脚的 逻辑状态。如果MODE引脚在上电时浮空,器件在轻载时 工作在PFM模式;如果MODE引脚在上电时接地,器件在 所有负载条件下工作在固定频率PWM模式。常规工作期 间,忽略MODE引脚的状态变化。 PWM工作模式 固定的开关频率。然而,相对于PFM工作模式,PWM模 式在轻载条件下效率较低。 PFM工作模式 PFM工作模式可消除负向电感电流以及轻载下额外的跳脉 冲,以获得较高效率。PFM模式下,每时钟周期的电感电 流峰值强制为固定的130mA,直到输出上升到标称电压的 102.3%。输出达到标称电压的102.3%后,关断高边和低 边FET,器件进入深度休眠状态,直到负载将输出放电至 标称电压的101.1%。深度休眠模式下,大部分内部电路 关断,以节约静态电流。输出下降至标称电压的101.1% 以下时,器件退出深度休眠模式,打开全部内部电路,再 次以脉冲方式开始向输出传送能量,直到输出达到标称输 出电压的102.3%。当负载电流超过55mA (典型值)时,器 件自然进入PFM模式。PFM模式的优点是轻载下消耗极低 的静态电流,因此获得较高效率。 内部5V线性稳压器 内部稳压器提供5V标称电压,为内部功能电路供电,并 驱动功率MOSFET。应利用1μF电容将线性稳压器的输出 (VCC)旁路至GND。VCC稳压器压差的典型值为150mV。当 VCC下降至3.8V(典型值)以下时,欠压锁定电路关断稳压器。 400mV VCC UVLO滞回可防止上电、关断时的抖动。 使能输入(EN/UVLO)、软启动 当EN/UVLO电压高于1.21V (典型值)时,器件内部的误差 放大器基准电压开始上升。软启动上升持续时间为4.1ms, 允许输出电压平稳地增大。将EN/UVLO驱动为低电平时, 关断两个功率MOSFET及其它内部电路,将VIN静态电流降 低至2.2μA以下。EN/UVLO可用作输入电压UVLO调节输 入。VIN及EN/UVLO与GND之间的外部分压器控制器件开 启或关断时的输入电压。如果不需要设置输入UVLO,将 EN/UVLO连接至VIN (关于EN/UVLO上升和下降门限电压, 请参见Electrical Characteristics 表)。 PWM模式下,允许电感电流出现负值。在对频率敏感的 应用中,PWM工作模式非常有用,任何负载条件下保持 Maxim Integrated 15 MAX15062 60V、300mA、超小尺寸、高效、 同步降压型DC-DC转换器 复位输出(RESET) 器件包括开漏输出RESET,以监测输出电压。输出电压上 升至其标称电压的95%以上2ms后,RESET变为高电平; 输出电压跌落到标称稳压值的92%以下时,RESET拉低。 打嗝超时周期内,触发RESET输出低电平。 启动时进入预偏置输出 器 件 能 够 在 软 启 动 时 进 入 预 偏 置 输 出, 在PFM和 强 制 PWM模式下都无需对输出电容放电。对于需要多路电源 供电的数字集成电路应用,该功能非常有用。 输入电压工作范围 最高输入工作电压由最小导通时间决定,最低输入工作电 压由最大占空比及电路压差决定。给定输出电压的最小和 最大工作输入电压,计算如下: VINMIN VOUT + (I OUT × (R DCR + 0.5)) + (I OUT × 1.0) D MAX VINMAX = VOUT t ONMIN × f SW 式中,VOUT为稳态输出电压,IOUT为最大负载电流,RDCR 为电感的直流电阻,fSW为开关频率(最大值),DMAX为最 大占空比(0.9),tONMIN为最差工作条件下的最小开关导通 时间(130ns)。 过流保护/打嗝模式 周期峰值限流电路将断开高边MOSFET。高输入电压、短 路条件(输出电压不足以恢复降压转换器导通期间建立的电 感电流)下,高边开关0.66A (典型值)失控电流检测门限将 为器件提供有效保护。一旦达到失控电流门限,则触发打 嗝模式。此外,完成软启动后,如果输出电压在任何时间 因为故障条件而下降到标称电压的65% (典型值),同样触 发打嗝模式。打嗝模式下,在打嗝超时周期(31ms)内暂停 开关工作,保护转换器。达到打嗝超时周期后,再次尝试 软启动。打嗝工作模式确保输出短路条件下保持低功耗。 电路板布局及系统连接时应谨慎,防止在短路条件下FB/ VOUT引脚超过绝对最大额定值。此类条件下,陶瓷输出电 容可能会随输出电容或短路负载之间的电路板或接线电感 发生振荡,造成FB/VOUT (-0.3V)超过绝对最大额定值。应 将寄生电路板或接线电感降至最小,并验证短路条件下的 输出电压波形,确保FB/VOUT不超过绝对最大额定值。 热过载保护 热过载保护限制器件的总功耗。结温超过+166°C时,片上 温度传感器关断器件,关闭内部功率MOSFET,允许器件 冷却。结温降低10°C后,温度传感器控制器件恢复工作。 应用信息 电感选择 在保证尺寸合适的前提下,应选择直流电阻最低的低损耗 电感。饱和电流(ISAT)必须足够高,确保在0.56A (典型值)最 大限流(IPEAK-LIMIT)的条件下不发生饱和。对于5V和3.3V固 定输出电压、300mA负载电流应用,请参见表1选择电感。 器件具有可靠的过流保护机制,在过载和输出短路条件下 有效保护器件。高边开关电流超过0.56A (典型值)时,逐 Maxim Integrated 16 MAX15062 60V、300mA、超小尺寸、高效、 同步降压型DC-DC转换器 表1. 电感选择 INPUT VOLTAGE RANGE VIN (V) VOUT (V) IOUT (mA) L (µH) 4.5 to 60 3.3 (Fixed) 300 33 Coilcraft LPS4018-333ML 6 to 60 5 (Fixed) 300 47 Coilcraft LPS4018-473ML 4.5 to 60 1.8 or 2.5 300 22 Coilcraft LPS4018-223ML 14 to 60 12 300 100 Wurth 74408943101 17 to 60 15 300 150 TDK VLC6045T-151M RECOMMENDED PART NO. 表2. 输入和输出电容选择 INPUT VOLTAGE RANGE VIN (V) VOUT (V) IOUT (mA) COUT (µF) 4.5 to 60 3.3 (Fixed) 300 10µF/1206/X7R/6.3V Murata GRM31CR70J106K RECOMMENDED PART NO. 6 to 60 5 (Fixed) 300 10µF/1206/X7R/6.3V Murata GRM31CR70J106K 4.5 to 60 1.8 or 2.5 300 22µF/1206/X7R/6.3V Murata GRM31CR70J226K 14 to 60 12 300 4.7µF/1206/X7R/16V Murata GRM31CR71C475K 17 to 60 15 300 4.7µF/1206/X7R/25V Murata GRM31CR71E475K VIN VIN R1 MAX15062 的内部控制环路。合理选择输出电容,通常使其能够在最 大50%的负载电流跃变,确保输出电压偏差小于3%。器 件需要至少10μF电容保证稳定工作,可利用下式计算必需 的输出电容: EN/UVLO R2 C OUT = 30 VOUT 图1. 可调节EN/UVLO网络 式中,COUT为μF输出电容,而VOUT为输出电压。典型应用, 请参考表2选择输出电容。 输入电容 设置输入欠压锁定电平 推荐器件使用小尺寸陶瓷电容。输入电容降低来自于电源 的尖峰电流,减小开关电路引起的输入噪声和电压纹波。 推荐使用最小1μF、X7R、封装大于0805的电容作为器件 的输入电容,保证输入电压纹波小于最小输入电压的2%, 并满足最大纹波电流要求。对于固定5V和3.3V输出电压、 300mA负载电流应用,请参见表2选择输入电容。 可调节器件的输入欠压锁定电平。利用VIN和GND之间连 接的电阻分压器(见图1)设置器件开启工作时的电压。将分 压器的中间节点连接至EN/UVLO。 输出电容 小尺寸陶瓷X7R电容即足以满足多数应用的要求。输出电 容有两种功能:滤除器件以及输出电感产生的纹波;储存 足够的能量,在负载瞬变条件下支撑输出电压并稳定器件 Maxim Integrated 选择R1,最大3.3MΩ,按下式计算R2: R2 = R1× 1.215 (VINU - 1.215) 式中,VINU为开启器件工作所要求的电压。 17 MAX15062 60V、300mA、超小尺寸、高效、 同步降压型DC-DC转换器 调节输出电压 PCB布局指南 MAX15062C输出电压可设置为0.9V至0.89 x VIN。通过在 输出至FB及GND之间连接电阻分压器,设定输出电压(见 图2)。 严谨的PCB布局(见图2)是实现干净、稳定工作的关键,尤 其是功率开关级,需要特别注意。遵循以下原则有助于获 得良好的PCB布局: 对于小于6V的输出电压,在50kΩ至150kΩ范围内选择R2; 对于大于6V的输出电压,在25kΩ至75kΩO范围内选择R2, 然后利用下式计算R1: ● 输入陶瓷电容尽量靠近VIN和GND引脚放置。 V = R2 × OUT R1 0.9 − 1 ● 利用最短走线或接地区域将VCC旁路电容的负端点连接 至GND。 ● 将LX引脚和电感连接形成的区域降至最小,减小EMI辐 射。 ● VCC去抖电容尽量靠近VCC引脚放置。 功耗 ● 确保所有反馈连线短而直。 应确保器件结温在规定电源工作条件下不超过+125°C。特 定工作条件下,按下式估算导致器件温度升高的功耗: 点高速开关节点(LX)远离FB/VOUT、RESET和MODE引脚。 1 2 PLOSS = POUT × - 1 - (I OUT × R DCR ) η P= V OUT OUT × I OUT 可参考MAX15062评估板,将其作为PCB布局实例,从以 下网站下载:china.maximintegrated.com。 VOUT R1 式中,POUT为输出功率,η为电源转换效率,RDCR为输 出电感的直流电阻。关于电源转换效率或通过测量效率确 定总功耗的信息,请参见典型工作特性 部分。 FB MAX15062C 可利用下式估算器件在任意给定环境温度(TA)下的结温 (TJ): R2 GND TJ= T A + (θ JA × PLOSS ) 式中,θJA为封装结至环境的热阻。 Maxim Integrated 图2. 设置输出电压 18 MAX15062 60V、300mA、超小尺寸、高效、 同步降压型DC-DC转换器 VIN VIN CIN LX L1 VOUT COUT R1 GND EN/UVLO MAX15062A/B R2 VOUT VCC VCC CVCC RESET R3 MODE VCC VIN PLANE CIN U1 R1 LX VIN EN/UVLO GND VCC R2 CVCC L1 COUT RESET VOUT MODE R3 VIAS TO BOTTOM-SIDE GROUND PLANE VIAS TO VOUT GND PLANE VOUT PLANE VIAS TO VCC 图3. MAX15062A和MAX15062B布局指南 Maxim Integrated 19 MAX15062 60V、300mA、超小尺寸、高效、 同步降压型DC-DC转换器 VIN VIN CIN LX L1 VOUT COUT R1 GND EN/UVLO R4 MAX15062C R2 FB VCC R5 VCC CVCC RESET R3 MODE VCC VIN PLANE CIN U1 R1 LX VIN EN/UVLO GND VCC R2 CVCC L1 COUT RESET FB MODE GND PLANE R5 VOUT PLANE R4 R3 VIAS TO BOTTOM-SIDE GROUND PLANE VIAS TO VOUT VIAS TO VCC 图4. MAX15062C布局指南 Maxim Integrated 20 MAX15062 60V、300mA、超小尺寸、高效、 同步降压型DC-DC转换器 VIN 4.5V TO 60V CIN 1µF VIN EN/UVLO LX L1 33µH COUT 10µF GND VOUT 3.3V, 300mA VIN 6V TO 60V CIN 1µF MAX15062A CVCC 1µF VCC MODE EN/UVLO LX COUT 10µF GND RESET CVCC 1µF VOUT VCC MODE RESET VOUT MODE = GND FOR PWM MODE = OPEN FOR PFM MODE = GND FOR PWM MODE = OPEN FOR PFM L1: COILCRAFT LPS4018-333ML COUT: MURATA 10µF/X7R/6.3V/1206 GRM31CR70J106K CIN: MURATA 1µF/X7R/100V/1206 GRM31CR72A105K L1: COILCRAFT LPS4018-473ML COUT: MURATA 10µF/X7R/6.3V/1206 GRM31CR70J106K CIN: MURATA 1µF/X7R/100V/1206 GRM31CR72A105K CIN 1µF VIN EN/UVLO 图6. 5V、300mA降压型稳压器 LX L1 22µH GND MAX15062C CVCC 1µF VCC MODE COUT 22µF VOUT 2.5V, 300mA CIN 1µF R1 133kΩ FB RESET VIN 14V TO 60V EN/UVLO LX GND MAX15062C CVCC 1µF R2 75kΩ VIN L1 100µH VCC MODE RESET MODE = GND FOR PWM MODE = OPEN FOR PFM L1: COILCRAFT LPS4018-223ML COUT: MURATA 22µF/X7R/6.3V/1206 (GRM31CR70J226K) CIN: MURATA 1µF/X7R/100V/1206 (GRM31CR72A105K) L1: Wurth 74408943101 COUT: MURATA 4.7µF/X7R/16V/1206 (GRM31CR71C475K) CIN: MURATA 1µF/X7R/100V/1206 (GRM31CR72A105K) Maxim Integrated COUT 4.7µF VOUT 12V, 300mA R1 499kΩ FB MODE = GND FOR PWM MODE = OPEN FOR PFM 图7. 2.5V、300mA降压稳压器 VOUT 5V, 300mA MAX15062B 图5. 3.3V、300mA降压型稳压器 VIN 4.5V TO 60V VIN L1 47µH R2 40.2kΩ 图8. 12V、300mA降压稳压器 21 MAX15062 60V、300mA、超小尺寸、高效、 同步降压型DC-DC转换器 定购信息 VIN 4.5V TO 60V CIN 1µF VIN LX EN/UVLO L1 22µH COUT 22µF GND R1 75kΩ MAX15062C CVCC 1µF R2 75kΩ RESET L1: COILCRAFT LPS4018-223ML COUT: MURATA 22µF/X7R/6.3V/1206 (GRM31CR70J226K) CIN: MURATA 1µF/X7R/100V/1206 (GRM31CR72A105K) VIN LX EN/UVLO GND MAX15062AATA+ -40°C至+125°C 8 TDFN 3.3V MAX15062BATA+ -40°C至+125°C 8 TDFN 5V MAX15062CATA+ -40°C至+125°C 8 TDFN Adj 芯片信息 COUT 4.7µF VOUT 15V, 300mA 封装类型 封装编码 外形编号 焊盘布局编号 8 TDFN T822CN+1 21-0487 90-0349 R1 499kΩ FB VCC MODE VOUT 如需最近的封装外形信息和焊盘布局(占位面积),请查询china. maximintegrated.com/packages。请注意,封装编码中的 “+” 、 “#” 或 “-” 仅表示RoHS状态。封装图中可能包含不同的尾缀字符, 但封 装图只与封装有关,与RoHS状态无关。 L1 150µH MAX15062C CVCC 1µF 引脚-封装 封装信息 图9. 1.8V、300mA降压稳压器 CIN 1µF 温度范围 PROCESS: BiCMOS MODE = GND FOR PWM MODE = OPEN FOR PFM VIN 17V TO 60V 器件 +表示无铅(Pb)/符合RoHS标准的封装。 FB VCC MODE VOUT 1.8V, 300mA RESET R2 31.6kΩ MODE = GND FOR PWM MODE = OPEN FOR PFM L1: TDK VLC6045T-151M COUT: MURATA 4.7µF/X7R/25V/1206 (GRM31CR71E475K) CIN: MURATA 1µF/X7R/100V/1206 (GRM31CR72A105K) 图10. 15V、300mA降压稳压器 Maxim Integrated 22 MAX15062 60V、300mA、超小尺寸、高效、 同步降压型DC-DC转换器 修订历史 修订号 修订日期 说明 0 6/13 最初版本。 1 10/13 增加了MAX15062C、特性、全部更新了图像及表格。 修改页 — 1 -17 Maxim北京办事处 北京8328信箱 邮政编码100083 免费电话:800 810 0310 电话:010-6211 5199 传真:010-6211 5299 Maxim不对Maxim产品以外的任何电路使用负责,也不提供其专利许可。Maxim保留在任何时间、没有任何通报的前提下修改产品资料和规格的权利。电气 特性表中列出的参数值(最小值和最大值)均经过设计验证,数据资料其它章节引用的参数值供设计人员参考。 Maxim Integrated 160 Rio Robles, San Jose, CA 95134 USA 1-408-601-10 00 23 © 2013 Maxim Integrated Maxim标志和Maxim Integrated是Maxim Integrated Products, Inc.的商标。 EVALUATION KIT AVAILABLE MAX15062 60V, 300mA, Ultra-Small, High-Efficiency, Synchronous Step-Down DC-DC Converters General Description Benefits and Features The device employs a peak-current-mode control architecture with a MODE pin that can be used to operate the device in pulse-width modulation (PWM) or pulse-frequency modulation (PFM) control schemes. PWM operation provides constant frequency operation at all loads and is useful in applications sensitive to variable switching frequency. PFM operation disables negative inductor current and additionally skips pulses at light loads for high efficiency. The low-resistance on-chip MOSFETs ensure high efficiency at full load and simplify the PCB layout. ● Reduces Number of DC-DC Regulators to Stock • Wide 4.5V to 60V Input Voltage Range • Fixed 3.3V and 5V Output Voltage Options • Adjustable 0.9V to 0.89 x VIN Output Voltage Option • Delivers Up to 300mA Load Current • Configurable Between PFM and Forced-PWM Modes ● Reduces Power Dissipation • Peak Efficiency = 92% • PFM Feature for High Light-Load Efficiency • Shutdown Current = 2.2µA (typ) The MAX15062 high-efficiency, high-voltage, synchronous step-down DC-DC converter with integrated MOSFETs operates over a 4.5V to 60V input voltage range. The converter delivers output current up to 300mA at 3.3V (MAX15062A), 5V (MAX15062B), and adjustable output voltages (MAX15062C). The device operates over the -40°C to +125°C temperature range and is available in a compact 8-pin (2mm x 2mm) TDFN package. Simulation models are available. To reduce input inrush current, the device offers an internal soft-start. The device also incorporates an EN/ UVLO pin that allows the user to turn on the part at the desired input-voltage level. An open-drain RESET pin can be used for output-voltage monitoring. Applications ● ● ● ● ● ● Process Control Industrial Sensors 4–20mA Current Loops HVAC and Building Control High-Voltage LDO Replacement General-Purpose Point-of-Load Ordering Information appears at end of data sheet. ● Eliminates External Components and Reduces Total Cost • No Schottky—Synchronous Operation for High Efficiency and Reduced Cost • Internal Compensation • Internal Feedback Divider for Fixed 3.3V, 5V Output Voltages • Internal Soft-Start • All-Ceramic Capacitors, Ultra-Compact Layout ● Operates Reliably in Adverse Industrial Environments • Hiccup-Mode Current Limit and Autoretry Startup • Built-In Output Voltage Monitoring with Open-Drain RESET Pin • Programmable EN/UVLO Threshold • Monotonic Startup into Prebiased Output • Overtemperature Protection • -40°C to +125°C Automotive/Industrial Temperature Range Typical Operating Circuit VIN 4.5V TO 60V CIN 1µF For related parts and recommended products to use with this part, refer to www.maximintegrated.com/MAX15062.related. VIN EN/UVLO GND MAX15062A CVCC 1µF VCC MODE 19-6685; Rev 1; 10/13 LX RESET VOUT L1 33µH COUT 10µF VOUT 3.3V, 300mA MAX15062 60V, 300mA, Ultra-Small, High-Efficiency, Synchronous Step-Down DC-DC Converters Absolute Maximum Ratings VIN to GND...............................................................-0.3V to 70V EN/UVLO to GND....................................................-0.3V to 70V LX to GND..................................................... -0.3V to VIN + 0.3V VCC, FB/VOUT, RESET to GND................................-0.3V to 6V MODE to GND..............................................-0.3V to VCC + 0.3V LX total RMS Current......................................................±800mA Output Short-Circuit Duration.....................................Continuous Continuous Power Dissipation (TA = +70°C) 8-Pin TDFN (derate 6.2mW/NC above +70°C)............496mW Operating Temperature Range.......................... -40°C to +125°C Junction Temperature.......................................................+150°C Storage Temperature Range............................. -65°C to +150°C Soldering Temperature (reflow)........................................+260°C Lead Temperature (soldering, 10s).................................. +300°C Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Package Thermal Characteristics (Note 1) TDFN Junction-to-Ambient Thermal Resistance (θJA).......+162°C/W Junction-to-Case Thermal Resistance (θJC)..............+20°C/W Note 1: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board. For detailed information on package thermal considerations, refer to www.maximintegrated.com/thermal-tutorial. Electrical Characteristics (VIN = 24V, VGND = 0V, CIN = CVCC = 1µF, VEN/UVLO = 1.5V, LX = MODE = RESET = unconnected; TA = TJ = -40°C to +125°C, unless otherwise noted. Typical values are at TA = +25°C. All voltages are referenced to GND, unless otherwise noted.) (Note 2) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS INPUT SUPPLY (VIN) Input Voltage Range Input Shutdown Current Input Supply Current VIN 4.5 60 V IIN-SH VEN/UVLO = 0V, shutdown mode 2.2 4 µA IQ-PFM MODE = unconnected, FB/VOUT = 1.03 x FB/VOUT-REG 95 160 µA IQ-PWM Normal switching mode, VIN = 24V 2.5 4 mA ENABLE/UVLO (EN/UVLO) EN/UVLO Threshold VENR VEN/UVLO rising 1.19 1.215 1.24 VENF VEN/UVLO falling 1.06 1.09 1.15 V +100 nA VEN-TRUESD VEN/UVLO falling, true shutdown EN/UVLO Input Leakage Current IEN/UVLO 0.75 VEN/UVLO = 60V, TA = +25°C -100 6V < VIN < 60V, 0mA < IVCC < 10mA 4.75 5 5.25 V 13 30 50 mA 0.15 0.3 V LDO (VCC) VCC Output Voltage Range VCC Current Limit VCC Dropout VCC UVLO www.maximintegrated.com VCC IVCC-MAX VCC = 4.3V, VIN = 12V VCC-DO VIN = 4.5V, IVCC = 5mA VCC-UVR VCC rising 4.05 4.18 4.3 VCC-UVF VCC falling 3.7 3.8 3.95 V Maxim Integrated │ 2 MAX15062 60V, 300mA, Ultra-Small, High-Efficiency, Synchronous Step-Down DC-DC Converters Electrical Characteristics (continued) (VIN = 24V, VGND = 0V, CIN = CVCC = 1µF, VEN/UVLO = 1.5V, LX = MODE = RESET = unconnected; TA = TJ = -40°C to +125°C, unless otherwise noted. Typical values are at TA = +25°C. All voltages are referenced to GND, unless otherwise noted.) (Note 2) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS POWER MOSFETs High-Side pMOS On-Resistance RDS-ONH ILX = 0.3A (sourcing) TA = +25°C Low-Side nMOS On-Resistance RDS-ONL ILX = 0.3A (sinking) TA = +25°C LX Leakage Current ILX-LKG 1.35 TA = TJ = +125°C 2.7 0.45 TA = TJ = +125°C VEN/UVLO = 0V, VIN = 60V, TA = +25°C, VLX = (VGND + 1V) to (VIN - 1V) 1.75 0.55 0.9 -1 +1 Ω Ω µA SOFT-START (SS) Soft-Start Time tSS 4.1 ms FEEDBACK (FB) FB Regulation Voltage FB Leakage Current VFB-REG IFB MODE = GND, MAX15062C 0.887 0.9 0.913 MODE = unconnected, MAX15062C 0.887 0.915 0.936 MAX15062C -100 -25 MODE = GND, MAX15062A 3.25 3.3 3.35 MODE = unconnected, MAX15062A 3.25 3.35 3.42 MODE = GND, MAX15062B 4.93 5 5.07 MODE = unconnected, MAX15062B 4.93 5.08 5.18 V nA OUTPUT VOLTAGE (VOUT) VOUT Regulation Voltage VOUT-REG V CURRENT LIMIT Peak Current-Limit Threshold IPEAK-LIMIT 0.49 0.56 0.62 A Runaway Current-Limit Threshold IRUNAWAY- 0.58 0.66 0.73 A Negative Current-Limit Threshold ISINK-LIMIT 0.25 0.3 0.35 A PFM Current Level LIMIT MODE = GND IPFM 0.01 mA 0.13 A TIMING Switching Frequency fSW 465 Events to Hiccup After Crossing Runaway Current Limit 62.5 Hiccup Timeout Maximum Duty Cycle www.maximintegrated.com 535 1 FB/VOUT Undervoltage Trip Level to Cause Hiccup Minimum On-Time 500 64.5 Cycles 66.5 131 tON-MIN DMAX FB/VOUT = 0.98 x FB/VOUT-REG 89 kHz % ms 90 130 ns 91.5 94 % Maxim Integrated │ 3 MAX15062 60V, 300mA, Ultra-Small, High-Efficiency, Synchronous Step-Down DC-DC Converters Electrical Characteristics (continued) (VIN = 24V, VGND = 0V, CIN = CVCC = 1µF, VEN/UVLO = 1.5V, LX = MODE = RESET = unconnected; TA = TJ = -40°C to +125°C, unless otherwise noted. Typical values are at TA = +25°C. All voltages are referenced to GND, unless otherwise noted.) (Note 2) PARAMETER SYMBOL CONDITIONS MIN LX Dead Time TYP MAX 5 UNITS ns RESET FB/VOUT Threshold for RESET Rising FB/VOUT rising 93.5 95.5 97.5 % FB/VOUT Threshold for RESET Falling FB/VOUT falling 90 92 94 % RESET Delay After FB/VOUT Reaches 95% Regulation 2 ms RESET Output Level Low IRESET = 5mA 0.2 V RESET Output Leakage Current VRESET = 5.5V, TA = +25°C 0.1 µA MODE MODE Internal Pullup Resistor 500 kΩ 166 °C 10 °C THERMAL SHUTDOWN Thermal-Shutdown Threshold Temperature rising Thermal-Shutdown Hysteresis Note 2: All the limits are 100% tested at TA = +25°C. Limits over temperature are guaranteed by design. www.maximintegrated.com Maxim Integrated │ 4 MAX15062 60V, 300mA, Ultra-Small, High-Efficiency, Synchronous Step-Down DC-DC Converters Typical Operating Characteristics (VIN = 24V, VGND = 0V, CIN = CVCC = 1µF, VEN/UVLO = 1.5V, TA = +25°C, unless otherwise noted.) 70 VIN = 36V 50 50 FIGURE 5 APPLICATION CIRCUIT, PFM MODE VOUT = 3.3V VIN = 48V 10 1 40 30 100 10 1 LOAD CURRENT (mA) toc02b VIN = 24V 40 EFFICIENCY (%) EFFICIENCY (%) 80 VIN = 36V VIN = 48V VIN = 60V 50 1 FIGURE 8 APPLICATION CIRCUIT, PFM MODE VOUT = 12V 10 70 VIN = 24V 60 VIN = 36V 50 VIN = 48V 40 30 20 10 0 100 0 EFFICIENCY vs. LOAD CURRENT toc04a 50 EFFICIENCY (%) EFFICIENCY (%) VIN = 12V 60 VIN = 24V 50 VIN = 36V 30 VIN = 48V 20 FIGURE 7 APPLICATION CIRCUIT, PWM MODE VOUT = 2.5V 10 0 50 100 150 200 LOAD CURRENT (mA) www.maximintegrated.com 10 200 250 300 250 EFFICIENCY vs. LOAD CURRENT 80 70 60 VIN = 36V 50 VIN = 48V 40 30 20 FIGURE 6 APPLICATION CIRCUIT, PWM MODE VOUT = 5V 10 0 300 0 50 100 150 200 EFFICIENCY VS. LOAD CURRENT OUTPUT VOLTAGE vs. LOAD CURRENT 3.37 toc04b VIN = 18V VIN = 24V 60 VIN = 36V 50 40 VIN = 48V 30 VIN = 60V 20 10 50 100 FIGURE 8 APPLICATION CIRCUIT, PWM MODE VOUT = 12V 150 200 LOAD CURRENT (mA) 250 300 250 300 FIGURE 5 APPLICATION CIRCUIT, PFM MODE 3.36 0 VIN = 12V VIN = 24V LOAD CURRENT (mA) 70 0 100 LOAD CURRENT (mA) 80 70 40 150 FIGURE 7 APPLICATION CIRCUIT, PFM MODE VOUT = 2.5V 90 90 80 0 100 100 VIN = 6V 90 1 100 FIGURE 5 APPLICATION CIRCUIT, PWM MODE VOUT = 3.3V LOAD CURRENT (mA) 100 VIN = 48V LOAD CURRENT (mA) 80 60 50 20 100 VIN = 12V 90 70 VIN = 24V VIN = 36V 30 EFFICIENCY vs. LOAD CURRENT 100 VIN = 18V 90 60 LOAD CURRENT (mA) EFFICIENCY vs. LOAD CURRENT 100 70 40 FIGURE 6 APPLICATION CIRCUIT, PFM MODE VOUT = 5V VIN = 48V EFFICIENCY (%) 30 VIN = 36V 60 80 OUTPUT VOLTAGE (V) 40 70 VIN = 12V 90 MAX15062 toc04 60 80 VIN = 6V 3.35 MAX15062 toc05 EFFICIENCY (%) 80 VIN = 24V 90 EFFICIENCY (%) VIN = 24V VIN = 12V toc02a 100 MAX15062 toc03 90 EFFICIENCY (%) MAX15062 toc01 VIN = 12V EFFICIENCY vs. LOAD CURRENT EFFICIENCY vs. LOAD CURRENT 100 MAX15062 toc02 EFFICIENCY vs. LOAD CURRENT 100 VIN = 12V, 24V 3.34 3.33 VIN = 36V 3.32 VIN = 48V 3.31 3.30 3.29 0 50 100 150 200 250 300 LOAD CURRENT (mA) Maxim Integrated │ 5 MAX15062 60V, 300mA, Ultra-Small, High-Efficiency, Synchronous Step-Down DC-DC Converters Typical Operating Characteristicsc (continued) (VIN = 24V, VGND = 0V, CIN = CVCC = 1µF, VEN/UVLO = 1.5V, TA = +25°C, unless otherwise noted.) OUTPUT VOLTAGE vs. LOAD CURRENT 5.04 VIN = 12V, 36V, 48V 5.02 5.00 VIN = 12V 2.51 VIN = 6V,24V 2.50 VIN = 36V VIN = 48V 2.49 2.48 50 100 150 200 0 LOAD CURRENT (mA) 0.920 toc06c OUTPUT VOLTAGE (V) OUTPUT VOLTAGE (V) 100 VIN = 12V VIN = 6V, 24V VIN = 36V VIN = 48V 0.900 50 100 150 200 VIN = 36V 3.299 250 300 3.297 VIN = 24V 0 50 100 VIN = 12V 150 200 250 20 40 60 TEMPERATURE (°C) www.maximintegrated.com VIN = 48V,60V 0 50 80 100 120 100 150 200 250 300 OUTPUT VOLTAGE vs. LOAD CURRENT 5.003 FIGURE 6 APPLICATION CIRCUIT, PWM MODE 5.002 5.001 VIN = 48V 5.000 4.999 4.997 300 VIN = 36V VIN = 12V 0 50 100 VIN = 24V 150 200 250 300 LOAD CURRENT (mA) 5.04 OUTPUT VOLTAGE (V) FIGURE 5 APPLICATION CIRCUIT, LOAD = 300mA 0 12.10 4.998 MAX15062 toc09 3.29 -20 VIN = 36V LOAD CURRENT (mA) 3.30 -40 12.15 12.00 300 3.300 3.31 3.28 VIN = 24V LOAD CURRENT (mA) OUTPUT VOLTAGE vs. TEMPERATURE 3.32 OUTPUT VOLTAGE (V) 250 VIN = 48V 3.301 LOAD CURRENT (mA) 3.27 200 FIGURE 5 APPLICATION CIRCUIT, PWM MODE 3.298 0 150 OUTPUT VOLTAGE vs. LOAD CURRENT 3.302 0.915 0.895 50 3.303 PFM MODE 0.905 12.20 LOAD CURRENT (mA) FEEDBACK VOLTAGE vs. LOAD CURRENT 0.910 VIN = 18V 12.05 2.47 300 250 12.25 OUTPUT VOLTAGE vs. TEMPERATURE MAX15062 toc10 0 FIGURE 8 APPLICATION CIRCUIT, PFM MODE 12.30 OUTPUT VOLTAGE (V) 4.98 2.52 toc06b MAX15062 toc08 VIN = 24V FIGURE 7 APPLICATION CIRCUIT, PFM MODE 2.53 OUTPUT VOLTAGE vs. LOAD CURRENT 12.35 OUTPUT VOLTAGE (V) 5.06 toc06a MAX15062 toc07 OUTPUT VOLTAGE (V) 5.08 2.54 OUTPUT VOLTAGE (V) FIGURE 6 APPLICATION CIRCUIT, PFM MODE MAX15062 toc06 5.10 OUTPUT VOLTAGE vs. LOAD CURRENT 5.02 5.00 4.98 4.96 4.94 FIGURE 6 APPLICATION CIRCUIT, LOAD = 300mA -40 -20 0 20 40 60 80 100 120 TEMPERATURE (°C) Maxim Integrated │ 6 MAX15062 60V, 300mA, Ultra-Small, High-Efficiency, Synchronous Step-Down DC-DC Converters Typical Operating Characteristicsc (continued) (VIN = 24V, VGND = 0V, CIN = CVCC = 1µF, VEN/UVLO = 1.5V, TA = +25°C, unless otherwise noted.) NO-LOAD SUPPLY CURRENT vs. INPUT VOLTAGE FEEDBACK VOLTAGE VS. TEMPERATURE toc10a NO-LOAD SUPPLY CURRENT (µA) 0.900 0.896 0.892 0.888 0.884 0 20 40 60 80 92 100 120 PFM MODE 5 15 25 35 45 NO-LOAD SUPPLY CURRENT vs. TEMPERATURE SHUTDOWN CURRENT vs. INPUT VOLTAGE MAX15062 toc12 INPUT VOLTAGE (V) 120 110 100 90 80 6 55 5 4 3 2 1 PFM MODE -40 -20 0 20 40 60 80 0 100 120 5 45 SWITCH CURRENT LIMIT vs. INPUT VOLTAGE 1.95 1.80 1.65 600 550 0 20 40 60 80 TEMPERATURE (°C) 100 120 55 SWITCH PEAK CURRENT LIMIT 500 450 400 350 300 SWITCH NEGATIVE CURRENT LIMIT 250 www.maximintegrated.com 35 SHUTDOWN CURRENT vs. TEMPERATURE 2.10 -20 25 INPUT VOLTAGE (V) 2.25 -40 15 TEMPERATURE (°C) MAX15062 toc15 70 2.40 SHUTDOWN CURRENT (µA) 94 TEMPERATURE (°C) MAX15062 toc14 NO-LOAD SUPPLY CURRENT (µA) -20 130 1.50 96 MAX15062 toc13 -40 140 60 98 90 SHUTDOWN CURRENT (µA) 0.880 SWITCH CURRENT LIMIT (mA) FEEDBACK VOLTAGE (V) 0.904 MAX15062 toc11 100 0.908 200 5 15 25 35 45 55 INPUT VOLTAGE (V) Maxim Integrated │ 7 MAX15062 60V, 300mA, Ultra-Small, High-Efficiency, Synchronous Step-Down DC-DC Converters Typical Operating Characteristicsc (continued) (VIN = 24V, VGND = 0V, CIN = CVCC = 1µF, VEN/UVLO = 1.5V, TA = +25°C, unless otherwise noted.) 450 400 350 SWITCH NEGATIVE CURRENT LIMIT 250 200 -40 -20 20 40 60 80 1.18 1.16 1.14 1.12 FALLING 1.10 -40 -20 0 20 40 60 80 TEMPERATURE (°C) TEMPERATURE (°C) SWITCHING FREQUENCY vs. TEMPERATURE RESET THRESHOLD vs. TEMPERATURE 540 520 500 480 460 440 1.20 1.08 100 120 MAX15062 toc18 SWITCHING FREQUENCY (kHz) 560 0 RISING 1.22 98 100 120 MAX15062 toc19 300 MAX15062 toc17 SWITCH PEAK CURRENT LIMIT 500 EN/UVLO THRESHOLD VOLTAGE (V) 550 EN/UVLO THRESHOLD vs. TEMPERATURE 1.24 97 RESET THRESHOLD (%) SWITCH CURRENT LIMIT (mA) 600 MAX15062 toc16 SWITCH CURRENT LIMIT vs. TEMPERATURE 96 RISING 95 94 93 FALLING 92 91 -40 -20 0 20 40 60 80 100 120 90 0 10 20 30 40 50 60 TEMPERATURE (°C) TEMPERATURE (°C) LOAD TRANSIENT RESPONSE, PFM MODE (LOAD CURRENT STEPPED FROM 5mA TO 150mA) LOAD TRANSIENT RESPONSE, PFM MODE (LOAD CURRENT STEPPED FROM 5mA TO 150mA) MAX15062 toc21 MAX15062 toc20 VOUT (AC) 100mV/div VOUT (AC) 100mV/div FIGURE 5 APPLICATION CIRCUIT VOUT = 3.3V IOUT 100mA/div IOUT 100mA/div 100µs /div www.maximintegrated.com FIGURE 6 APPLICATION CIRCUIT VOUT = 5V 100µs /div Maxim Integrated │ 8 MAX15062 60V, 300mA, Ultra-Small, High-Efficiency, Synchronous Step-Down DC-DC Converters Typical Operating Characteristicsc (continued) (VIN = 24V, VGND = 0V, CIN = CVCC = 1µF, VEN/UVLO = 1.5V, TA = +25°C, unless otherwise noted.) LOAD TRANSIENT RESPONSE PFM MODE (LOAD CURRENT STEPPED FROM 5mA TO 150mA) LOAD TRANSIENT RESPONSE, PFM MODE (LOAD CURRENT STEPPED FROM 5mA TO 150mA) toc21b toc21a VOUT (AC) 200mV/div VOUT (AC) 100mV/div FIGURE 8 APPLICATION CIRCUIT VOUT = 12V FIGURE 7 APPLICATION CIRCUIT VOUT = 2.5V IOUT 100mA/div IOUT 100mA/div 100µs/div 100µs/div LOAD TRANSIENT RESPONSE, PFM OR PWM MODE (LOAD CURRENT STEPPED FROM 150mA TO 300mA) LOAD TRANSIENT RESPONSE, PFM OR PWM MODE (LOAD CURRENT STEPPED FROM 150mA TO 300mA) MAX15062 toc22 MAX15062 toc23 VOUT (AC) 100mV/div VOUT (AC) 100mV/div IOUT 100mA/div IOUT 100mA/div FIGURE 5 APPLICATION CIRCUIT VOUT = 3.3V 40µs/div 40µs/div LOAD TRANSIENT RESPONSE PFM OR PWM MODE (LOAD CURRENT STEPPED FROM 150mA TO 300mA) LOAD TRANSIENT RESPONSE PFM OR PWM MODE (LOAD CURRENT STEPPED FROM 150mA TO 300mA) toc23a VOUT (AC) 50mV/div FIGURE 6 APPLICATION CIRCUIT VOUT = 5V toc23b VOUT (AC) 200mV/div IOUT 100mA/div FIGURE 7 APPLICATION CIRCUIT VOUT = 2.5V 40µs/div www.maximintegrated.com IOUT 100mA/div FIGURE 8 APPLICATION CIRCUIT VOUT = 12V 40µs/div Maxim Integrated │ 9 MAX15062 60V, 300mA, Ultra-Small, High-Efficiency, Synchronous Step-Down DC-DC Converters Typical Operating Characteristicsc (continued) (VIN = 24V, VGND = 0V, CIN = CVCC = 1µF, VEN/UVLO = 1.5V, TA = +25°C, unless otherwise noted.) LOAD TRANSIENT RESPONSE, PWM MODE (LOAD CURRENT STEPPED FROM NO LOAD TO 150mA) LOAD TRANSIENT RESPONSE, PWM MODE PWM mode (LOAD CURRENT STEPPED FROM NO LOAD TO 150mA) MAX15062 toc24 VOUT (AC) 100mV/div MAX15062 toc25 VOUT (AC) 100mV/div FIGURE 5 APPLICATION CIRCUIT VOUT = 3.3V FIGURE 6 APPLICATION CIRCUIT VOUT = 5V IOUT 100mA/div IOUT 100mA/div 40µs/div 40µs/div LOAD TRANSIENT RESPONSE PWM MODE (LOAD CURRENT STEPPED FROM NO LOAD TO 150mA) LOAD TRANSIENT RESPONSE PWM MODE (LOAD CURRENT STEPPED FROM NO LOAD TO 150mA) toc25b toc25a VOUT (AC) VOUT (AC) 200mV/div 50mV/div FIGURE 8 APPLICATION CIRCUIT VOUT = 12V FIGURE 7 APPLICATION CIRCUIT VOUT = 2.5V IOUT 100mA/div IOUT 100mA/div 40µs/div 40µs/div FULL-LOAD SWITCHING WAVEFORMS (PWM OR PFM MODE) SWITCHING WAVEFORMS (PFM MODE) MAX15062 toc27 MAX15062 toc26 VOUT (AC) 100mV/div FIGURE 6 APPLICATION CIRCUIT VOUT = 5V, LOAD = 20mA VOUT (AC) 20mV/div VLX 10V/div VLX 10V/div IOUT 200mA/div IOUT 100mA/div 10µs/div www.maximintegrated.com VOUT = 5V, LOAD = 300mA 2µs/div Maxim Integrated │ 10 MAX15062 60V, 300mA, Ultra-Small, High-Efficiency, Synchronous Step-Down DC-DC Converters Typical Operating Characteristicsc (continued) (VIN = 24V, VGND = 0V, CIN = CVCC = 1µF, VEN/UVLO = 1.5V, TA = +25°C, unless otherwise noted.) NO-LOAD SWITCHING WAVEFORMS (PWM MODE) SOFT-START MAX15062 toc28 VOUT = 5V MAX15062 toc29 VEN/UVLO 5V/div VOUT (AC) 20mV/div VLX 10V/div VOUT 1V/div IOUT 100mA/div IOUT 100mA/div VRESET 5V/div 2µs/div SOFT-START FIGURE 5 APPLICATION CIRCUIT VOUT = 3.3V 1ms/div SOFT-START toc30a MAX15062 toc30 VEN/UVLO 5V/div VEN/ UVLO 5V/div VOUT 1V/div VOUT 1V/div IOUT 100mA/div VRESET 5V/div IOUT 100mA/div FIGURE 6 APPLICATION CIRCUIT VOUT = 5V VRESET 5V/div 1ms/div 1ms/div SOFT-START SHUTDOWN WITH ENABLE MAX15062 toc31 toc30b VEN/UVLO VEN/UVLO 5V/div 5V/div VOUT 1V/div VOUT 5V/div IOUT 100mA/div IOUT 100mA/div FIGURE 8 APPLICATION CIRCUIT VOUT = 12V VRESET 5V/div 1ms/div www.maximintegrated.com FIGURE 7 APPLICATION CIRCUIT VOUT = 2.5V VRESET 5V/div 400µs /div Maxim Integrated │ 11 MAX15062 60V, 300mA, Ultra-Small, High-Efficiency, Synchronous Step-Down DC-DC Converters Typical Operating Characteristicsc (continued) (VIN = 24V, VGND = 0V, CIN = CVCC = 1µF, VEN/UVLO = 1.5V, TA = +25°C, unless otherwise noted.) SOFT-START WITH 3V PREBIAS OVERLOAD PROTECTION MAX15062 toc32 MAX15062 toc33 VEN/ UVLO 5V/div VIN 20V/div VOUT 1V/div VOUT 2V/div FIGURE 6 APPLICATION CIRCUIT NO LOAD PWM MODE IOUT 200mA/div VRESET 5V/div 1ms/div 144 40 108 30 72 20 10 36 10 0 0 40 GAIN 30 PHASE 20 fCR = 47kHz, PHASE MARGIN = 59° -10 -20 FIGURE 5 APPLICATION CIRCUIT VOUT = 3.3V -30 -40 -50 -36 2 4 6 81 1k 2 4 6 81 10k 2 100k GAIN (dB) 50 PHASE (°) 180 BODE PLOT -108 -30 -144 -40 -180 -50 30 GAIN (dB) 20 PHASE 10 0 FIGURE 7 APPLICATION CIRCUIT VOUT = 2.5V -40 -50 1k 10k FREQUENCY (Hz) www.maximintegrated.com 144 40 108 30 72 20 36 10 -36 -20 -30 50 0 fCR = 43kHz, PHASE MARGIN = 60° -10 180 100k GAIN (dB) MAX15062 toc35a GAIN 40 0 fCR = 47kHz, PHASE MARGIN = 60° -36 -72 FIGURE 6 APPLICATION CIRCUIT VOUT = 5V 2 1k 4 6 81 2 4 6 81 2 100k 10k -108 -144 -180 FREQUENCY (Hz) PHASE (°) BODE PLOT 72 36 FREQUENCY (Hz) 50 108 PHASE -10 -20 180 144 GAIN 0 -72 MAX15062 toc35 PHASE (°) MAX15062 toc34 BODE PLOT -108 -30 -144 -40 -180 -50 108 PHASE 72 36 0 fCR = 36kHz, PHASE MARGIN = 66° -10 -20 180 144 GAIN 0 -72 MAX15062 toc35b -36 PHASE (°) BODE PLOT 50 GAIN (dB) 20ms/div -72 FIGURE 8 APPLICATION CIRCUIT VOUT = 12V 1k 100k 10k -108 -144 -180 FREQUENCY (Hz) Maxim Integrated │ 12 MAX15062 60V, 300mA, Ultra-Small, High-Efficiency, Synchronous Step-Down DC-DC Converters Pin Configuration TOP VIEW LX GND RESET MODE 8 7 6 5 MAX15062 + 1 2 3 4 VIN EN/UVLO VCC FB/VOUT TDFN (2mm x 2mm) Pin Description PIN NAME FUNCTION 1 VIN Switching Regulator Power Input. Connect a X7R 1µF ceramic capacitor from VIN to GND for bypassing. 2 EN/UVLO Active-High, Enable/Undervoltage-Detection Input. Pull EN/UVLO to GND to disable the regulator output. Connect EN/UVLO to VIN for always-on operation. Connect a resistor-divider between VIN and EN/UVLO to GND to program the input voltage at which the device is enabled and turns on. 3 VCC 4 FB/VOUT 5 MODE PFM/PWM Mode Selection Input. Connect MODE to GND to enable the fixed-frequency PWM operation. Leave unconnected for light-load PFM operation. 6 RESET Open-Drain Reset Output. Pull up RESET to an external power supply with an external resistor. RESET goes low when the output voltage drops below 92% of the set nominal regulated voltage. RESET goes high impedance 2ms after the output voltage rises above 95% of its regulation value. See the Electrical Characteristics table for threshold values. 7 GND Ground. Connect GND to the power ground plane. Connect all the circuit ground connections together at a single point. See the PCB Layout Guidelines section. 8 LX Inductor Connection. Connect LX to the switching side of the inductor. LX is high impedance when the device is in shutdown. www.maximintegrated.com Internal LDO Power Output. Bypass VCC to GND with a minimum 1µF capacitor. Feedback Input. For fixed output voltage versions, connect FB/VOUT directly to the output. For the adjustable output voltage version, connect FB/VOUT to a resistor-divider between VOUT and GND to adjust the output voltage from 0.9V to 0.89 x VIN. Maxim Integrated │ 13 MAX15062 60V, 300mA, Ultra-Small, High-Efficiency, Synchronous Step-Down DC-DC Converters Block Diagram VIN LDO REGULATOR PEAK-LIMIT RUNAWAYCURRENTLIMIT SENSE LOGIC PFM VCC MAX15062 CS CURRENTSENSE AMPLIFIER POK EN/UVLO DH CHIPEN HIGH-SIDE DRIVER 1.215V THERMAL SHUTDOWN VCC CLK LX OSCILLATOR SLOPE 500kΩ MODE MODE SELECT 0.55VCC PFM/PWM CONTROL LOGIC DL LOW-SIDE DRIVER SLOPE CS FB/VOUT R1 * PWM SINK-LIMIT ERROR AMPLIFIER R2 REFERENCE SOFT-START CLK *RESISTOR-DIVIDER ONLY FOR MAX15062A, MAX15062B www.maximintegrated.com LOW-SIDE CURRENT SENSE NEGATIVE CURRENT REF 3.135V FOR MAX15062A 4.75V FOR MAX15062B 0.859V FOR MAX15062C FB/VOUT GND RESET 2ms DELAY Maxim Integrated │ 14 MAX15062 60V, 300mA, Ultra-Small, High-Efficiency, Synchronous Step-Down DC-DC Converters Detailed Description The MAX15062 high-efficiency, high-voltage, synchronous step-down DC-DC converter with integrated MOSFETs operates over a wide 4.5V to 60V input voltage range. The converter delivers output current up to 300mA at 3.3V (MAX15062A), 5V (MAX15062B), and adjustable output voltages (MAX15062C). When EN/UVLO and VCC UVLO are satisfied, an internal power-up sequence soft-starts the error-amplifier reference, resulting in a clean monotonic output-voltage soft-start independent of the load current. The FB/VOUT pin monitors the output voltage through a resistor-divider. RESET transitions to a high-impedance state 2ms after the output voltage reaches 95% of regulation. The device selects either PFM or forced-PWM mode depending on the state of the MODE pin at power-up. By pulling the EN/UVLO pin to low, the device enters the shutdown mode and consumes only 2.2µA (typ) of standby current. DC-DC Switching Regulator The device uses an internally compensated, fixed-frequency, current-mode control scheme (see the Block Diagram). On the rising edge of an internal clock, the high-side pMOSFET turns on. An internal error amplifier compares the feedback voltage to a fixed internal reference voltage and generates an error voltage. The error voltage is compared to a sum of the current-sense voltage and a slope-compensation voltage by a PWM comparator to set the on-time. During the on-time of the pMOSFET, the inductor current ramps up. For the remainder of the switching period (off-time), the pMOSFET is kept off and the low-side nMOSFET turns on. During the off-time, the inductor releases the stored energy as the inductor current ramps down, providing current to the output. Under overload conditions, the cycle-by-cycle current-limit feature limits the inductor peak current by turning off the high-side pMOSFET and turning on the low-side nMOSFET. Mode Selection (MODE) The logic state of the MODE pin is latched after VCC and EN/UVLO voltages exceed respective UVLO rising thresholds and all internal voltages are ready to allow LX switching. If the MODE pin is unconnected at powerup, the part operates in PFM mode at light loads. If the MODE pin is grounded at power-up, the part operates in constant-frequency PWM mode at all loads. State changes on the MODE pin are ignored during normal operation. PWM Mode Operation In PWM mode, the inductor current is allowed to go negative. PWM operation is useful in frequency sensi- www.maximintegrated.com tive applications and provides fixed switching frequency at all loads. However, the PWM mode of operation gives lower efficiency at light loads compared to PFM mode of operation. PFM Mode Operation PFM mode operation disables negative inductor current and additionally skips pulses at light loads for high efficiency. In PFM mode, the inductor current is forced to a fixed peak of 130mA every clock cycle until the output rises to 102.3% of the nominal voltage. Once the output reaches 102.3% of the nominal voltage, both high-side and low-side FETs are turned off and the part enters hibernate operation until the load discharges the output to 101.1% of the nominal voltage. Most of the internal blocks are turned off in hibernate operation to save quiescent current. After the output falls below 101.1% of the nominal voltage, the device comes out of hibernate operation, turns on all internal blocks, and again commences the process of delivering pulses of energy to the output until it reaches 102.3% of the nominal output voltage. The device naturally exits PFM mode when the load current exceeds 55mA (typ). The advantage of the PFM mode is higher efficiency at light loads because of lower quiescent current drawn from supply. Internal 5V Linear Regulator An internal regulator provides a 5V nominal supply to power the internal functions and to drive the power MOSFETs. The output of the linear regulator (VCC) should be bypassed with a 1µF capacitor to GND. The VCC regulator dropout voltage is typically 150mV. An undervoltagelockout circuit that disables the regulator when VCC falls below 3.8V (typ). The 400mV VCC UVLO hysteresis prevents chattering on power-up and power-down. Enable Input (EN/UVLO), Soft-Start When EN/UVLO voltage is above 1.21V (typ), the device’s internal error-amplifier reference voltage starts to ramp up. The duration of the soft-start ramp is 4.1ms, allowing a smooth increase of the output voltage. Driving EN/UVLO low disables both power MOSFETs, as well as other internal circuitry, and reduces VIN quiescent current to below 2.2µA. EN/UVLO can be used as an input-voltage UVLO adjustment input. An external voltage-divider between VIN and EN/UVLO to GND adjusts the input voltage at which the device turns on or turns off. If input UVLO programming is not desired, connect EN/UVLO to VIN (see the Electrical Characteristics table for EN/UVLO rising and falling threshold voltages). Maxim Integrated │ 15 MAX15062 60V, 300mA, Ultra-Small, High-Efficiency, Synchronous Step-Down DC-DC Converters Reset Output (RESET) The device includes an open-drain RESET output to monitor the output voltage. RESET goes high impedance 2ms after the output rises above 95% of its nominal set value and pulls low when the output voltage falls below 92% of the set nominal regulated voltage. RESET asserts low during the hiccup timeout period. Startup into a Prebiased Output The device is capable of soft-start into a prebiased output, without discharging the output capacitor in both the PFM and forced-PWM modes. Such a feature is useful in applications where digital integrated circuits with multiple rails are powered. Operating Input Voltage Range The maximum operating input voltage is determined by the minimum controllable on-time and the minimum operating input voltage is determined by the maximum duty cycle and circuit voltage drops. The minimum and maximum operating input voltages for a given output voltage should be calculated as follows: VINMIN VOUT + (I OUT × (R DCR + 0.5)) + (I OUT × 1.0) D MAX VINMAX = VOUT t ONMIN × f SW where VOUT is the steady-state output voltage, IOUT is the maximum load current, RDCR is the DC resistance of the inductor, fSW is the switching frequency (max), DMAX is maximum duty cycle (0.9), and tONMIN is the worstcase minimum controllable switch on-time (130ns). Overcurrent Protection/Hiccup Mode The device is provided with a robust overcurrent protection scheme that protects the device under overload and output short-circuit conditions. A cycle-by-cycle peak current limit turns off the high-side MOSFET whenever the high-side switch current exceeds an internal limit of 0.56A (typ). A runaway current limit on the high-side switch current at 0.66A (typ) protects the device under high input voltage, and short-circuit conditions when there is insufficient output voltage available to restore the inductor current that was built up during the on period of the step-down converter. One occurrence of the runaway current limit triggers a hiccup mode. In addition, if due www.maximintegrated.com to a fault condition, output voltage drops to 65% (typ) of its nominal value any time after soft-start is complete, hiccup mode is triggered. In hiccup mode, the converter is protected by suspending switching for a hiccup timeout period of 131ms. Once the hiccup timeout period expires, soft-start is attempted again. Hiccup mode of operation ensures low power dissipation under output short-circuit conditions. Care should be taken in board layout and system wiring to prevent violation of the absolute maximum rating of the FB/VOUT pin under short-circuit conditions. Under such conditions, it is possible for the ceramic output capacitor to oscillate with the board or wiring inductance between the output capacitor or short-circuited load, thereby causing the absolute maximum rating of FB/VOUT (-0.3V) to be exceeded. The parasitic board or wiring inductance should be minimized and the output voltage waveform under short-circuit operation should be verified to ensure the absolute maximum rating of FB/VOUT is not exceeded. Thermal Overload Protection Thermal overload protection limits the total power dissipation in the device. When the junction temperature exceeds +166°C, an on-chip thermal sensor shuts down the device, turns off the internal power MOSFETs, allowing the device to cool down. The thermal sensor turns the device on after the junction temperature cools by 10°C. Applications Information Inductor Selection A low-loss inductor having the lowest possible DC resistance that fits in the allotted dimensions should be selected. The saturation current (ISAT) must be high enough to ensure that saturation cannot occur below the maximum current-limit value (IPEAK-LIMIT) of 0.56A (typ). The required inductance for a given application can be determined from the following equation: L = 9.3 x VOUT where L is inductance in µH and VOUT is output voltage. Once the L value is known, the next step is to select the right core material. Ferrite and powdered iron are commonly available core materials. Ferrite cores have low core losses and are preferred for high-efficiency designs. Powdered iron cores have more core losses and are relatively cheaper than ferrite cores. See Table 1 to select the inductors for typical applications. Maxim Integrated │ 16 MAX15062 60V, 300mA, Ultra-Small, High-Efficiency, Synchronous Step-Down DC-DC Converters Table 1. Inductor Selection INPUT VOLTAGE RANGE VIN (V) VOUT (V) IOUT (mA) L (µH) 4.5 to 60 3.3 (Fixed) 300 33 Coilcraft LPS4018-333ML 6 to 60 5 (Fixed) 300 47 Coilcraft LPS4018-473ML 4.5 to 60 1.8 or 2.5 300 22 Coilcraft LPS4018-223ML 14 to 60 12 300 100 Wurth 74408943101 17 to 60 15 300 150 TDK VLC6045T-151M RECOMMENDED PART NO. Table 2. Output Capacitor Selection INPUT VOLTAGE RANGE VIN (V) VOUT (V) IOUT (mA) COUT (µF) 4.5 to 60 3.3 (Fixed) 300 10µF/1206/X7R/6.3V Murata GRM31CR70J106K RECOMMENDED PART NO. 6 to 60 5 (Fixed) 300 10µF/1206/X7R/6.3V Murata GRM31CR70J106K 4.5 to 60 1.8 or 2.5 300 22µF/1206/X7R/6.3V Murata GRM31CR70J226K 14 to 60 12 300 4.7µF/1206/X7R/16V Murata GRM31CR71C475K 17 to 60 15 300 4.7µF/1206/X7R/25V Murata GRM31CR71E475K VIN VIN R1 MAX15062 EN/UVLO R2 conditions and stabilizes the device’s internal control loop. Usually the output capacitor is sized to support a step load of 50% of the maximum output current in the application, such that the output-voltage deviation is less than 3%. The device requires a minimum of 10µF capacitance for stability. Required output capacitance can be calculated from the following equation: C OUT = Figure 1. Adjustable EN/UVLO Network Input Capacitor Small ceramic capacitors are recommended for the device. The input capacitor reduces peak current drawn from the power source and reduces noise and voltage ripple on the input caused by the switching circuitry. A minimum of 1µF, X7R-grade capacitor in a package larger than 0805 is recommended for the input capacitor of the device to keep the input voltage ripple under 2% of the minimum input voltage, and to meet the maximum ripplecurrent requirements. Output Capacitor Small ceramic X7R-grade capacitors are sufficient and recommended for the device. The output capacitor has two functions. It filters the square wave generated by the device along with the output inductor. It stores sufficient energy to support the output voltage under load transient www.maximintegrated.com 30 VOUT where COUT is the output capacitance in µF and VOUT is the output voltage. See Table 2 to select the output capacitor for typical applications. Setting the Input Undervoltage-Lockout Level The devices offer an adjustable input undervoltagelockout level. Set the voltage at which the device turns on with a resistive voltage-divider connected from VIN to GND (see Figure 1). Connect the center node of the divider to EN/UVLO. Choose R1 to be 3.3MΩ max, and then calculate R2 as follows: R2 = R1× 1.215 (VINU - 1.215) where VINU is the voltage at which the device is required to turn on. Maxim Integrated │ 17 MAX15062 60V, 300mA, Ultra-Small, High-Efficiency, Synchronous Step-Down DC-DC Converters Adjusting the Output Voltage The MAX15062C output voltage can be programmed from 0.9V to 0.89 x VIN. Set the output voltage by connecting a resistor-divider from output to FB to GND (see Figure 2). For the output voltages less than 6V, choose R2 in the 50kΩ to 150kΩ range. For the output voltages greater than 6V, choose R2 in the 25kΩ to 75kΩ range and calculate R1 with the following equation: V = R2 × OUT R1 0.9 − 1 Power Dissipation Ensure that the junction temperature of the device does not exceed 125°C under the operating conditions specified for the power supply. At a particular operating condition, the power losses that lead to temperature rise of the part are estimated as follows: 1 2 PLOSS = POUT × - 1 - (I OUT × R DCR ) η PCB Layout Guidelines Careful PCB layout is critical to achieve clean and stable operation. The switching power stage requires particular attention. Follow the guidelines below for good PCB layout. ● Place the input ceramic capacitor as close as possible to the VIN and GND pins. ● Connect the negative terminal of the VCC bypass capacitor to the GND pin with shortest possible trace or ground plane. ● Minimize the area formed by the LX pin and the inductor connection to reduce the radiated EMI. ● Place the VCC decoupling capacitor as close as possible to the VCC pin. ● Ensure that all feedback connections are short and direct. ● Route the high-speed switching node (LX) away from the FB/VOUT, RESET, and MODE pins. For a sample PCB layout that ensures the first-pass success, refer to the MAX15062 evaluation kit layouts available at www.maximintegrated.com. P= OUT VOUT × I OUT where POUT is the output power, η is the efficiency of power conversion, and RDCR is the DC resistance of the output inductor. See the Typical Operating Characteristics for the power-conversion efficiency or measure the efficiency to determine the total power dissipation. The junction temperature (TJ) of the device can be estimated at any ambient temperature (TA) from the following equation: VOUT R1 FB MAX15062C R2 GND TJ= T A + (θ JA × PLOSS ) where θJA is the junction-to-ambient thermal impedance of the package. www.maximintegrated.com Figure 2. Setting the Output Voltage Maxim Integrated │ 18 MAX15062 60V, 300mA, Ultra-Small, High-Efficiency, Synchronous Step-Down DC-DC Converters VIN VIN CIN LX L1 VOUT COUT R1 GND EN/UVLO MAX15062A/B R2 VOUT VCC VCC CVCC RESET R3 MODE VCC VIN PLANE CIN U1 R1 LX VIN EN/UVLO GND VCC R2 CVCC L1 COUT RESET VOUT MODE R3 VIAS TO BOTTOM-SIDE GROUND PLANE VIAS TO VOUT GND PLANE VOUT PLANE VIAS TO VCC Figure 3. Layout Guidelines for MAX15062A and MAX15062B www.maximintegrated.com Maxim Integrated │ 19 MAX15062 60V, 300mA, Ultra-Small, High-Efficiency, Synchronous Step-Down DC-DC Converters VIN VIN CIN LX L1 VOUT COUT R1 GND EN/UVLO R4 MAX15062C R2 FB VCC R5 VCC CVCC RESET R3 MODE VCC VIN PLANE CIN U1 R1 LX VIN EN/UVLO GND VCC R2 CVCC L1 COUT RESET FB MODE GND PLANE R5 VOUT PLANE R4 R3 VIAS TO BOTTOM-SIDE GROUND PLANE VIAS TO VOUT VIAS TO VCC Figure 4. Layout Guidelines for MAX15062C www.maximintegrated.com Maxim Integrated │ 20 MAX15062 VIN 4.5V TO 60V CIN 1µF 60V, 300mA, Ultra-Small, High-Efficiency, Synchronous Step-Down DC-DC Converters VIN EN/UVLO LX L1 33µH COUT 10µF GND VOUT 3.3V, 300mA VIN 6V TO 60V CIN 1µF MAX15062A CVCC 1µF VCC MODE EN/UVLO LX COUT 10µF GND RESET CVCC 1µF VOUT VCC MODE RESET VOUT MODE = GND FOR PWM MODE = OPEN FOR PFM MODE = GND FOR PWM MODE = OPEN FOR PFM L1: COILCRAFT LPS4018-333ML COUT: MURATA 10µF/X7R/6.3V/1206 GRM31CR70J106K CIN: MURATA 1µF/X7R/100V/1206 GRM31CR72A105K L1: COILCRAFT LPS4018-473ML COUT: MURATA 10µF/X7R/6.3V/1206 GRM31CR70J106K CIN: MURATA 1µF/X7R/100V/1206 GRM31CR72A105K CIN 1µF VIN EN/UVLO LX Figure 6. 5V, 300mA Step-Down Regulator L1 22µH GND MAX15062C CVCC 1µF VCC MODE COUT 22µF VOUT 2.5V, 300mA CIN 1µF R1 133kΩ FB RESET VIN 14V TO 60V EN/UVLO LX COUT 4.7µF GND VCC MODE FB R2 40.2kΩ RESET MODE = GND FOR PWM MODE = OPEN FOR PFM L1: COILCRAFT LPS4018-223ML COUT: MURATA 22µF/X7R/6.3V/1206 (GRM31CR70J226K) CIN: MURATA 1µF/X7R/100V/1206 (GRM31CR72A105K) L1: Wurth 74408943101 COUT: MURATA 4.7µF/X7R/16V/1206 (GRM31CR71C475K) CIN: MURATA 1µF/X7R/100V/1206 (GRM31CR72A105K) Figure 7. 2.5V, 300mA Step-Down Regulator VOUT 12V, 300mA R1 499kΩ MAX15062C CVCC 1µF R2 75kΩ VIN L1 100µH MODE = GND FOR PWM MODE = OPEN FOR PFM www.maximintegrated.com VOUT 5V, 300mA MAX15062B Figure 5. 3.3V, 300mA Step-Down Regulator VIN 4.5V TO 60V VIN L1 47µH Figure 8. 12V, 300mA Step-Down Regulator Maxim Integrated │ 21 MAX15062 60V, 300mA, Ultra-Small, High-Efficiency, Synchronous Step-Down DC-DC Converters Ordering Information VIN 4.5V TO 60V CIN 1µF VIN EN/UVLO LX L1 22µH COUT 22µF GND R1 75kΩ MAX15062C CVCC 1µF R2 75kΩ RESET L1: COILCRAFT LPS4018-223ML COUT: MURATA 22µF/X7R/6.3V/1206 (GRM31CR70J226K) CIN: MURATA 1µF/X7R/100V/1206 (GRM31CR72A105K) CIN 1µF EN/UVLO VCC MODE MAX15062AATA+ -40°C to +125°C 8 TDFN 3.3V MAX15062BATA+ -40°C to +125°C 8 TDFN 5V MAX15062CATA+ -40°C to +125°C 8 TDFN Adj Chip Information For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a “+”, “#”, or “-” in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status. LX L1 150µH GND MAX15062C CVCC 1µF VOUT Package Information Figure 9. 1.8V, 300mA Step-Down Regulator VIN PINPACKAGE PROCESS: BiCMOS MODE = GND FOR PWM MODE = OPEN FOR PFM VIN 17V TO 60V TEMP RANGE PART +Denotes a lead(Pb)-free/RoHS-compliant package. FB VCC MODE VOUT 1.8V, 300mA COUT 4.7µF VOUT 15V, 300mA PACKAGE TYPE PACKAGE CODE OUTLINE NO. LAND PATTERN NO. 8 TDFN T822CN+1 21-0487 90-0349 R1 499kΩ FB RESET R2 31.6kΩ MODE = GND FOR PWM MODE = OPEN FOR PFM L1: TDK VLC6045T-151M COUT: MURATA 4.7µF/X7R/25V/1206 (GRM31CR71E475K) CIN: MURATA 1µF/X7R/100V/1206 (GRM31CR72A105K) Figure 10. 15V, 300mA Step-Down Regulator www.maximintegrated.com Maxim Integrated │ 22 MAX15062 60V, 300mA, Ultra-Small, High-Efficiency, Synchronous Step-Down DC-DC Converters Revision History REVISION NUMBER REVISION DATE PAGES CHANGED DESCRIPTION 0 6/13 Initial release 1 10/13 Added MAX15062C, added figures, updated tables and figures throughout — 1–17 For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim Integrated’s website at www.maximintegrated.com. Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance. Maxim Integrated and the Maxim Integrated logo are trademarks of Maxim Integrated Products, Inc. © 2013 Maxim Integrated Products, Inc. │ 23