Abridged Edition

R
®
Abridged Edition
V-by-One HS Standard_Ver.1.4
V-by-One® HS Standard
Version 1.4
December 15, 2011
1
Copyright(C)2011 THine Electronics, Inc.
R
®
Abridged Edition
V-by-One HS Standard_Ver.1.4
Table of Contents
Table of Contents................................................................................................................................................. 2
1.
2.
Introduction ..................................................................................................................................................... 4
1.1.
Objectives................................................................................................................................................ 4
1.2.
Technical Overview................................................................................................................................. 4
1.2.1.
Transmitter....................................................................................................................................... 5
1.2.2.
Receiver........................................................................................................................................... 5
1.2.3.
Data Lane ........................................................................................................................................ 5
1.2.4.
HTPDN signal ................................................................................................................................. 7
1.2.5.
LOCKN signal................................................................................................................................. 7
Link Specification ........................................................................................................................................... 8
2.1.
2.1.1.
Packer and Unpacker....................................................................................................................... 9
2.1.2.
Scrambler and Descrambler........................................................................................................... 14
2.1.3.
Encoder and Decoder .................................................................................................................... 17
2.1.4.
Serializer and Deserializer............................................................................................................. 18
2.1.5.
Link status monitor........................................................................................................................ 19
2.2.
3.
4.
Functional Specification.......................................................................................................................... 9
Operating Specification ......................................................................................................................... 20
2.2.1.
Transmitter State Diagram............................................................................................................. 20
2.2.2.
Receiver State Diagram ................................................................................................................. 21
2.2.3.
Link Start up flow.......................................................................................................................... 22
2.2.4.
Link Disable flow .......................................................................................................................... 23
2.2.5.
Trainings........................................................................................................................................ 24
Electrical Specification.................................................................................................................................. 28
3.1.
Overview ............................................................................................................................................... 28
3.2.
Transmitter Electrical Specifications..................................................................................................... 29
3.3.
Receiver Electrical Specifications ......................................................................................................... 33
3.4.
Eye Diagram Measurement Setting....................................................................................................... 35
3.5.
Power on/off and Power down specification ......................................................................................... 35
3.6.
Optional functions ................................................................................................................................. 35
3.6.1.
Pre-emphasis ................................................................................................................................. 35
3.6.2.
Equalizer........................................................................................................................................ 35
Guideline for interoperability ........................................................................................................................ 36
4.1.
Byte length and Color mapping............................................................................................................. 36
2
Copyright(C)2011 THine Electronics, Inc.
R
®
Abridged Edition
V-by-One HS Standard_Ver.1.4
4.2.
4.2.1.
Allocation of pixel to Data Lane ................................................................................................... 38
4.2.2.
Inter-lane skewing ......................................................................................................................... 40
4.2.3.
RGB+CMY color mode................................................................................................................. 40
4.3.
3D frame identification.......................................................................................................................... 41
4.3.1.
3D flag on blanking period............................................................................................................ 41
4.3.2.
3D flag on DE active period .......................................................................................................... 42
4.4.
5.
Multiple Data Lane combination........................................................................................................... 38
Countermeasure against frequency change ........................................................................................... 43
Connector and Cable ..................................................................................................................................... 44
5.1.
Interoperability order of priority............................................................................................................ 44
5.2.
Pin assignments ..................................................................................................................................... 49
5.2.1.
Normal ground format ................................................................................................................... 49
5.2.2.
Reduced ground format ................................................................................................................. 50
5.3.
Connector Characteristics...................................................................................................................... 53
5.3.1.
Electrical........................................................................................................................................ 53
5.3.2.
Recommended Receptacle Interface Dimensions.......................................................................... 53
5.4.
PCB Layout Considerations .................................................................................................................. 54
6.
Glossary......................................................................................................................................................... 55
7.
Revision history............................................................................................................................................. 56
8.
Notice and Requires ...................................................................................................................................... 57
3
Copyright(C)2011 THine Electronics, Inc.
R
Abridged Edition
®
V-by-One HS Standard_Ver.1.4
1. Introduction
1.1. Objectives
„ V-by-One® HS targets a high speed data transmission of video signals based on internal
connection of the equipment.
„ V-by-One® HS pursues easier usage and lower power consumption compared with the current
internal connection.
„ V-by-One® HS supports up to 4Gbps data rate (effective data rate 3.2Gbps).
„ V-by-One® HS supports scrambling and Clock Data Recovery (CDR) to reduce EMI.
„ V-by-One® HS supports CDR to solve the skew problem between clock and data at conventional
transfer system.
1.2. Technical Overview
With V-by-One® HS proprietary encoding scheme and CDR architecture, V-by-One® HS technology enables
transmission up to 40bit video data, up to 24bit CTL data, HSYNC, VSYNC and Data Enable (DE) by some
differential pair cables with minimal external components.
As shown in Figure 1, V-by-One® HS Link includes Data Lanes, Hot Plug Detect signal (HTPDN), and CDR
Lock signal (LOCKN). Number of Data Lanes is decided with the pixel rate and color depth (see Table 1).
HTPDN connection between transmitter and receiver can be omitted as an application option.
As optional functions, it is possible to implement transmitter pre-emphasis and receiver equalizer.
®
®
V-by-One HS
Transmitter
V-by-One HS
Receiver
TX0n
Pixel Data
TX0p
RX0n
RX0p
TX1n
TX1p
RX1n
RX1p
...
Control Data
Control Data
TXNn
TXNp
Pixel Data
RXNn
RXNp
VDL
10kΩ
HTPDN
LOCKN
HTPDN
LOCKN
Indicates microstrip lines or cables with their differential characteristic impedance being 100 Ω
Figure 1
V-by-One® HS Link system Diagram
4
Copyright(C)2011 THine Electronics, Inc.
R
Abridged Edition
®
V-by-One HS Standard_Ver.1.4
1.2.1. Transmitter
V-by-One® HS Transmitter consists of packer, scrambler, encoder, serializer, and transmitter link monitor
(Figure 3). Transmitter link monitor constantly monitor LOCKN and HTPDN signals. If the LOCKN signal is
High, Transmitter executes the CDR training. Transmitter sends the CDR training pattern on the CDR training
mode. When CDR locked, Transmitter shifts from CDR training mode to the normal mode, and then it starts to
transmit input data from user logic.
1.2.2. Receiver
V-by-One® HS Receiver consists of unpacker, de-scrambler, decoder, de-serializer and receiver link monitor.
The Receiver synchronizes the pixel clock while referring to the CDR training pattern on the CDR training mode.
After shifting from the CDR training mode to the normal mode, the Receiver aligns byte and bit position using
ALN training pattern. About ALN training, please refer to 2.2.5.2 in page 25).
1.2.3. Data Lane
Data Lane is AC-coupled differential pairs with termination.
Transmission rate is able to be set up to 4Gbps depend on video pixel clock rate and bit depth.
1.2.3.1. Recommended data lane
Table 1
Resolution
HD
ex. 1280 x 720p
Full HD
ex. 1920 x 1080p
Cinema Full HD
ex. 2560 x 1080p
4K x 2K
ex. 3840 x 2160p
Video data format vs. No of lane example
color depth
18/24/30/36 bit
18/24/30/36 bit
18/24/30/36 bit
18/24/30/36 bit
18/24/30/36 bit
18/24/30/36 bit
18/24/30/36 bit
18/24/30 bit
18/24/30 bit
18/24/30 bit
18/24/30/36 bit
18/24/30/36 bit
18/24/30/36 bit
Refresh rate (Pixel clock)
60Hz(74.25MHz)
120Hz(148.5MHz)
240Hz(297MHz)
60Hz(148.5MHz)
120Hz(297MHz)
240Hz(594MHz)
480Hz(1188MHz)
60Hz(185MHz)
120Hz(370MHz)
240Hz(740MHz)
60Hz(594MHz)
120Hz(1188MHz)
240Hz(2376MHz)
No of data lane*
1
2
4
2
4
8
16
2
4
8
8
16
32
* Another lane number could be chosen; however, for the interoperability, those are STRONGLY recommended.
5
Copyright(C)2011 THine Electronics, Inc.
R
®
Abridged Edition
V-by-One HS Standard_Ver.1.4
1.2.3.2. Data lane consideration
This chapter is informative only. It shows the procedure to select the minimum and maximum number of lanes
necessary for the target application.
As a 1st step, [byte mode] (please refer to 2.1.1.4) is chosen from 3, 4, or 5 depending upon color depth.
Literally 3, 4, or 5 byte mode convey nominal 3, 4, or 5byte data. For example, 10bit per color RGB image
requires 30 bit data per pixel; therefore, 4 byte mode which conveys 4 byte (32 bit) is enough to carry the data.
As a 2nd step, total bit rate which is physically transmitted on V-by-One® HS line should be estimated. Because
V-by-One® HS uses 8b10b encoding scheme, encoded data amount which is physically transmitted is 10bit per
nominal decoded 8bit (1 byte) of original data. Multiplying [pixel clock] of the target application by encoded
data amount per pixel results into [encoded total bit-rate] of V-by-One® HS transmission.
[encoded bit-rate per lane] can be calculated as [total bit rate] over [number of lanes]
[number of lanes] should be chosen properly so that [encoded bit-rate per lane] is above 600Mbps and below
4Gbps.
[number of lanes] should be selected appropriate to signal handling in applications. For example, in case of
video signal transmission, [number of lanes] is recommended to be divisor of Hactive, Hblank, and Htotal pixel
number like 1, 2, 4, 8, etc. in order to help signal processing.
6
Copyright(C)2011 THine Electronics, Inc.
R
Abridged Edition
®
V-by-One HS Standard_Ver.1.4
1.2.4. HTPDN signal
HTPDN indicates connecting condition between the Transmitter and the Receiver. HTPDN of the transmitter
side is High when the Receiver is not active or not connected. Then Transmitter can enter into the power down
mode. HTPDN is set to Low by the Receiver when Receiver is active and connects to the Transmitter, and then
Transmitter must start up and transmit CDR training pattern for link training. HTPDN is open drain output at the
receiver side. Pull-up resistor is needed at the transmitter side.
HTPDN connection between the Transmitter and the Receiver can be omitted as an application option. In this
case, HTPDN at the Transmitter side should always be taken as Low.
®
®
V-by-One HS
Transmitter
V-by-One HS
Receiver
TX0n
Pixel Data
TX0p
RX0n
RX0p
TX1n
TX1p
RX1n
RX1p
...
Control Data
Control Data
TXNn
TXNp
Pixel Data
RXNn
RXNp
VDL
10kΩ
HTPDN
LOCKN
HTPDN
LOCKN
GND
Indicates microstrip lines or cables with their differential characteristic impedance being 100 Ω
Figure 2
V-by-One® HS Link system without HTPDN connection schematic Diagram
1.2.5. LOCKN signal
LOCKN indicates whether the CDR PLL is in the lock state or not. LOCKN at the Transmitter input is set to
High by pull-up resistor when Receiver is not active or at the CDR PLL training state. LOCKN is set to Low by
the Receiver when CDR lock is done. Then the CDR training mode finishes and Transmitter shifts to the normal
mode. LOCKN is open drain output at the receiver side. Pull-up resistor is needed at the transmitter side.
When HTPDN is included in an application, the LOCKN signal should only be considered when the HTPDN is
pulled low by the Receiver.
7
Copyright(C)2011 THine Electronics, Inc.
R
Abridged Edition
®
V-by-One HS Standard_Ver.1.4
4. Guideline for interoperability
In this chapter, guideline for interoperability is described.
4.1. Byte length and Color mapping
The V-by-One® HS can be used to various types of color video format allocating D[39:0] to pixel data in packer
and unpacker mapping. The color data mapping should refer to Table 11 and Table 12
Table 11
Mode
Packer input & 36bpp RGB 30bpp RGB 24bpp RGB 18bpp RGB
Unpacker output /YCbCr444 /YCbCr444 /YCbCr444 /YCbCr444
3byte mode
4byte mode
Byte0
5byte mode
RGB/YCbCr444/RGBW/RGBY color data mapping
Byte1
Byte2
Byte3
Byte4
D[0]
D[1]
D[2]
D[3]
D[4]
D[5]
D[6]
D[7]
D[8]
D[9]
D[10]
D[11]
D[12]
D[13]
D[14]
D[15]
D[16]
D[17]
D[18]
D[19]
D[20]
D[21]
D[22]
D[23]
D[24]
D[25]
D[26]
D[27]
D[28]
D[29]
D[30]
D[31]
D[32]
D[33]
D[34]
D[35]
D[36]
D[37]
D[38]
D[39]
R/Cr[4]
R/Cr[5]
R/Cr[6]
R/Cr[7]
R/Cr[8]
R/Cr[9]
R/Cr[10]
R/Cr[11]
G/Y[4]
G/Y[5]
G/Y[6]
G/Y[7]
G/Y[8]
G/Y[9]
G/Y[10]
G/Y[11]
B/Cb[4]
B/Cb[5]
B/Cb[6]
B/Cb[7]
B/Cb[8]
B/Cb[9]
B/Cb[10]
B/Cb[11]
(3DLR*)
(3DEN*)
B/Cb[2]
B/Cb[3]
G/Y[2]
G/Y[3]
R/Cr[2]
R/Cr[3]
B/Cb[0]
B/Cb[1]
G/Y[0]
G/Y[1]
R/Cr[0]
R/Cr[1]
R/Cr[2]
R/Cr[3]
R/Cr[4]
R/Cr[5]
R/Cr[6]
R/Cr[7]
R/Cr[8]
R/Cr[9]
G/Y[2]
G/Y[3]
G/Y[4]
G/Y[5]
G/Y[6]
G/Y[7]
G/Y[8]
G/Y[9]
B/Cb[2]
B/Cb[3]
B/Cb[4]
B/Cb[5]
B/Cb[6]
B/Cb[7]
B/Cb[8]
B/Cb[9]
(3DLR*)
(3DEN*)
B/Cb[0]
B/Cb[1]
G/Y[0]
G/Y[1]
R/Cr[0]
R/Cr[1]
-
R/Cr[0]
R/Cr[1]
R/Cr[2]
R/Cr[3]
R/Cr[4]
R/Cr[5]
R/Cr[6]
R/Cr[7]
G/Y[0]
G/Y[1]
G/Y[2]
G/Y[3]
G/Y[4]
G/Y[5]
G/Y[6]
G/Y[7]
B/Cb[0]
B/Cb[1]
B/Cb[2]
B/Cb[3]
B/Cb[4]
B/Cb[5]
B/Cb[6]
B/Cb[7]
-
R/Cr[0]
R/Cr[1]
R/Cr[2]
R/Cr[3]
R/Cr[4]
R/Cr[5]
G/Y[0]
G/Y[1]
G/Y[2]
G/Y[3]
G/Y[4]
G/Y[5]
B/Cb[0]
B/Cb[1]
B/Cb[2]
B/Cb[3]
B/Cb[4]
B/Cb[5]
-
40bpp
RGBW /
RGBY
32bpp
RGBW /
RGBY
R[2]
R[3]
R[4]
R[5]
R[6]
R[7]
R[8]
R[9]
G[2]
G[3]
G[4]
G[5]
G[6]
G[7]
G[8]
G[9]
B[2]
B[3]
B[4]
B[5]
B[6]
B[7]
B[8]
B[9]
R[0]
R[1]
G[0]
G[1]
B[0]
B[1]
W/Y[0]
W/Y[1]
W/Y[2]
W/Y[3]
W/Y[4]
W/Y[5]
W/Y[6]
W/Y[7]
W/Y[8]
W/Y[9]
R[0]
R[1]
R[2]
R[3]
R[4]
R[5]
R[6]
R[7]
G[0]
G[1]
G[2]
G[3]
G[4]
G[5]
G[6]
G[7]
B[0]
B[1]
B[2]
B[3]
B[4]
B[5]
B[6]
B[7]
W/Y[0]
W/Y[1]
W/Y[2]
W/Y[3]
W/Y[4]
W/Y[5]
W/Y[6]
W/Y[7]
* Implementation specific
36
Copyright(C)2011 THine Electronics, Inc.
R
Abridged Edition
®
V-by-One HS Standard_Ver.1.4
Table 12
Mode
Packer input &
Unpacker output
3byte mode
4byte mode
Byte0
5byte mode
YCbCr422 color data mapping
Byte1
Byte2
Byte3
Byte4
D[0]
D[1]
D[2]
D[3]
D[4]
D[5]
D[6]
D[7]
D[8]
D[9]
D[10]
D[11]
D[12]
D[13]
D[14]
D[15]
D[16]
D[17]
D[18]
D[19]
D[20]
D[21]
D[22]
D[23]
D[24]
D[25]
D[26]
D[27]
D[28]
D[29]
D[30]
D[31]
D[32]
D[33]
D[34]
D[35]
D[36]
D[37]
D[38]
D[39]
32bpp
YCbCr422
24bpp
YCbCr422
20bpp
YCbCr422
16bpp
YCbCr422
Cb/Cr[8] Cb/Cr[4]
Cb/Cr[9] Cb/Cr[5]
Cb/Cr[10] Cb/Cr[6]
Cb/Cr[11] Cb/Cr[7]
Cb/Cr[12] Cb/Cr[8]
Cb/Cr[13] Cb/Cr[9]
Cb/Cr[14] Cb/Cr[10]
Cb/Cr[15] Cb/Cr[11]
Y[8]
Y[4]
Y[9]
Y[5]
Y[10]
Y[6]
Y[11]
Y[7]
Y[12]
Y[8]
Y[13]
Y[9]
Y[14]
Y[10]
Y[15]
Y[11]
Y[2]
Y[3]
Cb/Cr[2]
Cb/Cr[3]
Y[6]
Y[2]
Y[7]
Y[3]
Cb/Cr[6] Cb/Cr[2]
Cb/Cr[7] Cb/Cr[3]
Y[0]
Y[1]
Cb/Cr[0]
Cb/Cr[1]
Y[4]
Y[0]
Y[5]
Y[1]
Cb/Cr[4] Cb/Cr[0]
Cb/Cr[5] Cb/Cr[1]
Cb/Cr[2]
Cb/Cr[3]
Cb/Cr[4]
Cb/Cr[5]
Cb/Cr[6]
Cb/Cr[7]
Cb/Cr[8]
Cb/Cr[9]
Y[2]
Y[3]
Y[4]
Y[5]
Y[6]
Y[7]
Y[8]
Y[9]
Y[0]
Y[1]
Cb/Cr[0]
Cb/Cr[1]
-
Cb/Cr[0]
Cb/Cr[1]
Cb/Cr[2]
Cb/Cr[3]
Cb/Cr[4]
Cb/Cr[5]
Cb/Cr[6]
Cb/Cr[7]
Y[0]
Y[1]
Y[2]
Y[3]
Y[4]
Y[5]
Y[6]
Y[7]
-
37
Copyright(C)2011 THine Electronics, Inc.
R
Abridged Edition
®
V-by-One HS Standard_Ver.1.4
4.2. Multiple Data Lane combination
4.2.1. Allocation of pixel to Data Lane
Depend on the data rate and pixel color depth, it is permitted to increase the Data Lanes. About the multiple Data
Lanes combination, refers to Figure 27 as first recommendation. For multiple device transmission, signal space
can be divided into multiple sections vertically described in the following pages and figures.
The V-by-One® HS compliant components must be implemented with at least one Data Lane. If the data rate of
the required color depth and timing is higher than the components maximum supported data rate, additional Data
Lane can be used. (The maximum data rate of V-by-One® HS Data Lane is 4Gbps per lane and the minimum is
600Mbps.) In this case, total lane count should be even number, under the condition of the fewer lane number.
The pixel number for the horizontal active and blanking term (Hactive, Hblank) should be adjusted to become
the multiple number of the lane count.
V
Blank
Line 1
H
Blank
Line 2
|
|
|
|
|
|
|
Lane 0
•
FSBS
FSBP*
•
FSBP
FSBE_SR
Pixel 1**
Pixel N+1
•
•
•
FSBS
FSBP
•
FSBP
FSBE
Pixel 1
Pixel N+1
•
•
•
FSBS
|
|
|
FSBE_SR
Lane 1
•
FSBS
FSBP*
•
FSBP
FSBE_SR
Pixel 2**
Pixel N+2
•
•
•
FSBS
FSBP
•
FSBP
FSBE
Pixel 2
Pixel N+2
•
•
•
FSBS
|
|
|
FSBE_SR
Lane 2
•
FSBS
FSBP*
•
FSBP
FSBE_SR
Pixel 3**
Pixel N+3
•
•
•
FSBS
FSBP
•
FSBP
FSBE
Pixel 3
Pixel N+3
•
•
•
FSBS
|
|
|
FSBE_SR
•••
•••
•••
•••
•••
•••
•••
•••
•••
•••
•••
•••
•••
•••
•••
•••
•••
•••
•••
•••
•••
•••
•••
•••
•••
•••
•••
Lane N-1
•
FSBS
FSBP*
•
FSBP
FSBE_SR
Pixel N**
Pixel 2N
•
•
•
FSBS
FSBP
•
FSBP
FSBE
Pixel N
Pixel 2N
•
•
•
FSBS
|
|
|
FSBE_SR
* The 1st pixel of each lane FSBP in vertical blanking period may convey 3D flag
of next frame with particular assigned CTL bit
** The 1st pixel of each lane in a frame may convey 3D flag of current frame with
particular assigned bit 3DLR and 3DEN
Figure 27
Allocation of pixel to Data Lane
38
Copyright(C)2011 THine Electronics, Inc.
R
Abridged Edition
®
V-by-One HS Standard_Ver.1.4
Lane 0
•
FSBS
FSBP*
•
FSBP
FSBE_SR
V
Blank
Line 1
H
Blank
Line 2
|
|
|
|
|
|
|
Lane 1
•
FSBS
FSBP*
•
FSBP
FSBE_SR
Pixel 1**
Pixel 2**
Pixel N/M+1
Pixel N/M+2
•
•
•
FSBS
FSBP
•
FSBP
FSBE
•
•
•
FSBS
FSBP
•
FSBP
FSBE
Pixel 1
Pixel 2
Pixel N/M+1
Pixel N/M+2
•
•
•
FSBS
|
|
|
FSBE_SR
•
•
•
FSBS
|
|
|
FSBE_SR
•••
•••
•••
•••
•••
•••
•••
•••
•••
•••
•••
•••
•••
•••
•••
•••
•••
•••
•••
•••
•••
•••
•••
•••
•••
•••
•••
Lane N/M-1
•
FSBS
FSBP*
•
FSBP
FSBE_SR
Lane N/M
•
FSBS
FSBP*
•
FSBP
FSBE_SR
Lane N/M+1
•
FSBS
FSBP*
•
FSBP
FSBE_SR
Pixel N/M**
Pixel H/M+1**
Pixel H/M+2**
Pixel 2N/M
Pixel H/M+N/M+1
Pixel H/M+N/M+2
•
•
•
FSBS
FSBP
•
FSBP
FSBE
•
•
•
FSBS
FSBP
•
FSBP
FSBE
•
•
•
FSBS
FSBP
•
FSBP
FSBE
Pixel N/M
Pixel H/M+1
Pixel H/M+2
Pixel 2N/M
Pixel H/M+N/M+1
Pixel H/M+N/M+2
•
•
•
FSBS
|
|
|
FSBE_SR
•
•
•
FSBS
|
|
|
FSBE_SR
•
•
•
FSBS
|
|
|
FSBE_SR
•••
•••
•••
•••
•••
•••
•••
•••
•••
•••
•••
•••
•••
•••
•••
•••
•••
•••
•••
•••
•••
•••
•••
•••
•••
•••
•••
Lane N-1
•
FSBS
FSBP*
•
FSBP
FSBE_SR
Pixel (M-1)H/M+N/M**
Pixel (M-1)H/M+2N/M
•
•
•
FSBS
FSBP
•
FSBP
FSBE
Pixel (M-1)H/M+N/M
Pixel (M-1)H/M+2N/M
•
•
•
FSBS
|
|
|
FSBE_SR
* The 1st pixel of each lane FSBP in vertical blanking period may convey 3D flag of next frame with particular assigned CTL bit
** The 1st pixel of each lane in a frame may convey 3D flag of current frame with particular assigned bit 3DLR and 3DEN
Figure 28
V
Blank
Line 1
H
Blank
Line 2
N lane data with M section allocation in frame (Horizontal active : H pixels)
Lane 0
Lane 1
Lane 2
Lane 3
Lane 4
Lane 5
Lane 6
Lane 7
FSBS
FSBS
FSBS
FSBS
FSBS
FSBS
FSBS
FSBS
FSBP*
FSBP*
FSBP*
FSBP*
FSBP*
FSBP*
FSBP*
FSBP*
•
•
•
•
•
•
•
•
FSBE_SR FSBE_SR FSBE_SR FSBE_SR FSBE_SR FSBE_SR FSBE_SR FSBE_SR
Pixel 1**
Pixel 2**
Pixel 481** Pixel 482** Pixel 961** Pixel 962** Pixel 1441** Pixel 1442**
Pixel 3
Pixel 4
Pixel 483
Pixel 484
Pixel 963
Pixel 964
Pixel 1443 Pixel 1444
•
•
•
•
•
•
•
•
Pixel 479
Pixel 480
Pixel 959
Pixel 960
Pixel 1439 Pixel 1440 Pixel 1919 Pixel 1920
FSBS
FSBS
FSBS
FSBS
FSBS
FSBS
FSBS
FSBS
•
•
•
•
•
•
•
•
FSBE
FSBE
FSBE
FSBE
FSBE
FSBE
FSBE
FSBE
Pixel 1
Pixel 2
Pixel 481
Pixel 482
Pixel 961
Pixel 962
Pixel 1441 Pixel 1442
Pixel 3
Pixel 4
Pixel 483
Pixel 484
Pixel 963
Pixel 964
Pixel 1443 Pixel 1444
•
•
•
•
•
•
•
•
Pixel 479
Pixel 480
Pixel 959
Pixel 960
Pixel 1439 Pixel 1440 Pixel 1919 Pixel 1920
FSBS
FSBS
FSBS
FSBS
FSBS
FSBS
FSBS
FSBS
* The 1st pixel of each lane FSBP in vertical blanking period may convey 3D flag of next frame with particular assign
** The 1st pixel of each lane in a frame may convey 3D flag of current frame with particular assigned bit 3DLR and 3
Figure 29
8 lane data with 4 section allocation example (Horizontal active : 1920 pixels)
For the DTV application, Data Lane number in Table 1 is STRONGLY recommended for interoperability.
39
Copyright(C)2011 THine Electronics, Inc.
R
®
Abridged Edition
V-by-One HS Standard_Ver.1.4
4.2.2. Inter-lane skewing
Allowable Inter-lane skew is defined as tRISK. Refer to Section 3.3.
V-by-One® HS Transmitter is not required to make any intentional inter-lane skew between lanes.
4.2.3. RGB+CMY color mode
If the Transmitter and the Receiver adopt the RGB+CMY (6 color mode) transmission, twice of the lanes are
used for the RGB and CMY. In the CMY lanes, the positions of the C data, M data, and Y data are mapped at the
positions of the R data, G data, and B data in the Table 11, respectively.
40
Copyright(C)2011 THine Electronics, Inc.
R
Abridged Edition
®
V-by-One HS Standard_Ver.1.4
4.3. 3D frame identification
3D display may have identification on every frame. Methods to label 3D information on frame are described.
The description of 3D data allocation in this chapter is informative. Actual application may be different.
2 possible alternatives are introduced in this chapter; however, to apply both methods at the same time does not
have to be required. Users have to choose one explicit method for their application.
4.3.1. 3D flag on blanking period
Packer and Unpacker data mapping in Table 2 and Table 3 show that there is a potential to send arbitrary data on
V-by-One® HS during blanking period. One way to carry 3D information is to make use of CTL data mapping.
Use of CTL<1:0> is implementation specific.
4.3.1.1. CTL data allocation to 3D flag
It is suggested that CTL<0> and CTL<1> be used for 3D signaling. These signals correspond to CTL<1:0> in
Table 2 and Table 3.
CTL<0> = Left/Right Indicator
CTL<0> = high (1) Î the next frame is the Left View
CTL<0> = low (0) Î the next frame is the Right View
CTL<1> = 3D Mode Enable
CTL<1> = high (1) Î 3D video is being transmitted
CTL<1> = low (0) Î 2D video is being transmitted
4.3.1.2. CTL data timing of 3D flag
CTL<1:0> of the first pixel of the FSBP on each lane in vertical blanking period is recommended to be used for
processing on receiver side.
It is recommended to apply to the active video that immediately follows the vertical blanking period.
1st FSBP on each lane in V blank
CTL<0>=0, CTL<1>=0
1st FSBP on each lane in V blank
1st FSBP on each lane in V blank
CTL<0>=1, CTL<1>=1
Blanking period
The next frame is
2D video
CTL<0>=0, CTL<1>=1
Blanking period
The next frame is
Blanking period
The next frame is
3D video
3D video
Left view
Active period
Figure 30
Right view
Active period
Active period
Schematic diagram of 3D flag on blanking period
41
Copyright(C)2011 THine Electronics, Inc.
R
Abridged Edition
®
V-by-One HS Standard_Ver.1.4
4.3.2. 3D flag on DE active period
The color data mapping in Table 11 and Table 12 show that there are unused bits depending on the colors and
byte mode used. It is possible (and allowable) to make use of these unused bits to carry the 3D information.
Use of 3DLR and 3DEN is implementation specific.
4.3.2.1. Color data mapping allocation to 3D flag
3D information can be conveyed using the 3DLR and 3DEN bits in Table 11 The 30bpp RGB/CrYCb 4 byte
mode and 36bpp RGB/CrYCb 5 byte of Table 11 show the recommended placement of these controls.
3DLR = Left/Right Indicator
3DLR = high (1) Î the next frame is the Left View
3DLR = low (0) Î the next frame is the Right View
3DEN = 3D Mode Enable
3DEN = high (1) Î 3D video is being transmitted
3DEN = low (0) Î 2D video is being transmitted
4.3.2.2. Color data mapping timing of 3D flag
3DLR and 3DEN of the first pixel on each lane in particular frame is recommended to be used for processing.
It is recommended to apply 3D flag to the current frame.
1st pixel on each lane in DE active
1st pixel on each lane in DE active
1st pixel on each lane in DE active
3DLR=0, 3DEN=0
3DLR=1, 3DEN=1
3DLR=0, 3DEN=1
Blanking period
Blanking period
Blanking period
Current frame is
Current frame is
2D video
3D video
Left view
Right view
Active period
Figure 31
Current frame is
3D video
Active period
Active period
Schematic diagram of 3D flag on DE active period
42
Copyright(C)2011 THine Electronics, Inc.
R
Abridged Edition
®
V-by-One HS Standard_Ver.1.4
4.4. Countermeasure against frequency change
Some system has unavoidable frequency change during operation when it is supposed to keep particular
frequency for continuous stream. Because V-by-One® HS is the signal stream whose speed depending on
inputted clock frequency, this frequency change during operation can result into undesired visible error. In order
to avoid harmful situation, possible options are presented in this section.
First method is to stop data stream completely as described in 2.2.4 case (a) before changing frequency and
restart link with the new frequency. This method can avoid signal unstable period in whole system.
Second method is to make frequency anomaly slow and easy enough even if it is undesired when it is originally
supposed to keep particular frequency.
Third method is to place short time frequency anomaly occasion on long enough invisible blanking period when
it is originally supposed to keep particular frequency. Frequency shift may cause unstable signal and require
recovery time, while blanking period could prevent this unstable situation from actual visible experience at
maximum extent. Possible example is shown below. Early stage of FSBP in vertical blanking period is one
reasonable recommended option for frequency change occasion.
CLK
・・・
・・・
・・・
・・・
・・・
Vertical blanking period
・・・
・・・
Vsync
Hsync
・・・
・・・
Freq. change had better be in early stage of Vblank FSBP.
・・・
・・・
DE
Framing
Symbol
・・・
FSBE_SR
FSBP FSBE
FSACTIVE
FSBS
FSBP
Figure 32
FSBE
FSACTIVE
FSBS
FSBP
FSACTIVE
FSBS
Frequency change timing control recommendation
Those method described in this section requires understanding of not only discrete device implementer but also
whole system architect and especially designer of transmitter or signal source device.
43
Copyright(C)2011 THine Electronics, Inc.
R
Abridged Edition
®
V-by-One HS Standard_Ver.1.4
5. Connector and Cable
This chapter shows guideline of connector and cable to connect the V-by-One® HS Transmitter (ex. video
processing unit) and Receiver (ex. Panel module).
5.1. Interoperability order of priority
For interoperability, the following points are STRONGLY RECOMMENDED to be paid attention to.
„ Pin assignment for V-by-One® HS transmission is absolutely irreplaceable and must be fixed.
¾
V-by-One® HS Hot plug detect
¾
V-by-One® HS Lock detect
¾
V-by-One® HS CML Ground
¾
V-by-One® HS Lane
The following is an example of 8 lane case. V-by-One® HS related pin assignment must be kept.
Table 13
Irreplaceable V-by-One HS transmission signal on 8 Lane Pin Assignment
Description
Tx
Pin No.
Symbol
51
50
49
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
Vcc
Vcc
Vcc
Vcc
(Option)
(Option)
(Option)
(Option)
(Option)
(Option)
(Option)
(Option)
(Option)
(Option)
(Option)
HTPDN
LOCKN
CML GND
Tx0n
Tx0p
CML GND
CML GND
Tx1n
Tx1p
CML GND
CML GND
Tx2n
Tx2p
CML GND
CML GND
Tx3n
Tx3p
CML GND
CML GND
Tx4n
Tx4p
CML GND
CML GND
Tx5n
Tx5p
CML GND
CML GND
Tx6n
Tx6p
CML GND
CML GND
Tx7n
Tx7p
CML GND
(Option)
(Option)
Supply voltage for module
Supply voltage for module
Supply voltage for module
Supply voltage for module
(User option)
(User option)
(User option)
(User option)
(User option)
(User option)
(User option)
(User option)
(User option)
(User option)
(User option)
V-by-One HS Hot plug detect
V-by-One HS Lock detect
V-by-One HS CML Ground
V-by-One HS Lane0 (CML)
V-by-One HS Lane0 (CML)
V-by-One HS CML Ground
V-by-One HS CML Ground
V-by-One HS Lane1 (CML)
V-by-One HS Lane1 (CML)
V-by-One HS CML Ground
V-by-One HS CML Ground
V-by-One HS Lane2 (CML)
V-by-One HS Lane2 (CML)
V-by-One HS CML Ground
V-by-One HS CML Ground
V-by-One HS Lane3 (CML)
V-by-One HS Lane3 (CML)
V-by-One HS CML Ground
V-by-One HS CML Ground
V-by-One HS Lane4 (CML)
V-by-One HS Lane4 (CML)
V-by-One HS CML Ground
V-by-One HS CML Ground
V-by-One HS Lane5 (CML)
V-by-One HS Lane5 (CML)
V-by-One HS CML Ground
V-by-One HS CML Ground
V-by-One HS Lane6 (CML)
V-by-One HS Lane6 (CML)
V-by-One HS CML Ground
V-by-One HS CML Ground
V-by-One HS Lane7 (CML)
V-by-One HS Lane7 (CML)
V-by-One HS CML Ground
(User option)
(User option)
Rx
Symbol
Pin No.
Vcc
Vcc
Vcc
Vcc
(Option)
(Option)
(Option)
(Option)
(Option)
(Option)
(Option)
(Option)
(Option)
(Option)
(Option)
HTPDN
LOCKN
CML GND
Rx0n
Rx0p
CML GND
CML GND
Rx1n
Rx1p
CML GND
CML GND
Rx2n
Rx2p
CML GND
CML GND
Rx3n
Rx3p
CML GND
CML GND
Rx4n
Rx4p
CML GND
CML GND
Rx5n
Rx5p
CML GND
CML GND
Rx6n
Rx6p
CML GND
CML GND
Rx7n
Rx7p
CML GND
(Option)
(Option)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
44
Copyright(C)2011 THine Electronics, Inc.
R
Abridged Edition
®
V-by-One HS Standard_Ver.1.4
„ If power is supplied, the following rules must be kept.
¾
It must be placed from Rx pin No. 1 to Rx pin No. x .with sufficient number required.
¾ Minimum number of power is standard defined and another (Option) pins can be added to power.
The following is an example of 8 lane case. power supply pin assignment must be from Rx pin No. 1.
Table 14 Irreplaceable power supply pins on 8 Lane Pin Assignment
Description
Tx
Pin No.
Symbol
51
50
49
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
Vcc
Vcc
Vcc
Vcc
(Option)
(Option)
(Option)
(Option)
(Option)
(Option)
(Option)
(Option)
(Option)
(Option)
(Option)
HTPDN
LOCKN
CML GND
Tx0n
Tx0p
CML GND
CML GND
Tx1n
Tx1p
CML GND
CML GND
Tx2n
Tx2p
CML GND
CML GND
Tx3n
Tx3p
CML GND
CML GND
Tx4n
Tx4p
CML GND
CML GND
Tx5n
Tx5p
CML GND
CML GND
Tx6n
Tx6p
CML GND
CML GND
Tx7n
Tx7p
CML GND
(Option)
(Option)
Supply voltage for module
Supply voltage for module
Supply voltage for module
Supply voltage for module
(User option)
(User option)
(User option)
(User option)
(User option)
(User option)
(User option)
(User option)
(User option)
(User option)
(User option)
V-by-One HS Hot plug detect
V-by-One HS Lock detect
V-by-One HS CML Ground
V-by-One HS Lane0 (CML)
V-by-One HS Lane0 (CML)
V-by-One HS CML Ground
V-by-One HS CML Ground
V-by-One HS Lane1 (CML)
V-by-One HS Lane1 (CML)
V-by-One HS CML Ground
V-by-One HS CML Ground
V-by-One HS Lane2 (CML)
V-by-One HS Lane2 (CML)
V-by-One HS CML Ground
V-by-One HS CML Ground
V-by-One HS Lane3 (CML)
V-by-One HS Lane3 (CML)
V-by-One HS CML Ground
V-by-One HS CML Ground
V-by-One HS Lane4 (CML)
V-by-One HS Lane4 (CML)
V-by-One HS CML Ground
V-by-One HS CML Ground
V-by-One HS Lane5 (CML)
V-by-One HS Lane5 (CML)
V-by-One HS CML Ground
V-by-One HS CML Ground
V-by-One HS Lane6 (CML)
V-by-One HS Lane6 (CML)
V-by-One HS CML Ground
V-by-One HS CML Ground
V-by-One HS Lane7 (CML)
V-by-One HS Lane7 (CML)
V-by-One HS CML Ground
(User option)
(User option)
Rx
Symbol
Pin No.
Vcc
Vcc
Vcc
Vcc
(Option)
(Option)
(Option)
(Option)
(Option)
(Option)
(Option)
(Option)
(Option)
(Option)
(Option)
HTPDN
LOCKN
CML GND
Rx0n
Rx0p
CML GND
CML GND
Rx1n
Rx1p
CML GND
CML GND
Rx2n
Rx2p
CML GND
CML GND
Rx3n
Rx3p
CML GND
CML GND
Rx4n
Rx4p
CML GND
CML GND
Rx5n
Rx5p
CML GND
CML GND
Rx6n
Rx6p
CML GND
CML GND
Rx7n
Rx7p
CML GND
(Option)
(Option)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
If system need more power supply line, another pins can be attached from (options) to power pin assignment.
Table 15 Expanded power supply example on 8 Lane Pin Assignment
Description
Tx
Pin No.
Symbol
51
50
49
48
47
46
45
44
43
42-1
Vcc
Vcc
Vcc
Vcc
Vcc
Vcc
Vcc
Vcc
(Option)
-
Supply voltage for module
Supply voltage for module
Supply voltage for module
Supply voltage for module
Supply voltage for module (Added)
Supply voltage for module (Added)
Supply voltage for module (Added)
Supply voltage for module (Added)
(User option)
-
Rx
Symbol
Pin No.
Vcc
Vcc
Vcc
Vcc
Vcc
Vcc
Vcc
Vcc
(Option)
-
1
2
3
4
5
6
7
8
9
10-51
45
Copyright(C)2011 THine Electronics, Inc.
R
Abridged Edition
®
V-by-One HS Standard_Ver.1.4
„ Pins originally assigned to (User option) can be used for any purpose.
¾
It can be another power supply in order to support consumption.
¾
It can be ground to stabilize power supply and V-by-One® HS transmission more.
¾
Power ground pins assigned to (User option) should be beside power supply beyond 1 N/C pin
¾
It can be another control signals like I2C, SPI, GPIO or other user defined transmission.
¾
If there is remainder of (Option) pins, those are supposed to be assigned to ground.
The following is an example of 8 lane case. There are 13 user option pins which can be used arbitrary.
Table 16
Multi purpose user option pins on 8 Lane Pin Assignment
Description
Tx
Pin No.
Symbol
51
50
49
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
Vcc
Vcc
Vcc
Vcc
(Option)
(Option)
(Option)
(Option)
(Option)
(Option)
(Option)
(Option)
(Option)
(Option)
(Option)
HTPDN
LOCKN
CML GND
Tx0n
Tx0p
CML GND
CML GND
Tx1n
Tx1p
CML GND
CML GND
Tx2n
Tx2p
CML GND
CML GND
Tx3n
Tx3p
CML GND
CML GND
Tx4n
Tx4p
CML GND
CML GND
Tx5n
Tx5p
CML GND
CML GND
Tx6n
Tx6p
CML GND
CML GND
Tx7n
Tx7p
CML GND
(Option)
(Option)
Supply voltage for module
Supply voltage for module
Supply voltage for module
Supply voltage for module
(User option)
(User option)
(User option)
(User option)
(User option)
(User option)
(User option)
(User option)
(User option)
(User option)
(User option)
V-by-One HS Hot plug detect
V-by-One HS Lock detect
V-by-One HS CML Ground
V-by-One HS Lane0 (CML)
V-by-One HS Lane0 (CML)
V-by-One HS CML Ground
V-by-One HS CML Ground
V-by-One HS Lane1 (CML)
V-by-One HS Lane1 (CML)
V-by-One HS CML Ground
V-by-One HS CML Ground
V-by-One HS Lane2 (CML)
V-by-One HS Lane2 (CML)
V-by-One HS CML Ground
V-by-One HS CML Ground
V-by-One HS Lane3 (CML)
V-by-One HS Lane3 (CML)
V-by-One HS CML Ground
V-by-One HS CML Ground
V-by-One HS Lane4 (CML)
V-by-One HS Lane4 (CML)
V-by-One HS CML Ground
V-by-One HS CML Ground
V-by-One HS Lane5 (CML)
V-by-One HS Lane5 (CML)
V-by-One HS CML Ground
V-by-One HS CML Ground
V-by-One HS Lane6 (CML)
V-by-One HS Lane6 (CML)
V-by-One HS CML Ground
V-by-One HS CML Ground
V-by-One HS Lane7 (CML)
V-by-One HS Lane7 (CML)
V-by-One HS CML Ground
(User option)
(User option)
Rx
Symbol
Pin No.
Vcc
Vcc
Vcc
Vcc
(Option)
(Option)
(Option)
(Option)
(Option)
(Option)
(Option)
(Option)
(Option)
(Option)
(Option)
HTPDN
LOCKN
CML GND
Rx0n
Rx0p
CML GND
CML GND
Rx1n
Rx1p
CML GND
CML GND
Rx2n
Rx2p
CML GND
CML GND
Rx3n
Rx3p
CML GND
CML GND
Rx4n
Rx4p
CML GND
CML GND
Rx5n
Rx5p
CML GND
CML GND
Rx6n
Rx6p
CML GND
CML GND
Rx7n
Rx7p
CML GND
(Option)
(Option)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
46
Copyright(C)2011 THine Electronics, Inc.
R
Abridged Edition
®
V-by-One HS Standard_Ver.1.4
„ Multiple Rx PCBs with standard pin assignment can be connected to single carefully designed Tx PCB.
¾
Irreplaceable V-by-One®HS lines without HTPDN are supposed to be simply linked to Tx PCB node
¾
Tx HTPDN node should have two options to be connected to FFC or to be connected to Tx PCB GND
¾
Irreplaceable power supply lines are supposed to be simply linked to Tx PCB node
¾
(Option) pins are supposed to be linked to PCB node via passive component (ex. 0ohm Resistor)
¾
Tx PCB can be carefully designed in order to realize multi Rx supplier system with parts mount
Figure 33
HTPDN circuit on Tx PCB to multiple Rx PCBs
The following two examples are of 8 lane case. Two standard recommended assignments are shown.
Tx side PCB is the same one for both case, while Rx side PCB is different; however, both follows the Standard.
Mounting or unmounting passive component on Tx PCB can realize multiple Rx PCB accommodation.
Table 17
Tx PCB arrangement example to Rx PCB #1 on 8 Lane Pin Assignment
Tx PCB Node via series resistor
Pin No.
Symbol
51-50
49
48
47
46
45
44
43
42
41
40
39
38
37
36
35-4
3
2
1
Vcc
Vcc
Vcc
Vcc
Vcc
N/C
GND
GND
GND
SCL
SDA
DC control
DC control
HTPDN
CML GND
SCL
SDA
Figure 34
Tx PCB arrangement condition
Rx
Supply voltage for module
Supply voltage for module
Connected by mounting part on Tx PCB
Connected by mounting part on Tx PCB
Connected by mounting part on Tx PCB
Not connected
Connected by mounting part on Tx PCB
Connected by mounting part on Tx PCB
Connected by mounting part on Tx PCB
Connected by mounting part on Tx PCB
Connected by mounting part on Tx PCB
Connected by mounting part on Tx PCB
Connected by mounting part on Tx PCB
Connected by mounting part on Tx PCB
V-by-One HS CML Ground
Not Connected by unmounting part on Tx PCB
Not Connected by unmounting part on Tx PCB
Symbol
Pin No.
Vcc
Vcc
Vcc
Vcc
Vcc
N/C
GND
GND
GND
SCL
SDA
DC control
DC control
HTPDN
CML GND
GND
GND
1-2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17-48
49
50
51
Tx PCB arrangement example to Rx PCB #1 on 8 Lane Pin Assignment
47
Copyright(C)2011 THine Electronics, Inc.
R
Abridged Edition
®
V-by-One HS Standard_Ver.1.4
Tx PCB arrangement example to Rx PCB #2 on 8 Lane Pin Assignment
Tx PCB Node via series resistor
51-50
49
48
47
46
45
44
43
42
41
40
39
38
37
36
35-4
3
2
1
Vcc
Vcc
Vcc
Vcc
Vcc
N/C
GND
GND
GND
SCL
SDA
DC control
DC control
HTPDN
CML GND
SCL
SDA
51pin Connector
Symbol
Pin# from Rx
51-50
49 Vcc
48 Vcc
47 Vcc
46 N/C
45 GND
44 GND
43 GND
42 GND
41 GND
40 DC control
39 DC control
38 DC control
37 DC control
36 HTPDN
35-4
3 GND
2 SCL
1 SDA
Figure 35
Rx
Tx PCB arrangement condition
Supply voltage for module
Supply voltage for module
Connected by mounting part on Tx PCB
Not Connected by unmounting part on Tx PCB
Not Connected by unmounting part on Tx PCB
Not connected
Connected by mounting part on Tx PCB
Connected by mounting part on Tx PCB
Connected by mounting part on Tx PCB
Not Connected by unmounting part on Tx PCB
Not Connected by unmounting part on Tx PCB
Connected by mounting part on Tx PCB
Connected by mounting part on Tx PCB
Connected by mounting part on Tx PCB
V-by-One HS CML Ground
Connected by mounting part on Tx PCB
Connected by mounting part on Tx PCB
V-by-One®
HS
8lane Tx
Symbol
Pin No.
Vcc
Vcc
Vcc
N/C
GND
GND
GND
GND
GND
DC control
DC control
DC control
DC control
HTPDN
CML GND
SCL
SDA
1-2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17-48
49
50
51
#1
#51
FFC
#1
#51
Tx PCB #0
51pin Connector
Tx PCB node
51-50
49 Vcc
48 Vcc
47 Vcc
46 Vcc
45 Vcc
44 N/C
43 GND
42 GND
41 GND
40 SCL
39 SDA
38 DC control
37 DC control
36 HTPDN
35-4
3 GND
2 SCL
1 SDA
Pin No.
51pin Connector
Table 18
V-by-One®
HS
8lane Rx
Rx PCB #2
Tx PCB arrangement example to Rx PCB #1 on 8 Lane Pin Assignment
Just for more information, Tx side PCB can also be designed to reverse pin assignment.
For example, [pin #41 SCL, pin #42 SDA] can be inverted to [pin #41 SDA, pin #42 SCL] with carefully
designed PCB and mounting several passive components at the same time.
Figure 36
Circuit to reverse Pin Assignment on Tx PCB
48
Copyright(C)2011 THine Electronics, Inc.
R
Abridged Edition
®
V-by-One HS Standard_Ver.1.4
5.2. Pin assignments
5.2.1. Normal ground format
1,2,4, and 8-Lane pin assignments are shown below.
Table 19
Normal CML GND Format
Pin No.
to Panel (Rx)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
Normal CML Ground Format Pin Assignment
HD60Hz RGB30bit
21pins
FHD60Hz RGB30bit
21pins
FHD120Hz RGB30bit
31pins
FHD240Hz RGB30bit
51pins
Vcc
Vcc
(Option)
(Option)
(Option)
(Option)
(Option)
(Option)
(Option)
(HTPDN*)
LOCKN
CML GND
Rx0n
Rx0p
CML GND
(Option)
(Option)
(Option)
(Option)
(Option)
(Option)
Vcc
Vcc
(Option)
(Option)
(Option)
(Option)
(Option)
(Option)
(Option)
(HTPDN*)
LOCKN
CML GND
Rx0n
Rx0p
CML GND
CML GND
Rx1n
Rx1p
CML GND
(Option)
(Option)
Vcc
Vcc
Vcc
(Option)
(Option)
(Option)
(Option)
(Option)
(Option)
(Option)
(Option)
(HTPDN*)
LOCKN
CML GND
Rx0n
Rx0p
CML GND
CML GND
Rx1n
Rx1p
CML GND
CML GND
Rx2n
Rx2p
CML GND
CML GND
Rx3n
Rx3p
CML GND
(Option)
(Option)
Vcc
Vcc
Vcc
Vcc
(Option)
(Option)
(Option)
(Option)
(Option)
(Option)
(Option)
(Option)
(Option)
(Option)
(Option)
(HTPDN*)
LOCKN
CML GND
Rx0n
Rx0p
CML GND
CML GND
Rx1n
Rx1p
CML GND
CML GND
Rx2n
Rx2p
CML GND
CML GND
Rx3n
Rx3p
CML GND
CML GND
Rx4n
Rx4p
CML GND
CML GND
Rx5n
Rx5p
CML GND
CML GND
Rx6n
Rx6p
CML GND
CML GND
Rx7n
Rx7p
CML GND
(Option)
(Option)
49
Copyright(C)2011 THine Electronics, Inc.
R
Abridged Edition
®
V-by-One HS Standard_Ver.1.4
5.2.2. Reduced ground format
Some system requires both a lot of user option signals or power supply pins and a lot of lanes at the same time.
For that case, reduced CML ground format is presented.
Around maximum speed transmission, this reduced ground format gives only slight margin; therefore, users
must pay attentions to transmitter and receiver characteristics, PCB design, and connector/harness selection so
that receiver side Eye-Diagram is wide enough to establish V-by-One® HS transmission.
Table 20 8 Lane Connector Reduced CML Ground Format Pin Assignment
Description
Tx
Pin No.
Symbol
51
50
49
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
Vcc
Vcc
Vcc
Vcc
(Option)
(Option)
(Option)
(Option)
(Option)
(Option)
(Option)
(Option)
(Option)
(Option)
(Option)
(Option)
(Option)
(Option)
(Option)
(Option)
(Option)
(Option)
(Option)
(Option)
(HTPDN*)
LOCKN
CML GND
Tx0n
Tx0p
CML GND
Tx1n
Tx1p
CML GND
Tx2n
Tx2p
CML GND
Tx3n
Tx3p
CML GND
Tx4n
Tx4p
CML GND
Tx5n
Tx5p
CML GND
Tx6n
Tx6p
CML GND
Tx7n
Tx7p
CML GND
Supply voltage for module
Supply voltage for module
Supply voltage for module
Supply voltage for module
(User option)
(User option)
(User option)
(User option)
(User option)
(User option)
(User option)
(User option)
(User option)
(User option)
(User option)
(User option)
(User option)
(User option)
(User option)
(User option)
(User option)
(User option)
(User option)
(User option)
(V-by-One HS Hot plug detect*)
V-by-One HS Lock detect
V-by-One HS CML Ground
V-by-One HS Lane0 (CML)
V-by-One HS Lane0 (CML)
V-by-One HS CML Ground
V-by-One HS Lane1 (CML)
V-by-One HS Lane1 (CML)
V-by-One HS CML Ground
V-by-One HS Lane2 (CML)
V-by-One HS Lane2 (CML)
V-by-One HS CML Ground
V-by-One HS Lane3 (CML)
V-by-One HS Lane3 (CML)
V-by-One HS CML Ground
V-by-One HS Lane4 (CML)
V-by-One HS Lane4 (CML)
V-by-One HS CML Ground
V-by-One HS Lane5 (CML)
V-by-One HS Lane5 (CML)
V-by-One HS CML Ground
V-by-One HS Lane6 (CML)
V-by-One HS Lane6 (CML)
V-by-One HS CML Ground
V-by-One HS Lane7 (CML)
V-by-One HS Lane7 (CML)
V-by-One HS CML Ground
Rx
Symbol
Pin No.
Vcc
Vcc
Vcc
Vcc
(Option)
(Option)
(Option)
(Option)
(Option)
(Option)
(Option)
(Option)
(Option)
(Option)
(Option)
(Option)
(Option)
(Option)
(Option)
(Option)
(Option)
(Option)
(Option)
(Option)
(HTPDN*)
LOCKN
CML GND
Rx0n
Rx0p
CML GND
Rx1n
Rx1p
CML GND
Rx2n
Rx2p
CML GND
Rx3n
Rx3p
CML GND
Rx4n
Rx4p
CML GND
Rx5n
Rx5p
CML GND
Rx6n
Rx6p
CML GND
Rx7n
Rx7p
CML GND
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
* HTPDN connection can be eliminated in prepared system and turn it into ground or other user options.
50
Copyright(C)2011 THine Electronics, Inc.
R
Abridged Edition
®
V-by-One HS Standard_Ver.1.4
4,8,16, 32 Lane pin assignments are shown below.
Table 21
Reduced CML GND Format
Pin No.
to Panel (Rx)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
Reduced CML Ground Format Pin Assignment
FHD120Hz RGB30bit
41pins
FHD240Hz RGB30bit
51pins
Vcc
Vcc
Vcc
(Option)
(Option)
(Option)
(Option)
(Option)
(Option)
(Option)
(Option)
(Option)
(Option)
(Option)
(Option)
(Option)
(Option)
(Option)
(Option)
(Option)
(Option)
(Option)
(Option)
(Option)
(HTPDN*)
LOCKN
CML GND
Rx0n
Rx0p
CML GND
Rx1n
Rx1p
CML GND
Rx2n
Rx2p
CML GND
Rx3n
Rx3p
CML GND
(Option)
(Option)
Vcc
Vcc
Vcc
Vcc
(Option)
(Option)
(Option)
(Option)
(Option)
(Option)
(Option)
(Option)
(Option)
(Option)
(Option)
(Option)
(Option)
(Option)
(Option)
(Option)
(Option)
(Option)
(Option)
(Option)
(HTPDN*)
LOCKN
CML GND
Rx0n
Rx0p
CML GND
Rx1n
Rx1p
CML GND
Rx2n
Rx2p
CML GND
Rx3n
Rx3p
CML GND
Rx4n
Rx4p
CML GND
Rx5n
Rx5p
CML GND
Rx6n
Rx6p
CML GND
Rx7n
Rx7p
CML GND
4K2K120Hz RGB30bit
51pins
41pins
Vcc
Vcc
Vcc
Vcc
(Option)
(Option)
(Option)
(Option)
(Option)
(Option)
(Option)
(Option)
(Option)
(Option)
(Option)
(Option)
(Option)
(Option)
(Option)
(Option)
(Option)
(Option)
(Option)
(Option)
(HTPDN*)
LOCKN
CML GND
Rx0n
Rx0p
CML GND
Rx1n
Rx1p
CML GND
Rx2n
Rx2p
CML GND
Rx3n
Rx3p
CML GND
Rx4n
Rx4p
CML GND
Rx5n
Rx5p
CML GND
Rx6n
Rx6p
CML GND
Rx7n
Rx7p
CML GND
CML GND
Rx8n
Rx8p
CML GND
Rx9n
Rx9p
CML GND
Rx10n
Rx10p
CML GND
Rx11n
Rx11p
CML GND
Rx12n
Rx12p
CML GND
Rx13n
Rx13p
CML GND
Rx14n
Rx14p
CML GND
Rx15n
Rx15p
CML GND
(Option)
(Option)
(Option)
(Option)
(Option)
(Option)
(Option)
(Option)
(Option)
(Option)
(Option)
(Option)
(Option)
(Option)
(Option)
(Option)
51
Copyright(C)2011 THine Electronics, Inc.
R
Abridged Edition
®
V-by-One HS Standard_Ver.1.4
Table 22
Reduced CML Ground Format Pin Assignment (Continue)
Reduced CML GND Format
Pin No.
to Panel (Rx)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
51pins
Vcc
Vcc
Vcc
Vcc
(Option)
(Option)
(Option)
(Option)
(Option)
(Option)
(Option)
(Option)
(Option)
(Option)
(Option)
(Option)
(Option)
(Option)
(Option)
(Option)
(Option)
(Option)
(Option)
(Option)
(HTPDN*)
LOCKN
CML GND
Rx0n
Rx0p
CML GND
Rx1n
Rx1p
CML GND
Rx2n
Rx2p
CML GND
Rx3n
Rx3p
CML GND
Rx4n
Rx4p
CML GND
Rx5n
Rx5p
CML GND
Rx6n
Rx6p
CML GND
Rx7n
Rx7p
CML GND
4K2K240Hz RGB30bit
41pins
41pins
CML GND
Rx8n
Rx8p
CML GND
Rx9n
Rx9p
CML GND
Rx10n
Rx10p
CML GND
Rx11n
Rx11p
CML GND
Rx12n
Rx12p
CML GND
Rx13n
Rx13p
CML GND
Rx14n
Rx14p
CML GND
Rx15n
Rx15p
CML GND
Rx16n
Rx16p
CML GND
Rx17n
Rx17p
CML GND
Rx18n
Rx18p
CML GND
Rx19n
Rx19p
CML GND
(Option)
(Option)
(Option)
(Option)
CML GND
Rx20n
Rx20p
CML GND
Rx21n
Rx21p
CML GND
Rx22n
Rx22p
CML GND
Rx23n
Rx23p
CML GND
Rx24n
Rx24p
CML GND
Rx25n
Rx25p
CML GND
Rx26n
Rx26p
CML GND
Rx27n
Rx27p
CML GND
Rx28n
Rx28p
CML GND
Rx29n
Rx29p
CML GND
Rx30n
Rx30p
CML GND
Rx31n
Rx31p
CML GND
(Option)
(Option)
(Option)
(Option)
Note:
Some cable like Flexible Printed Circuits (FPC) does not have the symmetric conductor layout. This means that
if users connect the cable at reverse direction, i.e. Rx plug is connected to Transmitter’s receptacle and Tx plug
to Receiver’s receptacle, the correct connection cannot be achieved. Users must take care with the cable
direction.
52
Copyright(C)2011 THine Electronics, Inc.
R
Abridged Edition
®
V-by-One HS Standard_Ver.1.4
5.3. Connector Characteristics
5.3.1. Electrical
„
Operating Current : 0.5A per pin minimum
„
Operating Voltage : 150VAC rms, maximum
„
Voltage proof
: 200 VAC for minimum of 1 minute
5.3.2. Recommended Receptacle Interface Dimensions
0.5mm signal terminal pitch connector is recommended for interoperability.
(a) Drawings
(b) Footprint
Figure 37
PCB Mount Receptacle drawings (recommended)
Table 23 Form Factor of Receptacle
No. of CONTACT
A
B
C
D
E
F
G
H
21
31
41
51
22.85
27.85
32.85
37.85
20.46
25.46
30.46
35.46
16
21
26
31
10
15
20
25
10
15
20
25
16
21
26
31
10
15
20
25
19.75
24.75
29.75
34.75
53
Copyright(C)2011 THine Electronics, Inc.
R
Abridged Edition
®
V-by-One HS Standard_Ver.1.4
5.4. PCB Layout Considerations
Use at least 4-layer PCB with signals, GND, power, and signals assigned for each layer. (Refer to figure below.)
PCB traces for the high-speed signals must be single-ended microstrip lines or coupled microstrip lines whose
differential characteristic impedance is 100Ω.
Minimize the distance between traces of a differential pair (S1 of Figure 38) to maximize common mode
rejection and coupling effect which works to reduce Electro-Magnetic Interference (EMI).
Route differential signal traces symmetrically.
Avoid right-angle turns or minimize the number of vias on the high speed traces because they usually cause
impedance discontinuity in the transmission lines and degrade the signal integrity. Mismatch among impedances
of PCB traces, connectors, or cables also caused reflection, limiting the bandwidth of the high-speed Lanes.
PCB Cross-sectional View
for Microstrip Lines
> 3 x S1
S1
GND
> 3 x S1
GND
Layer1: Signals
Layer2: GND
Layer3: Power
Layer4: Signals
Figure 38
PCB Cross-sectional View for Microstrip Lines
54
Copyright(C)2011 THine Electronics, Inc.
R
®
Abridged Edition
V-by-One HS Standard_Ver.1.4
6. Glossary
Table 24 Glossary of Terms
Data Lane
framing symbol
Byte mode
Character
One differential signal line
FSACTIVE, FSBS, FSBP, FSBE, and FSBE_SR are the framing symbols.
One framing symbol is transmitted at the one pixel clock
The size of framing symbols is decided by the byte mode
3,4, and 5 byte mode is prepared.
The byte mode is decided by the color depth and color format (RGB or YCbCr etc.)
8 bit data before 8b/10 encoder and after 10b/8b decoder
10 bit data after 8b/10 encoder and before 10b/8b decoder
In addition to the pixel data, special character is assigned. See Table 4.
55
Copyright(C)2011 THine Electronics, Inc.
R
Abridged Edition
®
V-by-One HS Standard_Ver.1.4
7. Revision history
Date
Version
2008/5/26
Ver 1.0
2008/11/22
Ver 1.1
2009/1/15
Ver. 1.2
2010/07/07
Ver.1.3
2011/12/15
Ver.1.4
Original
(obsolete)
The color mapping is changed.
The order of the pin assignment is changed.
PLL loop bandwidth of the Transmitter is defined.
Electrical specifications are described for LOCKN and HTPDN.
Clarify the Inter-pair skew and Intra-pair skew specifications.
RGBY and RGB+CMY is added to the color mapping.
Inter lane skew is specified in the chapter 4.2.2.
Collected the Training pattern (D10.2) frequency for link training in chapter
2.4.5.1 CDR training.
Organization and Wording correction and clarification.
(obsolete)
The range of VDL is extended, and VOL spec. is changed.
The behavior of the Scrambler is corrected.
Correction of the value in tRISK_INTRA and tRISK_INTER.
The Eye Diagram and CML Jitter at Transmitter are relaxed.
Clarify the Receiver eye measurement point.
Correction of the range of tTBIT and tRBIT.
Correction of some typo.
Scrambler/descrambler chart is corrected. LFSR proceeds with K code.
Vsync “1” in ALN Training allocation is corrected to 4th last pixel.
ALN Training period per lane is fixed independent of lane counts.
No HTPDN connection option is introduced.
Basic receiver Eye-Diagram measurement point is at CML input pins.
Transmitter intra-pair skew accuracy definition is conditioned and relaxed.
Examples of lane number according to format (2560x1080p, 480Hz) are added.
Guideline of frame ID transmission method for 3D display is added
Receiver side Eye-Diagram measurement CDR setting explanation is added.
Data lane consideration chapter is added.
Section “Cable Characteristics” is deleted.
Recommended approach to interoperable pin assignment is explained.
16 lane connection pin assignment guideline is added.
Discrepancy of pulled up voltage is corrected.
Description of FSBE_SR is clarified.
Connector form factor of 51 pins receptacle is added.
Page numbers on table of contents are corrected.
Correction of some typo.
Some descriptions are added.
Maximum speed is enlarged to 4Gbps.
Transmitter output under Tx PLL unstable condition is defined to be fixed.
Countermeasure against frequency change is additionally described.
Reduced pin number pin assignment guideline is added.
HTPDN/LOCKN detection voltages are loosend.
Multiple vertical section transmission mode guideline is additionally described.
Freedom of polarity about DE, Vsync, and Hsync is explicitly described.
Detailed measurement method of Tx EYE diagram is additionally described.
3D flag and its timing description is additionally described.
Recommended approach to interoperable pin assignment is re-defined.
Correction of some typo.
Some descriptions are altered or added
56
Copyright(C)2011 THine Electronics, Inc.
R
®
Abridged Edition
V-by-One HS Standard_Ver.1.4
8. Notice and Requires
1. THIS DOCUMENT AND RELATED MATERIALS AND INFORMATION ARE PROVIDED "AS IS"
WITH NO WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY IMPLIED
WARRANTY
OF
MERCHANTABILITY,
FITNESS
FOR
A
PARTICULAR
PURPOSE,
NON-INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS, OR ANY WARRANTY OTHERWISE
ARISING OUT OF ANY PROPOSAL, SPECIFICATION, OR SAMPLE. THINE ASSUMES NO
RESPONSIBILITY FOR ANY ERRORS CONTAINED IN THIS DOCUMENT AND HAS NO LIABILITIES
OR OBLIGATIONS FOR ANY DAMAGES ARISING FROM OR IN CONNECTION WITH THE USE OF
THIS DOCUMENT.
2. THine may have patents or pending patent applications, trademarks, copyrights, or other intellectual property
rights that relate to the presented subject matter. The furnishing of documents and other materials and
information does not provide any license, express or implied, by estoppels or otherwise, to any such patents,
trademarks, copyrights, or other intellectual property rights.
3. This material contains our copy right, know-how or other proprietary. Copying without our prior permission is
prohibited.
4. The specifications described in this material are subject to change without prior notice.
5. THine shall have no obligation to provide any support, installation or other assistance with regard to the
information or products made in accordance with it.
6. THine, V-by-One, THine logo and V-by-One logo are trademarks or registered trademarks of THine or its
subsidiaries in JAPAN and other countries.
57
Copyright(C)2011 THine Electronics, Inc.