AMD 890FX Databook

AMD 890FX Databook
Technical Reference Manual
Rev 3.00
P/N: 43403_890FX_ds_pub
© 2012 Advanced Micro Devices, Inc.
Trademarks
AMD, the AMD Arrow logo, AMD Phenom, AMD Cool'n'Quiet, and combinations thereof, ATI, the ATI logo, Radeon, and CrossFire are trademarks of Advanced
Micro Devices, Inc.
HyperTransport is a licensed trademark of the HyperTransport Technology Consortium.
Microsoft, Windows, and Windows Vista are registered trademarks of Microsoft Corporation.
PCI Express and PCIe are registered trademarks of PCI-SIG.
Other product names used in this publication are for identification purposes only and may be trademarks of their respective companies.
Disclaimer
The contents of this document are provided in connection with Advanced Micro Devices, Inc. ("AMD") products. AMD makes no representations or warranties with
respect to the accuracy or completeness of the contents of this publication and reserves the right to make changes to specifications and product descriptions at any time
without notice. AMD assumes no liability whatsoever, and disclaims any express or implied warranty, relating to this document including, but not limited to, the implied
warranty of merchantability, fitness for a particular purpose, or infringement of any intellectual property right. AMD shall not be liable for any damage, loss, expense,
or claim of loss of any kind or character (including without limitation direct, indirect, consequential, exemplary, punitive, special, incidental or reliance damages) arising
from use of or reliance on this document. No license, whether express, implied, arising by estoppel, or otherwise, to any intellectual property rights are granted by this
publication. Except for AMD product purchased pursuant to AMD's Standard Terms and Conditions of Sale, and then only as expressly set forth therein, AMD's products
are not designed, intended, authorized or warranted for use as components in systems intended for surgical implant into the body, or in other applications intended to
support or sustain life, or in any other application in which the failure of AMD's product could create a situation where personal injury, death, or severe property or
environmental damage may occur. AMD reserves the right to discontinue or make changes to its products at any time without notice.
© 2012 Advanced Micro Devices, Inc. All rights reserved.
Table of Contents
Chapter 1: Overview
1.1 Introducing AMD 890FX/990X/970 ..................................................................................................................................1-1
1.2 RD890 Features...................................................................................................................................................................1-1
1.2.1
CPU Interface .......................................................................................................................................................1-1
1.2.2
PCI Express® Interface ........................................................................................................................................1-1
1.2.3
A-Link Express III Interface ................................................................................................................................1-1
1.2.4
Power Management Features ...............................................................................................................................1-2
1.2.5
PC Design Guide Compliance..............................................................................................................................1-2
1.2.6
Test Capability Features .......................................................................................................................................1-2
1.2.7
Packaging .............................................................................................................................................................1-2
1.3 Software Features................................................................................................................................................................1-2
1.4 Device ID ............................................................................................................................................................................1-2
1.5 Branding Diagrams .............................................................................................................................................................1-3
1.6 Conventions and Notations .................................................................................................................................................1-3
1.6.1
Pin Names.............................................................................................................................................................1-3
1.6.2
Pin Types ..............................................................................................................................................................1-3
1.6.3
Numeric Representation .......................................................................................................................................1-4
1.6.4
Hyperlinks ............................................................................................................................................................1-4
1.6.5
Acronyms and Abbreviations ...............................................................................................................................1-4
Chapter 2: Functional Descriptions
2.1 HyperTransport™ Interface ................................................................................................................................................2-1
2.1.1
Overview ..............................................................................................................................................................2-1
2.1.2
HyperTransport™ Flow Control Buffers .............................................................................................................2-3
2.2 IOMMU ..............................................................................................................................................................................2-4
2.3 PCI Express®.....................................................................................................................................................................2-5
2.3.1
PCIe® Ports..........................................................................................................................................................2-5
2.3.2
PCIe® Reset Signals ............................................................................................................................................2-5
2.4 External Clock Chip............................................................................................................................................................2-6
Chapter 3: Pin Descriptions and Strap Options
3.1 Pin Assignment Top View ..................................................................................................................................................3-2
3.2 RD890 Interface Block Diagram ........................................................................................................................................3-4
3.3 CPU HyperTransport™ Interface .......................................................................................................................................3-4
3.4 PCI Express® Interfaces .....................................................................................................................................................3-5
3.4.1
Interface for External Graphics Controllers .........................................................................................................3-5
3.4.2
Interface for General Purpose External Devices ..................................................................................................3-5
3.4.3
A-Link Express III Interface to Southbridge........................................................................................................3-6
3.4.4
Miscellaneous PCI Express® Signals ..................................................................................................................3-6
3.5 Clock Interface ....................................................................................................................................................................3-6
3.6 Power Management Pins.....................................................................................................................................................3-7
3.7 Miscellaneous Pins..............................................................................................................................................................3-7
3.8 Power Pins...........................................................................................................................................................................3-7
© 2012 Advanced Micro Devices, Inc.
Proprietary
43403 RD890 Databook 3.00
Table of Contents-1
3.9 Ground Pins........................................................................................................................................................................ 3-9
3.10 Strapping Options........................................................................................................................................................... 3-10
Chapter 4: Timing Specifications
4.1 HyperTransport™ Bus Timing .......................................................................................................................................... 4-1
4.2 PCI Express® Differential Clock AC Specifications......................................................................................................... 4-1
4.3 HyperTransport™ Reference Clock Timing Parameters ................................................................................................... 4-1
4.4 OSCIN Reference Clock Timing Parameters..................................................................................................................... 4-2
4.5 Power Rail Sequence.......................................................................................................................................................... 4-2
4.5.1
Power Up ............................................................................................................................................................. 4-3
4.5.2
Power Down ........................................................................................................................................................ 4-4
Chapter 5: Electrical Characteristics and Physical Data
5.1 Electrical Characteristics.................................................................................................................................................... 5-1
5.1.1
Maximum and Minimum Ratings........................................................................................................................ 5-1
5.1.2
DC Characteristics ............................................................................................................................................... 5-1
5.2 RD890 Thermal Characteristics ......................................................................................................................................... 5-2
5.2.1
RD890 Thermal Limits........................................................................................................................................ 5-2
5.2.2
Thermal Diode Characteristics ............................................................................................................................ 5-2
5.3 Package Information .......................................................................................................................................................... 5-4
5.3.1
Pressure Specification.......................................................................................................................................... 5-5
5.3.2
Board Solder Reflow Process Recommendations ............................................................................................... 5-6
Chapter 6: Power Management and ACPI
6.1 ACPI Power Management Implementation ....................................................................................................................... 6-1
Chapter 7: Testability
7.1 Test Capability Features..................................................................................................................................................... 7-1
7.2 Test Interface...................................................................................................................................................................... 7-1
7.3 XOR Tree ........................................................................................................................................................................... 7-1
7.3.1
Brief Description of an XOR Tree....................................................................................................................... 7-1
7.3.2
Description of the XOR Tree for the RD890....................................................................................................... 7-2
7.3.3
XOR Tree Activation........................................................................................................................................... 7-2
7.3.4
XOR Tree for the RD890 .................................................................................................................................... 7-3
7.4 VOH/VOL Test .................................................................................................................................................................. 7-4
7.4.1
Brief Description of a VOH/VOL Tree ............................................................................................................... 7-4
7.4.2
VOH/VOL Tree Activation ................................................................................................................................. 7-5
7.4.3
VOH/VOL pin list ............................................................................................................................................... 7-6
Appendix A: Pin Listings
7.5 RD890 Pin Listing Sorted by Ball Reference .................................................................................................................... A-2
A.1 RD890 Pin Listing Sorted by Pin Name ........................................................................................................................... A-9
Appendix B: Revision History
43403 AMD 890FX Databook 3.00
Table of Contents-2
© 2012 Advanced Micro Devices, Inc.
Proprietary
List of Figures
Figure 1-1:
Figure 1-2:
Figure 2-1:
Figure 2-2:
Figure 2-3:
Figure 3-1:
Figure 4-1:
Figure 5-2:
Figure 5-3:
Figure 5-4:
Figure 7-1:
Figure 7-2:
RD890 Branding Diagram for A21 Engineering Sample ........................................................................................... 1-3
RD890 Branding Diagram for A21 Production Sample ............................................................................................. 1-3
RD890 Internal Blocks and Interfaces ........................................................................................................................ 2-1
HyperTransport™ Interface Block Diagram ............................................................................................................... 2-2
RD890 HyperTransport™ Interface Signals ............................................................................................................... 2-3
RD890 Interface Block Diagram ................................................................................................................................. 3-4
RD890 Power Rail Power Up Sequence ..................................................................................................................... 4-3
RD890 692-Pin FCBGA Package Outline .................................................................................................................. 5-4
RD890 Ball Arrangement (Bottom View) .................................................................................................................. 5-5
RoHS/Lead-Free Solder (SAC305/405 Tin-Silver-Copper) Reflow Profile .............................................................. 5-7
XOR Tree .................................................................................................................................................................... 7-2
Sample of a Generic VOH/VOL Tree ......................................................................................................................... 7-5
© 2012 Advanced Micro Devices, Inc.
Proprietary
43403 AMD 890FX Databook 3.00
List of Figures-1
This page is left blank intentionally.
43403 AMD 890FX Databook 3.00
List of Figures-2
© 2012 Advanced Micro Devices, Inc.
Proprietary
List of Tables
Table 1-1: Pin Type Codes ..............................................................................................................................................................1-4
Table 1-2: Acronyms and Abbreviations ........................................................................................................................................1-4
Table 2-1: RD890 HyperTransport™ Flow Control Buffers ..........................................................................................................2-3
Table 2-2: Possible Configurations for the PCI Express® General Purpose Links ........................................................................2-5
Table 3-1: HyperTransport™ Interface ...........................................................................................................................................3-4
Table 3-2: 2 x 16 or 4 x 8 PCI Express® Interface for External Graphics .....................................................................................3-5
Table 3-3: PCI Express® Interface for General Purpose External Devices ....................................................................................3-5
Table 3-4: 1 x 4 Lane A-Link Express III Interface for Southbridge .............................................................................................3-6
Table 3-5: Miscellaneous PCI Express® Signals ............................................................................................................................3-6
Table 3-6: Clock Interface ...............................................................................................................................................................3-6
Table 3-7: Power Management Pins ...............................................................................................................................................3-7
Table 3-8: Miscellaneous Pins ........................................................................................................................................................3-7
Table 3-9: Power Pins .....................................................................................................................................................................3-7
Table 3-10: Ground Pins .................................................................................................................................................................3-9
Table 3-11: Strap Definitions for the RD890 ................................................................................................................................3-10
Table 3-12: Strap Definition for STRAP_PCIE_GPP_CFG .........................................................................................................3-10
Table 4-1: Timing Requirements for PCIe® Differential Clocks (GFX_REFCLK, GFX2_REFCLK, and GPP_REFCLK at
100MHz) .........................................................................................................................................................................................4-1
Table 4-2: Timing Requirements for HyperTransport™ Reference Clock (100MHz) ...................................................................4-1
Table 4-3: Timing Requirements for OSCIN Reference Clock (14.3181818MHz) .......................................................................4-2
Table 4-4: Power Rail Groupings for the RD890 ...........................................................................................................................4-2
Table 4-5: RD890 Power Rail Power-up Sequence ........................................................................................................................4-3
Table 5-1: Power Rail Maximum and Minimum Voltage Ratings .................................................................................................5-1
Table 5-1: DC Characteristics for PCIe® Differential Clocks (GFX_REFCLK, GFX2_REFCLK, and GPP_REFCLK at 100MHz)
..........................................................................................................................................................................................................5-1
Table 5-2: DC Characteristics for 1.8V GPIO Pads ........................................................................................................................5-1
Table 5-3: DC Characteristics for the HyperTransport™ 100MHz Differential Clock (HT_REFCLK) .......................................5-2
Table 5-4: RD890 Thermal Limits ..................................................................................................................................................5-2
Table 5-5: RD890 692-Pin FCBGA Package Physical Dimensions ...............................................................................................5-4
Table 5-6: Recommended Board Solder Reflow Profile - RoHS/Lead-Free Solder ......................................................................5-6
Table 6-1: ACPI States Supported by the RD890 ...........................................................................................................................6-1
Table 7-1: Pins on the Test Interface ..............................................................................................................................................7-1
Table 7-2: Example of an XOR Tree ..............................................................................................................................................7-2
Table 7-3: RD890 XOR Tree ..........................................................................................................................................................7-3
Table 7-4: Truth Table for the VOH/VOL Tree Outputs ................................................................................................................7-5
Table 7-5: RD890 VOH/VOL Tree ................................................................................................................................................7-6
© 2012 Advanced Micro Devices, Inc.
Proprietary
43403 AMD 890FX Databook 3.00
List of Tables-1
This page intentionally left blank.
43403 AMD 890FX Databook 3.00
List of Tables-2
© 2012 Advanced Micro Devices, Inc.
Proprietary
Chapter 1
Overview
1.1
Introducing AMD 890FX
AMD 890FX (referred to by its code name “RD890” in this document) is the system logic of the latest platform from
AMD that enables its next generation CPUs with the leading ATI CrossFire™ solutions. The RD890 has a total of 42 PCI
Express® lanes: 10 lanes are dedicated for external PCIe devices, and the rest support 2 x16 PCIe links or 4 x8 PCIe links
for the ultimate graphics setup. With support for a four-lane A-Link Express III interface to AMD’s Southbridges such as
the SB800, the RD890 guarantees separate bandwidth for peripherals, graphics, and General Purpose Graphics Processor
Unit (GPGPU). The RD890 also comes equipped with the new HyperTransport™ 3 and PCIe Gen 2 technologies, with
the ability for high system overclocking to deliver leadership performance. All of these are achieved by a highly
integrated, thermally efficient design in a 29mm x 29mm package.
The RD890 also supports a revision 1.26 compliant IOMMU (Input/Output Memory Management Unit) implementation
for address translation and protection services. This feature allows virtual addresses from PCI Express endpoint devices to
be translated to physical memory addresses. On-chip caching of address translations is provided to improve I/O
performance. The device is also compliant with revision 1.0 of the PCI Express Address Translation Services (ATS)
specification to enable ATS-compliant endpoint devices to cache address translation. These features enhance memory
protection and support hardware-based I/O virtualization when combined with appropriate operating system or hypervisor
software. Combined with AMD Virtualization™ (AMD-V™) technology, these features are designed to provide
comprehensive platform level virtualization support.
1.2
RD890 Features
1.2.1
CPU Interface
1.2.2
•
•
•
•
Supports 16-bit up/down HyperTransport™ (HT) 3.0 interface up to 5.2 GT/s.
•
•
•
Supports AMD Phenom™ and later desktop processors.
Supports 1200, 1400, 1600, 1800, 2000, 2200, 2400, and 2600 MHz HT3 frequencies.
Supports “Shanghai” and subsequent series of AMD server/workstation and desktop processors through sockets F,
AM3, G34, and C32.
Supports LDTSTOP interface and CPU throttling.
Supports broadcast memory write to the graphics ports.
PCI Express® Interface
•
•
•
1.2.3
Supports 200, 400, 600, 800, and 1000 MHz HT1 frequencies.
Supports PCIe Gen 2 (version 2.0).
Optimized peer-to-peer and general purpose link performance.
Supports 2 x16 graphics links for simultaneous operation of 2 graphics cards. They are also configurable to operate
as 4 x8 graphics links.
•
Supports 10 PCI E Gen 2 general purpose lanes, supporting up to 7 devices on specific ports (possible configurations
are described in Section 2.3, “PCI Express®”).
•
Supports a revision 1.26 compliant IOMMU (Input/Output Memory Management Unit) implementation for address
translation and protection services. Please refer to the AMD I/O Virtualization Technology (IOMMU) Specification
for more details.
A-Link Express III Interface
•
One x4 A-Link Express III interface for connection to an AMD Southbridge. The A-Link Express III is a proprietary
interface developed by AMD based on the PCI Express technology, with additional Northbridge-Southbridge
© 2012 Advanced Micro Devices, Inc.
Proprietary
43403 AMD 890FX Databook 3.00
1-1
Software Features
messaging functionalities. It supports the PCIe Gen 2 transfer rate of 5 GT/s, and is backward compatible with the
A-Link Express II interface.
1.2.4
1.2.5
Power Management Features
•
•
Fully supports ACPI states S1, S3, S4, and S5.
•
•
Supports AMD Cool’n’Quiet™ technology via FID/VID change.
•
Supports dynamic lane reduction for the PCIe interfaces, adjusting to the task the number of lanes employed.
The Chip Power Management Support logic supports four device power states defined for the OnNow Architecture—
On, Standby, Suspend, and Off. Each power state can be achieved by software control bits.
Clocks are controlled dynamically using a mechanism that is transparent to the software. The ASIC hardware detects
idle blocks and turns off the clocks to those blocks in order to reduce power consumption.
PC Design Guide Compliance
The RD890 complies with all relevant Windows Logo Program (WLP) requirements from Microsoft® for WHQL
certification.
1.2.6
Test Capability Features
The RD890 has a variety of test modes and capabilities that provide a very high fault coverage and low DPM (Defect Per
Million) ratio:
•
Full scan implementation on the digital core logic which provides about 97% fault coverage through ATPG
(Automatic Test Pattern Generation Vectors).
•
•
•
•
Dedicated test logic for the on-chip custom memory macros to provide complete coverage on these modules.
•
•
IDDQ mode support to allow chip evaluation through current leakage measurements.
A JTAG test mode in order to allow board level testing of neighboring devices.
An XOR tree test mode on all the digital I/O's to allow for proper soldering verification at the board level.
Access to the analog modules and PLLs in the RD890 in order to allow full evaluation and characterization of these
modules.
Highly advanced signal observability through the debug port.
These test modes can be accessed through the settings of the instruction register of the JTAG circuitry.
1.2.7
Packaging
•
•
1.3
Flip chip design in a 29mm x 29mm 692-FCBGA package.
Software Features
•
•
•
•
•
•
1.4
Single chip solution in 65nm, 1.1V CMOS technology.
Supports Microsoft Windows® XP, Windows Vista®, and Windows® 7.
Supports corporate manageability requirements such as DMI.
ACPI support.
Full write combining support for maximum performance.
Comprehensive OS and API support.
Extensive Power Management support.
Device ID
The RD890 is a member of the AMD chipset family, which consists of different devices designed to support different
platforms. Each device is identified by the device ID, which is stored in the NB_DEVICE_ID register. The device ID for
the RD890 is 5A11h.
43403 AMD 890FX Databook 3.00
1-2
© 2012 Advanced Micro Devices, Inc.
Proprietary
Branding Diagrams
1.5
Branding Diagrams
AMD Logo
RD890 A21
YYWW ENG
MADE IN TAIWAN
WXXXXX.WW
215-0716020
AMD Product Type
Date Code*
Country of Origin
Wafer Lot Number
Part Number
* YY - Assembly Start Year
WW - Assembly Start Week
Note: Branding can be in laser, ink, or
mixed laser-and-ink marking.
Figure 1-1 RD890 Branding Diagram for A21 Engineering Sample
AMD Logo
NORTHBRIDGE
YYWW
MADE IN TAIWAN
WXXXXX.WW
215-0716020
AMD Product Type
Date Code*
Country of Origin
Wafer Lot Number
Part Number
* YY - Assembly Start Year
WW - Assembly Start Week
Note: Branding can be in laser, ink, or
mixed laser-and-ink marking.
Figure 1-2 RD890 Branding Diagram for A21 Production Sample
1.6
Conventions and Notations
The following sections explain the conventions used throughout this manual.
1.6.1
Pin Names
Pins are identified by their pin names or ball references. All active-low signals are identified by the suffix ‘#’ in their
names (e.g., SYSRESET#).
1.6.2
Pin Types
The pins are assigned different codes according to their operational characteristics. These codes are listed in Table 1-1.
© 2012 Advanced Micro Devices, Inc.
Proprietary
43403 AMD 890FX Databook 3.00
1-3
Conventions and Notations
Table 1-1 Pin Type Codes
Code
1.6.3
Pin Type
I
Digital Input
O
Digital Output
I/O
Bi-Directional Digital Input or Output
M
Multifunctional
Pwr
Power
Gnd
Ground
A-O
Analog Output
A-I
Analog Input
A-I/O
Analog Bi-Directional Input/Output
A-Pwr
Analog Power
A-Gnd
Analog Ground
Other
Pin types not included in any of the categories above
Numeric Representation
Hexadecimal numbers are appended with “h” whenever there is a risk of ambiguity. Other numbers are in decimal.
Pins of identical functions but different trailing digits (e.g., DFT_GPIO0, DFT_GPIO1, ...DFT_GPIO5) are referred to
collectively by specifying their digits in square brackets and with colons (i.e., “DFT_GPIO[5:0]”). A similar short-hand
notation is used to indicate bit occupation in a register. For example, NB_COMMAND[15:10] refers to the bit positions
10 through 15 of the NB_COMMAND register.
1.6.4
Hyperlinks
Phrases or sentences in blue italic font are hyperlinks to other parts of the manual. Users of the PDF version of this manual
can click on the links to go directly to the referenced sections, tables, or figures.
1.6.5
Acronyms and Abbreviations
The following is a list of the acronyms and abbreviations used in this manual.
Table 1-2 Acronyms and Abbreviations
Acronym
Full Expression
ACPI
Advanced Configuration and Power Interface
ASPM
Active State Power Management
A-Link-E
A-Link Express interface between the Northbridge and Southbridge.
BGA
Ball Grid Array
BIOS
Basic Input Output System. Initialization code stored in a ROM or Flash RAM used to start up a
system or expansion card.
BIST
Built In Self Test.
DBI
Dynamic Bus Inversion
DPM
Defects per Million
EPROM
Erasable Programmable Read Only Memory
FCBGA
Flip Chip Ball Grid Array
FIFO
First In, First Out
VSS
Ground
GPIO
General Purpose Input/Output
HT
IDDQ
IOMMU
JTAG
HyperTransport™ interface
Direct Drain Quiescent Current
Input/Output Memory Management Unit
Joint Test Access Group. An IEEE standard.
43403 AMD 890FX Databook 3.00
1-4
© 2012 Advanced Micro Devices, Inc.
Proprietary
Conventions and Notations
Table 1-2 Acronyms and Abbreviations (Continued)
Acronym
Full Expression
MB
Mega Byte
NB
Northbridge
PCI
PCIe
®
Peripheral Component Interface
PCI Express®
PLL
Phase Locked Loop
POST
Power On Self Test
PD
Pull-down Resistor
PU
Pull-up Resistor
RAS
Reliability, Availability and Serviceability
SB
Southbridge
TBA
To Be Added
VRM
Voltage Regulation Module
© 2012 Advanced Micro Devices, Inc.
Proprietary
43403 AMD 890FX Databook 3.00
1-5
Conventions and Notations
This page is left blank intentionally.
43403 AMD 890FX Databook 3.00
1-6
© 2012 Advanced Micro Devices, Inc.
Proprietary
Chapter 2
Functional Descriptions
This chapter describes the functional operation of the major interfaces of the RD890 system logic chip. Figure 2-1
illustrates the RD890 internal blocks and interfaces.
CPU
Interface
CPU
PCIe®
GFX Interface
(1 x 16 or 2 x 8 Lanes)
PCIe
GFX2 Interface
A-Link-E
Interface
PCIe
GPP Interface
(6 Lanes for 6 ports, plus
4 Lanes for 1 port)
Expansion
Slots
(1 x 4 Lanes)
Southbridge
Root
Complex
IO Controller
(1 x 16 or 2 x 8 Lanes)
Graphics
Controllers
IOMMU
Graphics
Controllers
HyperTransport™ 3
Unit
Register Interface
Figure 2-1 RD890 Internal Blocks and Interfaces
2.1
HyperTransport™ Interface
2.1.1
Overview
The RD890 is optimized to interface with the AMD Phenom™ and later desktop processors. The supports
HyperTransport™ 3 (HT3), as well as HyperTransport 1 (HT1) for backward compatibility and for initial boot-up. For a
detailed description of the interface, please refer to the HyperTransport I/O Link Specification from the HyperTransport
Consortium. Figure 2-2, “HyperTransport™ Interface Block Diagram,” illustrates the basic blocks of the host bus
interface of the RD890.
© 2012 Advanced Micro Devices, Inc.
Proprietary
43403 AMD 890FX Databook 3.00
2-1
HyperTransport™ Interface
10.4 GB/s to
CPU
10.4 GB/s from
CPU
Tx PHY
Rx PHY
Tx PHY Interface
Rx PHY Interface
Protocol Transmitter
Protocol Receiver
Response
Interface
Upstream Arbitration
Host Interface
Host read
responses
DMA requests
IOMMU
requests
DMA
read
response
data
Host
requests
Host read
responses
IOMMU L2
PCIe® Cores
I/O Controller
Figure 2-2 HyperTransport™ Interface Block Diagram
The RD890 HyperTransport bus interface consists of 16 unidirectional differential Command/Address/Data pins, and 2
differential Control pins and 2 differential Clock pins in both the upstream and downstream directions. On power up, the
link is 8-bit wide and runs at a default speed of 400MT/s in HyperTransport 1 mode. After negotiation, carried out by the
HW and SW together, the link width can be brought up to the full 16-bit width and the interface can run up to 5.2GT/s in
HyperTransport 3 mode. In HyperTransport 1 mode, the interface operates by clock-forwarding while in HyperTransport
3 mode, the interface operates by dynamic phase recovery, with frequency information propagated over the clock pins.
The interface is illustrated below in Figure 2-3, “RD890 HyperTransport™ Interface Signals.” The signal name and
direction for each signal is shown with respect to the RD890. Detailed descriptions of the signals are given in Section 3.3,
“CPU HyperTransport™ Interface‚’ on page 3-4.
43403 AMD 890FX Databook 3.00
2-2
© 2012 Advanced Micro Devices, Inc.
Proprietary
HyperTransport™ Interface
HT_TXCALN
HT_TXCALP
HT_RXCALP
2
HT_TXCLKN
2
HT_TXCTLP
2
HT_TXCTLN
2
HT_TXCADP
16
HT_TXCADN
16
HT_RXCLKP
2
HT_RXCLKN
2
HT_RXCTLP
2
HT_RXCTLN
2
HT_RXCADP
16
HT_RXCADN
16
CPU
RD890
HT_RXCALN
HT_TXCLKP
Figure 2-3 RD890 HyperTransport™ Interface Signals
The RD890 HyperTransport interface has the following features:
2.1.2
•
•
•
•
•
•
HyperTransport 3.0 compliant
•
•
•
Link disconnection with tristate, LS0, LS1, LS2, and LS3 low-power modes
16-bit and 8-bit link widths supported. Width for each direction of the link is independently controlled.
400MT/s to 5.2GT/s link speeds in increments of 400MT/s (up to 2GT/s only for HyperTransport 1 mode)
DC-coupled HyperTransport mode only
UnitID clumping for x16 PCI Express® ports
Isochronous flow-control mode for Southbridge audio and IOMMU 64-bit address extension support (52-bit physical
addressing)
Error retry in HyperTransport 3 mode
Full HyperTransport-defined BIST support for both internal and external loopback modes
HyperTransport™ Flow Control Buffers
The RD890 HTIU implements the following flow control buffers in its receiver:
Table 2-1 RD890 HyperTransport™ Flow Control Buffers
Flow Control Buffer Type
Posted
Non-Posted
Cmd
16
16
Data
16
1
Advertise 63 credits.
ISOC Cmd
0
0
Advertise 63 credits.
ISOC Data
0
0
Advertise 63 credits.
© 2012 Advanced Micro Devices, Inc.
Proprietary
Response
Advertise 63 credits.
43403 AMD 890FX Databook 3.00
2-3
IOMMU
2.2
IOMMU
The RD890’s IOMMU (Input/Output Memory Management Unit) block provides address translation and protection
services as described in version 1.26 of the AMD I/O Virtualization Technology (IOMMU) Specification. The RD890 also
supports the PCI Express Address Translation Services 1.0 Specification, which allows the supporting of endpoint
devices to request and cache address translations.
When DMA requests containing virtual addresses are received, the IOMMU looks up the page translation tables located
in the system memory in order to convert the virtual addresses into physical addresses and to verify access privileges.
On-chip caching is provided in order to speed up translation and reduce or eliminate the number of system memory
accesses required. Every PCIe core contains a local translation cache, and the RD890 also contains a shared global
translation cache.
The RD890 supports up to 216 domains, each of which can utilize a separate 64-bit virtual address space. It supports a
52-bit physical address space.
43403 AMD 890FX Databook 3.00
2-4
© 2012 Advanced Micro Devices, Inc.
Proprietary
PCI Express®
2.3
PCI Express®
2.3.1
PCIe® Ports
In total, there are 12 PCIe® ports on the RD890, divided into 5 groups and implemented in hardware as 5 separate cores:
•
PCIE-GFX: 2 graphics ports, 16 lanes in total. Width of each port is x8. In the default configuration, the 2 ports are
combined to provide a 1 x16 port.
•
PCIE-GFX2: 2 graphics ports, 16 lanes in total. Width of each port is x8. In the default configuration, the 2 ports are
combined to provide a 1 x16 port.
•
PCIE-GPPa: 6 general purpose ports, with 6 lanes in total. They support 6 different configurations with respect to
link widths: 4:2, 4:1:1, 2:2:2, 2:2:1:1, 2:1:1:1:1, and 1:1:1:1:1:1 (default configuration). See Table 2-2, “Possible
Configurations for the PCI Express® General Purpose Links‚’ on page 2-5 and Table 3-12, “Strap Definition for
STRAP_PCIE_GPP_CFG‚’ on page 3-10.
•
PCIE-GPPb: 1 general purpose port, with 4 lanes in total. Width of the port is x4.
Table 2-2 Possible Configurations for the PCI Express® General Purpose Links
PCIe® Core
Physical Lane
Config. B
Config. C Config. C2 Config. E
Config. K
x2
x2
GPP0
GPP1
GPPa
GPP2
x4
x4
x2
GPP3
GPP4
GPP5
x2
x1
x1
x2
x2
x1
x2
x1
Config. L
x1
x1
x1
x1
x1
x1
x1
x1
x1
x1
x4
x4
x4
GPP6
GPPb
GPP7
GPP8
x4
x4
x4
GPP9
•
PCIE-SB: The Southbridge port provides a dedicated x4 link to the Southbridge (also referred to as the “A-Link
Express III interface”).
Each port supports the following PCIe functions:
•
•
•
•
•
•
PCIe Gen 1 and Gen 2 link speeds
ASPM L0s and L1 states
ACPI power management
Endpoint and root complex initiated dynamic link degradation
Lane reversal
Alternative Routing-ID Interpretation (ARI)
The PCIE-GFX and PCIE-GFX2 ports also support the ATI CrossFire™ technology.
2.3.2
PCIe® Reset Signals
Reset signals to PCIe slots, as well as embedded PCIe devices, must be controlled through one or more
software-controllable GPIO pins instead of the global system reset. It is recommended that unique GPIO pins be used for
each slot or device. The RD890 has four GPIO pins that may be used for the purpose of driving reset signals
(PCIE_GPIO_RESET[5:4] and PCIE_GPIO_RESET[2:1]). Additional reset GPIO pins may be driven by
platform-specific means such as a super I/O or an I/O expander.
© 2012 Advanced Micro Devices, Inc.
Proprietary
43403 AMD 890FX Databook 3.00
2-5
External Clock Chip
2.4
External Clock Chip
On the RD890 platform, an external clock chip provides the CPU, PCI Express, and A-Link Express III reference clocks.
For requirements on the clock chip, please refer to the 700 and 800 Series IGP Express AMD Platform External Clock
Generator Requirements Specification for Client Platforms.
43403 AMD 890FX Databook 3.00
2-6
© 2012 Advanced Micro Devices, Inc.
Proprietary
Chapter 3
Pin Descriptions and Strap Options
This chapter gives the pin descriptions and the strap options for the RD890. To jump to a topic of interest, use the
following list of hyperlinked cross references:
“Pin Assignment Top View” on page 3-2
“RD890 Interface Block Diagram” on page 3-4
“CPU HyperTransport™ Interface” on page 3-4
“PCI Express® Interfaces” on page 3-5:
“Interface for External Graphics Controllers” on page 3-5
“Interface for General Purpose External Devices” on page 3-5
“A-Link Express III Interface to Southbridge” on page 3-6
“Miscellaneous PCI Express® Signals” on page 3-6
“Clock Interface” on page 3-6
“Power Management Pins” on page 3-7
“Miscellaneous Pins” on page 3-7
“Power Pins” on page 3-7
“Ground Pins” on page 3-9
“Strapping Options” on page 3-10
© 2012 Advanced Micro Devices, Inc.
Proprietary
43403 AMD 890FX Databook 3.00
3-1
Pin Assignment Top View
3.1
Pin Assignment Top View
1
2
4
5
6
7
8
9
10
11
12
13
14
VDDA18P
CIE
VSS
VDDPCIE
GFX_TX6
P
VSS
GFX_TX5
P
VSS
GFX_TX3
P
VSS
GFX_TX1
P
VSS
VDDA18P
CIE
VDDPCIE
VSS
GFX_TX6
N
GFX_RX6
P
GFX_TX5
N
GFX_TX4
P
GFX_TX3
N
GFX_TX2
P
GFX_TX1
N
GFX_TX0
P
VDDA18P
CIE
VDDA18P
CIE
VSS
VSS
A
B
3
C
VDDPCIE
VSS
VDDPCIE
VSS
GFX_RX6
N
VSS
GFX_TX4
N
VSS
GFX_TX2
N
VSS
GFX_TX0
N
VDDA18P
CIE
VDDA18P
CIE
D
GFX_RX7
N
GFX_RX7
P
VSS
VDDPCIE
VSS
GFX_RX5
P
VSS
GFX_RX3
P
VSS
GFX_RX1
P
VSS
VDDA18P
CIE
VDDA18P
CIE
VSS
E
VSS
GFX_TX7
N
GFX_TX7
P
VSS
VDDPCIE
GFX_RX5
N
GFX_RX4
P
GFX_RX3
N
GFX_RX2
P
GFX_RX1
N
GFX_RX0
P
VDDA18P
CIE
VDDA18P
CIE
PCE_TCA
LRN
F
GFX_TX8
N
GFX_TX8
P
VSS
GFX_RX8
N
GFX_RX8
P
VDDPCIE
GFX_RX4
N
VSS
GFX_RX2
N
VSS
GFX_RX0
N
VDDA18P
CIE
VDDA18P
CIE
PCE_TCA
LRP
G
VSS
GFX_TX9
N
GFX_TX9
P
VSS
GFX_RX9
N
GFX_RX9
P
VDDPCIE
VDDPCIE
VSS
VDDPCIE
VSS
VDDA18P
CIE
VDDA18P
CIE
VDDA18P
CIE
H
GFX_TX10
N
GFX_TX10
P
VSS
GFX_RX1
0N
GFX_RX1
0P
VSS
VDDPCIE
GFX_REF
CLKN
VDDPCIE
VSS
VDDPCIE
VDDA18P
CIE
VDDA18P
CIE
VDDA18P
CIE
J
VSS
GFX_TX11
N
GFX_TX11
P
VSS
GFX_RX11
N
GFX_RX11
P
VSS
GFX_REF
CLKP
K
GFX_TX12
N
GFX_TX12
P
VSS
GFX_RX1
2N
GFX_RX1
2P
VSS
VDDPCIE
VSS
L
VSS
GFX_TX13
N
GFX_TX13
P
VSS
GFX_RX1
3N
GFX_RX1
3P
VSS
VDDPCIE
VDDA18P
CIE
VSS
VSS
VDDC
M
GFX_TX14
N
GFX_TX14
P
VSS
GFX_RX1
4N
GFX_RX1
4P
VSS
VDDPCIE
VSS
VSS
VSS
VDDC
VSS
N
VSS
GFX_TX15
N
GFX_TX15
P
VSS
GFX_RX1
5N
GFX_RX1
5P
VSS
VDDPCIE
VSS
VDDC
VSS
VDDC
P
GFX2_TX0
N
GFX2_TX0
P
VSS
GFX2_RX
0N
GFX2_RX
0P
VSS
VDDPCIE
VSS
VSS
VSS
VDDC
VSS
R
VSS
GFX2_TX1
N
GFX2_TX1
P
VSS
GFX2_RX
1N
GFX2_RX
1P
VSS
VDDPCIE
VSS
VDDC
VSS
VDDC
T
GFX2_TX2
N
GFX2_TX2
P
VSS
GFX2_RX
2N
GFX2_RX
2P
VSS
VDDPCIE
VSS
VSS
VSS
VDDC
VSS
U
VSS
GFX2_TX3
N
GFX2_TX3
P
VSS
GFX2_RX
3N
GFX2_RX
3P
VSS
GFX2_RE
FCLKN
VSS
VSS
VSS
VDDC
V
GFX2_TX4
N
GFX2_TX4
P
VSS
GFX2_RX
4N
GFX2_RX
4P
VSS
VDDPCIE
GFX2_RE
FCLKP
VDDA18P
CIE
VSS
VSS
VSS
W
VSS
GFX2_TX5
N
GFX2_TX5
P
VSS
GFX2_RX
5N
GFX2_RX
5P
VSS
VDDPCIE
Y
GFX2_TX6
N
GFX2_TX6
P
VSS
GFX2_RX
6N
GFX2_RX
6P
VSS
VDDPCIE
VSS
AA
VSS
GFX2_TX7
N
GFX2_TX7
P
VSS
GFX2_RX
7N
GFX2_RX
7P
VSS
VDDPCIE
VSS
VDDPCIE
VSS
GPP_REF
CLKN
AB
GFX2_TX8
N
GFX2_TX8
P
VSS
GFX2_RX
8N
GFX2_RX
8P
VSS
VDDPCIE
VSS
AC
VSS
GFX2_TX9
N
GFX2_TX9
P
VSS
VSS
VDDPCIE
GFX2_RX
13P
AD
GFX2_RX
9N
GFX2_RX
9P
VSS
VSS
VDDPCIE
GFX2_RX
12P
AE
VSS
GFX2_TX1
0N
GFX2_TX1
0P
VDDPCIE
VSS
AF
GFX2_RX
10N
GFX2_RX
10P
VDDPCIE
VSS
GFX2_RX
11P
VDDPCIE
VSS
GFX2_TX1
1P
GFX2_RX
11N
VSS
GFX2_TX1
1N
3
4
AG
AH
1
2
VSS
VDDPCIE
VSS
VDDPCIE
VSS
VDDPCIE
VSS
VDDPCIE
VSS
GFX2_RX
15P
VSS
GPP_RX9
N
VSS
GPP_RX7
N
VSS
GFX2_RX
13N
GFX2_RX
14P
GFX2_RX
15N
PCE_RCA
LRN
GPP_RX9
P
GPP_RX8
N
GPP_RX7
P
GPP_RX6
N
GFX2_RX
12N
VSS
GFX2_RX
14N
VSS
PCE_RCA
LRP
VSS
GPP_RX8
P
VSS
GPP_RX6
P
VSS
GFX2_TX1
3P
VSS
GFX2_TX1
5P
VSS
GPP_TX8
N
VSS
GPP_TX6
N
VSS
GFX2_TX1
2P
GFX2_TX1
3N
GFX2_TX1
4P
GFX2_TX1
5N
GPP_TX9
N
GPP_TX8
P
GPP_TX7
N
GPP_TX6
P
GPP_TX5
N
VSS
GFX2_TX1
2N
VSS
GFX2_TX1
4N
VSS
GPP_TX9
P
VSS
GPP_TX7
P
VSS
GPP_TX5
P
5
6
7
8
9
10
11
12
13
14
CPU Interface
A-Link Express III Interface
Clock Interface
PCIe® External Graphics 0 Interface
PCIe External Graphics 2 Interface
PCIe General Purpose Interface
Power Management Interface
Core Power
PCIe Main I/O Power
PCIe 1.8V I/O Power and PLL Power
GPIO 1.8V I/O Power
HyperTransport™ Interface Power
Grounds
Other
43403 AMD 890FX Databook 3.00
3-2
© 2012 Advanced Micro Devices, Inc.
Proprietary
Pin Assignment Top View
15
16
17
18
19
20
21
22
23
24
25
26
PWM_GPI
O4
VSS
POWERG
OOD
VDD18
TESTMOD
E
VSS
DBG_GPI
O3
VSS
DFT_GPIO
5
VSS
DFT_GPIO
1
VSS
27
28
PWM_GPI
O2
PWM_GPI
O6
OSCIN
VDD18
PCIE_RES
ET_GPIO1
I2C_CLK
DBG_GPI
O2
DBG_GPI
O1
DFT_GPIO
4
DFT_GPIO
2
DFT_GPIO
3
DFT_GPIO
0
VSS
VSS
PWM_GPI
O5
VSS
VDD18
VSS
I2C_DATA
VSS
DBG_GPI
O0
VSS
VDDHTTX
VDDHTTX
VDDHTTX
VDDHTTX
VDDHTTX
C
SYSRESE
T#
VSS
PCIE_RES
ET_GPIO2
VDD18
PCIE_RES
ET_GPIO3
VSS
ALLOW_L
DTSTOP
VDDHTTX
VDDHTTX
HT_RXCA
LN
HT_RXCA
LP
VSS
HT_TXCA
LN
HT_TXCA
LP
D
LDTSTOP
#
PWM_GPI
O1
PCIE_RES
ET_GPIO5
VDD18
PCIE_RES
ET_GPIO4
VSS
STRP_DA
TA
VDDHTTX
HT_TXCA
D8P
HT_TXCA
D8N
VSS
HT_TXCA
D0P
HT_TXCA
D0N
VSS
E
VSS
PWM_GPI
O3
VSS
VSS
VSS
VSS
VSS
VDDHTTX
VSS
HT_TXCA
D9P
HT_TXCA
D9N
VSS
HT_TXCA
D1P
HT_TXCA
D1N
F
HT_TXCA
D10N
HT_TXCA
D2N
A
B
VSS
VSS
VSS
VSS
VSS
VSS
VDDA18H
TPLL
VDDHTTX
HT_TXCA
D10P
VSS
HT_TXCA
D2P
VSS
G
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VDDHTTX
VSS
HT_TXCA
D11P
HT_TXCA
D11N
VSS
HT_TXCA
D3P
HT_TXCA
D3N
H
HT_REFC
LKN
VSS
HT_TXCL
K1P
HT_TXCL
K1N
VSS
HT_TXCL
K0P
HT_TXCL
K0N
VSS
J
HT_REFC
LKP
VDDHT
VSS
HT_TXCA
D12P
HT_TXCA
D12N
VSS
HT_TXCA
D4P
HT_TXCA
D4N
K
VDDHT
VSS
HT_TXCA
D13P
HT_TXCA
D13N
VSS
HT_TXCA
D5P
HT_TXCA
D5N
VSS
L
HT_TXCA
D14N
HT_TXCA
D6N
M
N
VSS
VDDC
VSS
VSS
VDDC
VSS
VSS
VSS
VSS
VDDHT
VSS
HT_TXCA
D14P
VSS
HT_TXCA
D6P
VSS
VDDC
VSS
VSS
VDDHT
VSS
HT_TXCA
D15P
HT_TXCA
D15N
VSS
HT_TXCA
D7P
HT_TXCA
D7N
VSS
VDDC
VSS
VDDC
VSS
VSS
VDDHT
VSS
HT_TXCTL
1P
HT_TXCTL
1N
VSS
HT_TXCTL
0P
HT_TXCTL
0N
P
VSS
VDDC
VSS
VSS
VDDHT
VSS
HT_RXCT
L1N
HT_RXCT
L1P
VSS
HT_RXCT
L0N
HT_RXCT
L0P
VSS
R
VDDC
VSS
VDDC
VSS
VSS
VDDHT
VSS
HT_RXCA
D15N
HT_RXCA
D15P
VSS
HT_RXCA
D7N
HT_RXCA
D7P
T
VSS
VDDC
VSS
VSS
VDDHT
VSS
HT_RXCA
D14N
HT_RXCA
D14P
VSS
HT_RXCA
D6N
HT_RXCA
D6P
VSS
U
VSS
VSS
VSS
VDDA18P
CIE
VSS
VDDHT
VSS
HT_RXCA
D13N
HT_RXCA
D13P
VSS
HT_RXCA
D5N
HT_RXCA
D5P
V
VDDHT
VSS
HT_RXCA
D12N
HT_RXCA
D12P
VSS
HT_RXCA
D4N
HT_RXCA
D4P
VSS
W
THERMAL
DIODE_P
VDDHT
VSS
HT_RXCL
K1N
HT_RXCL
K1P
VSS
HT_RXCL
K0N
HT_RXCL
K0P
Y
HT_RXCA
D11N
HT_RXCA
D11P
VSS
HT_RXCA
D3N
HT_RXCA
D3P
VSS
AA
GPP_REF
CLKP
VDDPCIE
VDDPCIE
VSS
VDDPCIE
VSS
VSS
THERMAL
DIODE_N
VDDHT
VSS
VSS
VDDHT
VSS
HT_RXCA
D10N
HT_RXCA
D10P
VSS
HT_RXCA
D2N
HT_RXCA
D2P
AB
HT_RXCA
D9P
HT_RXCA
D1P
VSS
VDDPCIE
VSS
VDDPCIE
GPP_RX5
N
VSS
GPP_RX3
N
VSS
GPP_RX1
N
VSS
SB_RX3P
VDDHT
HT_RXCA
D9N
VSS
HT_RXCA
D1N
VSS
AC
GPP_RX5
P
GPP_RX4
N
GPP_RX3
P
GPP_RX2
N
GPP_RX1
P
PCE_BCA
LRN
SB_RX3N
SB_RX2P
VDDHT
HT_RXCA
D8N
HT_RXCA
D8P
VSS
HT_RXCA
D0N
HT_RXCA
D0P
AD
VSS
GPP_RX4
P
VSS
GPP_RX2
P
VSS
PCE_BCA
LRP
VSS
SB_RX2N
VSS
VDDHT
VDDHT
VDDHT
VDDHT
VDDHT
AE
GPP_TX4
N
VSS
GPP_TX2
N
VSS
GPP_TX0
N
VSS
SB_TX2P
VSS
SB_TX1P
VSS
SB_RX1P
VSS
VDDHT
VSS
GPP_TX4
P
GPP_TX3
N
GPP_TX2
P
GPP_TX1
N
GPP_TX0
P
GPP_RX0
N
SB_TX2N
SB_TX3P
SB_TX1N
SB_TX0P
SB_RX1N
SB_RX0P
VSS
VSS
GPP_TX3
P
VSS
GPP_TX1
P
VSS
GPP_RX0
P
VSS
SB_TX3N
VSS
SB_TX0N
VSS
SB_RX0N
15
16
17
18
19
20
21
22
23
24
25
26
AF
AG
AH
27
28
CPU Interface
A-Link Express III Interface
Clock Interface
PCIe External Graphics 0 Interface
PCIe External Graphics 2 Interface
PCIe General Purpose Interface
Power Management Interface
Core Power
PCIe Main I/O Power
PCIe 1.8V I/O Power and PLL Power
GPIO 1.8V I/O Power
HyperTransport Interface Power
Grounds
Other
© 2012 Advanced Micro Devices, Inc.
Proprietary
43403 AMD 890FX Databook 3.00
3-3
RD890 Interface Block Diagram
3.2
RD890 Interface Block Diagram
Figure 3-1 shows the different interfaces on the RD890. Interface names in blue are hyperlinks to the corresponding
sections in this chapter.
PCIe®
Graphics
Interface
HT_RXCAD[15:0]P, HT_RXCAD[15:0]N
HT_RXCLK[1:0]P, HT_RXCLK[1:0]N
HT_RXCTL[1:0]P, HT_RXCTL[1:0]N
HT_TXCAD[15:0]P, HT_TXCAD[15:0]N
HT_TXCLK[1:0]P, HT_TXCLK[1:0]N
HT_TXCTL[1:0]P, HT_TXCTL[1:0]N
HT_RXCALP, HT_RXCALN
HT_TXCALP, HT_TXCALN
HyperTransport™
Interface
A-Link Express
III Interface
SB_TX[3:0]P, SB_TX[3:0]N
SB_RX[3:0]P, SB_RX[3:0]N
Power
Management
Interface
SYSRESET#
POWERGOOD
LDTSTOP#
ALLOW_LDTSTOP
PWM_GPIO[6:1]
PCIe Interface
for General
Purpose
External
Devices
Misc. PCIe
Signals
Clock Interface
DBG_GPIO[3:0]
I2C_CLK
I2C_DATA
STRP_DATA
DFT_GPIO[5:0]
TESTMODE
THERMALDIODE_P
THERMALDIODE_N
GFX_TX[15:0]P, GFX_TX[15:0]N
GFX_RX[15:0]P, GFX_RX[15:0]N
GFX2_TX[15:0]P, GFX2_TX[15:0]N
GFX2_RX[15:0]P, GFX2_RX[15:0]N
GPP_TX[9:0]P, GPP_TX[9:0]N
GPP_RX[9:0]P, GPP_RX[9:0]N
PCE_BCALRP, PCE_BCALRN
PCE_RCALRP, PCE_RCALRN
PCE_TCALRP, PCE_TCALRN
PCIE_RESET_GPIO[5:1]
OSCIN
HT_REFCLKP, HT_REFCLKN
GPP_REFCLKP, GPP_REFCLKN
GFX_REFCLKP, GFX_REFCLKN
GFX2_REFCLKP, GFX2_REFCLKN
Misc. Signals
Power
VDDHT
Grounds
VSS
VDD18
VDDPCIE
VDDA18PCIE
VDDC
VDDHTTX
VDDA18HTPLL
Figure 3-1 RD890 Interface Block Diagram
3.3
CPU HyperTransport™ Interface
Table 3-1 HyperTransport™ Interface
Pin Name
Type
Power
Domain
Ground
Domain
Functional Description
HT_RXCAD[15:0]P,
HT_RXCAD[15:0]N
I
VDDHT
VSS
Receiver Command, Address, and Data Differential Pairs
HT_RXCLK[1:0]P,
HT_RXCLK[1:0]N
I
VDDHT
VSS
Receiver Clock Signal Differential Pair. Forwarded clock signal. Each byte of
RXCAD uses a separate clock signal. Data is transferred on each clock edge.
HT_RXCTL[1:0]P,
HT_RXCTL[1:0]N
I
VDDHT
VSS
Receiver Control Differential Pair. The pair is for distinguishing control packets
from data packets. Each byte of RXCAD uses a separate control signal.
HT_TXCAD[15:0]P,
HT_TXCAD[15:0]N
O
VDDHT
VSS
Transmitter Command, Address, and Data Differential Pairs
43403 AMD 890FX Databook 3.00
3-4
© 2012 Advanced Micro Devices, Inc.
Proprietary
PCI Express® Interfaces
Table 3-1 HyperTransport™ Interface
Pin Name
3.4.1
Power
Domain
Ground
Domain
Functional Description
HT_TXCLK[1:0]P,
HT_TXCLK[1:0]N
O
VDDHT
VSS
Transmitter Clock Signal Differential Pair. Forwarded clock signal. Each byte
of TXCAD uses a separate clock signal. Data is transferred on each clock
edge.
HT_TXCTL[1:0]P,
HT_TXCTL[1:0]N
O
VDDHT
VSS
Transmitter Control Differential Pair. The pair is for distinguishing control
packets from data packets. Each byte of TXCAD uses a separate control
signal.
Other
VDDHT
VSS
Receiver Calibration Resistor to HT_RXCALP
HT_RXCALN
3.4
Type
(Continued)
HT_RXCALP
Other
VDDHT
VSS
Receiver Calibration Resistor to HT_RXCALN
HT_TXCALP
Other
VDDHT
VSS
Transmitter Calibration Resistor to HTTX_CALN
HT_TXCALN
Other
VDDHT
VSS
Transmitter Calibration Resistor to HTTX_CALP
PCI Express® Interfaces
Interface for External Graphics Controllers
Table 3-2 2 x 16 or 4 x 8 PCI Express® Interface for External Graphics
Type
Power
Domain
Ground
Domain
GFX_TX[15:0]P,
GFX_TX[15:0]N
O
VDDA18PCIE
VSSA_PCIE
50 between
complements
External Graphics 0 Transmit Data Differential Pairs.
Connect to connector[s] for external graphics card[s] on the
motherboard.
GFX_RX[15:0]P,
GFX_RX[15:0]N
I
VDDA18PCIE
VSSA_PCIE
50 between
complements
External Graphics 0 Receive Data Differential Pairs.
Connect to connector[s] for external graphics card[s] on the
motherboard.
GFX2_TX[15:0]P,
GFX2_TX[15:0]N
O
VDDA18PCIE
VSSA_PCIE
50 between
complements
External Graphics 2 Transmit Data Differential Pairs.
Connect to connector[s] for external graphics card[s] on the
motherboard.
GFX2_RX[15:0]P,
GFX2_RX[15:0]N
I
VDDA18PCIE
VSSA_PCIE
50 between
complements
External Graphics 2 Receive Data Differential Pairs.
Connect to connector[s] for external graphics card[s] on the
motherboard.
Pin Name
3.4.2
Integrated
Termination Functional Description
Interface for General Purpose External Devices
Table 3-3 PCI Express® Interface for General Purpose External Devices
Pin Name
GPP_TX[9:0]P,
GPP_TX[9:0]N
GPP_RX[9:0]P,
GPP_RX[9:0]N
Power
Domain
Type
O
I
VDDA18PCIE
VDDA18PCIE
© 2012 Advanced Micro Devices, Inc.
Proprietary
Ground
Domain
Integrated
Termination Functional Description
VSSA_PCIE
General Purpose Transmit Data Differential Pair for
50 between general purpose external devices. Connect to an
complements external connector on the motherboard for
ExpressCard support.
VSSA_PCIE
General Purpose Receive Data Differential Pair for
50 between general purpose external devices. Connect to an
complements external connector on the motherboard for
ExpressCard support.
43403 AMD 890FX Databook 3.00
3-5
Clock Interface
3.4.3
A-Link Express III Interface to Southbridge
Table 3-4 1 x 4 Lane A-Link Express III Interface for Southbridge
3.4.4
Pin Name
Type
Power
Domain
Ground
Domain
Integrated
Termination Functional Description
SB_TX[3:0]P,
SB_TX[3:0]N
O
VDDA18PCIE
VSSA_PCIE
Southbridge Transmit Data Differential Pairs. Connect to the
50 between
corresponding Receive Data Differential Pairs on the
complements
Southbridge.
SB_RX[3:0]P,
SB_RX[3:0]N
I
VDDA18PCIE
VSSA_PCIE
Southbridge Receive Data Differential Pairs. Connect to the
50 between
corresponding Transmit Data Differential Pairs on the
complements
Southbridge.
Miscellaneous PCI Express® Signals
Table 3-5 Miscellaneous PCI Express® Signals
Type
Power
Domain
Ground
Domain
PCE_BCALRN
I
VDDA18PCIE
VSSA_PCIE
N Channel Driver Compensation Calibration for Rx and Tx Channels
on Bottom Side.
PCE_BCALRP
I
VDDA18PCIE
VSSA_PCIE
P Channel Driver Compensation Calibration for Rx and Tx Channels
on Bottom Side
PCE_TCALRN
I
VDDA18PCIE
VSSA_PCIE
N Channel Driver Compensation Calibration for Rx and Tx Channels
on Top Side.
PCE_TCALRP
I
VDDA18PCIE
VSSA_PCIE
P Channel Driver Compensation Calibration for Rx and Tx Channels
on Top Side
PCE_RCALRN
I
VDDA18PCIE
VSSA_PCIE
N Channel Driver Compensation Calibration for Rx and Tx Channels
on Right Side.
PCE_RCALRP
I
VDDA18PCIE
VSSA_PCIE
P Channel Driver Compensation Calibration for Rx and Tx Channels
on Right Side
I/O
VDDA18PCIE
VSS
Pin Name
PCIE_RESET_GP
IO[5:1]
3.5
Functional Description
PCIe Resets. Except for PCIE_RESET_GPIO3, they can also be
used as GPIOs. There are internal pull-downs of 1.7 k on these
pins.
Clock Interface
Table 3-6 Clock Interface
Type
Power
Domain
Ground
Domain
HT_REFCLKP,
HT_REFCLKN
I
VDDA18HTPLL
VSSA_HT
Disabled
GFX_REFCLKP,
GFX_REFCLKN
I
VDDA18PCIE
VSSA_PCIE
–
External Graphics 0 Clock Differential Pair. The pair is
connected to an external clock generator on the
motherboard when external graphics controller 0 is used.
GFX2_REFCLKP,
GFX2_REFCLKN
I
VDDA18PCIE
VSSA_PCIE
–
External Graphics 2 Clock Differential Pair. The pair is
connected to an external clock generator on the
motherboard when external graphics controller 2 is used.
General Purpose Differential Pair. The pair has to be
connected to an external clock generator on the
motherboard whether the General Purpose link is
used or not.
Pin Name
Integrated
Termination Functional Description
GPP_REFCLKP,
GPP_REFCLKN
I
VDDA18PCIE
VSSA_PCIE
–
OSCIN
I
VDD18
VSS
Disabled
43403 AMD 890FX Databook 3.00
3-6
HyperTransport™ 100 MHz Clock Differential Pair from
external clock source
14.318MHz Reference clock input from the external clock
chip (1.8 volt signaling)
© 2012 Advanced Micro Devices, Inc.
Proprietary
Power Management Pins
3.6
Power Management Pins
Table 3-7 Power Management Pins
Pin Name
ALLOW_LDTSTOP
Type
Power
Domain
OD
VDD18
VSS
Allow LDTSTOP. This signal is used by the RD890 to communicate with the
Southbridge and tell it when it can assert the LDTSTOP# signal.
1 = LDTSTOP# can be asserted
0 = LDTSTOP# has to be de-asserted
I
VDD18
VSS
HyperTransport™ Stop. This signal is generated by the Southbridge and is used to
determine when the HyperTransport link should be disconnected and go into a
low-power state. It is a single-ended signal.
LDTSTOP#
POWERGOOD
I
PWM_GPIO[6:1]
VSS
Input from the motherboard signifying that the power to the RD890 is up and ready.
Signal High means all power planes are valid. It is not observed internally until it
has been high for more than 6 consecutive REFCLK cycles. The rising edge of this
signal is deglitched.
I/O
VDD18
VSS
PWM generators. PWM_GPIO6 and PWM_GPIO[4:3] are also parts of the test
interface (see section 7.2, “Test Interface,” on page 7- 1). PWM_GPIO[4:2]
are also used as strap pins (see section 3.10, “Strapping Options,” on
page 3- 10), and the internal pull-ups on them are automatically disabled when
they are used for PWM functionality. Can also be used as GPIOs.
I
VDD18
VSS
Global Hardware Reset. This signal comes from the Southbridge.
SYSRESET#
3.7
VDD18
Ground
Domain Functional Description
Miscellaneous Pins
Table 3-8 Miscellaneous Pins
Pin Name
3.8
Type
Power Ground Integrated
Domain Domain Termination Functional Description
I2C_CLK
I/O
VDD18
VSS
–
I2C interface clock signal. Can also be used as GPIO.
I2C_DATA
I/O
VDD18
VSS
–
I2C interface data signal. Can also be used as GPIO.
STRP_DATA
I/O
VDD18
VSS
–
I2C interface data signal for external EEPROM based strap loading.
See the RD890 Strap Document for details on the operation.
TESTMODE
I
VDD18
VSS
–
When High, puts the RD890 in test mode and disables the RD890
from operating normally.
DFT_GPIO[5:0]
I/O
VDD18
VSS
Pull Up
Outputs for DFT TESTMODE. These pins cannot be used for
general GPIO functions.
DBG_GPIO[3:0]
I/O
VDD18
VSS
Pull Up
Outputs for Debug Bus. These pins cannot be used for general
GPIO functions.
THERMALDIODE_P,
THERMALDIODE_N
A-O
–
–
–
Diode connections to external SM Bus microcontroller for
monitoring IC thermal characteristics.
Power Pins
Table 3-9 Power Pins
Pin Name
Voltage
Pin
Count Ball Reference
VDDC
1.1V
18
L14, L16, M13, M15, N12,
N14, N16, P13, P15, P17,
R12, R14, R16, T13, T15,
T17, U14, U16
VDD18
1.8V
5
A18, B18, C18, D18, E18
© 2012 Advanced Micro Devices, Inc.
Proprietary
Comments
Core power
I/O Power for GPIO pads
43403 AMD 890FX Databook 3.00
3-7
Power Pins
Table 3-9 Power Pins
Pin Name
VDDPCIE
VDDA18PCIE
(Continued)
Voltage
1.1 V
1.8 V
Pin
Count Ball Reference
Comments
39
A3, B2, C1, C3, D4, E5, F6,
G8, G10, H7, H9, H11, K7,
L8, M7, N8, P7, R8, T7, V7,
W8, Y7, AA8, AA10, AA12,
PCI Express interface main I/O and PLL power
AA16, AA18, AB7, AB9,
AB11, AB13, AB15, AB17,
AB19, AC6, AD5, AE4, AF3,
AG2
21
A12, A1, B12, B13, C12,
C13, D12, D13, E12, E13,
F12, F13, G12, G13, G14,
H12, H13, H14, L11, V11,
V18
PCI Express interface 1.8V I/O power
HyperTransport™ Interface digital I/O power
VDDHT
1.1V
21
AA22, AB22, AC22, K22,
AD23, AE24, AE25, AE26,
AE27, AE28, AF27, L21,
M22, N21, P22, R21, T22,
U21, V22, W21, Y22
VDDHTTX
1.2V
11
C24, C25, C26, C27, C28,
D22, D23, E22, F22, G22,
H22
HyperTransport Transmit Interface I/O power
VDDA18HTPLL
1.8V
1
G21
HyperTransport interface 1.8V PLL Power
Total Power Pin Count
43403 AMD 890FX Databook 3.00
3-8
116
© 2012 Advanced Micro Devices, Inc.
Proprietary
Ground Pins
3.9
Ground Pins
Table 3-10 Ground Pins
Pin Name
VSS
Pin Count
261
© 2012 Advanced Micro Devices, Inc.
Proprietary
Ball Reference
Comments
A11, A14, A16, A20, A22,
A24, A26, A5, A7, A9, AA1,
AA11, AA13, AA17, AA19,
AA20, AA25, AA28, AA4,
AA7, AA9, AB10, AB12,
AB14, AB16, AB18, AB20,
AB21, AB23, AB26, AB3,
AB6, AB8, AC1, AC10,
AC12, AC14, AC16, AC18,
AC20, AC25, AC28, AC4,
AC5, AC8, AD26, AD3, AD4,
AE1, AE11, AE13, AE15,
AE17, AE19, AE21, AE23,
AE5, AE7, AE9, AF10, AF12,
AF14, AF16, AF18, AF20,
AF22, AF24, AF26, AF28,
AF4, AF6, AF8, AG27, AG3,
AH11, AH13, AH15, AH17,
AH19, AH21, AH23, AH25,
AH3, AH5, AH7, AH9, B14,
B27, B3, C10, C14, C15,
C17, C19, C2, C21, C23, C4,
C6, C8, D11, D14, D16, D20,
D26, D3, D5, D7, D9, E1,
E20, E25, E28, E4, F10, F15,
Common Ground
F17, F18, F19, F20, F21,
F23, F26, F3, F8, G1, G11,
G15, G16, G17, G18, G19,
G20, G25, G28, G4, G9,
H10, H15, H16, H17, H18,
H19, H20, H21, H23, H26,
H3, H6, J1, J22, J25, J28, J4,
J7, K23, K26, K3, K6, K8, L1,
L12, L13, L15, L17, L18, L22,
L25, L28, L4, L7, M11, M12,
M14, M16, M17, M18, M21,
M23, M26, M3, M6, M8,N1
N11, N13, N15, N17, N18,
N22, N25, N28, N4, N7, P11,
P12, P14, P16, P18, P21,
P23, P26, P3, P6, P8, R1,
R11, R13, R15, R17, R18,
R22, 25, R28, R4, R7, T11,
T12, T14, T16, T18, T21,
T23, T26, T3, T6, T8, U1,
U11, U12, U13, U15, U17,
U18, U22, U25, U28, U4, U7,
V12, V13, V14, V15, V16,
V17, V21, V23, V26, V3, V6,
W1, W22, W25, W28, W4,
W7, Y23, Y26, Y3, Y6, Y8
43403 AMD 890FX Databook 3.00
3-9
Strapping Options
3.10
Strapping Options
The RD890 provides strapping options to define specific operating parameters. The strap values are latched into internal
registers after the assertion of the POWERGOOD signal to the RD890. Table 3-11, “Strap Definitions for the RD890,”
shows the definitions of all the strap functions. These straps are set by one of the following four methods:
•
•
•
•
Allowing the internal pull-up resistors to set all strap values “1”’s automatically.
Attaching pull-down resistors to specific strap pins listed in Table 3-11 to set their values to “0”’s.
Downloading the strap values from an I2C serial EEPROM (for debug purpose only; contact your AMD FAE
representative for details).
Setting through an external debug port, if implemented (contact your AMD FAE representative for details).
Table 3-11 Strap Definitions for the RD890
Strap Function
Strap Pin
Description
Reserved
PWM_GPIO[5:2]
Reserved. Make provision for an external pull-down resistor on each of the pins, but do
not install a resistor.
Reserved
DFT_GPIO0
Reserved. Make provision for an external pull-down resistor on this pin, but do not install
a resistor.
LOAD_ROM_STRAPS#
DFT_GPIO1
Selects loading of strap values from EEPROM
0: I2C master can load strap values from EEPROM if connected, or use hardware
default values if not connected
1: Use hardware default values (Default)
STRAP_PCIE_GPP_CFG
DFT_GPIO[4:2]
General Purpose Link Configuration.
See Table 3-12 below for details.
Reserved
DFT_GPIO5
Reserved. Make provision for an external pull-down resistor on this pin, but do not install
a resistor.
Table 3-12 Strap Definition for STRAP_PCIE_GPP_CFG
Strap Pin Value
Link Width
DFT_GPIO4 DFT_GPIO3 DFT_GPIO2 GPP0 GPP1 GPP2 GPP3 GPP4 GPP5 GPP6 GPP7 GPP8 GPP9
Hardware default (Mode L) or EEPROM strap values
(Default)
1
1
1
1
1
0
1
0
1
x2
1
0
0
x2
0
1
1
x2
0
1
0
0
0
1
x4
0
0
0
x4
Hardware default (Mode L) or EEPROM strap values
x1
x2
x2
x2
x1
x4
Mode
C2
x1
x1
x4
K
x1
x1
x1
x1
x4
E
x1
x1
x1
x1
x4
L (Hardware
Default)
x1
x4
C
x4
B
x1
x2
Note: If the pin straps instead of strap values from EEPROM are used, the GPP configuration will then be determined according to this table
and cannot be changed after the system has been powered up.
43403 AMD 890FX Databook 3.00
3-10
© 2012 Advanced Micro Devices, Inc.
Proprietary
Chapter 4
Timing Specifications
4.1
HyperTransport™ Bus Timing
For HyperTransport™ bus timing information, please refer to specifications by AMD.
4.2
PCI Express® Differential Clock AC Specifications
Table 4-1 Timing Requirements for PCIe® Differential Clocks (GFX_REFCLK, GFX2_REFCLK, and GPP_REFCLK at
100MHz)
Symbol
4.3
Description
Rising Edge Rate
Rising Edge Rate
Falling Edge Rate
Falling Edge Rate
TPERIOD AVG
Average Clock Period Accuracy
TPERIOD ABS
Absolute Period (including jitter and spread spectrum
modulation)
TCCJITTER
Cycle to Cycle Jitter
Duty Cycle
Duty Cycle
Rise-Fall Matching
Rising edge rate (REFCLK+) to falling edge rate
(REFCLK-) matching
Minimum
Maximum
Unit
0.6
4.0
V/ns
0.6
4.0
V/ns
-300
+2800
ppm
9.847
10.203
ns
-
150
ps
40
60
%
-
20
%
Minimum
Maximum
Unit
Note
-
140
mV
1
HyperTransport™ Reference Clock Timing Parameters
Table 4-2 Timing Requirements for HyperTransport™ Reference Clock (100MHz)
Symbol
VCROSS
Parameter
Change in Crossing point voltage over all edges
F
Frequency
99.5
100
MHz
2
ppm
Long Term Accuracy
-300
+300
ppm
3
SFALL
Output falling edge slew rate
-10
-0.5
V/ns
4, 5
SRISE
Output rising edge slew rate
0.5
10
V/ns
4,5
Tjc max
Jitter, cycle to cycle
-
150
ps
6
Tj-accumulated
Accumulated jitter over a 10 s period
-1
1
ns
7
VD(PK-PK)
Peak to Peak Differential Voltage
400
2400
mV
8
VD
Differential Voltage
200
1200
mV
9
VD
Change in VDDC cycle to cycle
-75
75
mV
10
© 2012 Advanced Micro Devices, Inc.
Proprietary
43403 AMD 890FX Databook 3.00
4-1
OSCIN Reference Clock Timing Parameters
Table 4-2 Timing Requirements for HyperTransport™ Reference Clock (100MHz) (Continued)
Symbol
DC
Parameter
Minimum
Maximum
Unit
Note
45
55
%
11
Duty Cycle
Notes:
More details are available in AMD HyperTransport 3.0 Reference Clock Specification and AMD Family 10h Processor Reference Clock
Parameters, document # 34864
1 Single-ended measurement at crossing point. Value is maximum-minimum over all time. DC Value of common mode is not important
due to blocking cap.
2 Minimum frequency is a consequence of 0.5% down spread spectrum.
3 Measured with spread spectrum turned off.
4 Only simulated at the receive die pad. This parameter is intended to give guidance for simulation. It cannot be tested on a tester but is
guaranteed by design.
5 Differential measurement through the range of ±100mV, differential signal must remain monotonic and within slew rate specification
when crossing through this region.
6 Tjc max is the maximum difference of tCYCLE between any two adjacent cycles.
7 Accumulated Tjc over a 10s time period, measured with JIT2 TIE at 50ps interval.
8 VD(PK-PK) is the overall magnitude of the differential signal.
9 VD(min) is the amplitude of the ring-back differential measurement, guaranteed by design that the ring-back will not cross 0V VD.
VD(max) is the largest amplitude allowed.
10 The difference in magnitude of two adjacent VDDC measurements. VDDC is the stable post overshoot and ring-back part of the signal.
11 Defined as tHIGH/tCYCLE
4.4
OSCIN Reference Clock Timing Parameters
Table 4-3 Timing Requirements for OSCIN Reference Clock (14.3181818MHz)
Symbol
Parameter
Min
Typical
Max
Unit
0.037
–
1.1
s
1
REFCLK Frequency
0.9
–
27
MHz
2
TIH
REFCLK High Time
2.0
–
–
ns
TIL
REFCLK Low Time
2.0
–
–
ns
TIR
REFCLK Rise Time
–
–
1.5
ns
TIF
REFCLK Fall Time
–
–
1.5
ns
TIJCC
REFCLK Cycle-to-Cycle Jitter Requirement
–
–
200
ps
TIJPP
REFCLK Peak-to-Peak Jitter Requirement
–
–
200
ps
TIJLT
REFCLK Long Term Jitter Requirement (1s after
scope trigger)
–
–
500
ps
TIP
REFCLK Period
FIP
Note
1
Notes:
1 Time intervals measured at 50% threshold point.
2 FIP is the reciprocal of TIP.
4.5
Power Rail Sequence
For the purpose of power rail sequencing, the power rails of the RD890 are divided into groupings
described in Table 4-4 below.
Table 4-4 Power Rail Groupings for the RD890
Voltage
ACPI
STATE
VDDC
1.1V
S0-S2
Core power
VDDPCIE
VDDPCIE
1.1V
S0-S2
PCI Express® main IO power
VDDHTTX
VDDHTTX
1.2V
S0-S2
HyperTransport™ transmit interface IO power
HT_1.1V
VDDHT
1.1V
S0-S2
HyperTransport interface digital IO power
Group Name
Power rail name
VDDC
43403 AMD 890FX Databook 3.00
4-2
Description
© 2012 Advanced Micro Devices, Inc.
Proprietary
Power Rail Sequence
Table 4-4 Power Rail Groupings for the RD890
Voltage
ACPI
STATE
VDD18
1.8V
S0-S2
I/O power for GPIO pads
VDDA18PCIE
1.8V
S0-S2
PCI Express interface 1.8V IO and PLL
power
VDDA18HTPLL
1.8V
S0-S2
HyperTransport interface 1.8V PLL power
Group Name
Power rail name
1.8V
Description
Note:
1. Power rails from the same group are assumed to be generated by the same voltage regulator.
2. Power rails from different groups but at the same voltage can either be generated by separate regulators or by the same regulators as
long as they comply with the requirements specified in the RD890 Motherboard Design Guide.
4.5.1
Power Up
Figure 4-1 below illustrates the power up sequencing for the various power groups, and Table 4-5
explains the symbols in the figure, as well as the associated requirements.
1.8V
T10
VDDHTTX
T11
VDDPCIE
T12
HT_1.1V
T13
VDDC
Figure 4-1 RD890 Power Rail Power Up Sequence
Table 4-5 RD890 Power Rail Power-up Sequence
Symbol
Parameter
Requirement
Comment
T10
1.8V rails to VDDHTTX (1.2V)
VDDHTTX ramps after 1.8V rails.
See Note 1.
T11
VDDHTTX (1.2V) to VDDPCIE (1.1V)
VDDPCIE ramps together with or after VDDHTTX
See Note 1 and 2.
T12
VDDHTTX(1.2V) to HT_1.1V rails
HT_1.1V rails ramp together with or after VDDHTTX
See Note 1 and 2.
T13
VDDHTTX(1.2V) to VDDC (1.1V)
VDDC ramps together with or after VDDHTTX
See Note 1 and 2.
Notes:
1. Power rail A ramps after power rail B means that the voltage of rail A does not exceed that of rail B at any time.
2. Power rail A ramps together with power rail B means that the two rails are controlled by the same enable signal and the difference
in their ramping rates is only due to the differences in the loadings.
© 2012 Advanced Micro Devices, Inc.
Proprietary
43403 AMD 890FX Databook 3.00
4-3
Power Rail Sequence
4.5.2
Power Down
For power down, the rails should either be turned off simultaneously or in the reversed order of the
power up sequence. Variations in speeds of decay due to different capacitor discharge rates can be
safely ignored.
43403 AMD 890FX Databook 3.00
4-4
© 2012 Advanced Micro Devices, Inc.
Proprietary
Chapter 5
Electrical Characteristics and Physical Data
5.1
5.1.1
Electrical Characteristics
Maximum and Minimum Ratings
Table 5-1 Power Rail Maximum and Minimum Voltage Ratings
Pin
Typical
DC Limit*
Min.
AC Limit*
Max.
Min.
Max.
Unit
Comments
VDDC
1.1
1.067
1.133
1.045
1.155
V
Core power
VDD18
1.8
1.746
1.854
1.71
1.89
V
1.8V I/O Powers
1.1
1.067
1.133
1.045
1.155
V
PCI Express® Interface Main I/O
Power
1.8
1.746
1.854
1.71
1.89
V
PCI Express interface 1.8V I/O and
PLL power
1.1
1.067
1.133
1.045
1.155
V
HyperTransport™ Interface digital
I/O power
1.2
1.164
1.236
1.14
1.26
V
HyperTransport Transmit Interface
I/O power
1.8
1.746
1.854
1.71
1.89
V
HyperTransport interface 1.8V PLL
power
VDDPCIE
VDDA18PCIE
VDDHT
VDDHTTX
VDDA18HTPLL
* Note: The voltage set-point must be contained within the DC specification in order to ensure proper operation. Voltage ripple and transient
events outside the DC specification must remain within the AC specification at all times. Transients must return to within the DC specification
within 20s.
5.1.2
DC Characteristics
Table 5-1 DC Characteristics for PCIe® Differential Clocks (GFX_REFCLK, GFX2_REFCLK, and GPP_REFCLK at
100MHz)
Symbol
Description
Minimum
Maximum
Unit
VIL
Differential Input Low Voltage
-
-150
mV
VIH
Differential Input High Voltage
+150
-
mV
VCROSS
Absolute Crossing Point Voltage
+250
+550
mV
VCROSS DELTA
Variation of VCROSS over all rising
clock edges
-
+140
mV
VRB
Ring-back Voltage Margin
-100
+100
mV
VIMAX
Absolute Max Input Voltage
-
+1.15
V
VIMIN
Absolute Min Input Voltage
-
-0.15
V
Table 5-2 DC Characteristics for 1.8V GPIO Pads
Symbol
Description
VIH-DC
Input High Voltage
1.1
-
V
1
VIL-DC
Input Low Voltage
-
0.7
V
1
VOH
Minimum Output High Voltage @ I=8mA
1.4
-
V
2, 3
VOL
Maximum Output Low Voltage @ I=8mA
-
0.4
V
2, 3
IOL
Minimum Output Low Current @ V=0.1V
2.0
-
mA
2, 3
© 2012 Advanced Micro Devices, Inc.
Proprietary
Minimum Maximum
Unit
Notes
43403 AMD 890FX Databook 3.00
5-1
RD890 Thermal Characteristics
Table 5-2 DC Characteristics for 1.8V GPIO Pads
Symbol
Description
Minimum Maximum
IOH
Minimum Output High Current @ V=VDDR-0.1V
2.0
-
Unit
Notes
mA
2, 3
Notes:
1) Measured with edge rate of 1us at PAD pin.
2) For detailed current/voltage characteristics please refer to IBIS model.
3) Measurement taken with SP/SN set to default values, PVT=Noml Case
Table 5-3 DC Characteristics for the HyperTransport™ 100MHz Differential Clock (HT_REFCLK)
5.2
Symbol
Description
Minimum
Typical
VIL
Input Low Voltage
–
0V
VIH
Input High Voltage
1.4V
VIMAX
Maximum Input Voltage
–
Maximum
Comments
0.2V
–
1.8V
–
–
–
2.1V
–
RD890 Thermal Characteristics
This section describes some key thermal parameters of the RD890. For a detailed discussion on these parameters and
other thermal design descriptions, including package level thermal data and analysis, please consult the Thermal Design
and Analysis Guidelines for RD890.
5.2.1
RD890 Thermal Limits
Table 5-4 RD890 Thermal Limits
Parameter
Minimum
Nominal
Maximum
Unit
Note
Operating Case Temperature
0
—
95
°C
1
Absolute Rated Junction
Temperature
—
—
115
°C
2
Storage Temperature
-40
—
60
°
Ambient Temperature
0
—
45
°C
3
Thermal Design Power
—
19.6
—
W
4
C
Notes:
1 - The maximum operating case temperature is the die top-center temperature measured via a thermocouple based on the
methodology given in the document Thermal Design and Analysis Guidelines for RD890 (Chapter 12). This is the temperature at which
the functionality of the chip is qualified.
2 - The maximum absolute rated junction temperature is the junction temperature at which the device can operate without causing
damage to the ASIC.
3 - The ambient temperature is defined as the temperature of the local intake air at the inlet to the thermal management device. The
maximum ambient temperature is dependent on the heat sink design, and the value given here is based on AMD’s reference heat sink
solution for the RD890. Refer to Chapter 6 in Thermal Design and Analysis Guidelines for RD890 for heatsink and thermal design
guidelines. Refer to Chapter 7 for details of ambient conditions.
4 - Thermal Design Power (TDP) is defined as the highest power dissipated while running currently available worst case applications at
nominal voltages. The core voltage was raised to 5% above its nominal value for measuring the ASIC power. Since the core power of
modern ASICs using 65nm and smaller process technology can vary significantly, parts specifically screened for higher core power were
used for TDP measurement. The TDP is intended only as a design reference, and the value given here is preliminary.
5.2.2
Thermal Diode Characteristics
The RD890 has an on-die thermal diode, with its positive and negative terminals connected to the THERMALDIODE_P
and THERMALDIODE_N pins respectively. Combined with a thermal sensor circuit, the diode temperature, and hence
the ASIC junction temperature, can be derived from a differential voltage reading (V). The equation relating the
temperature to V is given below.
43403 AMD 890FX Databook 3.00
5-2
© 2012 Advanced Micro Devices, Inc.
Proprietary
RD890 Thermal Characteristics
  K  T  ln  N 
V = -------------------------------------------q
where:
V = Difference of two base-to-emitter voltage readings, one using current = I and the other using current = N x I
N = Ratio of the two thermal diode currents (=10 when using an ADI thermal sensor, e.g.: ADM 1020, 1030)
 = Ideality factor of the diode
K = Boltzman’s Constant
T = Temperature in Kelvin
q = Electron charge
The series resistance of the thermal diode (RT) must be taken into account as it introduces an error in the reading (for
every 1.0, approximately 0.8oC is added to the reading). The sensor circuit should be calibrated to offset the RT induced,
plus any other known fixed errors. Measured values of diode ideality factor and series resistance for the diode circuit are
defined in Thermal Design and Analysis Guidelines for RD890.
© 2012 Advanced Micro Devices, Inc.
Proprietary
43403 AMD 890FX Databook 3.00
5-3
Package Information
5.3
Package Information
Figure 5-2 and Table 5-5 describe the physical dimensions of the RD890 package. Figure 5-3 shows the detailed
ball arrangement for the RD890.
MOD-00094-03
Figure 5-2 RD890 692-Pin FCBGA Package Outline
Table 5-5 RD890 692-Pin FCBGA Package Physical Dimensions
Ref.
Min. (mm)
Typical (mm)
Max. (mm)
c
0.56
0.66
0.76
A
1.87
2.02
2.17
A1
0.40
0.50
0.60
A2
0.81
0.86
0.91
b
0.50
0.60
0.70
D1
28.80
29.00
29.20
D2
-
5.62
-
D3
2.00
-
-
D4
1.00
-
-
E1
28.80
29.00
29.20
E2
-
7.39
-
E3
2.00
-
-
E4
1.00
-
-
F1
-
27.00
-
F2
-
27.00
-
e
-
1.00
-
43403 AMD 890FX Databook 3.00
5-4
© 2012 Advanced Micro Devices, Inc.
Proprietary
Package Information
Table 5-5 RD890 692-Pin FCBGA Package Physical Dimensions
Ref.
Min. (mm)
Typical (mm)
Max. (mm)
ddd
-
-
0.20
Note: Maximum height of SMT components is 0.650 mm.
Figure 5-3 RD890 Ball Arrangement (Bottom View)
5.3.1
Pressure Specification
To avoid damages to the ASIC (die or solder ball joint cracks) caused by improper mechanical assembly of the cooling
device, follow the recommendations below:
•
It is recommended that the maximum load that is evenly applied across the contact area between the thermal
management device and the die does not exceed 6 lbf. Note that a total load of 4-6 lbf is adequate to secure the
thermal management device and achieve the lowest thermal contact resistance with a temperature drop across
the thermal interface material of no more than 3°C. Also, the surface flatness of the metal spreader should be
0.001 inch/1 inch.
•
Pre-test the assembly fixture with a strain gauge to make sure that the flexing of the final assembled board and
the pressure applied around the ASIC package will not exceed 600 micronstrains under any circumstances.
© 2012 Advanced Micro Devices, Inc.
Proprietary
43403 AMD 890FX Databook 3.00
5-5
Package Information
•
5.3.2
Ensure that any distortion (bow or twist) of the board after SMT and cooling device assembly is within industry
guidelines (IPC/EIA J-STD-001). For measurement method, refer to the industry approved technique described
in the manual IPC-TM-650, section 2.4.22.
Board Solder Reflow Process Recommendations
5.3.2.1 Stencil Opening Size for Solderball Pads on PCB
Warpage of the PCB and the package may cause solderjoint quality issues at the surface mount. Therefore, it is
recommended that the stencil opening sizes be adjusted to compensate for the warpage. The recommendation is for the
stencil aperture of the solderballs to be kept at the same size as the pads.
5.3.2.2 Reflow Profile
A reference reflow profile is given below. Please note the following when using RoHS/lead-free solder (SAC105/305/405
Tin-Silver-Cu):
•
The final reflow temperature profile will depend on the type of solder paste and chemistry of flux used in the SMT
process. Modifications to the reference reflow profile may be required in order to accommodate the requirements of
the other components in the application.
•
•
An oven with 10 heating zones or above is recommended.
•
•
•
Mechanical stiffening can be used to minimize board warpage during reflow.
•
To ensure that the reflow profile meets the target specification on both sides of the board, a different profile and oven
recipe for the first and second reflow may be required.
It is suggested to decrease temperature cooling rate to minimize board warpage.
This reflow profile applies only to RoHS/lead-free (high temperature) soldering process and it should not be used for
Eutectic solder packages. Damage may result if this condition is violated.
Maximum 3 reflows are allowed on the same part.
Table 5-6 Recommended Board Solder Reflow Profile - RoHS/Lead-Free Solder
Profiling Stage
Temperature
Process Range
Overall Preheat
Room temp to 220C
2 mins to 4 mins
Soaking Time
130C to 170C
Typical 60 – 80 seconds
Liquidus
220C
Typical 60 – 80 seconds
Ramp Rate
Ramp up and Cooling
<2C / second
Peak
Max. 245C
235C +/-5C
Temperature at peak
within 5C
240C to 245C
10 – 30 seconds
43403 AMD 890FX Databook 3.00
5-6
© 2012 Advanced Micro Devices, Inc.
Proprietary
Package Information
o
Solder/Part Surface Temp. ( C )
Peak Temp. (235 oC+/-5% typ., 245 oC max.)
250
220 deg.C
<2.0oC / Sec.
200
170 oC
150
Soaking Zone
130 oC
100
50
Soldering Zone
60 – 120 sec. max
60 – 80 sec. typical
45 - 90 sec. Max.
60 - 80 sec. typical
<2.0o.C / Sec.
Pre-heating Zone
2 min to 4 min Max.
Heating Time
Figure 5-4 RoHS/Lead-Free Solder (SAC305/405 Tin-Silver-Copper) Reflow Profile
© 2012 Advanced Micro Devices, Inc.
Proprietary
43403 AMD 890FX Databook 3.00
5-7
Package Information
This page is left blank intentionally.
43403 AMD 890FX Databook 3.00
5-8
© 2012 Advanced Micro Devices, Inc.
Proprietary
Chapter 6
Power Management and ACPI
6.1
ACPI Power Management Implementation
This chapter describes the support for ACPI power management provided by the RD890. The RD890 system controller
supports ACPI Revision 2.0. The hardware, system BIOS, and drivers of the RD890 have the logic required for meeting
the power management specifications of PC2001, OnNow, and the Windows Logo Program and Device Requirements
version 2.1. Table 6-1, “ACPI States Supported by the RD890,” describes the ACPI states supported by the RD890
system controller.
Table 6-1 ACPI States Supported by the RD890
ACPI State
Description
Processor States:
S0/C0: Working State
Working State. The processor is executing instructions.
S0/C1: Halt
CPU Halt state. No instructions are executed. This state has the lowest latency on resume and contributes
minimum power savings.
S0/C2: Stop Grant
Caches Snoopable
Stop Grant or Cache Snoopable CPU state. This state offers more power savings but has a higher latency
on resume than the C1 state.
S0/C3/C1e: Stop Grant
Caches Snoopable
Processor is put into the Stop Grant state. Caches are still snoopable. The HyperTransport™ link may be
disconnected and put into a low power state. System memory may be put into self-refresh.
System States:
S1: Standby
Powered On Suspend
System is in Standby mode. This state has low wakeup latency on resume. OEM support of this state is
optional.
S3: Standby
Suspend to RAM
System is off but context is saved to RAM. System memory is put into self-refresh.
S4: Hibernate
Suspend to Disk
System is off but context is saved to disk. When the system transitions to the working state, the OS is
resumed without a system re-boot.
S5: Soft Off
System is off. OS re-boots when the system transitions to the working state.
G3: Mechanical Off
Occurs when system power (AC or battery) is not present or is unable to keep the system in one of the
other states.
© 2012 Advanced Micro Devices, Inc.
Proprietary
43403 AMD 890FX Databook 3.00
6-1
ACPI Power Management Implementation
This page intentionally left blank.
43403 AMD 890FX Databook 3.00
6-2
© 2012 Advanced Micro Devices, Inc.
Proprietary
Chapter 7
Testability
7.1
Test Capability Features
The RD890 system controller has integrated test modes and capabilities. These test features cover both the ASIC and
board level testing. The ASIC tests provide a very high fault coverage and low DPM (Defect Per Million) ratio of the part.
The board level tests modes can be used for motherboard manufacturing and debug purposes. The following are the test
modes of the RD890 system controller:
•
Full scan implementation on the digital core logic that provides about 97% fault coverage through ATPG
(Automatic Test Pattern Generation Vectors).
•
Dedicated test logic for the on-chip custom memory macros to provide complete coverage on these modules.
•
Improved access to the analog modules and PLLs in the RD890 system controller in order to allow full
evaluation and characterization of these modules.
•
A JTAG test mode (which is not entirely compliant to the IEEE 1149.1 standard) in order to allow board level
testing of neighboring devices.
•
An XOR TREE test mode on all the digital I/O’s to allow for proper soldering verification at the board level.
•
A VOH/VOL test mode on all digital I/O’s to allow for proper verification of output high and output low
voltages at the board level.
These test modes can be accessed through the settings on the instruction register of the JTAG circuitry.
7.2
Test Interface
Table 7-1 Pins on the Test Interface
Pin Name
7.3
7.3.1
Ball number
Type
Description
TESTMODE
A19
I
TEST_EN: Test Enable (IEEE 1149.1 test port reset)
PCIE_RESET_GPIO3
D19
I
TMS: Test Mode Select (IEEE 1149.1 test mode select)
I2C_DATA
C20
I
TDI: Test Mode Data In (IEEE 1149.1 data in)
I2C_CLK
B20
I
TCLK: Test Mode Clock (IEEE 1149.1 clock)
PWM_GPIO6
B16
O
TDO: Test Mode Data Out (IEEE 1149.1 data out)
PWM_GPIO4
A15
I
TEST_ODD: Control ODD output in VOH/VOL test
PWM_GPIO3
F16
I
TEST_EVEN: Control EVEN output in VOH/VOL test
POWERGOOD
A17
I
I/O Reset
XOR Tree
Brief Description of an XOR Tree
A sample of a generic XOR tree is shown in the figure below.
© 2012 Advanced Micro Devices, Inc.
Proprietary
43403 AMD 890FX Databook 3.00
7-1
XOR Tree
XOR Start Signal
G
F
A
E
D
C
B
Figure 7-1 XOR Tree
Pin A is assigned to the output direction, and pins B through F are assigned to the input direction. It can be seen that after
all pins B to F are assigned to logic 0 or 1, a logic change in any one of these pins will toggle the output pin A.
The following is the truth table for the XOR tree shown in Figure 7-1 The XOR start signal is assumed to be logic 1.
Table 7-2 Example of an XOR Tree
Test Vector
number
7.3.2
Input Pin G
Input Pin F
Input Pin E
Input Pin D
Input Pin C
Input Pin B
Output Pin A
1
0
0
0
0
0
0
1
2
1
0
0
0
0
0
0
3
1
1
0
0
0
0
1
4
1
1
1
0
0
0
0
5
1
1
1
1
0
0
1
6
1
1
1
1
1
0
0
7
1
1
1
1
1
1
1
Description of the XOR Tree for the RD890
The XOR start signal is applied at the TDI Pin of the JTAG circuitry and the output of the XOR tree is obtained at the
TDO Pin. Refer to Section 7.3.4 for the list of the signals included on the XOR tree. There is no specific order to these
signals in the tree. A toggle of any of these balls in the XOR tree will cause the output to toggle.
7.3.3
XOR Tree Activation
To activate the XOR tree and run a XOR test, perform the sequence below:
1. Supply a 10MHz clock to I2C_CLK (Test Mode Clock) and a differential clock pair to the HT_REFCLKP1/N1,
GFX_REFCLKP/N, GFX2_REFCLKP/N and GPP_REFCLKP/N pins.
2. Set POWERGOOD to 0.
3. Set TESTMODE to 1.
4. Set PCIE_RESET_GPIO2 to 0.
5. Wait 5 or more I2C_CLK cycles.
6. Load JTAG instruction register with the instruction 0001 1111.
7. Load JTAG instruction register with the instruction 0010 0000.
8. Load JTAG instruction register with the instruction 0000 1000.
9. Go to Run-Test_Idle state.
10. Set POWERGOOD to 1.
43403 AMD 890FX Databook 3.00
7-2
© 2012 Advanced Micro Devices, Inc.
Proprietary
XOR Tree
7.3.4
XOR Tree for the RD890
The XOR start signal is applied at the TDI Pin of the JTAG circuitry and the output of the XOR tree is obtained at the
TDO Pin. Refer to Table 7-3 for the list of the signals included on the XOR tree.
There is no specific order to these signals in the tree. A toggle of any of these balls in the XOR tree will cause the output
to toggle. When the XOR tree is activated, any pin on the XOR tree must be either pulled down or pulled up to the I/O
voltage of the pin. Only pins that are not on the XOR tree can be left floating.
When differential signal pairs are listed as single entries on the XOR tree, opposite input values should be applied to the
two signals in each pair (e.g., for entry no. 1 on the tree, when “1” is applied to HT_RXCAD0P, “0” should be applied to
HT_RXCAD0N).
Table 7-3 RD890 XOR Tree
No.
Pin Name
Ball Ref.
No.
Pin Name
Ball Ref.
1
HT_RXCAD0P/N
AD28/AD27
29
GFX_RX10P/N
H5/H4
2
HT_RXCAD1P/N
AC27/AC26
30
GFX_RX11P/N
J6/J5
3
HT_RXCAD2P/N
AB28/AB27
31
GFX_RX12P/N
K5/K4
4
HT_RXCAD3P/N
AA27/AA26
32
GFX_RX13P/N
L6/L5
5
HT_RXCAD4P/N
W27/W26
33
GFX_RX14P/N
M5/M4
6
HT_RXCAD5P/N
V28/V27
34
GFX_RX15P/N
N6/N5
7
HT_RXCAD6P/N
U27/U26
35
GFX2_RX0P/N
P5/P4
8
HT_RXCAD7P/N
T28/T27
36
GFX2_RX1P/N
R6/R5
9
HT_RXCTL0P/N
R27/R26
37
GFX2_RX2P/N
T5/T4
10
HT_RXCAD8P/N
AD25/AD24
38
GFX2_RX3P/N
U6/U5
11
HT_RXCAD9P/N
AC24/AC23
39
GFX2_RX4P/N
V5/V4
12
HT_RXCAD10P/N
AB25/AB24
40
GFX2_RX5P/N
W6/W5
13
HT_RXCAD11P/N
AA24/AA23
41
GFX2_RX6P/N
Y5/Y4
14
HT_RXCAD12P/N
W24/W23
42
GFX2_RX7P/N
AA6/AA5
15
HT_RXCAD13P/N
V25/V24
43
GFX2_RX8P/N
AB5/AB4
16
HT_RXCAD14P/N
U24/U23
44
GFX2_RX9P/N
AD2/AD1
17
HT_RXCAD15P/N
T25/T24
45
GFX2_RX10P/N
AF2/AF1
18
HT_RXCTL1P/N
R24/R23
46
GFX2_RX11P/N
AF5/AG5
19
GFX_RX0P/N
E11/F11
47
GFX2_RX12P/N
AD6/AE6
20
GFX_RX1P/N
D10/E10
48
GFX2_RX13P/N
AC7/AD7
21
GFX_RX2P/N
E9/F9
49
GFX2_RX14P/N
AD8/AE8
22
GFX_RX3P/N
D8/E8
50
GFX2_RX15P/N
AC9/AD9
23
GFX_RX4P/N
E7/F7
51
GPP_RX0P/N
AH20/AG20
24
GFX_RX5P/N
D6/E6
52
GPP_RX1P/N
AD19/AC19
25
GFX_RX6P/N
B5/C5
53
GPP_RX2P/N
AE18/AD18
26
GFX_RX7P/N
D2/D1
54
GPP_RX3P/N
AD17/AC17
27
GFX_RX8P/N
F5/F4
55
GPP_RX4P/N
AE16/AD16
28
GFX_RX9P/N
G6/G5
56
GPP_RX5P/N
AD15/AC15
© 2012 Advanced Micro Devices, Inc.
Proprietary
43403 AMD 890FX Databook 3.00
7-3
VOH/VOL Test
7.4
7.4.1
No.
Pin Name
Ball Ref.
57
SB_RX0P/N
AG26/AH26
58
SB_RX1P/N
AF25/AG25
59
SB_RX2P/N
AD22/AE22
60
SB_RX3P/N
AC21/AD21
61
GPP_RX6P/N
AE14/AD14
62
GPP_RX7P/N
AD13/AC13
63
GPP_RX8P/N
AE12/AD12
64
GPP_RX9P/N
AD11/AC11
65
PWM_GPIO1
E16
66
PWM_GPIO2
B15
67
PWM_GPIO3
F16
68
PWM_GPIO4
A15
69
PWM_GPIO5
C16
70
PCIE_RESET_GPIO1
B19
71
PCIE_RESET_GPIO4
E19
72
PCIE_RESET_GPIO5
E17
73
DFT_GPIO0
B26
74
DFT_GPIO1
A25
75
DFT_GPIO2
B24
76
DFT_GPIO3
B25
77
DFT_GPIO4
B23
78
DFT_GPIO5
A23
79
DBG_GPIO0
C22
80
DBG_GPIO1
B22
81
DBG_GPIO2
B21
82
DBG_GPIO3
A21
83
ALLOW_LDTSTOP
D21
84
LDTSTOP#
E15
VOH/VOL Test
Brief Description of a VOH/VOL Tree
The VOH/VOL logic provides signal output on I/O’s when test patterns are applied to the TEST_ODD and TEST_EVEN
pins. A sample of a generic VOH/VOL tree is shown in the figure below.
43403 AMD 890FX Databook 3.00
7-4
© 2012 Advanced Micro Devices, Inc.
Proprietary
VOH/VOL Test
TEST_ODD
TEST_EVEN
VOH/VOL
mode
1
2
3
4
5
6
Figure 7-2 Sample of a Generic VOH/VOL Tree
The following is the truth table for the above VOH/VOL tree.
Table 7-4 Truth Table for the VOH/VOL Tree Outputs
Test Vector
Number
TEST_ODD
Input
TEST_EVEN
Input
Output
Pin 1
Output
Pin 2
Output
Pin 3
Output
Pin 4
Output
Pin 5
Output
Pin 6
1
0
0
0
0
0
0
0
0
2
0
1
0
1
0
1
0
1
3
1
0
1
0
1
0
1
0
4
1
1
1
1
1
1
1
1
Refer to Table 7-5 below for the list of pins that are on the VOH/VOL tree.
7.4.2
VOH/VOL Tree Activation
To activate the VOH/VOL tree and run a VOH/VOL test, perform the sequence below:
1. Supply a 10MHz clock to I2C_CLK (Test Mode Clock) and a differential clock pair to the HT_REFCLKP1/N1,
GFX_REFCLKP/N, GFX2_REFCLKP/N and GPP_REFCLKP/N pins.
2. Set POWERGOOD to 0.
3. Set TESTMODE to 1.
4. Set PCIE_RESET_GPIO2 to 0.
5. Wait 5 or more I2C_CLK cycles.
6. Load JTAG instruction register with the instruction 0001 1111.
7. Load JTAG instruction register with the instruction 0010 0000.
8. Load JTAG instruction register with the instruction 0101 1101.
9. Go to Run-Test_Idle state.
10. Set POWERGOOD to 1.
© 2012 Advanced Micro Devices, Inc.
Proprietary
43403 AMD 890FX Databook 3.00
7-5
VOH/VOL Test
7.4.3
VOH/VOL pin list
Table 7-5 below shows the RD890 VOH/VOL Tree. There is no specific order of connection. Under the Control column,
an “Odd” or “Even” indicates that the logical output of the pin is same as the input to the “TEST_ODD” or the
“TEST_EVEN” pin respectively.
When a differential signal pair appear in the table as a single entry, the output of the positive (“P”) pin is indicated in the
Control column (see last paragraph for explanations) and the output of the negative pin (“N”) will be of the opposite
value. E.g., for entry no. 1 on the tree, when TEST_EVEN is 1, HT_TXCAD0P will give a value of 1 and HT_TXCAD0N
will give a value of 0.
Table 7-5 RD890 VOH/VOL Tree
No.
Pin Name
Ball Ref.
Control
1
HT_TXCAD0P/N
E26/E27
Even
2
HT_TXCAD1P/N
F27/F28
Odd
3
HT_TXCAD2P/N
G26/G27
Even
4
HT_TXCAD3P/N
H27/H28
Odd
5
HT_TXCAD4P/N
K27/K28
Even
6
HT_TXCAD5P/N
L26/L27
Odd
7
HT_TXCAD6P/N
M27/M28
Even
8
HT_TXCAD7P/N
N26/N27
Odd
9
HT_TXCTL0P/N
P27/P28
Even
10
HT_TXCAD8P/N
E23/E24
Odd
11
HT_TXCAD9P/N
F24/F25
Even
12
HT_TXCAD10P/N
G23/G24
Odd
13
HT_TXCAD11P/N
H24/H25
Even
14
HT_TXCAD12P/N
K24/K25
Odd
15
HT_TXCAD13P/N
L23/L24
Even
16
HT_TXCAD14P/N
M24/M25
Odd
17
HT_TXCAD15P/N
N23/N24
Even
18
HT_TXCTL1P/N
P24/P25
Odd
19
GFX_TX0P/N
B11/C11
Even
20
GFX_TX1P/N
A10/B10
Odd
21
GFX_TX2P/N
B9/C9
Even
22
GFX_TX3P/N
A8/B8
Odd
23
GFX_TX4P/N
B7/C7
Even
24
GFX_TX5P/N
A6/B6
Odd
25
GFX_TX6P/N
A4/B4
Even
26
GFX_TX7P/N
E3/E2
Odd
27
GFX_TX8P/N
F2/F1
Even
28
GFX_TX9P/N
G3/G2
Odd
29
GFX_TX10P/N
H2/H1
Even
43403 AMD 890FX Databook 3.00
7-6
No.
Pin Name
Ball Ref.
Control
30
GFX_TX11P/N
J3/J2
Odd
31
GFX_TX12P/N
K2/K1
Even
32
GFX_TX13P/N
L3/L2
Odd
33
GFX_TX14P/N
M2/M1
Even
34
GFX_TX15P/N
N3/N2
Odd
35
GFX2_TX0P/N
P2/P1
Even
36
GFX2_TX1P/N
R3/R2
Odd
37
GFX2_TX2P/N
T2/T1
Even
38
GFX2_TX3P/N
U3/U2
Odd
39
GFX2_TX4P/N
V2/V1
Even
40
GFX2_TX5P/N
W3/W2
Odd
41
GFX2_TX6P/N
Y2/Y1
Even
42
GFX2_TX7P/N
AA3/AA2
Odd
43
GFX2_TX8P/N
AB2/AB1
Even
44
GFX2_TX9P/N
AC3/AC2
Odd
45
GFX2_TX10P/N
AE3/AE2
Even
46
GFX2_TX11P/N
AG4/AH4
Odd
47
GFX2_TX12P/N
AG6/AH6
Even
48
GFX2_TX13P/N
AF7/AG7
Odd
49
GFX2_TX14P/N
AG8/AH8
Even
50
GFX2_TX15P/N
AF9/AG9
Odd
51
GPP_TX0P/N
AG19/AF19
Even
52
GPP_TX1P/N
AH18/AG18
Odd
53
GPP_TX2P/N
AG17/AF17
Even
54
GPP_TX3P/N
AH16/AG16
Odd
55
GPP_TX4P/N
AG15/AF15
Even
56
GPP_TX5P/N
AH14/AG14
Odd
57
SB_TX0P/N
AG24/AH24
Even
58
SB_TX1P/N
AF23/AG23
Odd
© 2012 Advanced Micro Devices, Inc.
Proprietary
VOH/VOL Test
No.
Pin Name
Ball Ref.
Control
59
SB_TX2P/N
AF21/AG21
Even
60
SB_TX3P/N
AG22/AH22
Odd
61
GPP_TX6P/N
AG13/AF13
Even
62
GPP_TX7P/N
AH12/AG12
Odd
63
GPP_TX8P/N
AG11/AF11
Even
64
GPP_TX9P/N
AH10/AG10
Odd
65
PWM_GPIO1
E16
Even
66
PWM_GPIO2
B15
Odd
67
PWM_GPIO5
C16
Even
68
PCIE_RESET_GPIO1
B19
Odd
69
PCIE_RESET_GPIO4
E19
Even
70
PCIE_RESET_GPIO5
E17
Odd
71
DFT_GPIO0
B26
Even
72
DFT_GPIO1
A25
Odd
73
DFT_GPIO2
B24
Even
74
DFT_GPIO3
B25
Odd
75
DFT_GPIO4
B23
Even
76
DFT_GPIO5
A23
Odd
77
DBG_GPIO0
C22
Even
78
DBG_GPIO1
B22
Odd
79
DBG_GPIO2
B21
Even
80
DBG_GPIO3
A21
Odd
81
ALLOW_LDTSTOP
D21
Even
82
LDTSTOP#
E15
Odd
© 2012 Advanced Micro Devices, Inc.
Proprietary
43403 AMD 890FX Databook 3.00
7-7
VOH/VOL Test
This page intentionally left blank.
43403 AMD 890FX Databook 3.00
7-8
© 2012 Advanced Micro Devices, Inc.
Proprietary
Appendix A
Pin Listings
This appendix contains pin listings for the RD890 sorted in different ways. To go to the listing of interest, use the linked
cross-references below:
“RD890 Pin Listing Sorted by Ball Reference” on page A-2
“RD890 Pin Listing Sorted by Pin Name” on page A-9
© 2012 Advanced Micro Devices, Inc.
Proprietary
43403 AMD 890FX Databook 3.00
Appendix A-1
RD890 Pin Listing Sorted by Ball Reference
A.1
RD890 Pin Listing Sorted by Ball Reference
Table A-1 RD890 Pin Listing Sorted by Ball Reference
Ball #
Ball Name
Ball #
Ball Name
Ball #
Ball Name
A10
GFX_TX1P
AA19
VSS
AB24
HT_RXCAD10N
A11
VSS
AA2
GFX2_TX7N
AB25
HT_RXCAD10P
A12
VDDA18PCIE
AA20
VSS
AB26
VSS
A13
VDDA18PCIE
AA21
THERMALDIODE_N
AB27
HT_RXCAD2N
A14
VSS
AA22
VDDHT
AB28
HT_RXCAD2P
A15
PWM_GPIO4
AA23
HT_RXCAD11N
AB3
VSS
A16
VSS
AA24
HT_RXCAD11P
AB4
GFX2_RX8N
A17
POWERGOOD
AA25
VSS
AB5
GFX2_RX8P
A18
VDD18
AA26
HT_RXCAD3N
AB6
VSS
A19
TESTMODE
AA27
HT_RXCAD3P
AB7
VDDPCIE
A20
VSS
AA28
VSS
AB8
VSS
A21
DBG_GPIO3
AA3
GFX2_TX7P
AB9
VDDPCIE
A22
VSS
AA4
VSS
AC1
VSS
A23
DFT_GPIO5
AA5
GFX2_RX7N
AC10
VSS
A24
VSS
AA6
GFX2_RX7P
AC11
GPP_RX9N
A25
DFT_GPIO1
AA7
VSS
AC12
VSS
A26
VSS
AA8
VDDPCIE
AC13
GPP_RX7N
A3
VDDPCIE
AA9
VSS
AC14
VSS
A4
GFX_TX6P
AB1
GFX2_TX8N
AC15
GPP_RX5N
A5
VSS
AB10
VSS
AC16
VSS
A6
GFX_TX5P
AB11
VDDPCIE
AC17
GPP_RX3N
A7
VSS
AB12
VSS
AC18
VSS
A8
GFX_TX3P
AB13
VDDPCIE
AC19
GPP_RX1N
A9
VSS
AB14
VSS
AC2
GFX2_TX9N
AA1
VSS
AB15
VDDPCIE
AC20
VSS
AA10
VDDPCIE
AB16
VSS
AC21
SB_RX3P
AA11
VSS
AB17
VDDPCIE
AC22
VDDHT
AA12
VDDPCIE
AB18
VSS
AC23
HT_RXCAD9N
AA13
VSS
AB19
VDDPCIE
AC24
HT_RXCAD9P
AA14
GPP_REFCLKN
AB2
GFX2_TX8P
AC25
VSS
AA15
GPP_REFCLKP
AB20
VSS
AC26
HT_RXCAD1N
AA16
VDDPCIE
AB21
VSS
AC27
HT_RXCAD1P
AA17
VSS
AB22
VDDHT
AC28
VSS
AA18
VDDPCIE
AB23
VSS
AC3
GFX2_TX9P
43403 AMD 890FX Databook 3.00
Appendix A-2
© 2012 Advanced Micro Devices, Inc.
Proprietary
RD890 Pin Listing Sorted by Ball Reference
Ball #
Ball Name
Ball #
Ball Name
Ball #
Ball Name
AC4
VSS
AE12
GPP_RX8P
AF20
VSS
AC5
VSS
AE13
VSS
AF21
SB_TX2P
AC6
VDDPCIE
AE14
GPP_RX6P
AF22
VSS
AC7
GFX2_RX13P
AE15
VSS
AF23
SB_TX1P
AC8
VSS
AE16
GPP_RX4P
AF24
VSS
AC9
GFX2_RX15P
AE17
VSS
AF25
SB_RX1P
AD1
GFX2_RX9N
AE18
GPP_RX2P
AF26
VSS
AD10
PCE_RCALRN
AE19
VSS
AF27
VDDHT
AD11
GPP_RX9P
AE2
GFX2_TX10N
AF28
VSS
AD12
GPP_RX8N
AE20
PCE_BCALRP
AF3
VDDPCIE
AD13
GPP_RX7P
AE21
VSS
AF4
VSS
AD14
GPP_RX6N
AE22
SB_RX2N
AF5
GFX2_RX11P
AD15
GPP_RX5P
AE23
VSS
AF6
VSS
AD16
GPP_RX4N
AE24
VDDHT
AF7
GFX2_TX13P
AD17
GPP_RX3P
AE25
VDDHT
AF8
VSS
AD18
GPP_RX2N
AE26
VDDHT
AF9
GFX2_TX15P
AD19
GPP_RX1P
AE27
VDDHT
AG10
GPP_TX9N
AD2
GFX2_RX9P
AE28
VDDHT
AG11
GPP_TX8P
AD20
PCE_BCALRN
AE3
GFX2_TX10P
AG12
GPP_TX7N
AD21
SB_RX3N
AE4
VDDPCIE
AG13
GPP_TX6P
AD22
SB_RX2P
AE5
VSS
AG14
GPP_TX5N
AD23
VDDHT
AE6
GFX2_RX12N
AG15
GPP_TX4P
AD24
HT_RXCAD8N
AE7
VSS
AG16
GPP_TX3N
AD25
HT_RXCAD8P
AE8
GFX2_RX14N
AG17
GPP_TX2P
AD26
VSS
AE9
VSS
AG18
GPP_TX1N
AD27
HT_RXCAD0N
AF1
GFX2_RX10N
AG19
GPP_TX0P
AD28
HT_RXCAD0P
AF10
VSS
AG2
VDDPCIE
AD3
VSS
AF11
GPP_TX8N
AG20
GPP_RX0N
AD4
VSS
AF12
VSS
AG21
SB_TX2N
AD5
VDDPCIE
AF13
GPP_TX6N
AG22
SB_TX3P
AD6
GFX2_RX12P
AF14
VSS
AG23
SB_TX1N
AD7
GFX2_RX13N
AF15
GPP_TX4N
AG24
SB_TX0P
AD8
GFX2_RX14P
AF16
VSS
AG25
SB_RX1N
AD9
GFX2_RX15N
AF17
GPP_TX2N
AG26
SB_RX0P
AE1
VSS
AF18
VSS
AG27
VSS
AE10
PCE_RCALRP
AF19
GPP_TX0N
AG3
VSS
AE11
VSS
AF2
GFX2_RX10P
AG4
GFX2_TX11P
© 2012 Advanced Micro Devices, Inc.
Proprietary
43403 AMD 890FX Databook 3.00
Appendix A-3
RD890 Pin Listing Sorted by Ball Reference
Ball #
Ball Name
Ball #
Ball Name
Ball #
Ball Name
AG5
GFX2_RX11N
B17
OSCIN
C25
VDDHTTX
AG6
GFX2_TX12P
B18
VDD18
C26
VDDHTTX
AG7
GFX2_TX13N
B19
C27
VDDHTTX
AG8
GFX2_TX14P
PCIE_RESET_GPIO
1
C28
VDDHTTX
B2
VDDPCIE
C3
VDDPCIE
B20
I2C_CLK
C4
VSS
B21
DBG_GPIO2
C5
GFX_RX6N
B22
DBG_GPIO1
C6
VSS
B23
DFT_GPIO4
C7
GFX_TX4N
B24
DFT_GPIO2
C8
VSS
B25
DFT_GPIO3
C9
GFX_TX2N
B26
DFT_GPIO0
D1
GFX_RX7N
B27
VSS
D10
GFX_RX1P
B3
VSS
D11
VSS
B4
GFX_TX6N
D12
VDDA18PCIE
B5
GFX_RX6P
D13
VDDA18PCIE
B6
GFX_TX5N
D14
VSS
B7
GFX_TX4P
D15
SYSRESET#
B8
GFX_TX3N
D16
VSS
B9
GFX_TX2P
C1
VDDPCIE
D17
PCIE_RESET_GPIO
2
C10
VSS
D18
VDD18
C11
GFX_TX0N
D19
C12
VDDA18PCIE
PCIE_RESET_GPIO
3
C13
VDDA18PCIE
D2
GFX_RX7P
C14
VSS
D20
VSS
C15
VSS
D21
ALLOW_LDTSTOP
C16
PWM_GPIO5
D22
VDDHTTX
C17
VSS
D23
VDDHTTX
C18
VDD18
D24
HT_RXCALN
C19
VSS
D25
HT_RXCALP
C2
VSS
D26
VSS
C20
I2C_DATA
D27
HT_TXCALN
C21
VSS
D28
HT_TXCALP
C22
DBG_GPIO0
D3
VSS
C23
VSS
D4
VDDPCIE
C24
VDDHTTX
D5
VSS
AG9
AH10
AH11
AH12
AH13
AH14
AH15
AH16
AH17
AH18
AH19
AH20
AH21
AH22
AH23
AH24
GFX2_TX15N
GPP_TX9P
VSS
GPP_TX7P
VSS
GPP_TX5P
VSS
GPP_TX3P
VSS
GPP_TX1P
VSS
GPP_RX0P
VSS
SB_TX3N
VSS
SB_TX0N
AH25
VSS
AH26
SB_RX0N
AH3
VSS
AH4
GFX2_TX11N
AH5
AH6
AH7
AH8
AH9
B10
B11
B12
B13
B14
B15
B16
VSS
GFX2_TX12N
VSS
GFX2_TX14N
VSS
GFX_TX1N
GFX_TX0P
VDDA18PCIE
VDDA18PCIE
VSS
PWM_GPIO2
PWM_GPIO6
43403 AMD 890FX Databook 3.00
Appendix A-4
© 2012 Advanced Micro Devices, Inc.
Proprietary
RD890 Pin Listing Sorted by Ball Reference
Ball #
Ball Name
Ball #
Ball Name
Ball #
Ball Name
D6
GFX_RX5P
F12
VDDA18PCIE
G2
GFX_TX9N
D7
VSS
F13
VDDA18PCIE
G20
VSS
D8
GFX_RX3P
F14
PCE_TCALRP
G21
VDDA18HTPLL
D9
VSS
F15
VSS
G22
VDDHTTX
E1
VSS
F16
PWM_GPIO3
G23
HT_TXCAD10P
E10
GFX_RX1N
F17
VSS
G24
HT_TXCAD10N
E11
GFX_RX0P
F18
VSS
G25
VSS
E12
VDDA18PCIE
F19
VSS
G26
HT_TXCAD2P
E13
VDDA18PCIE
F2
GFX_TX8P
G27
HT_TXCAD2N
E14
PCE_TCALRN
F20
VSS
G28
VSS
E15
LDTSTOP#
F21
VSS
G3
GFX_TX9P
E16
PWM_GPIO1
F22
VDDHTTX
G4
VSS
E17
PCIE_RESET_GPIO
5
F23
VSS
G5
GFX_RX9N
F24
HT_TXCAD9P
G6
GFX_RX9P
E18
VDD18
F25
HT_TXCAD9N
G7
VDDPCIE
E19
PCIE_RESET_GPIO
4
F26
VSS
G8
VDDPCIE
E2
GFX_TX7N
F27
HT_TXCAD1P
G9
VSS
E20
VSS
F28
HT_TXCAD1N
H1
GFX_TX10N
E21
STRP_DATA
F3
VSS
H10
VSS
E22
VDDHTTX
F4
GFX_RX8N
H11
VDDPCIE
E23
HT_TXCAD8P
F5
GFX_RX8P
H12
VDDA18PCIE
E24
HT_TXCAD8N
F6
VDDPCIE
H13
VDDA18PCIE
E25
VSS
F7
GFX_RX4N
H14
VDDA18PCIE
E26
HT_TXCAD0P
F8
VSS
H15
VSS
E27
HT_TXCAD0N
F9
GFX_RX2N
H16
VSS
E28
VSS
G1
VSS
H17
VSS
E3
GFX_TX7P
G10
VDDPCIE
H18
VSS
E4
VSS
G11
VSS
H19
VSS
E5
VDDPCIE
G12
VDDA18PCIE
H2
GFX_TX10P
E6
GFX_RX5N
G13
VDDA18PCIE
H20
VSS
E7
GFX_RX4P
G14
VDDA18PCIE
H21
VSS
E8
GFX_RX3N
G15
VSS
H22
VDDHTTX
E9
GFX_RX2P
G16
VSS
H23
VSS
F1
GFX_TX8N
G17
VSS
H24
HT_TXCAD11P
F10
VSS
G18
VSS
H25
HT_TXCAD11N
F11
GFX_RX0N
G19
VSS
H26
VSS
© 2012 Advanced Micro Devices, Inc.
Proprietary
43403 AMD 890FX Databook 3.00
Appendix A-5
RD890 Pin Listing Sorted by Ball Reference
Ball #
Ball Name
Ball #
Ball Name
Ball #
Ball Name
H27
HT_TXCAD3P
K4
GFX_RX12N
M17
VSS
H28
HT_TXCAD3N
K5
GFX_RX12P
M18
VSS
H3
VSS
K6
VSS
M2
GFX_TX14P
H4
GFX_RX10N
K7
VDDPCIE
M21
VSS
H5
GFX_RX10P
K8
VSS
M22
VDDHT
H6
VSS
L1
VSS
M23
VSS
H7
VDDPCIE
L11
VDDA18PCIE
M24
HT_TXCAD14P
H8
GFX_REFCLKN
L12
VSS
M25
HT_TXCAD14N
H9
VDDPCIE
L13
VSS
M26
VSS
J1
VSS
L14
VDDC
M27
HT_TXCAD6P
J2
GFX_TX11N
L15
VSS
M28
HT_TXCAD6N
J21
HT_REFCLKN
L16
VDDC
M3
VSS
J22
VSS
L17
VSS
M4
GFX_RX14N
J23
HT_TXCLK1P
L18
VSS
M5
GFX_RX14P
J24
HT_TXCLK1N
L2
GFX_TX13N
M6
VSS
J25
VSS
L21
VDDHT
M7
VDDPCIE
J26
HT_TXCLK0P
L22
VSS
M8
VSS
J27
HT_TXCLK0N
L23
HT_TXCAD13P
N1
VSS
J28
VSS
L24
HT_TXCAD13N
N11
VSS
J3
GFX_TX11P
L25
VSS
N12
VDDC
J4
VSS
L26
HT_TXCAD5P
N13
VSS
J5
GFX_RX11N
L27
HT_TXCAD5N
N14
VDDC
J6
GFX_RX11P
L28
VSS
N15
VSS
J7
VSS
L3
GFX_TX13P
N16
VDDC
J8
GFX_REFCLKP
L4
VSS
N17
VSS
K1
GFX_TX12N
L5
GFX_RX13N
N18
VSS
K2
GFX_TX12P
L6
GFX_RX13P
N2
GFX_TX15N
K21
HT_REFCLKP
L7
VSS
N21
VDDHT
K22
VDDHT
L8
VDDPCIE
N22
VSS
K23
VSS
M1
GFX_TX14N
N23
HT_TXCAD15P
K24
HT_TXCAD12P
M11
VSS
N24
HT_TXCAD15N
K25
HT_TXCAD12N
M12
VSS
N25
VSS
K26
VSS
M13
VDDC
N26
HT_TXCAD7P
K27
HT_TXCAD4P
M14
VSS
N27
HT_TXCAD7N
K28
HT_TXCAD4N
M15
VDDC
N28
VSS
K3
VSS
M16
VSS
N3
GFX_TX15P
43403 AMD 890FX Databook 3.00
Appendix A-6
© 2012 Advanced Micro Devices, Inc.
Proprietary
RD890 Pin Listing Sorted by Ball Reference
Ball #
Ball Name
Ball #
Ball Name
Ball #
Ball Name
N4
VSS
R17
VSS
T4
GFX2_RX2N
N5
GFX_RX15N
R18
VSS
T5
GFX2_RX2P
N6
GFX_RX15P
R2
GFX2_TX1N
T6
VSS
N7
VSS
R21
VDDHT
T7
VDDPCIE
N8
VDDPCIE
R22
VSS
T8
VSS
P1
GFX2_TX0N
R23
HT_RXCTL1N
U1
VSS
P11
VSS
R24
HT_RXCTL1P
U11
VSS
P12
VSS
R25
VSS
U12
VSS
P13
VDDC
R26
HT_RXCTL0N
U13
VSS
P14
VSS
R27
HT_RXCTL0P
U14
VDDC
P15
VDDC
R28
VSS
U15
VSS
P16
VSS
R3
GFX2_TX1P
U16
VDDC
P17
VDDC
R4
VSS
U17
VSS
P18
VSS
R5
GFX2_RX1N
U18
VSS
P2
GFX2_TX0P
R6
GFX2_RX1P
U2
GFX2_TX3N
P21
VSS
R7
VSS
U21
VDDHT
P22
VDDHT
R8
VDDPCIE
U22
VSS
P23
VSS
T1
GFX2_TX2N
U23
HT_RXCAD14N
P24
HT_TXCTL1P
T11
VSS
U24
HT_RXCAD14P
P25
HT_TXCTL1N
T12
VSS
U25
VSS
P26
VSS
T13
VDDC
U26
HT_RXCAD6N
P27
HT_TXCTL0P
T14
VSS
U27
HT_RXCAD6P
P28
HT_TXCTL0N
T15
VDDC
U28
VSS
P3
VSS
T16
VSS
U3
GFX2_TX3P
P4
GFX2_RX0N
T17
VDDC
U4
VSS
P5
GFX2_RX0P
T18
VSS
U5
GFX2_RX3N
P6
VSS
T2
GFX2_TX2P
U6
GFX2_RX3P
P7
VDDPCIE
T21
VSS
U7
VSS
P8
VSS
T22
VDDHT
U8
GFX2_REFCLKN
R1
VSS
T23
VSS
V1
GFX2_TX4N
R11
VSS
T24
HT_RXCAD15N
V11
VDDA18PCIE
R12
VDDC
T25
HT_RXCAD15P
V12
VSS
R13
VSS
T26
VSS
V13
VSS
R14
VDDC
T27
HT_RXCAD7N
V14
VSS
R15
VSS
T28
HT_RXCAD7P
V15
VSS
R16
VDDC
T3
VSS
V16
VSS
© 2012 Advanced Micro Devices, Inc.
Proprietary
43403 AMD 890FX Databook 3.00
Appendix A-7
RD890 Pin Listing Sorted by Ball Reference
Ball #
Ball Name
Ball #
Ball Name
V17
VSS
Y22
VDDHT
V18
VDDA18PCIE
Y23
VSS
V2
GFX2_TX4P
Y24
HT_RXCLK1N
V21
VSS
Y25
HT_RXCLK1P
V22
VDDHT
Y26
VSS
V23
VSS
Y27
HT_RXCLK0N
V24
HT_RXCAD13N
Y28
HT_RXCLK0P
V25
HT_RXCAD13P
Y3
VSS
V26
VSS
Y4
GFX2_RX6N
V27
HT_RXCAD5N
Y5
GFX2_RX6P
V28
HT_RXCAD5P
Y6
VSS
V3
VSS
Y7
VDDPCIE
V4
GFX2_RX4N
Y8
VSS
V5
GFX2_RX4P
V6
VSS
V7
VDDPCIE
V8
GFX2_REFCLKP
W1
VSS
W2
GFX2_TX5N
W21
VDDHT
W22
VSS
W23
HT_RXCAD12N
W24
HT_RXCAD12P
W25
VSS
W26
HT_RXCAD4N
W27
HT_RXCAD4P
W28
VSS
W3
GFX2_TX5P
W4
VSS
W5
GFX2_RX5N
W6
GFX2_RX5P
W7
VSS
W8
VDDPCIE
Y1
GFX2_TX6N
Y2
GFX2_TX6P
Y21
THERMALDIODE_P
43403 AMD 890FX Databook 3.00
Appendix A-8
© 2012 Advanced Micro Devices, Inc.
Proprietary
RD890 Pin Listing Sorted by Ball Reference
A.2
RD890 Pin Listing Sorted by Pin Name
Ball Name
Ball #
Ball Name
Ball #
Ball Name
Ball #
ALLOW_LDTSTOP
D21
GFX_RX5N
E6
GFX_TX6P
A4
DBG_GPIO0
C22
GFX_RX5P
D6
GFX_TX7N
E2
DBG_GPIO1
B22
GFX_RX6N
C5
GFX_TX7P
E3
DBG_GPIO2
B21
GFX_RX6P
B5
GFX_TX8N
F1
DBG_GPIO3
A21
GFX_RX7N
D1
GFX_TX8P
F2
DFT_GPIO0
B26
GFX_RX7P
D2
GFX_TX9N
G2
DFT_GPIO1
A25
GFX_RX8N
F4
GFX_TX9P
G3
DFT_GPIO2
B24
GFX_RX8P
F5
GFX2_REFCLKN
U8
DFT_GPIO3
B25
GFX_RX9N
G5
GFX2_REFCLKP
V8
DFT_GPIO4
B23
GFX_RX9P
G6
GFX2_RX0N
P4
DFT_GPIO5
A23
GFX_TX0N
C11
GFX2_RX0P
P5
GFX_REFCLKN
H8
GFX_TX0P
B11
GFX2_RX10N
AF1
GFX_REFCLKP
J8
GFX_TX10N
H1
GFX2_RX10P
AF2
GFX_RX0N
F11
GFX_TX10P
H2
GFX2_RX11N
AG5
GFX_RX0P
E11
GFX_TX11N
J2
GFX2_RX11P
AF5
GFX_RX10N
H4
GFX_TX11P
J3
GFX2_RX12N
AE6
GFX_RX10P
H5
GFX_TX12N
K1
GFX2_RX12P
AD6
GFX_RX11N
J5
GFX_TX12P
K2
GFX2_RX13N
AD7
GFX_RX11P
J6
GFX_TX13N
L2
GFX2_RX13P
AC7
GFX_RX12N
K4
GFX_TX13P
L3
GFX2_RX14N
AE8
GFX_RX12P
K5
GFX_TX14N
M1
GFX2_RX14P
AD8
GFX_RX13N
L5
GFX_TX14P
M2
GFX2_RX15N
AD9
GFX_RX13P
L6
GFX_TX15N
N2
GFX2_RX15P
AC9
GFX_RX14N
M4
GFX_TX15P
N3
GFX2_RX1N
R5
GFX_RX14P
M5
GFX_TX1N
B10
GFX2_RX1P
R6
GFX_RX15N
N5
GFX_TX1P
A10
GFX2_RX2N
T4
GFX_RX15P
N6
GFX_TX2N
C9
GFX2_RX2P
T5
GFX_RX1N
E10
GFX_TX2P
B9
GFX2_RX3N
U5
GFX_RX1P
D10
GFX_TX3N
B8
GFX2_RX3P
U6
GFX_RX2N
F9
GFX_TX3P
A8
GFX2_RX4N
V4
GFX_RX2P
E9
GFX_TX4N
C7
GFX2_RX4P
V5
GFX_RX3N
E8
GFX_TX4P
B7
GFX2_RX5N
W5
GFX_RX3P
D8
GFX_TX5N
B6
GFX2_RX5P
W6
GFX_RX4N
F7
GFX_TX5P
A6
GFX2_RX6N
Y4
GFX_RX4P
E7
GFX_TX6N
B4
GFX2_RX6P
Y5
© 2012 Advanced Micro Devices, Inc.
Proprietary
43403 AMD 890FX Databook 3.00
Appendix A-9
RD890 Pin Listing Sorted by Ball Reference
Ball Name
Ball #
Ball Name
Ball #
Ball Name
Ball #
GFX2_RX7N
AA5
GFX2_TX9N
AC2
GPP_TX6N
AF13
GFX2_RX7P
AA6
GFX2_TX9P
AC3
GPP_TX6P
AG13
GFX2_RX8N
AB4
GPP_REFCLKN
AA14
GPP_TX7N
AG12
GFX2_RX8P
AB5
GPP_REFCLKP
AA15
GPP_TX7P
AH12
GFX2_RX9N
AD1
GPP_RX0N
AG20
GPP_TX8N
AF11
GFX2_RX9P
AD2
GPP_RX0P
AH20
GPP_TX8P
AG11
GFX2_TX0N
P1
GPP_RX1N
AC19
GPP_TX9N
AG10
GFX2_TX0P
P2
GPP_RX1P
AD19
GPP_TX9P
AH10
GFX2_TX10N
AE2
GPP_RX2N
AD18
HT_REFCLKN
J21
GFX2_TX10P
AE3
GPP_RX2P
AE18
HT_REFCLKP
K21
GFX2_TX11N
AH4
GPP_RX3N
AC17
HT_RXCAD0N
AD27
GFX2_TX11P
AG4
GPP_RX3P
AD17
HT_RXCAD0P
AD28
GFX2_TX12N
AH6
GPP_RX4N
AD16
HT_RXCAD10N
AB24
GFX2_TX12P
AG6
GPP_RX4P
AE16
HT_RXCAD10P
AB25
GFX2_TX13N
AG7
GPP_RX5N
AC15
HT_RXCAD11N
AA23
GFX2_TX13P
AF7
GPP_RX5P
AD15
HT_RXCAD11P
AA24
GFX2_TX14N
AH8
GPP_RX6N
AD14
HT_RXCAD12N
W23
GFX2_TX14P
AG8
GPP_RX6P
AE14
HT_RXCAD12P
W24
GFX2_TX15N
AG9
GPP_RX7N
AC13
HT_RXCAD13N
V24
GFX2_TX15P
AF9
GPP_RX7P
AD13
HT_RXCAD13P
V25
GFX2_TX1N
R2
GPP_RX8N
AD12
HT_RXCAD14N
U23
GFX2_TX1P
R3
GPP_RX8P
AE12
HT_RXCAD14P
U24
GFX2_TX2N
T1
GPP_RX9N
AC11
HT_RXCAD15N
T24
GFX2_TX2P
T2
GPP_RX9P
AD11
HT_RXCAD15P
T25
GFX2_TX3N
U2
GPP_TX0N
AF19
HT_RXCAD1N
AC26
GFX2_TX3P
U3
GPP_TX0P
AG19
HT_RXCAD1P
AC27
GFX2_TX4N
V1
GPP_TX1N
AG18
HT_RXCAD2N
AB27
GFX2_TX4P
V2
GPP_TX1P
AH18
HT_RXCAD2P
AB28
GFX2_TX5N
W2
GPP_TX2N
AF17
HT_RXCAD3N
AA26
GFX2_TX5P
W3
GPP_TX2P
AG17
HT_RXCAD3P
AA27
GFX2_TX6N
Y1
GPP_TX3N
AG16
HT_RXCAD4N
W26
GFX2_TX6P
Y2
GPP_TX3P
AH16
HT_RXCAD4P
W27
GFX2_TX7N
AA2
GPP_TX4N
AF15
HT_RXCAD5N
V27
GFX2_TX7P
AA3
GPP_TX4P
AG15
HT_RXCAD5P
V28
GFX2_TX8N
AB1
GPP_TX5N
AG14
HT_RXCAD6N
U26
GFX2_TX8P
AB2
GPP_TX5P
AH14
HT_RXCAD6P
U27
43403 AMD 890FX Databook 3.00
Appendix A-10
© 2012 Advanced Micro Devices, Inc.
Proprietary
RD890 Pin Listing Sorted by Ball Reference
Ball Name
Ball #
Ball Name
Ball #
Ball Name
Ball #
HT_RXCAD7N
T27
HT_TXCAD4N
K28
D19
HT_RXCAD7P
T28
HT_TXCAD4P
K27
PCIE_RESET_GPIO
3
HT_RXCAD8N
AD24
HT_TXCAD5N
L27
PCIE_RESET_GPIO
4
E19
HT_RXCAD8P
AD25
HT_TXCAD5P
L26
E17
HT_RXCAD9N
AC23
HT_TXCAD6N
M28
PCIE_RESET_GPIO
5
HT_RXCAD9P
AC24
HT_TXCAD6P
M27
POWERGOOD
A17
HT_RXCALN
D24
HT_TXCAD7N
N27
PWM_GPIO1
E16
HT_RXCALP
D25
HT_TXCAD7P
N26
PWM_GPIO2
B15
HT_RXCLK0N
Y27
HT_TXCAD8N
E24
PWM_GPIO3
F16
HT_RXCLK0P
Y28
HT_TXCAD8P
E23
PWM_GPIO4
A15
HT_RXCLK1N
Y24
HT_TXCAD9N
F25
PWM_GPIO5
C16
HT_RXCLK1P
Y25
HT_TXCAD9P
F24
PWM_GPIO6
B16
HT_RXCTL0N
R26
HT_TXCALN
D27
SB_RX0N
AH26
HT_RXCTL0P
R27
HT_TXCALP
D28
SB_RX0P
AG26
HT_RXCTL1N
R23
HT_TXCLK0N
J27
SB_RX1N
AG25
HT_RXCTL1P
R24
HT_TXCLK0P
J26
SB_RX1P
AF25
HT_TXCAD0N
E27
HT_TXCLK1N
J24
SB_RX2N
AE22
HT_TXCAD0P
E26
HT_TXCLK1P
J23
SB_RX2P
AD22
HT_TXCAD10N
G24
HT_TXCTL0N
P28
SB_RX3N
AD21
HT_TXCAD10P
G23
HT_TXCTL0P
P27
SB_RX3P
AC21
HT_TXCAD11N
H25
HT_TXCTL1N
P25
SB_TX0N
AH24
HT_TXCAD11P
H24
HT_TXCTL1P
P24
SB_TX0P
AG24
HT_TXCAD12N
K25
I2C_CLK
B20
SB_TX1N
AG23
HT_TXCAD12P
K24
I2C_DATA
C20
SB_TX1P
AF23
HT_TXCAD13N
L24
LDTSTOP#
E15
SB_TX2N
AG21
HT_TXCAD13P
L23
OSCIN
B17
SB_TX2P
AF21
HT_TXCAD14N
M25
PCE_BCALRN
AD20
SB_TX3N
AH22
HT_TXCAD14P
M24
PCE_BCALRP
AE20
SB_TX3P
AG22
HT_TXCAD15N
N24
PCE_RCALRN
AD10
STRP_DATA
E21
HT_TXCAD15P
N23
PCE_RCALRP
AE10
SYSRESET#
D15
HT_TXCAD1N
F28
PCE_TCALRN
E14
TESTMODE
A19
HT_TXCAD1P
F27
PCE_TCALRP
F14
THERMALDIODE_N
AA21
HT_TXCAD2N
G27
THERMALDIODE_P
Y21
B19
HT_TXCAD2P
G26
PCIE_RESET_GPIO
1
VDD18
A18
HT_TXCAD3N
H28
PCIE_RESET_GPIO
2
D17
VDD18
B18
HT_TXCAD3P
H27
VDD18
C18
© 2012 Advanced Micro Devices, Inc.
Proprietary
43403 AMD 890FX Databook 3.00
Appendix A-11
RD890 Pin Listing Sorted by Ball Reference
Ball Name
Ball #
Ball Name
Ball #
Ball Name
Ball #
VDD18
D18
VDDC
R16
VDDHTTX
G22
VDD18
E18
VDDC
T13
VDDHTTX
H22
VDDA18HTPLL
G21
VDDC
T15
VDDPCIE
A3
VDDA18PCIE
A12
VDDC
T17
VDDPCIE
AA10
VDDA18PCIE
A13
VDDC
U14
VDDPCIE
AA12
VDDA18PCIE
B12
VDDC
U16
VDDPCIE
AA16
VDDA18PCIE
B13
VDDHT
AA22
VDDPCIE
AA18
VDDA18PCIE
C12
VDDHT
AB22
VDDPCIE
AA8
VDDA18PCIE
C13
VDDHT
AC22
VDDPCIE
AB11
VDDA18PCIE
D12
VDDHT
AD23
VDDPCIE
AB13
VDDA18PCIE
D13
VDDHT
AE24
VDDPCIE
AB15
VDDA18PCIE
E12
VDDHT
AE25
VDDPCIE
AB17
VDDA18PCIE
E13
VDDHT
AE26
VDDPCIE
AB19
VDDA18PCIE
F12
VDDHT
AE27
VDDPCIE
AB7
VDDA18PCIE
F13
VDDHT
AE28
VDDPCIE
AB9
VDDA18PCIE
G12
VDDHT
AF27
VDDPCIE
AC6
VDDA18PCIE
G13
VDDHT
K22
VDDPCIE
AD5
VDDA18PCIE
G14
VDDHT
L21
VDDPCIE
AE4
VDDA18PCIE
H12
VDDHT
M22
VDDPCIE
AF3
VDDA18PCIE
H13
VDDHT
N21
VDDPCIE
AG2
VDDA18PCIE
H14
VDDHT
P22
VDDPCIE
B2
VDDA18PCIE
L11
VDDHT
R21
VDDPCIE
C1
VDDA18PCIE
V11
VDDHT
T22
VDDPCIE
C3
VDDA18PCIE
V18
VDDHT
U21
VDDPCIE
D4
VDDC
L14
VDDHT
V22
VDDPCIE
E5
VDDC
L16
VDDHT
W21
VDDPCIE
F6
VDDC
M13
VDDHT
Y22
VDDPCIE
G10
VDDC
M15
VDDHTTX
C24
VDDPCIE
G7
VDDC
N12
VDDHTTX
C25
VDDPCIE
G8
VDDC
N14
VDDHTTX
C26
VDDPCIE
H11
VDDC
N16
VDDHTTX
C27
VDDPCIE
H7
VDDC
P13
VDDHTTX
C28
VDDPCIE
H9
VDDC
P15
VDDHTTX
D22
VDDPCIE
K7
VDDC
P17
VDDHTTX
D23
VDDPCIE
L8
VDDC
R12
VDDHTTX
E22
VDDPCIE
M7
VDDC
R14
VDDHTTX
F22
VDDPCIE
N8
43403 AMD 890FX Databook 3.00
Appendix A-12
© 2012 Advanced Micro Devices, Inc.
Proprietary
RD890 Pin Listing Sorted by Ball Reference
Ball Name
Ball #
Ball Name
Ball #
Ball Name
Ball #
VDDPCIE
P7
VSS
AB3
VSS
AF24
VDDPCIE
R8
VSS
AB6
VSS
AF26
VDDPCIE
T7
VSS
AB8
VSS
AF28
VDDPCIE
V7
VSS
AC1
VSS
AF4
VDDPCIE
W8
VSS
AC10
VSS
AF6
VDDPCIE
Y7
VSS
AC12
VSS
AF8
VSS
A11
VSS
AC14
VSS
AG27
VSS
A14
VSS
AC16
VSS
AG3
VSS
A16
VSS
AC18
VSS
AH11
VSS
A20
VSS
AC20
VSS
AH13
VSS
A22
VSS
AC25
VSS
AH15
VSS
A24
VSS
AC28
VSS
AH17
VSS
A26
VSS
AC4
VSS
AH19
VSS
A5
VSS
AC5
VSS
AH21
VSS
A7
VSS
AC8
VSS
AH23
VSS
A9
VSS
AD26
VSS
AH25
VSS
AA1
VSS
AD3
VSS
AH3
VSS
AA11
VSS
AD4
VSS
AH5
VSS
AA13
VSS
AE1
VSS
AH7
VSS
AA17
VSS
AE11
VSS
AH9
VSS
AA19
VSS
AE13
VSS
B14
VSS
AA20
VSS
AE15
VSS
B27
VSS
AA25
VSS
AE17
VSS
B3
VSS
AA28
VSS
AE19
VSS
C10
VSS
AA4
VSS
AE21
VSS
C14
VSS
AA7
VSS
AE23
VSS
C15
VSS
AA9
VSS
AE5
VSS
C17
VSS
AB10
VSS
AE7
VSS
C19
VSS
AB12
VSS
AE9
VSS
C2
VSS
AB14
VSS
AF10
VSS
C21
VSS
AB16
VSS
AF12
VSS
C23
VSS
AB18
VSS
AF14
VSS
C4
VSS
AB20
VSS
AF16
VSS
C6
VSS
AB21
VSS
AF18
VSS
C8
VSS
AB23
VSS
AF20
VSS
D11
VSS
AB26
VSS
AF22
VSS
D14
© 2012 Advanced Micro Devices, Inc.
Proprietary
43403 AMD 890FX Databook 3.00
Appendix A-13
RD890 Pin Listing Sorted by Ball Reference
Ball Name
Ball #
Ball Name
Ball #
Ball Name
Ball #
VSS
D16
VSS
H15
VSS
M16
VSS
D20
VSS
H16
VSS
M17
VSS
D26
VSS
H17
VSS
M18
VSS
D3
VSS
H18
VSS
M21
VSS
D5
VSS
H19
VSS
M23
VSS
D7
VSS
H20
VSS
M26
VSS
D9
VSS
H21
VSS
M3
VSS
E1
VSS
H23
VSS
M6
VSS
E20
VSS
H26
VSS
M8
VSS
E25
VSS
H3
VSS
N1
VSS
E28
VSS
H6
VSS
N11
VSS
E4
VSS
J1
VSS
N13
VSS
F10
VSS
J22
VSS
N15
VSS
F15
VSS
J25
VSS
N17
VSS
F17
VSS
J28
VSS
N18
VSS
F18
VSS
J4
VSS
N22
VSS
F19
VSS
J7
VSS
N25
VSS
F20
VSS
K23
VSS
N28
VSS
F21
VSS
K26
VSS
N4
VSS
F23
VSS
K3
VSS
N7
VSS
F26
VSS
K6
VSS
P11
VSS
F3
VSS
K8
VSS
P12
VSS
F8
VSS
L1
VSS
P14
VSS
G1
VSS
L12
VSS
P16
VSS
G11
VSS
L13
VSS
P18
VSS
G15
VSS
L15
VSS
P21
VSS
G16
VSS
L17
VSS
P23
VSS
G17
VSS
L18
VSS
P26
VSS
G18
VSS
L22
VSS
P3
VSS
G19
VSS
L25
VSS
P6
VSS
G20
VSS
L28
VSS
P8
VSS
G25
VSS
L4
VSS
R1
VSS
G28
VSS
L7
VSS
R11
VSS
G4
VSS
M11
VSS
R13
VSS
G9
VSS
M12
VSS
R15
VSS
H10
VSS
M14
VSS
R17
43403 AMD 890FX Databook 3.00
Appendix A-14
© 2012 Advanced Micro Devices, Inc.
Proprietary
RD890 Pin Listing Sorted by Ball Reference
Ball Name
Ball #
Ball Name
Ball #
VSS
R18
VSS
V23
VSS
R22
VSS
V26
VSS
R25
VSS
V3
VSS
R28
VSS
V6
VSS
R4
VSS
W1
VSS
R7
VSS
W22
VSS
T11
VSS
W25
VSS
T12
VSS
W28
VSS
T14
VSS
W4
VSS
T16
VSS
W7
VSS
T18
VSS
Y23
VSS
T21
VSS
Y26
VSS
T23
VSS
Y3
VSS
T26
VSS
Y6
VSS
T3
VSS
Y8
VSS
T6
VSS
T8
VSS
U1
VSS
U11
VSS
U12
VSS
U13
VSS
U15
VSS
U17
VSS
U18
VSS
U22
VSS
U25
VSS
U28
VSS
U4
VSS
U7
VSS
V12
VSS
V13
VSS
V14
VSS
V15
VSS
V16
VSS
V17
VSS
V21
© 2012 Advanced Micro Devices, Inc.
Proprietary
43403 AMD 890FX Databook 3.00
Appendix A-15
RD890 Pin Listing Sorted by Ball Reference
This page is left blank intentionally.
43403 AMD 890FX Databook 3.00
Appendix A-16
© 2012 Advanced Micro Devices, Inc.
Proprietary
Appendix B
Revision History
Rev. 3.00 (Jan 2012)
•
First public release based on rev. 1.30 of the NDA version, with the following change:
•
Updated Section 3.5, “Clock Interface”: Made connection of GPP_REFCLKP/N mandatory.
© 2012 Advanced Micro Devices, Inc.
Proprietary
43403 AMD 890FX Databook 3.00
Appendix B-1
This page intentionally left blank.
43403 AMD 890FX Databook 3.00
Appendix B-2
© 2012 Advanced Micro Devices, Inc.
Proprietary